Fix comment for consistency sake.
[llvm/avr.git] / lib / Analysis / ConstantFolding.cpp
blob109eaad4584e4537b1737e5bf89bc33bd8cefbec
1 //===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions determines the possibility of performing constant
11 // folding.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/GetElementPtrTypeIterator.h"
28 #include "llvm/Support/MathExtras.h"
29 #include <cerrno>
30 #include <cmath>
31 using namespace llvm;
33 //===----------------------------------------------------------------------===//
34 // Constant Folding internal helper functions
35 //===----------------------------------------------------------------------===//
37 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
38 /// from a global, return the global and the constant. Because of
39 /// constantexprs, this function is recursive.
40 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
41 int64_t &Offset, const TargetData &TD) {
42 // Trivial case, constant is the global.
43 if ((GV = dyn_cast<GlobalValue>(C))) {
44 Offset = 0;
45 return true;
48 // Otherwise, if this isn't a constant expr, bail out.
49 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
50 if (!CE) return false;
52 // Look through ptr->int and ptr->ptr casts.
53 if (CE->getOpcode() == Instruction::PtrToInt ||
54 CE->getOpcode() == Instruction::BitCast)
55 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
57 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
58 if (CE->getOpcode() == Instruction::GetElementPtr) {
59 // Cannot compute this if the element type of the pointer is missing size
60 // info.
61 if (!cast<PointerType>(CE->getOperand(0)->getType())
62 ->getElementType()->isSized())
63 return false;
65 // If the base isn't a global+constant, we aren't either.
66 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
67 return false;
69 // Otherwise, add any offset that our operands provide.
70 gep_type_iterator GTI = gep_type_begin(CE);
71 for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
72 i != e; ++i, ++GTI) {
73 ConstantInt *CI = dyn_cast<ConstantInt>(*i);
74 if (!CI) return false; // Index isn't a simple constant?
75 if (CI->getZExtValue() == 0) continue; // Not adding anything.
77 if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
78 // N = N + Offset
79 Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
80 } else {
81 const SequentialType *SQT = cast<SequentialType>(*GTI);
82 Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
85 return true;
88 return false;
92 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
93 /// Attempt to symbolically evaluate the result of a binary operator merging
94 /// these together. If target data info is available, it is provided as TD,
95 /// otherwise TD is null.
96 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
97 Constant *Op1, const TargetData *TD,
98 LLVMContext &Context){
99 // SROA
101 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
102 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
103 // bits.
106 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
107 // constant. This happens frequently when iterating over a global array.
108 if (Opc == Instruction::Sub && TD) {
109 GlobalValue *GV1, *GV2;
110 int64_t Offs1, Offs2;
112 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
113 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
114 GV1 == GV2) {
115 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
116 return ConstantInt::get(Op0->getType(), Offs1-Offs2);
120 return 0;
123 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
124 /// constant expression, do so.
125 static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
126 const Type *ResultTy,
127 LLVMContext &Context,
128 const TargetData *TD) {
129 Constant *Ptr = Ops[0];
130 if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
131 return 0;
133 unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
134 APInt BasePtr(BitWidth, 0);
135 bool BaseIsInt = true;
136 if (!Ptr->isNullValue()) {
137 // If this is a inttoptr from a constant int, we can fold this as the base,
138 // otherwise we can't.
139 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
140 if (CE->getOpcode() == Instruction::IntToPtr)
141 if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
142 BasePtr = Base->getValue();
143 BasePtr.zextOrTrunc(BitWidth);
146 if (BasePtr == 0)
147 BaseIsInt = false;
150 // If this is a constant expr gep that is effectively computing an
151 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
152 for (unsigned i = 1; i != NumOps; ++i)
153 if (!isa<ConstantInt>(Ops[i]))
154 return 0;
156 APInt Offset = APInt(BitWidth,
157 TD->getIndexedOffset(Ptr->getType(),
158 (Value**)Ops+1, NumOps-1));
159 // If the base value for this address is a literal integer value, fold the
160 // getelementptr to the resulting integer value casted to the pointer type.
161 if (BaseIsInt) {
162 Constant *C = ConstantInt::get(Context, Offset+BasePtr);
163 return ConstantExpr::getIntToPtr(C, ResultTy);
166 // Otherwise form a regular getelementptr. Recompute the indices so that
167 // we eliminate over-indexing of the notional static type array bounds.
168 // This makes it easy to determine if the getelementptr is "inbounds".
169 // Also, this helps GlobalOpt do SROA on GlobalVariables.
170 const Type *Ty = Ptr->getType();
171 SmallVector<Constant*, 32> NewIdxs;
172 do {
173 if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
174 // The only pointer indexing we'll do is on the first index of the GEP.
175 if (isa<PointerType>(ATy) && !NewIdxs.empty())
176 break;
177 // Determine which element of the array the offset points into.
178 APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
179 if (ElemSize == 0)
180 return 0;
181 APInt NewIdx = Offset.udiv(ElemSize);
182 Offset -= NewIdx * ElemSize;
183 NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
184 Ty = ATy->getElementType();
185 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
186 // Determine which field of the struct the offset points into. The
187 // getZExtValue is at least as safe as the StructLayout API because we
188 // know the offset is within the struct at this point.
189 const StructLayout &SL = *TD->getStructLayout(STy);
190 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
191 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
192 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
193 Ty = STy->getTypeAtIndex(ElIdx);
194 } else {
195 // We've reached some non-indexable type.
196 break;
198 } while (Ty != cast<PointerType>(ResultTy)->getElementType());
200 // If we haven't used up the entire offset by descending the static
201 // type, then the offset is pointing into the middle of an indivisible
202 // member, so we can't simplify it.
203 if (Offset != 0)
204 return 0;
206 // If the base is the start of a GlobalVariable and all the array indices
207 // remain in their static bounds, the GEP is inbounds. We can check that
208 // all indices are in bounds by just checking the first index only
209 // because we've just normalized all the indices.
210 Constant *C = isa<GlobalVariable>(Ptr) && NewIdxs[0]->isNullValue() ?
211 ConstantExpr::getInBoundsGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size()) :
212 ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
213 assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
214 "Computed GetElementPtr has unexpected type!");
216 // If we ended up indexing a member with a type that doesn't match
217 // the type of what the original indices indexed, add a cast.
218 if (Ty != cast<PointerType>(ResultTy)->getElementType())
219 C = ConstantExpr::getBitCast(C, ResultTy);
221 return C;
224 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
225 /// targetdata. Return 0 if unfoldable.
226 static Constant *FoldBitCast(Constant *C, const Type *DestTy,
227 const TargetData &TD, LLVMContext &Context) {
228 // If this is a bitcast from constant vector -> vector, fold it.
229 if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
230 if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
231 // If the element types match, VMCore can fold it.
232 unsigned NumDstElt = DestVTy->getNumElements();
233 unsigned NumSrcElt = CV->getNumOperands();
234 if (NumDstElt == NumSrcElt)
235 return 0;
237 const Type *SrcEltTy = CV->getType()->getElementType();
238 const Type *DstEltTy = DestVTy->getElementType();
240 // Otherwise, we're changing the number of elements in a vector, which
241 // requires endianness information to do the right thing. For example,
242 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
243 // folds to (little endian):
244 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
245 // and to (big endian):
246 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
248 // First thing is first. We only want to think about integer here, so if
249 // we have something in FP form, recast it as integer.
250 if (DstEltTy->isFloatingPoint()) {
251 // Fold to an vector of integers with same size as our FP type.
252 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
253 const Type *DestIVTy = VectorType::get(
254 IntegerType::get(Context, FPWidth), NumDstElt);
255 // Recursively handle this integer conversion, if possible.
256 C = FoldBitCast(C, DestIVTy, TD, Context);
257 if (!C) return 0;
259 // Finally, VMCore can handle this now that #elts line up.
260 return ConstantExpr::getBitCast(C, DestTy);
263 // Okay, we know the destination is integer, if the input is FP, convert
264 // it to integer first.
265 if (SrcEltTy->isFloatingPoint()) {
266 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
267 const Type *SrcIVTy = VectorType::get(
268 IntegerType::get(Context, FPWidth), NumSrcElt);
269 // Ask VMCore to do the conversion now that #elts line up.
270 C = ConstantExpr::getBitCast(C, SrcIVTy);
271 CV = dyn_cast<ConstantVector>(C);
272 if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
275 // Now we know that the input and output vectors are both integer vectors
276 // of the same size, and that their #elements is not the same. Do the
277 // conversion here, which depends on whether the input or output has
278 // more elements.
279 bool isLittleEndian = TD.isLittleEndian();
281 SmallVector<Constant*, 32> Result;
282 if (NumDstElt < NumSrcElt) {
283 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
284 Constant *Zero = Constant::getNullValue(DstEltTy);
285 unsigned Ratio = NumSrcElt/NumDstElt;
286 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
287 unsigned SrcElt = 0;
288 for (unsigned i = 0; i != NumDstElt; ++i) {
289 // Build each element of the result.
290 Constant *Elt = Zero;
291 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
292 for (unsigned j = 0; j != Ratio; ++j) {
293 Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
294 if (!Src) return 0; // Reject constantexpr elements.
296 // Zero extend the element to the right size.
297 Src = ConstantExpr::getZExt(Src, Elt->getType());
299 // Shift it to the right place, depending on endianness.
300 Src = ConstantExpr::getShl(Src,
301 ConstantInt::get(Src->getType(), ShiftAmt));
302 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
304 // Mix it in.
305 Elt = ConstantExpr::getOr(Elt, Src);
307 Result.push_back(Elt);
309 } else {
310 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
311 unsigned Ratio = NumDstElt/NumSrcElt;
312 unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
314 // Loop over each source value, expanding into multiple results.
315 for (unsigned i = 0; i != NumSrcElt; ++i) {
316 Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
317 if (!Src) return 0; // Reject constantexpr elements.
319 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
320 for (unsigned j = 0; j != Ratio; ++j) {
321 // Shift the piece of the value into the right place, depending on
322 // endianness.
323 Constant *Elt = ConstantExpr::getLShr(Src,
324 ConstantInt::get(Src->getType(), ShiftAmt));
325 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
327 // Truncate and remember this piece.
328 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
333 return ConstantVector::get(Result.data(), Result.size());
337 return 0;
341 //===----------------------------------------------------------------------===//
342 // Constant Folding public APIs
343 //===----------------------------------------------------------------------===//
346 /// ConstantFoldInstruction - Attempt to constant fold the specified
347 /// instruction. If successful, the constant result is returned, if not, null
348 /// is returned. Note that this function can only fail when attempting to fold
349 /// instructions like loads and stores, which have no constant expression form.
351 Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
352 const TargetData *TD) {
353 if (PHINode *PN = dyn_cast<PHINode>(I)) {
354 if (PN->getNumIncomingValues() == 0)
355 return UndefValue::get(PN->getType());
357 Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
358 if (Result == 0) return 0;
360 // Handle PHI nodes specially here...
361 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
362 if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
363 return 0; // Not all the same incoming constants...
365 // If we reach here, all incoming values are the same constant.
366 return Result;
369 // Scan the operand list, checking to see if they are all constants, if so,
370 // hand off to ConstantFoldInstOperands.
371 SmallVector<Constant*, 8> Ops;
372 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
373 if (Constant *Op = dyn_cast<Constant>(*i))
374 Ops.push_back(Op);
375 else
376 return 0; // All operands not constant!
378 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
379 return ConstantFoldCompareInstOperands(CI->getPredicate(),
380 Ops.data(), Ops.size(),
381 Context, TD);
382 else
383 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
384 Ops.data(), Ops.size(), Context, TD);
387 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
388 /// using the specified TargetData. If successful, the constant result is
389 /// result is returned, if not, null is returned.
390 Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
391 LLVMContext &Context,
392 const TargetData *TD) {
393 SmallVector<Constant*, 8> Ops;
394 for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
395 Ops.push_back(cast<Constant>(*i));
397 if (CE->isCompare())
398 return ConstantFoldCompareInstOperands(CE->getPredicate(),
399 Ops.data(), Ops.size(),
400 Context, TD);
401 else
402 return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
403 Ops.data(), Ops.size(), Context, TD);
406 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
407 /// specified opcode and operands. If successful, the constant result is
408 /// returned, if not, null is returned. Note that this function can fail when
409 /// attempting to fold instructions like loads and stores, which have no
410 /// constant expression form.
412 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
413 Constant* const* Ops, unsigned NumOps,
414 LLVMContext &Context,
415 const TargetData *TD) {
416 // Handle easy binops first.
417 if (Instruction::isBinaryOp(Opcode)) {
418 if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
419 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
420 Context))
421 return C;
423 return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
426 switch (Opcode) {
427 default: return 0;
428 case Instruction::Call:
429 if (Function *F = dyn_cast<Function>(Ops[0]))
430 if (canConstantFoldCallTo(F))
431 return ConstantFoldCall(F, Ops+1, NumOps-1);
432 return 0;
433 case Instruction::ICmp:
434 case Instruction::FCmp:
435 llvm_unreachable("This function is invalid for compares: no predicate specified");
436 case Instruction::PtrToInt:
437 // If the input is a inttoptr, eliminate the pair. This requires knowing
438 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
439 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
440 if (TD && CE->getOpcode() == Instruction::IntToPtr) {
441 Constant *Input = CE->getOperand(0);
442 unsigned InWidth = Input->getType()->getScalarSizeInBits();
443 if (TD->getPointerSizeInBits() < InWidth) {
444 Constant *Mask =
445 ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
446 TD->getPointerSizeInBits()));
447 Input = ConstantExpr::getAnd(Input, Mask);
449 // Do a zext or trunc to get to the dest size.
450 return ConstantExpr::getIntegerCast(Input, DestTy, false);
453 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
454 case Instruction::IntToPtr:
455 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
456 // the int size is >= the ptr size. This requires knowing the width of a
457 // pointer, so it can't be done in ConstantExpr::getCast.
458 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
459 if (TD &&
460 TD->getPointerSizeInBits() <=
461 CE->getType()->getScalarSizeInBits()) {
462 if (CE->getOpcode() == Instruction::PtrToInt) {
463 Constant *Input = CE->getOperand(0);
464 Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
465 return C ? C : ConstantExpr::getBitCast(Input, DestTy);
467 // If there's a constant offset added to the integer value before
468 // it is casted back to a pointer, see if the expression can be
469 // converted into a GEP.
470 if (CE->getOpcode() == Instruction::Add)
471 if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
472 if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
473 if (R->getOpcode() == Instruction::PtrToInt)
474 if (GlobalVariable *GV =
475 dyn_cast<GlobalVariable>(R->getOperand(0))) {
476 const PointerType *GVTy = cast<PointerType>(GV->getType());
477 if (const ArrayType *AT =
478 dyn_cast<ArrayType>(GVTy->getElementType())) {
479 const Type *ElTy = AT->getElementType();
480 uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
481 APInt PSA(L->getValue().getBitWidth(), AllocSize);
482 if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
483 L->getValue().urem(PSA) == 0) {
484 APInt ElemIdx = L->getValue().udiv(PSA);
485 if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
486 AT->getNumElements()))) {
487 Constant *Index[] = {
488 Constant::getNullValue(CE->getType()),
489 ConstantInt::get(Context, ElemIdx)
491 return
492 ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
499 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
500 case Instruction::Trunc:
501 case Instruction::ZExt:
502 case Instruction::SExt:
503 case Instruction::FPTrunc:
504 case Instruction::FPExt:
505 case Instruction::UIToFP:
506 case Instruction::SIToFP:
507 case Instruction::FPToUI:
508 case Instruction::FPToSI:
509 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
510 case Instruction::BitCast:
511 if (TD)
512 if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
513 return C;
514 return ConstantExpr::getBitCast(Ops[0], DestTy);
515 case Instruction::Select:
516 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
517 case Instruction::ExtractElement:
518 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
519 case Instruction::InsertElement:
520 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
521 case Instruction::ShuffleVector:
522 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
523 case Instruction::GetElementPtr:
524 if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
525 return C;
527 return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
531 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
532 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
533 /// returns a constant expression of the specified operands.
535 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
536 Constant*const * Ops,
537 unsigned NumOps,
538 LLVMContext &Context,
539 const TargetData *TD) {
540 // fold: icmp (inttoptr x), null -> icmp x, 0
541 // fold: icmp (ptrtoint x), 0 -> icmp x, null
542 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
543 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
545 // ConstantExpr::getCompare cannot do this, because it doesn't have TD
546 // around to know if bit truncation is happening.
547 if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
548 if (TD && Ops[1]->isNullValue()) {
549 const Type *IntPtrTy = TD->getIntPtrType(Context);
550 if (CE0->getOpcode() == Instruction::IntToPtr) {
551 // Convert the integer value to the right size to ensure we get the
552 // proper extension or truncation.
553 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
554 IntPtrTy, false);
555 Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
556 return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
557 Context, TD);
560 // Only do this transformation if the int is intptrty in size, otherwise
561 // there is a truncation or extension that we aren't modeling.
562 if (CE0->getOpcode() == Instruction::PtrToInt &&
563 CE0->getType() == IntPtrTy) {
564 Constant *C = CE0->getOperand(0);
565 Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
566 // FIXME!
567 return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
568 Context, TD);
572 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
573 if (TD && CE0->getOpcode() == CE1->getOpcode()) {
574 const Type *IntPtrTy = TD->getIntPtrType(Context);
576 if (CE0->getOpcode() == Instruction::IntToPtr) {
577 // Convert the integer value to the right size to ensure we get the
578 // proper extension or truncation.
579 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
580 IntPtrTy, false);
581 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
582 IntPtrTy, false);
583 Constant *NewOps[] = { C0, C1 };
584 return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
585 Context, TD);
588 // Only do this transformation if the int is intptrty in size, otherwise
589 // there is a truncation or extension that we aren't modeling.
590 if ((CE0->getOpcode() == Instruction::PtrToInt &&
591 CE0->getType() == IntPtrTy &&
592 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
593 Constant *NewOps[] = {
594 CE0->getOperand(0), CE1->getOperand(0)
596 return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
597 Context, TD);
602 return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
606 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
607 /// getelementptr constantexpr, return the constant value being addressed by the
608 /// constant expression, or null if something is funny and we can't decide.
609 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
610 ConstantExpr *CE,
611 LLVMContext &Context) {
612 if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
613 return 0; // Do not allow stepping over the value!
615 // Loop over all of the operands, tracking down which value we are
616 // addressing...
617 gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
618 for (++I; I != E; ++I)
619 if (const StructType *STy = dyn_cast<StructType>(*I)) {
620 ConstantInt *CU = cast<ConstantInt>(I.getOperand());
621 assert(CU->getZExtValue() < STy->getNumElements() &&
622 "Struct index out of range!");
623 unsigned El = (unsigned)CU->getZExtValue();
624 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
625 C = CS->getOperand(El);
626 } else if (isa<ConstantAggregateZero>(C)) {
627 C = Constant::getNullValue(STy->getElementType(El));
628 } else if (isa<UndefValue>(C)) {
629 C = UndefValue::get(STy->getElementType(El));
630 } else {
631 return 0;
633 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
634 if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
635 if (CI->getZExtValue() >= ATy->getNumElements())
636 return 0;
637 if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
638 C = CA->getOperand(CI->getZExtValue());
639 else if (isa<ConstantAggregateZero>(C))
640 C = Constant::getNullValue(ATy->getElementType());
641 else if (isa<UndefValue>(C))
642 C = UndefValue::get(ATy->getElementType());
643 else
644 return 0;
645 } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
646 if (CI->getZExtValue() >= PTy->getNumElements())
647 return 0;
648 if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
649 C = CP->getOperand(CI->getZExtValue());
650 else if (isa<ConstantAggregateZero>(C))
651 C = Constant::getNullValue(PTy->getElementType());
652 else if (isa<UndefValue>(C))
653 C = UndefValue::get(PTy->getElementType());
654 else
655 return 0;
656 } else {
657 return 0;
659 } else {
660 return 0;
662 return C;
666 //===----------------------------------------------------------------------===//
667 // Constant Folding for Calls
670 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
671 /// the specified function.
672 bool
673 llvm::canConstantFoldCallTo(const Function *F) {
674 switch (F->getIntrinsicID()) {
675 case Intrinsic::sqrt:
676 case Intrinsic::powi:
677 case Intrinsic::bswap:
678 case Intrinsic::ctpop:
679 case Intrinsic::ctlz:
680 case Intrinsic::cttz:
681 return true;
682 default: break;
685 if (!F->hasName()) return false;
686 StringRef Name = F->getName();
688 // In these cases, the check of the length is required. We don't want to
689 // return true for a name like "cos\0blah" which strcmp would return equal to
690 // "cos", but has length 8.
691 switch (Name[0]) {
692 default: return false;
693 case 'a':
694 return Name == "acos" || Name == "asin" ||
695 Name == "atan" || Name == "atan2";
696 case 'c':
697 return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
698 case 'e':
699 return Name == "exp";
700 case 'f':
701 return Name == "fabs" || Name == "fmod" || Name == "floor";
702 case 'l':
703 return Name == "log" || Name == "log10";
704 case 'p':
705 return Name == "pow";
706 case 's':
707 return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
708 Name == "sinf" || Name == "sqrtf";
709 case 't':
710 return Name == "tan" || Name == "tanh";
714 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
715 const Type *Ty, LLVMContext &Context) {
716 errno = 0;
717 V = NativeFP(V);
718 if (errno != 0) {
719 errno = 0;
720 return 0;
723 if (Ty == Type::getFloatTy(Context))
724 return ConstantFP::get(Context, APFloat((float)V));
725 if (Ty == Type::getDoubleTy(Context))
726 return ConstantFP::get(Context, APFloat(V));
727 llvm_unreachable("Can only constant fold float/double");
728 return 0; // dummy return to suppress warning
731 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
732 double V, double W,
733 const Type *Ty,
734 LLVMContext &Context) {
735 errno = 0;
736 V = NativeFP(V, W);
737 if (errno != 0) {
738 errno = 0;
739 return 0;
742 if (Ty == Type::getFloatTy(Context))
743 return ConstantFP::get(Context, APFloat((float)V));
744 if (Ty == Type::getDoubleTy(Context))
745 return ConstantFP::get(Context, APFloat(V));
746 llvm_unreachable("Can only constant fold float/double");
747 return 0; // dummy return to suppress warning
750 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
751 /// with the specified arguments, returning null if unsuccessful.
753 Constant *
754 llvm::ConstantFoldCall(Function *F,
755 Constant* const* Operands, unsigned NumOperands) {
756 if (!F->hasName()) return 0;
757 LLVMContext &Context = F->getContext();
758 StringRef Name = F->getName();
760 const Type *Ty = F->getReturnType();
761 if (NumOperands == 1) {
762 if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
763 if (Ty!=Type::getFloatTy(F->getContext()) &&
764 Ty!=Type::getDoubleTy(Context))
765 return 0;
766 /// Currently APFloat versions of these functions do not exist, so we use
767 /// the host native double versions. Float versions are not called
768 /// directly but for all these it is true (float)(f((double)arg)) ==
769 /// f(arg). Long double not supported yet.
770 double V = Ty==Type::getFloatTy(F->getContext()) ?
771 (double)Op->getValueAPF().convertToFloat():
772 Op->getValueAPF().convertToDouble();
773 switch (Name[0]) {
774 case 'a':
775 if (Name == "acos")
776 return ConstantFoldFP(acos, V, Ty, Context);
777 else if (Name == "asin")
778 return ConstantFoldFP(asin, V, Ty, Context);
779 else if (Name == "atan")
780 return ConstantFoldFP(atan, V, Ty, Context);
781 break;
782 case 'c':
783 if (Name == "ceil")
784 return ConstantFoldFP(ceil, V, Ty, Context);
785 else if (Name == "cos")
786 return ConstantFoldFP(cos, V, Ty, Context);
787 else if (Name == "cosh")
788 return ConstantFoldFP(cosh, V, Ty, Context);
789 else if (Name == "cosf")
790 return ConstantFoldFP(cos, V, Ty, Context);
791 break;
792 case 'e':
793 if (Name == "exp")
794 return ConstantFoldFP(exp, V, Ty, Context);
795 break;
796 case 'f':
797 if (Name == "fabs")
798 return ConstantFoldFP(fabs, V, Ty, Context);
799 else if (Name == "floor")
800 return ConstantFoldFP(floor, V, Ty, Context);
801 break;
802 case 'l':
803 if (Name == "log" && V > 0)
804 return ConstantFoldFP(log, V, Ty, Context);
805 else if (Name == "log10" && V > 0)
806 return ConstantFoldFP(log10, V, Ty, Context);
807 else if (Name == "llvm.sqrt.f32" ||
808 Name == "llvm.sqrt.f64") {
809 if (V >= -0.0)
810 return ConstantFoldFP(sqrt, V, Ty, Context);
811 else // Undefined
812 return Constant::getNullValue(Ty);
814 break;
815 case 's':
816 if (Name == "sin")
817 return ConstantFoldFP(sin, V, Ty, Context);
818 else if (Name == "sinh")
819 return ConstantFoldFP(sinh, V, Ty, Context);
820 else if (Name == "sqrt" && V >= 0)
821 return ConstantFoldFP(sqrt, V, Ty, Context);
822 else if (Name == "sqrtf" && V >= 0)
823 return ConstantFoldFP(sqrt, V, Ty, Context);
824 else if (Name == "sinf")
825 return ConstantFoldFP(sin, V, Ty, Context);
826 break;
827 case 't':
828 if (Name == "tan")
829 return ConstantFoldFP(tan, V, Ty, Context);
830 else if (Name == "tanh")
831 return ConstantFoldFP(tanh, V, Ty, Context);
832 break;
833 default:
834 break;
836 } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
837 if (Name.startswith("llvm.bswap"))
838 return ConstantInt::get(Context, Op->getValue().byteSwap());
839 else if (Name.startswith("llvm.ctpop"))
840 return ConstantInt::get(Ty, Op->getValue().countPopulation());
841 else if (Name.startswith("llvm.cttz"))
842 return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
843 else if (Name.startswith("llvm.ctlz"))
844 return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
846 } else if (NumOperands == 2) {
847 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
848 if (Ty!=Type::getFloatTy(F->getContext()) &&
849 Ty!=Type::getDoubleTy(Context))
850 return 0;
851 double Op1V = Ty==Type::getFloatTy(F->getContext()) ?
852 (double)Op1->getValueAPF().convertToFloat():
853 Op1->getValueAPF().convertToDouble();
854 if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
855 double Op2V = Ty==Type::getFloatTy(F->getContext()) ?
856 (double)Op2->getValueAPF().convertToFloat():
857 Op2->getValueAPF().convertToDouble();
859 if (Name == "pow") {
860 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
861 } else if (Name == "fmod") {
862 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
863 } else if (Name == "atan2") {
864 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
866 } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
867 if (Name == "llvm.powi.f32") {
868 return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
869 (int)Op2C->getZExtValue())));
870 } else if (Name == "llvm.powi.f64") {
871 return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
872 (int)Op2C->getZExtValue())));
877 return 0;