1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains routines that help analyze properties that chains of
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
28 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
29 /// known to be either zero or one and return them in the KnownZero/KnownOne
30 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
32 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
33 /// we cannot optimize based on the assumption that it is zero without changing
34 /// it to be an explicit zero. If we don't change it to zero, other code could
35 /// optimized based on the contradictory assumption that it is non-zero.
36 /// Because instcombine aggressively folds operations with undef args anyway,
37 /// this won't lose us code quality.
38 void llvm::ComputeMaskedBits(Value
*V
, const APInt
&Mask
,
39 APInt
&KnownZero
, APInt
&KnownOne
,
40 const TargetData
*TD
, unsigned Depth
) {
41 const unsigned MaxDepth
= 6;
42 assert(V
&& "No Value?");
43 assert(Depth
<= MaxDepth
&& "Limit Search Depth");
44 unsigned BitWidth
= Mask
.getBitWidth();
45 assert((V
->getType()->isIntOrIntVector() || isa
<PointerType
>(V
->getType())) &&
46 "Not integer or pointer type!");
48 TD
->getTypeSizeInBits(V
->getType()->getScalarType()) == BitWidth
) &&
49 (!V
->getType()->isIntOrIntVector() ||
50 V
->getType()->getScalarSizeInBits() == BitWidth
) &&
51 KnownZero
.getBitWidth() == BitWidth
&&
52 KnownOne
.getBitWidth() == BitWidth
&&
53 "V, Mask, KnownOne and KnownZero should have same BitWidth");
55 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
56 // We know all of the bits for a constant!
57 KnownOne
= CI
->getValue() & Mask
;
58 KnownZero
= ~KnownOne
& Mask
;
61 // Null and aggregate-zero are all-zeros.
62 if (isa
<ConstantPointerNull
>(V
) ||
63 isa
<ConstantAggregateZero
>(V
)) {
68 // Handle a constant vector by taking the intersection of the known bits of
70 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
71 KnownZero
.set(); KnownOne
.set();
72 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
73 APInt
KnownZero2(BitWidth
, 0), KnownOne2(BitWidth
, 0);
74 ComputeMaskedBits(CV
->getOperand(i
), Mask
, KnownZero2
, KnownOne2
,
76 KnownZero
&= KnownZero2
;
77 KnownOne
&= KnownOne2
;
81 // The address of an aligned GlobalValue has trailing zeros.
82 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
83 unsigned Align
= GV
->getAlignment();
84 if (Align
== 0 && TD
&& GV
->getType()->getElementType()->isSized()) {
85 const Type
*ObjectType
= GV
->getType()->getElementType();
86 // If the object is defined in the current Module, we'll be giving
87 // it the preferred alignment. Otherwise, we have to assume that it
88 // may only have the minimum ABI alignment.
89 if (!GV
->isDeclaration() && !GV
->mayBeOverridden())
90 Align
= TD
->getPrefTypeAlignment(ObjectType
);
92 Align
= TD
->getABITypeAlignment(ObjectType
);
95 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
96 CountTrailingZeros_32(Align
));
103 KnownZero
.clear(); KnownOne
.clear(); // Start out not knowing anything.
105 if (Depth
== MaxDepth
|| Mask
== 0)
106 return; // Limit search depth.
108 Operator
*I
= dyn_cast
<Operator
>(V
);
111 APInt
KnownZero2(KnownZero
), KnownOne2(KnownOne
);
112 switch (I
->getOpcode()) {
114 case Instruction::And
: {
115 // If either the LHS or the RHS are Zero, the result is zero.
116 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
117 APInt
Mask2(Mask
& ~KnownZero
);
118 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
120 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
121 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
123 // Output known-1 bits are only known if set in both the LHS & RHS.
124 KnownOne
&= KnownOne2
;
125 // Output known-0 are known to be clear if zero in either the LHS | RHS.
126 KnownZero
|= KnownZero2
;
129 case Instruction::Or
: {
130 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
131 APInt
Mask2(Mask
& ~KnownOne
);
132 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
134 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
135 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
137 // Output known-0 bits are only known if clear in both the LHS & RHS.
138 KnownZero
&= KnownZero2
;
139 // Output known-1 are known to be set if set in either the LHS | RHS.
140 KnownOne
|= KnownOne2
;
143 case Instruction::Xor
: {
144 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
145 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero2
, KnownOne2
, TD
,
147 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
148 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
150 // Output known-0 bits are known if clear or set in both the LHS & RHS.
151 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
152 // Output known-1 are known to be set if set in only one of the LHS, RHS.
153 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
154 KnownZero
= KnownZeroOut
;
157 case Instruction::Mul
: {
158 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
159 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero
, KnownOne
, TD
,Depth
+1);
160 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
162 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
163 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
165 // If low bits are zero in either operand, output low known-0 bits.
166 // Also compute a conserative estimate for high known-0 bits.
167 // More trickiness is possible, but this is sufficient for the
168 // interesting case of alignment computation.
170 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
171 KnownZero2
.countTrailingOnes();
172 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
173 KnownZero2
.countLeadingOnes(),
174 BitWidth
) - BitWidth
;
176 TrailZ
= std::min(TrailZ
, BitWidth
);
177 LeadZ
= std::min(LeadZ
, BitWidth
);
178 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
179 APInt::getHighBitsSet(BitWidth
, LeadZ
);
183 case Instruction::UDiv
: {
184 // For the purposes of computing leading zeros we can conservatively
185 // treat a udiv as a logical right shift by the power of 2 known to
186 // be less than the denominator.
187 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
188 ComputeMaskedBits(I
->getOperand(0),
189 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
190 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
194 ComputeMaskedBits(I
->getOperand(1),
195 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
196 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
197 if (RHSUnknownLeadingOnes
!= BitWidth
)
198 LeadZ
= std::min(BitWidth
,
199 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
201 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
204 case Instruction::Select
:
205 ComputeMaskedBits(I
->getOperand(2), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
206 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero2
, KnownOne2
, TD
,
208 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
209 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
211 // Only known if known in both the LHS and RHS.
212 KnownOne
&= KnownOne2
;
213 KnownZero
&= KnownZero2
;
215 case Instruction::FPTrunc
:
216 case Instruction::FPExt
:
217 case Instruction::FPToUI
:
218 case Instruction::FPToSI
:
219 case Instruction::SIToFP
:
220 case Instruction::UIToFP
:
221 return; // Can't work with floating point.
222 case Instruction::PtrToInt
:
223 case Instruction::IntToPtr
:
224 // We can't handle these if we don't know the pointer size.
226 // FALL THROUGH and handle them the same as zext/trunc.
227 case Instruction::ZExt
:
228 case Instruction::Trunc
: {
229 // Note that we handle pointer operands here because of inttoptr/ptrtoint
230 // which fall through here.
231 const Type
*SrcTy
= I
->getOperand(0)->getType();
232 unsigned SrcBitWidth
= TD
?
233 TD
->getTypeSizeInBits(SrcTy
) :
234 SrcTy
->getScalarSizeInBits();
236 MaskIn
.zextOrTrunc(SrcBitWidth
);
237 KnownZero
.zextOrTrunc(SrcBitWidth
);
238 KnownOne
.zextOrTrunc(SrcBitWidth
);
239 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
241 KnownZero
.zextOrTrunc(BitWidth
);
242 KnownOne
.zextOrTrunc(BitWidth
);
243 // Any top bits are known to be zero.
244 if (BitWidth
> SrcBitWidth
)
245 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
248 case Instruction::BitCast
: {
249 const Type
*SrcTy
= I
->getOperand(0)->getType();
250 if ((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
251 // TODO: For now, not handling conversions like:
252 // (bitcast i64 %x to <2 x i32>)
253 !isa
<VectorType
>(I
->getType())) {
254 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
260 case Instruction::SExt
: {
261 // Compute the bits in the result that are not present in the input.
262 const IntegerType
*SrcTy
= cast
<IntegerType
>(I
->getOperand(0)->getType());
263 unsigned SrcBitWidth
= SrcTy
->getBitWidth();
266 MaskIn
.trunc(SrcBitWidth
);
267 KnownZero
.trunc(SrcBitWidth
);
268 KnownOne
.trunc(SrcBitWidth
);
269 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
271 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
272 KnownZero
.zext(BitWidth
);
273 KnownOne
.zext(BitWidth
);
275 // If the sign bit of the input is known set or clear, then we know the
276 // top bits of the result.
277 if (KnownZero
[SrcBitWidth
-1]) // Input sign bit known zero
278 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
279 else if (KnownOne
[SrcBitWidth
-1]) // Input sign bit known set
280 KnownOne
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
283 case Instruction::Shl
:
284 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
285 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
286 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
287 APInt
Mask2(Mask
.lshr(ShiftAmt
));
288 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
290 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
291 KnownZero
<<= ShiftAmt
;
292 KnownOne
<<= ShiftAmt
;
293 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
); // low bits known 0
297 case Instruction::LShr
:
298 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
299 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
300 // Compute the new bits that are at the top now.
301 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
303 // Unsigned shift right.
304 APInt
Mask2(Mask
.shl(ShiftAmt
));
305 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
, TD
,
307 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
308 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
309 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
310 // high bits known zero.
311 KnownZero
|= APInt::getHighBitsSet(BitWidth
, ShiftAmt
);
315 case Instruction::AShr
:
316 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
317 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
318 // Compute the new bits that are at the top now.
319 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
321 // Signed shift right.
322 APInt
Mask2(Mask
.shl(ShiftAmt
));
323 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
325 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
326 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
327 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
329 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
330 if (KnownZero
[BitWidth
-ShiftAmt
-1]) // New bits are known zero.
331 KnownZero
|= HighBits
;
332 else if (KnownOne
[BitWidth
-ShiftAmt
-1]) // New bits are known one.
333 KnownOne
|= HighBits
;
337 case Instruction::Sub
: {
338 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
339 // We know that the top bits of C-X are clear if X contains less bits
340 // than C (i.e. no wrap-around can happen). For example, 20-X is
341 // positive if we can prove that X is >= 0 and < 16.
342 if (!CLHS
->getValue().isNegative()) {
343 unsigned NLZ
= (CLHS
->getValue()+1).countLeadingZeros();
344 // NLZ can't be BitWidth with no sign bit
345 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
346 ComputeMaskedBits(I
->getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
349 // If all of the MaskV bits are known to be zero, then we know the
350 // output top bits are zero, because we now know that the output is
352 if ((KnownZero2
& MaskV
) == MaskV
) {
353 unsigned NLZ2
= CLHS
->getValue().countLeadingZeros();
354 // Top bits known zero.
355 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
361 case Instruction::Add
: {
362 // If one of the operands has trailing zeros, than the bits that the
363 // other operand has in those bit positions will be preserved in the
364 // result. For an add, this works with either operand. For a subtract,
365 // this only works if the known zeros are in the right operand.
366 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
367 APInt Mask2
= APInt::getLowBitsSet(BitWidth
,
368 BitWidth
- Mask
.countLeadingZeros());
369 ComputeMaskedBits(I
->getOperand(0), Mask2
, LHSKnownZero
, LHSKnownOne
, TD
,
371 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
372 "Bits known to be one AND zero?");
373 unsigned LHSKnownZeroOut
= LHSKnownZero
.countTrailingOnes();
375 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero2
, KnownOne2
, TD
,
377 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
378 unsigned RHSKnownZeroOut
= KnownZero2
.countTrailingOnes();
380 // Determine which operand has more trailing zeros, and use that
381 // many bits from the other operand.
382 if (LHSKnownZeroOut
> RHSKnownZeroOut
) {
383 if (I
->getOpcode() == Instruction::Add
) {
384 APInt Mask
= APInt::getLowBitsSet(BitWidth
, LHSKnownZeroOut
);
385 KnownZero
|= KnownZero2
& Mask
;
386 KnownOne
|= KnownOne2
& Mask
;
388 // If the known zeros are in the left operand for a subtract,
389 // fall back to the minimum known zeros in both operands.
390 KnownZero
|= APInt::getLowBitsSet(BitWidth
,
391 std::min(LHSKnownZeroOut
,
394 } else if (RHSKnownZeroOut
>= LHSKnownZeroOut
) {
395 APInt Mask
= APInt::getLowBitsSet(BitWidth
, RHSKnownZeroOut
);
396 KnownZero
|= LHSKnownZero
& Mask
;
397 KnownOne
|= LHSKnownOne
& Mask
;
401 case Instruction::SRem
:
402 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
403 APInt RA
= Rem
->getValue();
404 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
405 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
406 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
407 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
410 // If the sign bit of the first operand is zero, the sign bit of
411 // the result is zero. If the first operand has no one bits below
412 // the second operand's single 1 bit, its sign will be zero.
413 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
414 KnownZero2
|= ~LowBits
;
416 KnownZero
|= KnownZero2
& Mask
;
418 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
422 case Instruction::URem
: {
423 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
424 APInt RA
= Rem
->getValue();
425 if (RA
.isPowerOf2()) {
426 APInt LowBits
= (RA
- 1);
427 APInt Mask2
= LowBits
& Mask
;
428 KnownZero
|= ~LowBits
& Mask
;
429 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
431 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
436 // Since the result is less than or equal to either operand, any leading
437 // zero bits in either operand must also exist in the result.
438 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
439 ComputeMaskedBits(I
->getOperand(0), AllOnes
, KnownZero
, KnownOne
,
441 ComputeMaskedBits(I
->getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
444 unsigned Leaders
= std::max(KnownZero
.countLeadingOnes(),
445 KnownZero2
.countLeadingOnes());
447 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
451 case Instruction::Alloca
:
452 case Instruction::Malloc
: {
453 AllocationInst
*AI
= cast
<AllocationInst
>(V
);
454 unsigned Align
= AI
->getAlignment();
455 if (Align
== 0 && TD
) {
456 if (isa
<AllocaInst
>(AI
))
457 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
458 else if (isa
<MallocInst
>(AI
)) {
459 // Malloc returns maximally aligned memory.
460 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
463 (unsigned)TD
->getABITypeAlignment(
464 Type::getDoubleTy(V
->getContext())));
467 (unsigned)TD
->getABITypeAlignment(
468 Type::getInt64Ty(V
->getContext())));
473 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
474 CountTrailingZeros_32(Align
));
477 case Instruction::GetElementPtr
: {
478 // Analyze all of the subscripts of this getelementptr instruction
479 // to determine if we can prove known low zero bits.
480 APInt LocalMask
= APInt::getAllOnesValue(BitWidth
);
481 APInt
LocalKnownZero(BitWidth
, 0), LocalKnownOne(BitWidth
, 0);
482 ComputeMaskedBits(I
->getOperand(0), LocalMask
,
483 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
484 unsigned TrailZ
= LocalKnownZero
.countTrailingOnes();
486 gep_type_iterator GTI
= gep_type_begin(I
);
487 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
488 Value
*Index
= I
->getOperand(i
);
489 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
490 // Handle struct member offset arithmetic.
492 const StructLayout
*SL
= TD
->getStructLayout(STy
);
493 unsigned Idx
= cast
<ConstantInt
>(Index
)->getZExtValue();
494 uint64_t Offset
= SL
->getElementOffset(Idx
);
495 TrailZ
= std::min(TrailZ
,
496 CountTrailingZeros_64(Offset
));
498 // Handle array index arithmetic.
499 const Type
*IndexedTy
= GTI
.getIndexedType();
500 if (!IndexedTy
->isSized()) return;
501 unsigned GEPOpiBits
= Index
->getType()->getScalarSizeInBits();
502 uint64_t TypeSize
= TD
? TD
->getTypeAllocSize(IndexedTy
) : 1;
503 LocalMask
= APInt::getAllOnesValue(GEPOpiBits
);
504 LocalKnownZero
= LocalKnownOne
= APInt(GEPOpiBits
, 0);
505 ComputeMaskedBits(Index
, LocalMask
,
506 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
507 TrailZ
= std::min(TrailZ
,
508 unsigned(CountTrailingZeros_64(TypeSize
) +
509 LocalKnownZero
.countTrailingOnes()));
513 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) & Mask
;
516 case Instruction::PHI
: {
517 PHINode
*P
= cast
<PHINode
>(I
);
518 // Handle the case of a simple two-predecessor recurrence PHI.
519 // There's a lot more that could theoretically be done here, but
520 // this is sufficient to catch some interesting cases.
521 if (P
->getNumIncomingValues() == 2) {
522 for (unsigned i
= 0; i
!= 2; ++i
) {
523 Value
*L
= P
->getIncomingValue(i
);
524 Value
*R
= P
->getIncomingValue(!i
);
525 Operator
*LU
= dyn_cast
<Operator
>(L
);
528 unsigned Opcode
= LU
->getOpcode();
529 // Check for operations that have the property that if
530 // both their operands have low zero bits, the result
531 // will have low zero bits.
532 if (Opcode
== Instruction::Add
||
533 Opcode
== Instruction::Sub
||
534 Opcode
== Instruction::And
||
535 Opcode
== Instruction::Or
||
536 Opcode
== Instruction::Mul
) {
537 Value
*LL
= LU
->getOperand(0);
538 Value
*LR
= LU
->getOperand(1);
539 // Find a recurrence.
546 // Ok, we have a PHI of the form L op= R. Check for low
548 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
549 ComputeMaskedBits(R
, Mask2
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
550 Mask2
= APInt::getLowBitsSet(BitWidth
,
551 KnownZero2
.countTrailingOnes());
553 // We need to take the minimum number of known bits
554 APInt
KnownZero3(KnownZero
), KnownOne3(KnownOne
);
555 ComputeMaskedBits(L
, Mask2
, KnownZero3
, KnownOne3
, TD
, Depth
+1);
558 APInt::getLowBitsSet(BitWidth
,
559 std::min(KnownZero2
.countTrailingOnes(),
560 KnownZero3
.countTrailingOnes()));
566 // Otherwise take the unions of the known bit sets of the operands,
567 // taking conservative care to avoid excessive recursion.
568 if (Depth
< MaxDepth
- 1 && !KnownZero
&& !KnownOne
) {
569 KnownZero
= APInt::getAllOnesValue(BitWidth
);
570 KnownOne
= APInt::getAllOnesValue(BitWidth
);
571 for (unsigned i
= 0, e
= P
->getNumIncomingValues(); i
!= e
; ++i
) {
572 // Skip direct self references.
573 if (P
->getIncomingValue(i
) == P
) continue;
575 KnownZero2
= APInt(BitWidth
, 0);
576 KnownOne2
= APInt(BitWidth
, 0);
577 // Recurse, but cap the recursion to one level, because we don't
578 // want to waste time spinning around in loops.
579 ComputeMaskedBits(P
->getIncomingValue(i
), KnownZero
| KnownOne
,
580 KnownZero2
, KnownOne2
, TD
, MaxDepth
-1);
581 KnownZero
&= KnownZero2
;
582 KnownOne
&= KnownOne2
;
583 // If all bits have been ruled out, there's no need to check
585 if (!KnownZero
&& !KnownOne
)
591 case Instruction::Call
:
592 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
593 switch (II
->getIntrinsicID()) {
595 case Intrinsic::ctpop
:
596 case Intrinsic::ctlz
:
597 case Intrinsic::cttz
: {
598 unsigned LowBits
= Log2_32(BitWidth
)+1;
599 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
608 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
609 /// this predicate to simplify operations downstream. Mask is known to be zero
610 /// for bits that V cannot have.
611 bool llvm::MaskedValueIsZero(Value
*V
, const APInt
&Mask
,
612 const TargetData
*TD
, unsigned Depth
) {
613 APInt
KnownZero(Mask
.getBitWidth(), 0), KnownOne(Mask
.getBitWidth(), 0);
614 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
615 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
616 return (KnownZero
& Mask
) == Mask
;
621 /// ComputeNumSignBits - Return the number of times the sign bit of the
622 /// register is replicated into the other bits. We know that at least 1 bit
623 /// is always equal to the sign bit (itself), but other cases can give us
624 /// information. For example, immediately after an "ashr X, 2", we know that
625 /// the top 3 bits are all equal to each other, so we return 3.
627 /// 'Op' must have a scalar integer type.
629 unsigned llvm::ComputeNumSignBits(Value
*V
, const TargetData
*TD
,
631 assert((TD
|| V
->getType()->isIntOrIntVector()) &&
632 "ComputeNumSignBits requires a TargetData object to operate "
633 "on non-integer values!");
634 const Type
*Ty
= V
->getType();
635 unsigned TyBits
= TD
? TD
->getTypeSizeInBits(V
->getType()->getScalarType()) :
636 Ty
->getScalarSizeInBits();
638 unsigned FirstAnswer
= 1;
640 // Note that ConstantInt is handled by the general ComputeMaskedBits case
644 return 1; // Limit search depth.
646 Operator
*U
= dyn_cast
<Operator
>(V
);
647 switch (Operator::getOpcode(V
)) {
649 case Instruction::SExt
:
650 Tmp
= TyBits
-cast
<IntegerType
>(U
->getOperand(0)->getType())->getBitWidth();
651 return ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1) + Tmp
;
653 case Instruction::AShr
:
654 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
655 // ashr X, C -> adds C sign bits.
656 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
657 Tmp
+= C
->getZExtValue();
658 if (Tmp
> TyBits
) Tmp
= TyBits
;
661 case Instruction::Shl
:
662 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
663 // shl destroys sign bits.
664 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
665 if (C
->getZExtValue() >= TyBits
|| // Bad shift.
666 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
667 return Tmp
- C
->getZExtValue();
670 case Instruction::And
:
671 case Instruction::Or
:
672 case Instruction::Xor
: // NOT is handled here.
673 // Logical binary ops preserve the number of sign bits at the worst.
674 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
676 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
677 FirstAnswer
= std::min(Tmp
, Tmp2
);
678 // We computed what we know about the sign bits as our first
679 // answer. Now proceed to the generic code that uses
680 // ComputeMaskedBits, and pick whichever answer is better.
684 case Instruction::Select
:
685 Tmp
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
686 if (Tmp
== 1) return 1; // Early out.
687 Tmp2
= ComputeNumSignBits(U
->getOperand(2), TD
, Depth
+1);
688 return std::min(Tmp
, Tmp2
);
690 case Instruction::Add
:
691 // Add can have at most one carry bit. Thus we know that the output
692 // is, at worst, one more bit than the inputs.
693 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
694 if (Tmp
== 1) return 1; // Early out.
696 // Special case decrementing a value (ADD X, -1):
697 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
698 if (CRHS
->isAllOnesValue()) {
699 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
700 APInt Mask
= APInt::getAllOnesValue(TyBits
);
701 ComputeMaskedBits(U
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
704 // If the input is known to be 0 or 1, the output is 0/-1, which is all
706 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
709 // If we are subtracting one from a positive number, there is no carry
710 // out of the result.
711 if (KnownZero
.isNegative())
715 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
716 if (Tmp2
== 1) return 1;
717 return std::min(Tmp
, Tmp2
)-1;
720 case Instruction::Sub
:
721 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
722 if (Tmp2
== 1) return 1;
725 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(U
->getOperand(0)))
726 if (CLHS
->isNullValue()) {
727 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
728 APInt Mask
= APInt::getAllOnesValue(TyBits
);
729 ComputeMaskedBits(U
->getOperand(1), Mask
, KnownZero
, KnownOne
,
731 // If the input is known to be 0 or 1, the output is 0/-1, which is all
733 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
736 // If the input is known to be positive (the sign bit is known clear),
737 // the output of the NEG has the same number of sign bits as the input.
738 if (KnownZero
.isNegative())
741 // Otherwise, we treat this like a SUB.
744 // Sub can have at most one carry bit. Thus we know that the output
745 // is, at worst, one more bit than the inputs.
746 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
747 if (Tmp
== 1) return 1; // Early out.
748 return std::min(Tmp
, Tmp2
)-1;
750 case Instruction::Trunc
:
751 // FIXME: it's tricky to do anything useful for this, but it is an important
752 // case for targets like X86.
756 // Finally, if we can prove that the top bits of the result are 0's or 1's,
757 // use this information.
758 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
759 APInt Mask
= APInt::getAllOnesValue(TyBits
);
760 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
762 if (KnownZero
.isNegative()) { // sign bit is 0
764 } else if (KnownOne
.isNegative()) { // sign bit is 1;
771 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
772 // the number of identical bits in the top of the input value.
774 Mask
<<= Mask
.getBitWidth()-TyBits
;
775 // Return # leading zeros. We use 'min' here in case Val was zero before
776 // shifting. We don't want to return '64' as for an i32 "0".
777 return std::max(FirstAnswer
, std::min(TyBits
, Mask
.countLeadingZeros()));
780 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
781 /// value is never equal to -0.0.
783 /// NOTE: this function will need to be revisited when we support non-default
786 bool llvm::CannotBeNegativeZero(const Value
*V
, unsigned Depth
) {
787 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
))
788 return !CFP
->getValueAPF().isNegZero();
791 return 1; // Limit search depth.
793 const Operator
*I
= dyn_cast
<Operator
>(V
);
794 if (I
== 0) return false;
796 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
797 if (I
->getOpcode() == Instruction::FAdd
&&
798 isa
<ConstantFP
>(I
->getOperand(1)) &&
799 cast
<ConstantFP
>(I
->getOperand(1))->isNullValue())
802 // sitofp and uitofp turn into +0.0 for zero.
803 if (isa
<SIToFPInst
>(I
) || isa
<UIToFPInst
>(I
))
806 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
807 // sqrt(-0.0) = -0.0, no other negative results are possible.
808 if (II
->getIntrinsicID() == Intrinsic::sqrt
)
809 return CannotBeNegativeZero(II
->getOperand(1), Depth
+1);
811 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
812 if (const Function
*F
= CI
->getCalledFunction()) {
813 if (F
->isDeclaration()) {
815 if (F
->getName() == "abs") return true;
816 // abs[lf](x) != -0.0
817 if (F
->getName() == "absf") return true;
818 if (F
->getName() == "absl") return true;
825 // This is the recursive version of BuildSubAggregate. It takes a few different
826 // arguments. Idxs is the index within the nested struct From that we are
827 // looking at now (which is of type IndexedType). IdxSkip is the number of
828 // indices from Idxs that should be left out when inserting into the resulting
829 // struct. To is the result struct built so far, new insertvalue instructions
831 static Value
*BuildSubAggregate(Value
*From
, Value
* To
, const Type
*IndexedType
,
832 SmallVector
<unsigned, 10> &Idxs
,
834 LLVMContext
&Context
,
835 Instruction
*InsertBefore
) {
836 const llvm::StructType
*STy
= llvm::dyn_cast
<llvm::StructType
>(IndexedType
);
838 // Save the original To argument so we can modify it
840 // General case, the type indexed by Idxs is a struct
841 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
842 // Process each struct element recursively
845 To
= BuildSubAggregate(From
, To
, STy
->getElementType(i
), Idxs
, IdxSkip
,
846 Context
, InsertBefore
);
849 // Couldn't find any inserted value for this index? Cleanup
850 while (PrevTo
!= OrigTo
) {
851 InsertValueInst
* Del
= cast
<InsertValueInst
>(PrevTo
);
852 PrevTo
= Del
->getAggregateOperand();
853 Del
->eraseFromParent();
855 // Stop processing elements
859 // If we succesfully found a value for each of our subaggregates
863 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
864 // the struct's elements had a value that was inserted directly. In the latter
865 // case, perhaps we can't determine each of the subelements individually, but
866 // we might be able to find the complete struct somewhere.
868 // Find the value that is at that particular spot
869 Value
*V
= FindInsertedValue(From
, Idxs
.begin(), Idxs
.end(), Context
);
874 // Insert the value in the new (sub) aggregrate
875 return llvm::InsertValueInst::Create(To
, V
, Idxs
.begin() + IdxSkip
,
876 Idxs
.end(), "tmp", InsertBefore
);
879 // This helper takes a nested struct and extracts a part of it (which is again a
880 // struct) into a new value. For example, given the struct:
881 // { a, { b, { c, d }, e } }
882 // and the indices "1, 1" this returns
885 // It does this by inserting an insertvalue for each element in the resulting
886 // struct, as opposed to just inserting a single struct. This will only work if
887 // each of the elements of the substruct are known (ie, inserted into From by an
888 // insertvalue instruction somewhere).
890 // All inserted insertvalue instructions are inserted before InsertBefore
891 static Value
*BuildSubAggregate(Value
*From
, const unsigned *idx_begin
,
892 const unsigned *idx_end
, LLVMContext
&Context
,
893 Instruction
*InsertBefore
) {
894 assert(InsertBefore
&& "Must have someplace to insert!");
895 const Type
*IndexedType
= ExtractValueInst::getIndexedType(From
->getType(),
898 Value
*To
= UndefValue::get(IndexedType
);
899 SmallVector
<unsigned, 10> Idxs(idx_begin
, idx_end
);
900 unsigned IdxSkip
= Idxs
.size();
902 return BuildSubAggregate(From
, To
, IndexedType
, Idxs
, IdxSkip
,
903 Context
, InsertBefore
);
906 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
907 /// the scalar value indexed is already around as a register, for example if it
908 /// were inserted directly into the aggregrate.
910 /// If InsertBefore is not null, this function will duplicate (modified)
911 /// insertvalues when a part of a nested struct is extracted.
912 Value
*llvm::FindInsertedValue(Value
*V
, const unsigned *idx_begin
,
913 const unsigned *idx_end
, LLVMContext
&Context
,
914 Instruction
*InsertBefore
) {
915 // Nothing to index? Just return V then (this is useful at the end of our
917 if (idx_begin
== idx_end
)
919 // We have indices, so V should have an indexable type
920 assert((isa
<StructType
>(V
->getType()) || isa
<ArrayType
>(V
->getType()))
921 && "Not looking at a struct or array?");
922 assert(ExtractValueInst::getIndexedType(V
->getType(), idx_begin
, idx_end
)
923 && "Invalid indices for type?");
924 const CompositeType
*PTy
= cast
<CompositeType
>(V
->getType());
926 if (isa
<UndefValue
>(V
))
927 return UndefValue::get(ExtractValueInst::getIndexedType(PTy
,
930 else if (isa
<ConstantAggregateZero
>(V
))
931 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy
,
934 else if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
935 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
))
936 // Recursively process this constant
937 return FindInsertedValue(C
->getOperand(*idx_begin
), idx_begin
+ 1,
938 idx_end
, Context
, InsertBefore
);
939 } else if (InsertValueInst
*I
= dyn_cast
<InsertValueInst
>(V
)) {
940 // Loop the indices for the insertvalue instruction in parallel with the
942 const unsigned *req_idx
= idx_begin
;
943 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
944 i
!= e
; ++i
, ++req_idx
) {
945 if (req_idx
== idx_end
) {
947 // The requested index identifies a part of a nested aggregate. Handle
948 // this specially. For example,
949 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
950 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
951 // %C = extractvalue {i32, { i32, i32 } } %B, 1
952 // This can be changed into
953 // %A = insertvalue {i32, i32 } undef, i32 10, 0
954 // %C = insertvalue {i32, i32 } %A, i32 11, 1
955 // which allows the unused 0,0 element from the nested struct to be
957 return BuildSubAggregate(V
, idx_begin
, req_idx
,
958 Context
, InsertBefore
);
960 // We can't handle this without inserting insertvalues
964 // This insert value inserts something else than what we are looking for.
965 // See if the (aggregrate) value inserted into has the value we are
966 // looking for, then.
968 return FindInsertedValue(I
->getAggregateOperand(), idx_begin
, idx_end
,
969 Context
, InsertBefore
);
971 // If we end up here, the indices of the insertvalue match with those
972 // requested (though possibly only partially). Now we recursively look at
973 // the inserted value, passing any remaining indices.
974 return FindInsertedValue(I
->getInsertedValueOperand(), req_idx
, idx_end
,
975 Context
, InsertBefore
);
976 } else if (ExtractValueInst
*I
= dyn_cast
<ExtractValueInst
>(V
)) {
977 // If we're extracting a value from an aggregrate that was extracted from
978 // something else, we can extract from that something else directly instead.
979 // However, we will need to chain I's indices with the requested indices.
981 // Calculate the number of indices required
982 unsigned size
= I
->getNumIndices() + (idx_end
- idx_begin
);
983 // Allocate some space to put the new indices in
984 SmallVector
<unsigned, 5> Idxs
;
986 // Add indices from the extract value instruction
987 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
991 // Add requested indices
992 for (const unsigned *i
= idx_begin
, *e
= idx_end
; i
!= e
; ++i
)
995 assert(Idxs
.size() == size
996 && "Number of indices added not correct?");
998 return FindInsertedValue(I
->getAggregateOperand(), Idxs
.begin(), Idxs
.end(),
999 Context
, InsertBefore
);
1001 // Otherwise, we don't know (such as, extracting from a function return value
1002 // or load instruction)
1006 /// GetConstantStringInfo - This function computes the length of a
1007 /// null-terminated C string pointed to by V. If successful, it returns true
1008 /// and returns the string in Str. If unsuccessful, it returns false.
1009 bool llvm::GetConstantStringInfo(Value
*V
, std::string
&Str
, uint64_t Offset
,
1011 // If V is NULL then return false;
1012 if (V
== NULL
) return false;
1014 // Look through bitcast instructions.
1015 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
1016 return GetConstantStringInfo(BCI
->getOperand(0), Str
, Offset
, StopAtNul
);
1018 // If the value is not a GEP instruction nor a constant expression with a
1019 // GEP instruction, then return false because ConstantArray can't occur
1022 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
1024 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1025 if (CE
->getOpcode() == Instruction::BitCast
)
1026 return GetConstantStringInfo(CE
->getOperand(0), Str
, Offset
, StopAtNul
);
1027 if (CE
->getOpcode() != Instruction::GetElementPtr
)
1033 // Make sure the GEP has exactly three arguments.
1034 if (GEP
->getNumOperands() != 3)
1037 // Make sure the index-ee is a pointer to array of i8.
1038 const PointerType
*PT
= cast
<PointerType
>(GEP
->getOperand(0)->getType());
1039 const ArrayType
*AT
= dyn_cast
<ArrayType
>(PT
->getElementType());
1040 if (AT
== 0 || AT
->getElementType() != Type::getInt8Ty(V
->getContext()))
1043 // Check to make sure that the first operand of the GEP is an integer and
1044 // has value 0 so that we are sure we're indexing into the initializer.
1045 ConstantInt
*FirstIdx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1));
1046 if (FirstIdx
== 0 || !FirstIdx
->isZero())
1049 // If the second index isn't a ConstantInt, then this is a variable index
1050 // into the array. If this occurs, we can't say anything meaningful about
1052 uint64_t StartIdx
= 0;
1053 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
1054 StartIdx
= CI
->getZExtValue();
1057 return GetConstantStringInfo(GEP
->getOperand(0), Str
, StartIdx
+Offset
,
1061 if (MDString
*MDStr
= dyn_cast
<MDString
>(V
)) {
1062 Str
= MDStr
->getString();
1066 // The GEP instruction, constant or instruction, must reference a global
1067 // variable that is a constant and is initialized. The referenced constant
1068 // initializer is the array that we'll use for optimization.
1069 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(V
);
1070 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
1072 Constant
*GlobalInit
= GV
->getInitializer();
1074 // Handle the ConstantAggregateZero case
1075 if (isa
<ConstantAggregateZero
>(GlobalInit
)) {
1076 // This is a degenerate case. The initializer is constant zero so the
1077 // length of the string must be zero.
1082 // Must be a Constant Array
1083 ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1085 Array
->getType()->getElementType() != Type::getInt8Ty(V
->getContext()))
1088 // Get the number of elements in the array
1089 uint64_t NumElts
= Array
->getType()->getNumElements();
1091 if (Offset
> NumElts
)
1094 // Traverse the constant array from 'Offset' which is the place the GEP refers
1096 Str
.reserve(NumElts
-Offset
);
1097 for (unsigned i
= Offset
; i
!= NumElts
; ++i
) {
1098 Constant
*Elt
= Array
->getOperand(i
);
1099 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1100 if (!CI
) // This array isn't suitable, non-int initializer.
1102 if (StopAtNul
&& CI
->isZero())
1103 return true; // we found end of string, success!
1104 Str
+= (char)CI
->getZExtValue();
1107 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.