Fix comment for consistency sake.
[llvm/avr.git] / lib / Analysis / ValueTracking.cpp
blobaa71f1dc678ec000f271f93d706c3593b269086a
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
25 #include <cstring>
26 using namespace llvm;
28 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
29 /// known to be either zero or one and return them in the KnownZero/KnownOne
30 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
31 /// processing.
32 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
33 /// we cannot optimize based on the assumption that it is zero without changing
34 /// it to be an explicit zero. If we don't change it to zero, other code could
35 /// optimized based on the contradictory assumption that it is non-zero.
36 /// Because instcombine aggressively folds operations with undef args anyway,
37 /// this won't lose us code quality.
38 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
39 APInt &KnownZero, APInt &KnownOne,
40 const TargetData *TD, unsigned Depth) {
41 const unsigned MaxDepth = 6;
42 assert(V && "No Value?");
43 assert(Depth <= MaxDepth && "Limit Search Depth");
44 unsigned BitWidth = Mask.getBitWidth();
45 assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
46 "Not integer or pointer type!");
47 assert((!TD ||
48 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
49 (!V->getType()->isIntOrIntVector() ||
50 V->getType()->getScalarSizeInBits() == BitWidth) &&
51 KnownZero.getBitWidth() == BitWidth &&
52 KnownOne.getBitWidth() == BitWidth &&
53 "V, Mask, KnownOne and KnownZero should have same BitWidth");
55 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56 // We know all of the bits for a constant!
57 KnownOne = CI->getValue() & Mask;
58 KnownZero = ~KnownOne & Mask;
59 return;
61 // Null and aggregate-zero are all-zeros.
62 if (isa<ConstantPointerNull>(V) ||
63 isa<ConstantAggregateZero>(V)) {
64 KnownOne.clear();
65 KnownZero = Mask;
66 return;
68 // Handle a constant vector by taking the intersection of the known bits of
69 // each element.
70 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
71 KnownZero.set(); KnownOne.set();
72 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
73 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
74 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
75 TD, Depth);
76 KnownZero &= KnownZero2;
77 KnownOne &= KnownOne2;
79 return;
81 // The address of an aligned GlobalValue has trailing zeros.
82 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
83 unsigned Align = GV->getAlignment();
84 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
85 const Type *ObjectType = GV->getType()->getElementType();
86 // If the object is defined in the current Module, we'll be giving
87 // it the preferred alignment. Otherwise, we have to assume that it
88 // may only have the minimum ABI alignment.
89 if (!GV->isDeclaration() && !GV->mayBeOverridden())
90 Align = TD->getPrefTypeAlignment(ObjectType);
91 else
92 Align = TD->getABITypeAlignment(ObjectType);
94 if (Align > 0)
95 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
96 CountTrailingZeros_32(Align));
97 else
98 KnownZero.clear();
99 KnownOne.clear();
100 return;
103 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
105 if (Depth == MaxDepth || Mask == 0)
106 return; // Limit search depth.
108 Operator *I = dyn_cast<Operator>(V);
109 if (!I) return;
111 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
112 switch (I->getOpcode()) {
113 default: break;
114 case Instruction::And: {
115 // If either the LHS or the RHS are Zero, the result is zero.
116 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
117 APInt Mask2(Mask & ~KnownZero);
118 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
119 Depth+1);
120 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
121 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
123 // Output known-1 bits are only known if set in both the LHS & RHS.
124 KnownOne &= KnownOne2;
125 // Output known-0 are known to be clear if zero in either the LHS | RHS.
126 KnownZero |= KnownZero2;
127 return;
129 case Instruction::Or: {
130 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
131 APInt Mask2(Mask & ~KnownOne);
132 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
133 Depth+1);
134 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
135 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
137 // Output known-0 bits are only known if clear in both the LHS & RHS.
138 KnownZero &= KnownZero2;
139 // Output known-1 are known to be set if set in either the LHS | RHS.
140 KnownOne |= KnownOne2;
141 return;
143 case Instruction::Xor: {
144 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
145 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
146 Depth+1);
147 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
148 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
150 // Output known-0 bits are known if clear or set in both the LHS & RHS.
151 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
152 // Output known-1 are known to be set if set in only one of the LHS, RHS.
153 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
154 KnownZero = KnownZeroOut;
155 return;
157 case Instruction::Mul: {
158 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
159 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
160 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
161 Depth+1);
162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
163 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
165 // If low bits are zero in either operand, output low known-0 bits.
166 // Also compute a conserative estimate for high known-0 bits.
167 // More trickiness is possible, but this is sufficient for the
168 // interesting case of alignment computation.
169 KnownOne.clear();
170 unsigned TrailZ = KnownZero.countTrailingOnes() +
171 KnownZero2.countTrailingOnes();
172 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
173 KnownZero2.countLeadingOnes(),
174 BitWidth) - BitWidth;
176 TrailZ = std::min(TrailZ, BitWidth);
177 LeadZ = std::min(LeadZ, BitWidth);
178 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
179 APInt::getHighBitsSet(BitWidth, LeadZ);
180 KnownZero &= Mask;
181 return;
183 case Instruction::UDiv: {
184 // For the purposes of computing leading zeros we can conservatively
185 // treat a udiv as a logical right shift by the power of 2 known to
186 // be less than the denominator.
187 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
188 ComputeMaskedBits(I->getOperand(0),
189 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
190 unsigned LeadZ = KnownZero2.countLeadingOnes();
192 KnownOne2.clear();
193 KnownZero2.clear();
194 ComputeMaskedBits(I->getOperand(1),
195 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
196 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
197 if (RHSUnknownLeadingOnes != BitWidth)
198 LeadZ = std::min(BitWidth,
199 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
201 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
202 return;
204 case Instruction::Select:
205 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
206 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
207 Depth+1);
208 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
209 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
211 // Only known if known in both the LHS and RHS.
212 KnownOne &= KnownOne2;
213 KnownZero &= KnownZero2;
214 return;
215 case Instruction::FPTrunc:
216 case Instruction::FPExt:
217 case Instruction::FPToUI:
218 case Instruction::FPToSI:
219 case Instruction::SIToFP:
220 case Instruction::UIToFP:
221 return; // Can't work with floating point.
222 case Instruction::PtrToInt:
223 case Instruction::IntToPtr:
224 // We can't handle these if we don't know the pointer size.
225 if (!TD) return;
226 // FALL THROUGH and handle them the same as zext/trunc.
227 case Instruction::ZExt:
228 case Instruction::Trunc: {
229 // Note that we handle pointer operands here because of inttoptr/ptrtoint
230 // which fall through here.
231 const Type *SrcTy = I->getOperand(0)->getType();
232 unsigned SrcBitWidth = TD ?
233 TD->getTypeSizeInBits(SrcTy) :
234 SrcTy->getScalarSizeInBits();
235 APInt MaskIn(Mask);
236 MaskIn.zextOrTrunc(SrcBitWidth);
237 KnownZero.zextOrTrunc(SrcBitWidth);
238 KnownOne.zextOrTrunc(SrcBitWidth);
239 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
240 Depth+1);
241 KnownZero.zextOrTrunc(BitWidth);
242 KnownOne.zextOrTrunc(BitWidth);
243 // Any top bits are known to be zero.
244 if (BitWidth > SrcBitWidth)
245 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
246 return;
248 case Instruction::BitCast: {
249 const Type *SrcTy = I->getOperand(0)->getType();
250 if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
251 // TODO: For now, not handling conversions like:
252 // (bitcast i64 %x to <2 x i32>)
253 !isa<VectorType>(I->getType())) {
254 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
255 Depth+1);
256 return;
258 break;
260 case Instruction::SExt: {
261 // Compute the bits in the result that are not present in the input.
262 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
263 unsigned SrcBitWidth = SrcTy->getBitWidth();
265 APInt MaskIn(Mask);
266 MaskIn.trunc(SrcBitWidth);
267 KnownZero.trunc(SrcBitWidth);
268 KnownOne.trunc(SrcBitWidth);
269 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
270 Depth+1);
271 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
272 KnownZero.zext(BitWidth);
273 KnownOne.zext(BitWidth);
275 // If the sign bit of the input is known set or clear, then we know the
276 // top bits of the result.
277 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
278 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
279 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
280 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
281 return;
283 case Instruction::Shl:
284 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
285 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
286 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
287 APInt Mask2(Mask.lshr(ShiftAmt));
288 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
289 Depth+1);
290 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
291 KnownZero <<= ShiftAmt;
292 KnownOne <<= ShiftAmt;
293 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
294 return;
296 break;
297 case Instruction::LShr:
298 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
299 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
300 // Compute the new bits that are at the top now.
301 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
303 // Unsigned shift right.
304 APInt Mask2(Mask.shl(ShiftAmt));
305 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
306 Depth+1);
307 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
308 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
309 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
310 // high bits known zero.
311 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
312 return;
314 break;
315 case Instruction::AShr:
316 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
317 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
318 // Compute the new bits that are at the top now.
319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
321 // Signed shift right.
322 APInt Mask2(Mask.shl(ShiftAmt));
323 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
324 Depth+1);
325 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
326 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
327 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
329 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
330 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
331 KnownZero |= HighBits;
332 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
333 KnownOne |= HighBits;
334 return;
336 break;
337 case Instruction::Sub: {
338 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
339 // We know that the top bits of C-X are clear if X contains less bits
340 // than C (i.e. no wrap-around can happen). For example, 20-X is
341 // positive if we can prove that X is >= 0 and < 16.
342 if (!CLHS->getValue().isNegative()) {
343 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
344 // NLZ can't be BitWidth with no sign bit
345 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
346 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
347 TD, Depth+1);
349 // If all of the MaskV bits are known to be zero, then we know the
350 // output top bits are zero, because we now know that the output is
351 // from [0-C].
352 if ((KnownZero2 & MaskV) == MaskV) {
353 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
354 // Top bits known zero.
355 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
360 // fall through
361 case Instruction::Add: {
362 // If one of the operands has trailing zeros, than the bits that the
363 // other operand has in those bit positions will be preserved in the
364 // result. For an add, this works with either operand. For a subtract,
365 // this only works if the known zeros are in the right operand.
366 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
367 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
368 BitWidth - Mask.countLeadingZeros());
369 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
370 Depth+1);
371 assert((LHSKnownZero & LHSKnownOne) == 0 &&
372 "Bits known to be one AND zero?");
373 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
375 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
376 Depth+1);
377 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
378 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
380 // Determine which operand has more trailing zeros, and use that
381 // many bits from the other operand.
382 if (LHSKnownZeroOut > RHSKnownZeroOut) {
383 if (I->getOpcode() == Instruction::Add) {
384 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
385 KnownZero |= KnownZero2 & Mask;
386 KnownOne |= KnownOne2 & Mask;
387 } else {
388 // If the known zeros are in the left operand for a subtract,
389 // fall back to the minimum known zeros in both operands.
390 KnownZero |= APInt::getLowBitsSet(BitWidth,
391 std::min(LHSKnownZeroOut,
392 RHSKnownZeroOut));
394 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
395 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
396 KnownZero |= LHSKnownZero & Mask;
397 KnownOne |= LHSKnownOne & Mask;
399 return;
401 case Instruction::SRem:
402 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
403 APInt RA = Rem->getValue();
404 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
405 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
406 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
407 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
408 Depth+1);
410 // If the sign bit of the first operand is zero, the sign bit of
411 // the result is zero. If the first operand has no one bits below
412 // the second operand's single 1 bit, its sign will be zero.
413 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
414 KnownZero2 |= ~LowBits;
416 KnownZero |= KnownZero2 & Mask;
418 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
421 break;
422 case Instruction::URem: {
423 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
424 APInt RA = Rem->getValue();
425 if (RA.isPowerOf2()) {
426 APInt LowBits = (RA - 1);
427 APInt Mask2 = LowBits & Mask;
428 KnownZero |= ~LowBits & Mask;
429 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
430 Depth+1);
431 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
432 break;
436 // Since the result is less than or equal to either operand, any leading
437 // zero bits in either operand must also exist in the result.
438 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
439 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
440 TD, Depth+1);
441 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
442 TD, Depth+1);
444 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
445 KnownZero2.countLeadingOnes());
446 KnownOne.clear();
447 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
448 break;
451 case Instruction::Alloca:
452 case Instruction::Malloc: {
453 AllocationInst *AI = cast<AllocationInst>(V);
454 unsigned Align = AI->getAlignment();
455 if (Align == 0 && TD) {
456 if (isa<AllocaInst>(AI))
457 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
458 else if (isa<MallocInst>(AI)) {
459 // Malloc returns maximally aligned memory.
460 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
461 Align =
462 std::max(Align,
463 (unsigned)TD->getABITypeAlignment(
464 Type::getDoubleTy(V->getContext())));
465 Align =
466 std::max(Align,
467 (unsigned)TD->getABITypeAlignment(
468 Type::getInt64Ty(V->getContext())));
472 if (Align > 0)
473 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
474 CountTrailingZeros_32(Align));
475 break;
477 case Instruction::GetElementPtr: {
478 // Analyze all of the subscripts of this getelementptr instruction
479 // to determine if we can prove known low zero bits.
480 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
481 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
482 ComputeMaskedBits(I->getOperand(0), LocalMask,
483 LocalKnownZero, LocalKnownOne, TD, Depth+1);
484 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
486 gep_type_iterator GTI = gep_type_begin(I);
487 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
488 Value *Index = I->getOperand(i);
489 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
490 // Handle struct member offset arithmetic.
491 if (!TD) return;
492 const StructLayout *SL = TD->getStructLayout(STy);
493 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
494 uint64_t Offset = SL->getElementOffset(Idx);
495 TrailZ = std::min(TrailZ,
496 CountTrailingZeros_64(Offset));
497 } else {
498 // Handle array index arithmetic.
499 const Type *IndexedTy = GTI.getIndexedType();
500 if (!IndexedTy->isSized()) return;
501 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
502 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
503 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
504 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
505 ComputeMaskedBits(Index, LocalMask,
506 LocalKnownZero, LocalKnownOne, TD, Depth+1);
507 TrailZ = std::min(TrailZ,
508 unsigned(CountTrailingZeros_64(TypeSize) +
509 LocalKnownZero.countTrailingOnes()));
513 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
514 break;
516 case Instruction::PHI: {
517 PHINode *P = cast<PHINode>(I);
518 // Handle the case of a simple two-predecessor recurrence PHI.
519 // There's a lot more that could theoretically be done here, but
520 // this is sufficient to catch some interesting cases.
521 if (P->getNumIncomingValues() == 2) {
522 for (unsigned i = 0; i != 2; ++i) {
523 Value *L = P->getIncomingValue(i);
524 Value *R = P->getIncomingValue(!i);
525 Operator *LU = dyn_cast<Operator>(L);
526 if (!LU)
527 continue;
528 unsigned Opcode = LU->getOpcode();
529 // Check for operations that have the property that if
530 // both their operands have low zero bits, the result
531 // will have low zero bits.
532 if (Opcode == Instruction::Add ||
533 Opcode == Instruction::Sub ||
534 Opcode == Instruction::And ||
535 Opcode == Instruction::Or ||
536 Opcode == Instruction::Mul) {
537 Value *LL = LU->getOperand(0);
538 Value *LR = LU->getOperand(1);
539 // Find a recurrence.
540 if (LL == I)
541 L = LR;
542 else if (LR == I)
543 L = LL;
544 else
545 break;
546 // Ok, we have a PHI of the form L op= R. Check for low
547 // zero bits.
548 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
549 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
550 Mask2 = APInt::getLowBitsSet(BitWidth,
551 KnownZero2.countTrailingOnes());
553 // We need to take the minimum number of known bits
554 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
555 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
557 KnownZero = Mask &
558 APInt::getLowBitsSet(BitWidth,
559 std::min(KnownZero2.countTrailingOnes(),
560 KnownZero3.countTrailingOnes()));
561 break;
566 // Otherwise take the unions of the known bit sets of the operands,
567 // taking conservative care to avoid excessive recursion.
568 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
569 KnownZero = APInt::getAllOnesValue(BitWidth);
570 KnownOne = APInt::getAllOnesValue(BitWidth);
571 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
572 // Skip direct self references.
573 if (P->getIncomingValue(i) == P) continue;
575 KnownZero2 = APInt(BitWidth, 0);
576 KnownOne2 = APInt(BitWidth, 0);
577 // Recurse, but cap the recursion to one level, because we don't
578 // want to waste time spinning around in loops.
579 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
580 KnownZero2, KnownOne2, TD, MaxDepth-1);
581 KnownZero &= KnownZero2;
582 KnownOne &= KnownOne2;
583 // If all bits have been ruled out, there's no need to check
584 // more operands.
585 if (!KnownZero && !KnownOne)
586 break;
589 break;
591 case Instruction::Call:
592 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
593 switch (II->getIntrinsicID()) {
594 default: break;
595 case Intrinsic::ctpop:
596 case Intrinsic::ctlz:
597 case Intrinsic::cttz: {
598 unsigned LowBits = Log2_32(BitWidth)+1;
599 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
600 break;
604 break;
608 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
609 /// this predicate to simplify operations downstream. Mask is known to be zero
610 /// for bits that V cannot have.
611 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
612 const TargetData *TD, unsigned Depth) {
613 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
614 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
615 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
616 return (KnownZero & Mask) == Mask;
621 /// ComputeNumSignBits - Return the number of times the sign bit of the
622 /// register is replicated into the other bits. We know that at least 1 bit
623 /// is always equal to the sign bit (itself), but other cases can give us
624 /// information. For example, immediately after an "ashr X, 2", we know that
625 /// the top 3 bits are all equal to each other, so we return 3.
627 /// 'Op' must have a scalar integer type.
629 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
630 unsigned Depth) {
631 assert((TD || V->getType()->isIntOrIntVector()) &&
632 "ComputeNumSignBits requires a TargetData object to operate "
633 "on non-integer values!");
634 const Type *Ty = V->getType();
635 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
636 Ty->getScalarSizeInBits();
637 unsigned Tmp, Tmp2;
638 unsigned FirstAnswer = 1;
640 // Note that ConstantInt is handled by the general ComputeMaskedBits case
641 // below.
643 if (Depth == 6)
644 return 1; // Limit search depth.
646 Operator *U = dyn_cast<Operator>(V);
647 switch (Operator::getOpcode(V)) {
648 default: break;
649 case Instruction::SExt:
650 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
651 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
653 case Instruction::AShr:
654 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
655 // ashr X, C -> adds C sign bits.
656 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
657 Tmp += C->getZExtValue();
658 if (Tmp > TyBits) Tmp = TyBits;
660 return Tmp;
661 case Instruction::Shl:
662 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
663 // shl destroys sign bits.
664 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
665 if (C->getZExtValue() >= TyBits || // Bad shift.
666 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
667 return Tmp - C->getZExtValue();
669 break;
670 case Instruction::And:
671 case Instruction::Or:
672 case Instruction::Xor: // NOT is handled here.
673 // Logical binary ops preserve the number of sign bits at the worst.
674 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
675 if (Tmp != 1) {
676 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
677 FirstAnswer = std::min(Tmp, Tmp2);
678 // We computed what we know about the sign bits as our first
679 // answer. Now proceed to the generic code that uses
680 // ComputeMaskedBits, and pick whichever answer is better.
682 break;
684 case Instruction::Select:
685 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
686 if (Tmp == 1) return 1; // Early out.
687 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
688 return std::min(Tmp, Tmp2);
690 case Instruction::Add:
691 // Add can have at most one carry bit. Thus we know that the output
692 // is, at worst, one more bit than the inputs.
693 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
694 if (Tmp == 1) return 1; // Early out.
696 // Special case decrementing a value (ADD X, -1):
697 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
698 if (CRHS->isAllOnesValue()) {
699 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
700 APInt Mask = APInt::getAllOnesValue(TyBits);
701 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
702 Depth+1);
704 // If the input is known to be 0 or 1, the output is 0/-1, which is all
705 // sign bits set.
706 if ((KnownZero | APInt(TyBits, 1)) == Mask)
707 return TyBits;
709 // If we are subtracting one from a positive number, there is no carry
710 // out of the result.
711 if (KnownZero.isNegative())
712 return Tmp;
715 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
716 if (Tmp2 == 1) return 1;
717 return std::min(Tmp, Tmp2)-1;
718 break;
720 case Instruction::Sub:
721 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
722 if (Tmp2 == 1) return 1;
724 // Handle NEG.
725 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
726 if (CLHS->isNullValue()) {
727 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
728 APInt Mask = APInt::getAllOnesValue(TyBits);
729 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
730 TD, Depth+1);
731 // If the input is known to be 0 or 1, the output is 0/-1, which is all
732 // sign bits set.
733 if ((KnownZero | APInt(TyBits, 1)) == Mask)
734 return TyBits;
736 // If the input is known to be positive (the sign bit is known clear),
737 // the output of the NEG has the same number of sign bits as the input.
738 if (KnownZero.isNegative())
739 return Tmp2;
741 // Otherwise, we treat this like a SUB.
744 // Sub can have at most one carry bit. Thus we know that the output
745 // is, at worst, one more bit than the inputs.
746 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
747 if (Tmp == 1) return 1; // Early out.
748 return std::min(Tmp, Tmp2)-1;
749 break;
750 case Instruction::Trunc:
751 // FIXME: it's tricky to do anything useful for this, but it is an important
752 // case for targets like X86.
753 break;
756 // Finally, if we can prove that the top bits of the result are 0's or 1's,
757 // use this information.
758 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
759 APInt Mask = APInt::getAllOnesValue(TyBits);
760 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
762 if (KnownZero.isNegative()) { // sign bit is 0
763 Mask = KnownZero;
764 } else if (KnownOne.isNegative()) { // sign bit is 1;
765 Mask = KnownOne;
766 } else {
767 // Nothing known.
768 return FirstAnswer;
771 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
772 // the number of identical bits in the top of the input value.
773 Mask = ~Mask;
774 Mask <<= Mask.getBitWidth()-TyBits;
775 // Return # leading zeros. We use 'min' here in case Val was zero before
776 // shifting. We don't want to return '64' as for an i32 "0".
777 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
780 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
781 /// value is never equal to -0.0.
783 /// NOTE: this function will need to be revisited when we support non-default
784 /// rounding modes!
786 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
787 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
788 return !CFP->getValueAPF().isNegZero();
790 if (Depth == 6)
791 return 1; // Limit search depth.
793 const Operator *I = dyn_cast<Operator>(V);
794 if (I == 0) return false;
796 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
797 if (I->getOpcode() == Instruction::FAdd &&
798 isa<ConstantFP>(I->getOperand(1)) &&
799 cast<ConstantFP>(I->getOperand(1))->isNullValue())
800 return true;
802 // sitofp and uitofp turn into +0.0 for zero.
803 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
804 return true;
806 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
807 // sqrt(-0.0) = -0.0, no other negative results are possible.
808 if (II->getIntrinsicID() == Intrinsic::sqrt)
809 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
811 if (const CallInst *CI = dyn_cast<CallInst>(I))
812 if (const Function *F = CI->getCalledFunction()) {
813 if (F->isDeclaration()) {
814 // abs(x) != -0.0
815 if (F->getName() == "abs") return true;
816 // abs[lf](x) != -0.0
817 if (F->getName() == "absf") return true;
818 if (F->getName() == "absl") return true;
822 return false;
825 // This is the recursive version of BuildSubAggregate. It takes a few different
826 // arguments. Idxs is the index within the nested struct From that we are
827 // looking at now (which is of type IndexedType). IdxSkip is the number of
828 // indices from Idxs that should be left out when inserting into the resulting
829 // struct. To is the result struct built so far, new insertvalue instructions
830 // build on that.
831 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
832 SmallVector<unsigned, 10> &Idxs,
833 unsigned IdxSkip,
834 LLVMContext &Context,
835 Instruction *InsertBefore) {
836 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
837 if (STy) {
838 // Save the original To argument so we can modify it
839 Value *OrigTo = To;
840 // General case, the type indexed by Idxs is a struct
841 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
842 // Process each struct element recursively
843 Idxs.push_back(i);
844 Value *PrevTo = To;
845 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
846 Context, InsertBefore);
847 Idxs.pop_back();
848 if (!To) {
849 // Couldn't find any inserted value for this index? Cleanup
850 while (PrevTo != OrigTo) {
851 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
852 PrevTo = Del->getAggregateOperand();
853 Del->eraseFromParent();
855 // Stop processing elements
856 break;
859 // If we succesfully found a value for each of our subaggregates
860 if (To)
861 return To;
863 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
864 // the struct's elements had a value that was inserted directly. In the latter
865 // case, perhaps we can't determine each of the subelements individually, but
866 // we might be able to find the complete struct somewhere.
868 // Find the value that is at that particular spot
869 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
871 if (!V)
872 return NULL;
874 // Insert the value in the new (sub) aggregrate
875 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
876 Idxs.end(), "tmp", InsertBefore);
879 // This helper takes a nested struct and extracts a part of it (which is again a
880 // struct) into a new value. For example, given the struct:
881 // { a, { b, { c, d }, e } }
882 // and the indices "1, 1" this returns
883 // { c, d }.
885 // It does this by inserting an insertvalue for each element in the resulting
886 // struct, as opposed to just inserting a single struct. This will only work if
887 // each of the elements of the substruct are known (ie, inserted into From by an
888 // insertvalue instruction somewhere).
890 // All inserted insertvalue instructions are inserted before InsertBefore
891 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
892 const unsigned *idx_end, LLVMContext &Context,
893 Instruction *InsertBefore) {
894 assert(InsertBefore && "Must have someplace to insert!");
895 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
896 idx_begin,
897 idx_end);
898 Value *To = UndefValue::get(IndexedType);
899 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
900 unsigned IdxSkip = Idxs.size();
902 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
903 Context, InsertBefore);
906 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
907 /// the scalar value indexed is already around as a register, for example if it
908 /// were inserted directly into the aggregrate.
910 /// If InsertBefore is not null, this function will duplicate (modified)
911 /// insertvalues when a part of a nested struct is extracted.
912 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
913 const unsigned *idx_end, LLVMContext &Context,
914 Instruction *InsertBefore) {
915 // Nothing to index? Just return V then (this is useful at the end of our
916 // recursion)
917 if (idx_begin == idx_end)
918 return V;
919 // We have indices, so V should have an indexable type
920 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
921 && "Not looking at a struct or array?");
922 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
923 && "Invalid indices for type?");
924 const CompositeType *PTy = cast<CompositeType>(V->getType());
926 if (isa<UndefValue>(V))
927 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
928 idx_begin,
929 idx_end));
930 else if (isa<ConstantAggregateZero>(V))
931 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
932 idx_begin,
933 idx_end));
934 else if (Constant *C = dyn_cast<Constant>(V)) {
935 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
936 // Recursively process this constant
937 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
938 idx_end, Context, InsertBefore);
939 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
940 // Loop the indices for the insertvalue instruction in parallel with the
941 // requested indices
942 const unsigned *req_idx = idx_begin;
943 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
944 i != e; ++i, ++req_idx) {
945 if (req_idx == idx_end) {
946 if (InsertBefore)
947 // The requested index identifies a part of a nested aggregate. Handle
948 // this specially. For example,
949 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
950 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
951 // %C = extractvalue {i32, { i32, i32 } } %B, 1
952 // This can be changed into
953 // %A = insertvalue {i32, i32 } undef, i32 10, 0
954 // %C = insertvalue {i32, i32 } %A, i32 11, 1
955 // which allows the unused 0,0 element from the nested struct to be
956 // removed.
957 return BuildSubAggregate(V, idx_begin, req_idx,
958 Context, InsertBefore);
959 else
960 // We can't handle this without inserting insertvalues
961 return 0;
964 // This insert value inserts something else than what we are looking for.
965 // See if the (aggregrate) value inserted into has the value we are
966 // looking for, then.
967 if (*req_idx != *i)
968 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
969 Context, InsertBefore);
971 // If we end up here, the indices of the insertvalue match with those
972 // requested (though possibly only partially). Now we recursively look at
973 // the inserted value, passing any remaining indices.
974 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
975 Context, InsertBefore);
976 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
977 // If we're extracting a value from an aggregrate that was extracted from
978 // something else, we can extract from that something else directly instead.
979 // However, we will need to chain I's indices with the requested indices.
981 // Calculate the number of indices required
982 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
983 // Allocate some space to put the new indices in
984 SmallVector<unsigned, 5> Idxs;
985 Idxs.reserve(size);
986 // Add indices from the extract value instruction
987 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
988 i != e; ++i)
989 Idxs.push_back(*i);
991 // Add requested indices
992 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
993 Idxs.push_back(*i);
995 assert(Idxs.size() == size
996 && "Number of indices added not correct?");
998 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
999 Context, InsertBefore);
1001 // Otherwise, we don't know (such as, extracting from a function return value
1002 // or load instruction)
1003 return 0;
1006 /// GetConstantStringInfo - This function computes the length of a
1007 /// null-terminated C string pointed to by V. If successful, it returns true
1008 /// and returns the string in Str. If unsuccessful, it returns false.
1009 bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1010 bool StopAtNul) {
1011 // If V is NULL then return false;
1012 if (V == NULL) return false;
1014 // Look through bitcast instructions.
1015 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1016 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1018 // If the value is not a GEP instruction nor a constant expression with a
1019 // GEP instruction, then return false because ConstantArray can't occur
1020 // any other way
1021 User *GEP = 0;
1022 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1023 GEP = GEPI;
1024 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1025 if (CE->getOpcode() == Instruction::BitCast)
1026 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1027 if (CE->getOpcode() != Instruction::GetElementPtr)
1028 return false;
1029 GEP = CE;
1032 if (GEP) {
1033 // Make sure the GEP has exactly three arguments.
1034 if (GEP->getNumOperands() != 3)
1035 return false;
1037 // Make sure the index-ee is a pointer to array of i8.
1038 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1039 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1040 if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
1041 return false;
1043 // Check to make sure that the first operand of the GEP is an integer and
1044 // has value 0 so that we are sure we're indexing into the initializer.
1045 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1046 if (FirstIdx == 0 || !FirstIdx->isZero())
1047 return false;
1049 // If the second index isn't a ConstantInt, then this is a variable index
1050 // into the array. If this occurs, we can't say anything meaningful about
1051 // the string.
1052 uint64_t StartIdx = 0;
1053 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1054 StartIdx = CI->getZExtValue();
1055 else
1056 return false;
1057 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1058 StopAtNul);
1061 if (MDString *MDStr = dyn_cast<MDString>(V)) {
1062 Str = MDStr->getString();
1063 return true;
1066 // The GEP instruction, constant or instruction, must reference a global
1067 // variable that is a constant and is initialized. The referenced constant
1068 // initializer is the array that we'll use for optimization.
1069 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1070 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1071 return false;
1072 Constant *GlobalInit = GV->getInitializer();
1074 // Handle the ConstantAggregateZero case
1075 if (isa<ConstantAggregateZero>(GlobalInit)) {
1076 // This is a degenerate case. The initializer is constant zero so the
1077 // length of the string must be zero.
1078 Str.clear();
1079 return true;
1082 // Must be a Constant Array
1083 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1084 if (Array == 0 ||
1085 Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
1086 return false;
1088 // Get the number of elements in the array
1089 uint64_t NumElts = Array->getType()->getNumElements();
1091 if (Offset > NumElts)
1092 return false;
1094 // Traverse the constant array from 'Offset' which is the place the GEP refers
1095 // to in the array.
1096 Str.reserve(NumElts-Offset);
1097 for (unsigned i = Offset; i != NumElts; ++i) {
1098 Constant *Elt = Array->getOperand(i);
1099 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1100 if (!CI) // This array isn't suitable, non-int initializer.
1101 return false;
1102 if (StopAtNul && CI->isZero())
1103 return true; // we found end of string, success!
1104 Str += (char)CI->getZExtValue();
1107 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1108 return true;