Fix comment for consistency sake.
[llvm/avr.git] / lib / AsmParser / LLParser.cpp
blob3ef4aaf649809794b8d8f43697f572c8bd4d0c93
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 namespace llvm {
33 /// ValID - Represents a reference of a definition of some sort with no type.
34 /// There are several cases where we have to parse the value but where the
35 /// type can depend on later context. This may either be a numeric reference
36 /// or a symbolic (%var) reference. This is just a discriminated union.
37 struct ValID {
38 enum {
39 t_LocalID, t_GlobalID, // ID in UIntVal.
40 t_LocalName, t_GlobalName, // Name in StrVal.
41 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
42 t_Null, t_Undef, t_Zero, // No value.
43 t_EmptyArray, // No value: []
44 t_Constant, // Value in ConstantVal.
45 t_InlineAsm, // Value in StrVal/StrVal2/UIntVal.
46 t_Metadata // Value in MetadataVal.
47 } Kind;
49 LLParser::LocTy Loc;
50 unsigned UIntVal;
51 std::string StrVal, StrVal2;
52 APSInt APSIntVal;
53 APFloat APFloatVal;
54 Constant *ConstantVal;
55 MetadataBase *MetadataVal;
56 ValID() : APFloatVal(0.0) {}
60 /// Run: module ::= toplevelentity*
61 bool LLParser::Run() {
62 // Prime the lexer.
63 Lex.Lex();
65 return ParseTopLevelEntities() ||
66 ValidateEndOfModule();
69 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70 /// module.
71 bool LLParser::ValidateEndOfModule() {
72 if (!ForwardRefTypes.empty())
73 return Error(ForwardRefTypes.begin()->second.second,
74 "use of undefined type named '" +
75 ForwardRefTypes.begin()->first + "'");
76 if (!ForwardRefTypeIDs.empty())
77 return Error(ForwardRefTypeIDs.begin()->second.second,
78 "use of undefined type '%" +
79 utostr(ForwardRefTypeIDs.begin()->first) + "'");
81 if (!ForwardRefVals.empty())
82 return Error(ForwardRefVals.begin()->second.second,
83 "use of undefined value '@" + ForwardRefVals.begin()->first +
84 "'");
86 if (!ForwardRefValIDs.empty())
87 return Error(ForwardRefValIDs.begin()->second.second,
88 "use of undefined value '@" +
89 utostr(ForwardRefValIDs.begin()->first) + "'");
91 if (!ForwardRefMDNodes.empty())
92 return Error(ForwardRefMDNodes.begin()->second.second,
93 "use of undefined metadata '!" +
94 utostr(ForwardRefMDNodes.begin()->first) + "'");
97 // Look for intrinsic functions and CallInst that need to be upgraded
98 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
99 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
101 // Check debug info intrinsics.
102 CheckDebugInfoIntrinsics(M);
103 return false;
106 //===----------------------------------------------------------------------===//
107 // Top-Level Entities
108 //===----------------------------------------------------------------------===//
110 bool LLParser::ParseTopLevelEntities() {
111 while (1) {
112 switch (Lex.getKind()) {
113 default: return TokError("expected top-level entity");
114 case lltok::Eof: return false;
115 //case lltok::kw_define:
116 case lltok::kw_declare: if (ParseDeclare()) return true; break;
117 case lltok::kw_define: if (ParseDefine()) return true; break;
118 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
119 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
120 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
121 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
122 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
123 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
124 case lltok::LocalVar: if (ParseNamedType()) return true; break;
125 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
126 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
127 case lltok::Metadata: if (ParseStandaloneMetadata()) return true; break;
128 case lltok::NamedMD: if (ParseNamedMetadata()) return true; break;
130 // The Global variable production with no name can have many different
131 // optional leading prefixes, the production is:
132 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
133 // OptionalAddrSpace ('constant'|'global') ...
134 case lltok::kw_private : // OptionalLinkage
135 case lltok::kw_linker_private: // OptionalLinkage
136 case lltok::kw_internal: // OptionalLinkage
137 case lltok::kw_weak: // OptionalLinkage
138 case lltok::kw_weak_odr: // OptionalLinkage
139 case lltok::kw_linkonce: // OptionalLinkage
140 case lltok::kw_linkonce_odr: // OptionalLinkage
141 case lltok::kw_appending: // OptionalLinkage
142 case lltok::kw_dllexport: // OptionalLinkage
143 case lltok::kw_common: // OptionalLinkage
144 case lltok::kw_dllimport: // OptionalLinkage
145 case lltok::kw_extern_weak: // OptionalLinkage
146 case lltok::kw_external: { // OptionalLinkage
147 unsigned Linkage, Visibility;
148 if (ParseOptionalLinkage(Linkage) ||
149 ParseOptionalVisibility(Visibility) ||
150 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
151 return true;
152 break;
154 case lltok::kw_default: // OptionalVisibility
155 case lltok::kw_hidden: // OptionalVisibility
156 case lltok::kw_protected: { // OptionalVisibility
157 unsigned Visibility;
158 if (ParseOptionalVisibility(Visibility) ||
159 ParseGlobal("", SMLoc(), 0, false, Visibility))
160 return true;
161 break;
164 case lltok::kw_thread_local: // OptionalThreadLocal
165 case lltok::kw_addrspace: // OptionalAddrSpace
166 case lltok::kw_constant: // GlobalType
167 case lltok::kw_global: // GlobalType
168 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
169 break;
175 /// toplevelentity
176 /// ::= 'module' 'asm' STRINGCONSTANT
177 bool LLParser::ParseModuleAsm() {
178 assert(Lex.getKind() == lltok::kw_module);
179 Lex.Lex();
181 std::string AsmStr;
182 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
183 ParseStringConstant(AsmStr)) return true;
185 const std::string &AsmSoFar = M->getModuleInlineAsm();
186 if (AsmSoFar.empty())
187 M->setModuleInlineAsm(AsmStr);
188 else
189 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
190 return false;
193 /// toplevelentity
194 /// ::= 'target' 'triple' '=' STRINGCONSTANT
195 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
196 bool LLParser::ParseTargetDefinition() {
197 assert(Lex.getKind() == lltok::kw_target);
198 std::string Str;
199 switch (Lex.Lex()) {
200 default: return TokError("unknown target property");
201 case lltok::kw_triple:
202 Lex.Lex();
203 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
204 ParseStringConstant(Str))
205 return true;
206 M->setTargetTriple(Str);
207 return false;
208 case lltok::kw_datalayout:
209 Lex.Lex();
210 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
211 ParseStringConstant(Str))
212 return true;
213 M->setDataLayout(Str);
214 return false;
218 /// toplevelentity
219 /// ::= 'deplibs' '=' '[' ']'
220 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
221 bool LLParser::ParseDepLibs() {
222 assert(Lex.getKind() == lltok::kw_deplibs);
223 Lex.Lex();
224 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
225 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
226 return true;
228 if (EatIfPresent(lltok::rsquare))
229 return false;
231 std::string Str;
232 if (ParseStringConstant(Str)) return true;
233 M->addLibrary(Str);
235 while (EatIfPresent(lltok::comma)) {
236 if (ParseStringConstant(Str)) return true;
237 M->addLibrary(Str);
240 return ParseToken(lltok::rsquare, "expected ']' at end of list");
243 /// ParseUnnamedType:
244 /// ::= 'type' type
245 /// ::= LocalVarID '=' 'type' type
246 bool LLParser::ParseUnnamedType() {
247 unsigned TypeID = NumberedTypes.size();
249 // Handle the LocalVarID form.
250 if (Lex.getKind() == lltok::LocalVarID) {
251 if (Lex.getUIntVal() != TypeID)
252 return Error(Lex.getLoc(), "type expected to be numbered '%" +
253 utostr(TypeID) + "'");
254 Lex.Lex(); // eat LocalVarID;
256 if (ParseToken(lltok::equal, "expected '=' after name"))
257 return true;
260 assert(Lex.getKind() == lltok::kw_type);
261 LocTy TypeLoc = Lex.getLoc();
262 Lex.Lex(); // eat kw_type
264 PATypeHolder Ty(Type::getVoidTy(Context));
265 if (ParseType(Ty)) return true;
267 // See if this type was previously referenced.
268 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
269 FI = ForwardRefTypeIDs.find(TypeID);
270 if (FI != ForwardRefTypeIDs.end()) {
271 if (FI->second.first.get() == Ty)
272 return Error(TypeLoc, "self referential type is invalid");
274 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
275 Ty = FI->second.first.get();
276 ForwardRefTypeIDs.erase(FI);
279 NumberedTypes.push_back(Ty);
281 return false;
284 /// toplevelentity
285 /// ::= LocalVar '=' 'type' type
286 bool LLParser::ParseNamedType() {
287 std::string Name = Lex.getStrVal();
288 LocTy NameLoc = Lex.getLoc();
289 Lex.Lex(); // eat LocalVar.
291 PATypeHolder Ty(Type::getVoidTy(Context));
293 if (ParseToken(lltok::equal, "expected '=' after name") ||
294 ParseToken(lltok::kw_type, "expected 'type' after name") ||
295 ParseType(Ty))
296 return true;
298 // Set the type name, checking for conflicts as we do so.
299 bool AlreadyExists = M->addTypeName(Name, Ty);
300 if (!AlreadyExists) return false;
302 // See if this type is a forward reference. We need to eagerly resolve
303 // types to allow recursive type redefinitions below.
304 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
305 FI = ForwardRefTypes.find(Name);
306 if (FI != ForwardRefTypes.end()) {
307 if (FI->second.first.get() == Ty)
308 return Error(NameLoc, "self referential type is invalid");
310 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
311 Ty = FI->second.first.get();
312 ForwardRefTypes.erase(FI);
315 // Inserting a name that is already defined, get the existing name.
316 const Type *Existing = M->getTypeByName(Name);
317 assert(Existing && "Conflict but no matching type?!");
319 // Otherwise, this is an attempt to redefine a type. That's okay if
320 // the redefinition is identical to the original.
321 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
322 if (Existing == Ty) return false;
324 // Any other kind of (non-equivalent) redefinition is an error.
325 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
326 Ty->getDescription() + "'");
330 /// toplevelentity
331 /// ::= 'declare' FunctionHeader
332 bool LLParser::ParseDeclare() {
333 assert(Lex.getKind() == lltok::kw_declare);
334 Lex.Lex();
336 Function *F;
337 return ParseFunctionHeader(F, false);
340 /// toplevelentity
341 /// ::= 'define' FunctionHeader '{' ...
342 bool LLParser::ParseDefine() {
343 assert(Lex.getKind() == lltok::kw_define);
344 Lex.Lex();
346 Function *F;
347 return ParseFunctionHeader(F, true) ||
348 ParseFunctionBody(*F);
351 /// ParseGlobalType
352 /// ::= 'constant'
353 /// ::= 'global'
354 bool LLParser::ParseGlobalType(bool &IsConstant) {
355 if (Lex.getKind() == lltok::kw_constant)
356 IsConstant = true;
357 else if (Lex.getKind() == lltok::kw_global)
358 IsConstant = false;
359 else {
360 IsConstant = false;
361 return TokError("expected 'global' or 'constant'");
363 Lex.Lex();
364 return false;
367 /// ParseUnnamedGlobal:
368 /// OptionalVisibility ALIAS ...
369 /// OptionalLinkage OptionalVisibility ... -> global variable
370 /// GlobalID '=' OptionalVisibility ALIAS ...
371 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
372 bool LLParser::ParseUnnamedGlobal() {
373 unsigned VarID = NumberedVals.size();
374 std::string Name;
375 LocTy NameLoc = Lex.getLoc();
377 // Handle the GlobalID form.
378 if (Lex.getKind() == lltok::GlobalID) {
379 if (Lex.getUIntVal() != VarID)
380 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
381 utostr(VarID) + "'");
382 Lex.Lex(); // eat GlobalID;
384 if (ParseToken(lltok::equal, "expected '=' after name"))
385 return true;
388 bool HasLinkage;
389 unsigned Linkage, Visibility;
390 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
391 ParseOptionalVisibility(Visibility))
392 return true;
394 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
395 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
396 return ParseAlias(Name, NameLoc, Visibility);
399 /// ParseNamedGlobal:
400 /// GlobalVar '=' OptionalVisibility ALIAS ...
401 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
402 bool LLParser::ParseNamedGlobal() {
403 assert(Lex.getKind() == lltok::GlobalVar);
404 LocTy NameLoc = Lex.getLoc();
405 std::string Name = Lex.getStrVal();
406 Lex.Lex();
408 bool HasLinkage;
409 unsigned Linkage, Visibility;
410 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
411 ParseOptionalLinkage(Linkage, HasLinkage) ||
412 ParseOptionalVisibility(Visibility))
413 return true;
415 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
416 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
417 return ParseAlias(Name, NameLoc, Visibility);
420 // MDString:
421 // ::= '!' STRINGCONSTANT
422 bool LLParser::ParseMDString(MetadataBase *&MDS) {
423 std::string Str;
424 if (ParseStringConstant(Str)) return true;
425 MDS = MDString::get(Context, Str);
426 return false;
429 // MDNode:
430 // ::= '!' MDNodeNumber
431 bool LLParser::ParseMDNode(MetadataBase *&Node) {
432 // !{ ..., !42, ... }
433 unsigned MID = 0;
434 if (ParseUInt32(MID)) return true;
436 // Check existing MDNode.
437 std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
438 if (I != MetadataCache.end()) {
439 Node = I->second;
440 return false;
443 // Check known forward references.
444 std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
445 FI = ForwardRefMDNodes.find(MID);
446 if (FI != ForwardRefMDNodes.end()) {
447 Node = FI->second.first;
448 return false;
451 // Create MDNode forward reference
452 SmallVector<Value *, 1> Elts;
453 std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
454 Elts.push_back(MDString::get(Context, FwdRefName));
455 MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
456 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
457 Node = FwdNode;
458 return false;
461 ///ParseNamedMetadata:
462 /// !foo = !{ !1, !2 }
463 bool LLParser::ParseNamedMetadata() {
464 assert(Lex.getKind() == lltok::NamedMD);
465 Lex.Lex();
466 std::string Name = Lex.getStrVal();
468 if (ParseToken(lltok::equal, "expected '=' here"))
469 return true;
471 if (Lex.getKind() != lltok::Metadata)
472 return TokError("Expected '!' here");
473 Lex.Lex();
475 if (Lex.getKind() != lltok::lbrace)
476 return TokError("Expected '{' here");
477 Lex.Lex();
478 SmallVector<MetadataBase *, 8> Elts;
479 do {
480 if (Lex.getKind() != lltok::Metadata)
481 return TokError("Expected '!' here");
482 Lex.Lex();
483 MetadataBase *N = 0;
484 if (ParseMDNode(N)) return true;
485 Elts.push_back(N);
486 } while (EatIfPresent(lltok::comma));
488 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
489 return true;
491 NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
492 return false;
495 /// ParseStandaloneMetadata:
496 /// !42 = !{...}
497 bool LLParser::ParseStandaloneMetadata() {
498 assert(Lex.getKind() == lltok::Metadata);
499 Lex.Lex();
500 unsigned MetadataID = 0;
501 if (ParseUInt32(MetadataID))
502 return true;
503 if (MetadataCache.find(MetadataID) != MetadataCache.end())
504 return TokError("Metadata id is already used");
505 if (ParseToken(lltok::equal, "expected '=' here"))
506 return true;
508 LocTy TyLoc;
509 PATypeHolder Ty(Type::getVoidTy(Context));
510 if (ParseType(Ty, TyLoc))
511 return true;
513 if (Lex.getKind() != lltok::Metadata)
514 return TokError("Expected metadata here");
516 Lex.Lex();
517 if (Lex.getKind() != lltok::lbrace)
518 return TokError("Expected '{' here");
520 SmallVector<Value *, 16> Elts;
521 if (ParseMDNodeVector(Elts)
522 || ParseToken(lltok::rbrace, "expected end of metadata node"))
523 return true;
525 MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
526 MetadataCache[MetadataID] = Init;
527 std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
528 FI = ForwardRefMDNodes.find(MetadataID);
529 if (FI != ForwardRefMDNodes.end()) {
530 MDNode *FwdNode = cast<MDNode>(FI->second.first);
531 FwdNode->replaceAllUsesWith(Init);
532 ForwardRefMDNodes.erase(FI);
535 return false;
538 /// ParseAlias:
539 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
540 /// Aliasee
541 /// ::= TypeAndValue
542 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
543 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
545 /// Everything through visibility has already been parsed.
547 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
548 unsigned Visibility) {
549 assert(Lex.getKind() == lltok::kw_alias);
550 Lex.Lex();
551 unsigned Linkage;
552 LocTy LinkageLoc = Lex.getLoc();
553 if (ParseOptionalLinkage(Linkage))
554 return true;
556 if (Linkage != GlobalValue::ExternalLinkage &&
557 Linkage != GlobalValue::WeakAnyLinkage &&
558 Linkage != GlobalValue::WeakODRLinkage &&
559 Linkage != GlobalValue::InternalLinkage &&
560 Linkage != GlobalValue::PrivateLinkage &&
561 Linkage != GlobalValue::LinkerPrivateLinkage)
562 return Error(LinkageLoc, "invalid linkage type for alias");
564 Constant *Aliasee;
565 LocTy AliaseeLoc = Lex.getLoc();
566 if (Lex.getKind() != lltok::kw_bitcast &&
567 Lex.getKind() != lltok::kw_getelementptr) {
568 if (ParseGlobalTypeAndValue(Aliasee)) return true;
569 } else {
570 // The bitcast dest type is not present, it is implied by the dest type.
571 ValID ID;
572 if (ParseValID(ID)) return true;
573 if (ID.Kind != ValID::t_Constant)
574 return Error(AliaseeLoc, "invalid aliasee");
575 Aliasee = ID.ConstantVal;
578 if (!isa<PointerType>(Aliasee->getType()))
579 return Error(AliaseeLoc, "alias must have pointer type");
581 // Okay, create the alias but do not insert it into the module yet.
582 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
583 (GlobalValue::LinkageTypes)Linkage, Name,
584 Aliasee);
585 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
587 // See if this value already exists in the symbol table. If so, it is either
588 // a redefinition or a definition of a forward reference.
589 if (GlobalValue *Val =
590 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
591 // See if this was a redefinition. If so, there is no entry in
592 // ForwardRefVals.
593 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
594 I = ForwardRefVals.find(Name);
595 if (I == ForwardRefVals.end())
596 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
598 // Otherwise, this was a definition of forward ref. Verify that types
599 // agree.
600 if (Val->getType() != GA->getType())
601 return Error(NameLoc,
602 "forward reference and definition of alias have different types");
604 // If they agree, just RAUW the old value with the alias and remove the
605 // forward ref info.
606 Val->replaceAllUsesWith(GA);
607 Val->eraseFromParent();
608 ForwardRefVals.erase(I);
611 // Insert into the module, we know its name won't collide now.
612 M->getAliasList().push_back(GA);
613 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
615 return false;
618 /// ParseGlobal
619 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
620 /// OptionalAddrSpace GlobalType Type Const
621 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
622 /// OptionalAddrSpace GlobalType Type Const
624 /// Everything through visibility has been parsed already.
626 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
627 unsigned Linkage, bool HasLinkage,
628 unsigned Visibility) {
629 unsigned AddrSpace;
630 bool ThreadLocal, IsConstant;
631 LocTy TyLoc;
633 PATypeHolder Ty(Type::getVoidTy(Context));
634 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
635 ParseOptionalAddrSpace(AddrSpace) ||
636 ParseGlobalType(IsConstant) ||
637 ParseType(Ty, TyLoc))
638 return true;
640 // If the linkage is specified and is external, then no initializer is
641 // present.
642 Constant *Init = 0;
643 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
644 Linkage != GlobalValue::ExternalWeakLinkage &&
645 Linkage != GlobalValue::ExternalLinkage)) {
646 if (ParseGlobalValue(Ty, Init))
647 return true;
650 if (isa<FunctionType>(Ty) || Ty == Type::getLabelTy(Context))
651 return Error(TyLoc, "invalid type for global variable");
653 GlobalVariable *GV = 0;
655 // See if the global was forward referenced, if so, use the global.
656 if (!Name.empty()) {
657 if ((GV = M->getGlobalVariable(Name, true)) &&
658 !ForwardRefVals.erase(Name))
659 return Error(NameLoc, "redefinition of global '@" + Name + "'");
660 } else {
661 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
662 I = ForwardRefValIDs.find(NumberedVals.size());
663 if (I != ForwardRefValIDs.end()) {
664 GV = cast<GlobalVariable>(I->second.first);
665 ForwardRefValIDs.erase(I);
669 if (GV == 0) {
670 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
671 Name, 0, false, AddrSpace);
672 } else {
673 if (GV->getType()->getElementType() != Ty)
674 return Error(TyLoc,
675 "forward reference and definition of global have different types");
677 // Move the forward-reference to the correct spot in the module.
678 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
681 if (Name.empty())
682 NumberedVals.push_back(GV);
684 // Set the parsed properties on the global.
685 if (Init)
686 GV->setInitializer(Init);
687 GV->setConstant(IsConstant);
688 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
689 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
690 GV->setThreadLocal(ThreadLocal);
692 // Parse attributes on the global.
693 while (Lex.getKind() == lltok::comma) {
694 Lex.Lex();
696 if (Lex.getKind() == lltok::kw_section) {
697 Lex.Lex();
698 GV->setSection(Lex.getStrVal());
699 if (ParseToken(lltok::StringConstant, "expected global section string"))
700 return true;
701 } else if (Lex.getKind() == lltok::kw_align) {
702 unsigned Alignment;
703 if (ParseOptionalAlignment(Alignment)) return true;
704 GV->setAlignment(Alignment);
705 } else {
706 TokError("unknown global variable property!");
710 return false;
714 //===----------------------------------------------------------------------===//
715 // GlobalValue Reference/Resolution Routines.
716 //===----------------------------------------------------------------------===//
718 /// GetGlobalVal - Get a value with the specified name or ID, creating a
719 /// forward reference record if needed. This can return null if the value
720 /// exists but does not have the right type.
721 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
722 LocTy Loc) {
723 const PointerType *PTy = dyn_cast<PointerType>(Ty);
724 if (PTy == 0) {
725 Error(Loc, "global variable reference must have pointer type");
726 return 0;
729 // Look this name up in the normal function symbol table.
730 GlobalValue *Val =
731 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
733 // If this is a forward reference for the value, see if we already created a
734 // forward ref record.
735 if (Val == 0) {
736 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
737 I = ForwardRefVals.find(Name);
738 if (I != ForwardRefVals.end())
739 Val = I->second.first;
742 // If we have the value in the symbol table or fwd-ref table, return it.
743 if (Val) {
744 if (Val->getType() == Ty) return Val;
745 Error(Loc, "'@" + Name + "' defined with type '" +
746 Val->getType()->getDescription() + "'");
747 return 0;
750 // Otherwise, create a new forward reference for this value and remember it.
751 GlobalValue *FwdVal;
752 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
753 // Function types can return opaque but functions can't.
754 if (isa<OpaqueType>(FT->getReturnType())) {
755 Error(Loc, "function may not return opaque type");
756 return 0;
759 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
760 } else {
761 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
762 GlobalValue::ExternalWeakLinkage, 0, Name);
765 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
766 return FwdVal;
769 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
770 const PointerType *PTy = dyn_cast<PointerType>(Ty);
771 if (PTy == 0) {
772 Error(Loc, "global variable reference must have pointer type");
773 return 0;
776 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
778 // If this is a forward reference for the value, see if we already created a
779 // forward ref record.
780 if (Val == 0) {
781 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
782 I = ForwardRefValIDs.find(ID);
783 if (I != ForwardRefValIDs.end())
784 Val = I->second.first;
787 // If we have the value in the symbol table or fwd-ref table, return it.
788 if (Val) {
789 if (Val->getType() == Ty) return Val;
790 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
791 Val->getType()->getDescription() + "'");
792 return 0;
795 // Otherwise, create a new forward reference for this value and remember it.
796 GlobalValue *FwdVal;
797 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
798 // Function types can return opaque but functions can't.
799 if (isa<OpaqueType>(FT->getReturnType())) {
800 Error(Loc, "function may not return opaque type");
801 return 0;
803 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
804 } else {
805 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
806 GlobalValue::ExternalWeakLinkage, 0, "");
809 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
810 return FwdVal;
814 //===----------------------------------------------------------------------===//
815 // Helper Routines.
816 //===----------------------------------------------------------------------===//
818 /// ParseToken - If the current token has the specified kind, eat it and return
819 /// success. Otherwise, emit the specified error and return failure.
820 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
821 if (Lex.getKind() != T)
822 return TokError(ErrMsg);
823 Lex.Lex();
824 return false;
827 /// ParseStringConstant
828 /// ::= StringConstant
829 bool LLParser::ParseStringConstant(std::string &Result) {
830 if (Lex.getKind() != lltok::StringConstant)
831 return TokError("expected string constant");
832 Result = Lex.getStrVal();
833 Lex.Lex();
834 return false;
837 /// ParseUInt32
838 /// ::= uint32
839 bool LLParser::ParseUInt32(unsigned &Val) {
840 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
841 return TokError("expected integer");
842 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
843 if (Val64 != unsigned(Val64))
844 return TokError("expected 32-bit integer (too large)");
845 Val = Val64;
846 Lex.Lex();
847 return false;
851 /// ParseOptionalAddrSpace
852 /// := /*empty*/
853 /// := 'addrspace' '(' uint32 ')'
854 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
855 AddrSpace = 0;
856 if (!EatIfPresent(lltok::kw_addrspace))
857 return false;
858 return ParseToken(lltok::lparen, "expected '(' in address space") ||
859 ParseUInt32(AddrSpace) ||
860 ParseToken(lltok::rparen, "expected ')' in address space");
863 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
864 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
865 /// 2: function attr.
866 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
867 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
868 Attrs = Attribute::None;
869 LocTy AttrLoc = Lex.getLoc();
871 while (1) {
872 switch (Lex.getKind()) {
873 case lltok::kw_sext:
874 case lltok::kw_zext:
875 // Treat these as signext/zeroext if they occur in the argument list after
876 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
877 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
878 // expr.
879 // FIXME: REMOVE THIS IN LLVM 3.0
880 if (AttrKind == 3) {
881 if (Lex.getKind() == lltok::kw_sext)
882 Attrs |= Attribute::SExt;
883 else
884 Attrs |= Attribute::ZExt;
885 break;
887 // FALL THROUGH.
888 default: // End of attributes.
889 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
890 return Error(AttrLoc, "invalid use of function-only attribute");
892 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
893 return Error(AttrLoc, "invalid use of parameter-only attribute");
895 return false;
896 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
897 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
898 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
899 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
900 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
901 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
902 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
903 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
905 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
906 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
907 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
908 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
909 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
910 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
911 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
912 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
913 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
914 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
915 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
916 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
917 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
919 case lltok::kw_align: {
920 unsigned Alignment;
921 if (ParseOptionalAlignment(Alignment))
922 return true;
923 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
924 continue;
927 Lex.Lex();
931 /// ParseOptionalLinkage
932 /// ::= /*empty*/
933 /// ::= 'private'
934 /// ::= 'linker_private'
935 /// ::= 'internal'
936 /// ::= 'weak'
937 /// ::= 'weak_odr'
938 /// ::= 'linkonce'
939 /// ::= 'linkonce_odr'
940 /// ::= 'appending'
941 /// ::= 'dllexport'
942 /// ::= 'common'
943 /// ::= 'dllimport'
944 /// ::= 'extern_weak'
945 /// ::= 'external'
946 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
947 HasLinkage = false;
948 switch (Lex.getKind()) {
949 default: Res=GlobalValue::ExternalLinkage; return false;
950 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
951 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
952 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
953 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
954 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
955 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
956 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
957 case lltok::kw_available_externally:
958 Res = GlobalValue::AvailableExternallyLinkage;
959 break;
960 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
961 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
962 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
963 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
964 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
965 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
967 Lex.Lex();
968 HasLinkage = true;
969 return false;
972 /// ParseOptionalVisibility
973 /// ::= /*empty*/
974 /// ::= 'default'
975 /// ::= 'hidden'
976 /// ::= 'protected'
977 ///
978 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
979 switch (Lex.getKind()) {
980 default: Res = GlobalValue::DefaultVisibility; return false;
981 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
982 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
983 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
985 Lex.Lex();
986 return false;
989 /// ParseOptionalCallingConv
990 /// ::= /*empty*/
991 /// ::= 'ccc'
992 /// ::= 'fastcc'
993 /// ::= 'coldcc'
994 /// ::= 'x86_stdcallcc'
995 /// ::= 'x86_fastcallcc'
996 /// ::= 'arm_apcscc'
997 /// ::= 'arm_aapcscc'
998 /// ::= 'arm_aapcs_vfpcc'
999 /// ::= 'cc' UINT
1001 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1002 switch (Lex.getKind()) {
1003 default: CC = CallingConv::C; return false;
1004 case lltok::kw_ccc: CC = CallingConv::C; break;
1005 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1006 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1007 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1008 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1009 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1010 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1011 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1012 case lltok::kw_cc: {
1013 unsigned ArbitraryCC;
1014 Lex.Lex();
1015 if (ParseUInt32(ArbitraryCC)) {
1016 return true;
1017 } else
1018 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1019 return false;
1021 break;
1024 Lex.Lex();
1025 return false;
1028 /// ParseOptionalAlignment
1029 /// ::= /* empty */
1030 /// ::= 'align' 4
1031 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1032 Alignment = 0;
1033 if (!EatIfPresent(lltok::kw_align))
1034 return false;
1035 LocTy AlignLoc = Lex.getLoc();
1036 if (ParseUInt32(Alignment)) return true;
1037 if (!isPowerOf2_32(Alignment))
1038 return Error(AlignLoc, "alignment is not a power of two");
1039 return false;
1042 /// ParseOptionalCommaAlignment
1043 /// ::= /* empty */
1044 /// ::= ',' 'align' 4
1045 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
1046 Alignment = 0;
1047 if (!EatIfPresent(lltok::comma))
1048 return false;
1049 return ParseToken(lltok::kw_align, "expected 'align'") ||
1050 ParseUInt32(Alignment);
1053 /// ParseIndexList
1054 /// ::= (',' uint32)+
1055 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1056 if (Lex.getKind() != lltok::comma)
1057 return TokError("expected ',' as start of index list");
1059 while (EatIfPresent(lltok::comma)) {
1060 unsigned Idx;
1061 if (ParseUInt32(Idx)) return true;
1062 Indices.push_back(Idx);
1065 return false;
1068 //===----------------------------------------------------------------------===//
1069 // Type Parsing.
1070 //===----------------------------------------------------------------------===//
1072 /// ParseType - Parse and resolve a full type.
1073 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1074 LocTy TypeLoc = Lex.getLoc();
1075 if (ParseTypeRec(Result)) return true;
1077 // Verify no unresolved uprefs.
1078 if (!UpRefs.empty())
1079 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1081 if (!AllowVoid && Result.get() == Type::getVoidTy(Context))
1082 return Error(TypeLoc, "void type only allowed for function results");
1084 return false;
1087 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1088 /// called. It loops through the UpRefs vector, which is a list of the
1089 /// currently active types. For each type, if the up-reference is contained in
1090 /// the newly completed type, we decrement the level count. When the level
1091 /// count reaches zero, the up-referenced type is the type that is passed in:
1092 /// thus we can complete the cycle.
1094 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1095 // If Ty isn't abstract, or if there are no up-references in it, then there is
1096 // nothing to resolve here.
1097 if (!ty->isAbstract() || UpRefs.empty()) return ty;
1099 PATypeHolder Ty(ty);
1100 #if 0
1101 errs() << "Type '" << Ty->getDescription()
1102 << "' newly formed. Resolving upreferences.\n"
1103 << UpRefs.size() << " upreferences active!\n";
1104 #endif
1106 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1107 // to zero), we resolve them all together before we resolve them to Ty. At
1108 // the end of the loop, if there is anything to resolve to Ty, it will be in
1109 // this variable.
1110 OpaqueType *TypeToResolve = 0;
1112 for (unsigned i = 0; i != UpRefs.size(); ++i) {
1113 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1114 bool ContainsType =
1115 std::find(Ty->subtype_begin(), Ty->subtype_end(),
1116 UpRefs[i].LastContainedTy) != Ty->subtype_end();
1118 #if 0
1119 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1120 << UpRefs[i].LastContainedTy->getDescription() << ") = "
1121 << (ContainsType ? "true" : "false")
1122 << " level=" << UpRefs[i].NestingLevel << "\n";
1123 #endif
1124 if (!ContainsType)
1125 continue;
1127 // Decrement level of upreference
1128 unsigned Level = --UpRefs[i].NestingLevel;
1129 UpRefs[i].LastContainedTy = Ty;
1131 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1132 if (Level != 0)
1133 continue;
1135 #if 0
1136 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1137 #endif
1138 if (!TypeToResolve)
1139 TypeToResolve = UpRefs[i].UpRefTy;
1140 else
1141 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1142 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
1143 --i; // Do not skip the next element.
1146 if (TypeToResolve)
1147 TypeToResolve->refineAbstractTypeTo(Ty);
1149 return Ty;
1153 /// ParseTypeRec - The recursive function used to process the internal
1154 /// implementation details of types.
1155 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1156 switch (Lex.getKind()) {
1157 default:
1158 return TokError("expected type");
1159 case lltok::Type:
1160 // TypeRec ::= 'float' | 'void' (etc)
1161 Result = Lex.getTyVal();
1162 Lex.Lex();
1163 break;
1164 case lltok::kw_opaque:
1165 // TypeRec ::= 'opaque'
1166 Result = OpaqueType::get(Context);
1167 Lex.Lex();
1168 break;
1169 case lltok::lbrace:
1170 // TypeRec ::= '{' ... '}'
1171 if (ParseStructType(Result, false))
1172 return true;
1173 break;
1174 case lltok::lsquare:
1175 // TypeRec ::= '[' ... ']'
1176 Lex.Lex(); // eat the lsquare.
1177 if (ParseArrayVectorType(Result, false))
1178 return true;
1179 break;
1180 case lltok::less: // Either vector or packed struct.
1181 // TypeRec ::= '<' ... '>'
1182 Lex.Lex();
1183 if (Lex.getKind() == lltok::lbrace) {
1184 if (ParseStructType(Result, true) ||
1185 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1186 return true;
1187 } else if (ParseArrayVectorType(Result, true))
1188 return true;
1189 break;
1190 case lltok::LocalVar:
1191 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
1192 // TypeRec ::= %foo
1193 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1194 Result = T;
1195 } else {
1196 Result = OpaqueType::get(Context);
1197 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1198 std::make_pair(Result,
1199 Lex.getLoc())));
1200 M->addTypeName(Lex.getStrVal(), Result.get());
1202 Lex.Lex();
1203 break;
1205 case lltok::LocalVarID:
1206 // TypeRec ::= %4
1207 if (Lex.getUIntVal() < NumberedTypes.size())
1208 Result = NumberedTypes[Lex.getUIntVal()];
1209 else {
1210 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1211 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1212 if (I != ForwardRefTypeIDs.end())
1213 Result = I->second.first;
1214 else {
1215 Result = OpaqueType::get(Context);
1216 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1217 std::make_pair(Result,
1218 Lex.getLoc())));
1221 Lex.Lex();
1222 break;
1223 case lltok::backslash: {
1224 // TypeRec ::= '\' 4
1225 Lex.Lex();
1226 unsigned Val;
1227 if (ParseUInt32(Val)) return true;
1228 OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1229 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1230 Result = OT;
1231 break;
1235 // Parse the type suffixes.
1236 while (1) {
1237 switch (Lex.getKind()) {
1238 // End of type.
1239 default: return false;
1241 // TypeRec ::= TypeRec '*'
1242 case lltok::star:
1243 if (Result.get() == Type::getLabelTy(Context))
1244 return TokError("basic block pointers are invalid");
1245 if (Result.get() == Type::getVoidTy(Context))
1246 return TokError("pointers to void are invalid; use i8* instead");
1247 if (!PointerType::isValidElementType(Result.get()))
1248 return TokError("pointer to this type is invalid");
1249 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1250 Lex.Lex();
1251 break;
1253 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1254 case lltok::kw_addrspace: {
1255 if (Result.get() == Type::getLabelTy(Context))
1256 return TokError("basic block pointers are invalid");
1257 if (Result.get() == Type::getVoidTy(Context))
1258 return TokError("pointers to void are invalid; use i8* instead");
1259 if (!PointerType::isValidElementType(Result.get()))
1260 return TokError("pointer to this type is invalid");
1261 unsigned AddrSpace;
1262 if (ParseOptionalAddrSpace(AddrSpace) ||
1263 ParseToken(lltok::star, "expected '*' in address space"))
1264 return true;
1266 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1267 break;
1270 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1271 case lltok::lparen:
1272 if (ParseFunctionType(Result))
1273 return true;
1274 break;
1279 /// ParseParameterList
1280 /// ::= '(' ')'
1281 /// ::= '(' Arg (',' Arg)* ')'
1282 /// Arg
1283 /// ::= Type OptionalAttributes Value OptionalAttributes
1284 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1285 PerFunctionState &PFS) {
1286 if (ParseToken(lltok::lparen, "expected '(' in call"))
1287 return true;
1289 while (Lex.getKind() != lltok::rparen) {
1290 // If this isn't the first argument, we need a comma.
1291 if (!ArgList.empty() &&
1292 ParseToken(lltok::comma, "expected ',' in argument list"))
1293 return true;
1295 // Parse the argument.
1296 LocTy ArgLoc;
1297 PATypeHolder ArgTy(Type::getVoidTy(Context));
1298 unsigned ArgAttrs1, ArgAttrs2;
1299 Value *V;
1300 if (ParseType(ArgTy, ArgLoc) ||
1301 ParseOptionalAttrs(ArgAttrs1, 0) ||
1302 ParseValue(ArgTy, V, PFS) ||
1303 // FIXME: Should not allow attributes after the argument, remove this in
1304 // LLVM 3.0.
1305 ParseOptionalAttrs(ArgAttrs2, 3))
1306 return true;
1307 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1310 Lex.Lex(); // Lex the ')'.
1311 return false;
1316 /// ParseArgumentList - Parse the argument list for a function type or function
1317 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1318 /// ::= '(' ArgTypeListI ')'
1319 /// ArgTypeListI
1320 /// ::= /*empty*/
1321 /// ::= '...'
1322 /// ::= ArgTypeList ',' '...'
1323 /// ::= ArgType (',' ArgType)*
1325 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1326 bool &isVarArg, bool inType) {
1327 isVarArg = false;
1328 assert(Lex.getKind() == lltok::lparen);
1329 Lex.Lex(); // eat the (.
1331 if (Lex.getKind() == lltok::rparen) {
1332 // empty
1333 } else if (Lex.getKind() == lltok::dotdotdot) {
1334 isVarArg = true;
1335 Lex.Lex();
1336 } else {
1337 LocTy TypeLoc = Lex.getLoc();
1338 PATypeHolder ArgTy(Type::getVoidTy(Context));
1339 unsigned Attrs;
1340 std::string Name;
1342 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1343 // types (such as a function returning a pointer to itself). If parsing a
1344 // function prototype, we require fully resolved types.
1345 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1346 ParseOptionalAttrs(Attrs, 0)) return true;
1348 if (ArgTy == Type::getVoidTy(Context))
1349 return Error(TypeLoc, "argument can not have void type");
1351 if (Lex.getKind() == lltok::LocalVar ||
1352 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1353 Name = Lex.getStrVal();
1354 Lex.Lex();
1357 if (!FunctionType::isValidArgumentType(ArgTy))
1358 return Error(TypeLoc, "invalid type for function argument");
1360 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1362 while (EatIfPresent(lltok::comma)) {
1363 // Handle ... at end of arg list.
1364 if (EatIfPresent(lltok::dotdotdot)) {
1365 isVarArg = true;
1366 break;
1369 // Otherwise must be an argument type.
1370 TypeLoc = Lex.getLoc();
1371 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1372 ParseOptionalAttrs(Attrs, 0)) return true;
1374 if (ArgTy == Type::getVoidTy(Context))
1375 return Error(TypeLoc, "argument can not have void type");
1377 if (Lex.getKind() == lltok::LocalVar ||
1378 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1379 Name = Lex.getStrVal();
1380 Lex.Lex();
1381 } else {
1382 Name = "";
1385 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1386 return Error(TypeLoc, "invalid type for function argument");
1388 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1392 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1395 /// ParseFunctionType
1396 /// ::= Type ArgumentList OptionalAttrs
1397 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1398 assert(Lex.getKind() == lltok::lparen);
1400 if (!FunctionType::isValidReturnType(Result))
1401 return TokError("invalid function return type");
1403 std::vector<ArgInfo> ArgList;
1404 bool isVarArg;
1405 unsigned Attrs;
1406 if (ParseArgumentList(ArgList, isVarArg, true) ||
1407 // FIXME: Allow, but ignore attributes on function types!
1408 // FIXME: Remove in LLVM 3.0
1409 ParseOptionalAttrs(Attrs, 2))
1410 return true;
1412 // Reject names on the arguments lists.
1413 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1414 if (!ArgList[i].Name.empty())
1415 return Error(ArgList[i].Loc, "argument name invalid in function type");
1416 if (!ArgList[i].Attrs != 0) {
1417 // Allow but ignore attributes on function types; this permits
1418 // auto-upgrade.
1419 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1423 std::vector<const Type*> ArgListTy;
1424 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1425 ArgListTy.push_back(ArgList[i].Type);
1427 Result = HandleUpRefs(FunctionType::get(Result.get(),
1428 ArgListTy, isVarArg));
1429 return false;
1432 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1433 /// TypeRec
1434 /// ::= '{' '}'
1435 /// ::= '{' TypeRec (',' TypeRec)* '}'
1436 /// ::= '<' '{' '}' '>'
1437 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1438 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1439 assert(Lex.getKind() == lltok::lbrace);
1440 Lex.Lex(); // Consume the '{'
1442 if (EatIfPresent(lltok::rbrace)) {
1443 Result = StructType::get(Context, Packed);
1444 return false;
1447 std::vector<PATypeHolder> ParamsList;
1448 LocTy EltTyLoc = Lex.getLoc();
1449 if (ParseTypeRec(Result)) return true;
1450 ParamsList.push_back(Result);
1452 if (Result == Type::getVoidTy(Context))
1453 return Error(EltTyLoc, "struct element can not have void type");
1454 if (!StructType::isValidElementType(Result))
1455 return Error(EltTyLoc, "invalid element type for struct");
1457 while (EatIfPresent(lltok::comma)) {
1458 EltTyLoc = Lex.getLoc();
1459 if (ParseTypeRec(Result)) return true;
1461 if (Result == Type::getVoidTy(Context))
1462 return Error(EltTyLoc, "struct element can not have void type");
1463 if (!StructType::isValidElementType(Result))
1464 return Error(EltTyLoc, "invalid element type for struct");
1466 ParamsList.push_back(Result);
1469 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1470 return true;
1472 std::vector<const Type*> ParamsListTy;
1473 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1474 ParamsListTy.push_back(ParamsList[i].get());
1475 Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1476 return false;
1479 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1480 /// token has already been consumed.
1481 /// TypeRec
1482 /// ::= '[' APSINTVAL 'x' Types ']'
1483 /// ::= '<' APSINTVAL 'x' Types '>'
1484 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1485 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1486 Lex.getAPSIntVal().getBitWidth() > 64)
1487 return TokError("expected number in address space");
1489 LocTy SizeLoc = Lex.getLoc();
1490 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1491 Lex.Lex();
1493 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1494 return true;
1496 LocTy TypeLoc = Lex.getLoc();
1497 PATypeHolder EltTy(Type::getVoidTy(Context));
1498 if (ParseTypeRec(EltTy)) return true;
1500 if (EltTy == Type::getVoidTy(Context))
1501 return Error(TypeLoc, "array and vector element type cannot be void");
1503 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1504 "expected end of sequential type"))
1505 return true;
1507 if (isVector) {
1508 if (Size == 0)
1509 return Error(SizeLoc, "zero element vector is illegal");
1510 if ((unsigned)Size != Size)
1511 return Error(SizeLoc, "size too large for vector");
1512 if (!VectorType::isValidElementType(EltTy))
1513 return Error(TypeLoc, "vector element type must be fp or integer");
1514 Result = VectorType::get(EltTy, unsigned(Size));
1515 } else {
1516 if (!ArrayType::isValidElementType(EltTy))
1517 return Error(TypeLoc, "invalid array element type");
1518 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1520 return false;
1523 //===----------------------------------------------------------------------===//
1524 // Function Semantic Analysis.
1525 //===----------------------------------------------------------------------===//
1527 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1528 : P(p), F(f) {
1530 // Insert unnamed arguments into the NumberedVals list.
1531 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1532 AI != E; ++AI)
1533 if (!AI->hasName())
1534 NumberedVals.push_back(AI);
1537 LLParser::PerFunctionState::~PerFunctionState() {
1538 // If there were any forward referenced non-basicblock values, delete them.
1539 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1540 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1541 if (!isa<BasicBlock>(I->second.first)) {
1542 I->second.first->replaceAllUsesWith(
1543 UndefValue::get(I->second.first->getType()));
1544 delete I->second.first;
1545 I->second.first = 0;
1548 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1549 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1550 if (!isa<BasicBlock>(I->second.first)) {
1551 I->second.first->replaceAllUsesWith(
1552 UndefValue::get(I->second.first->getType()));
1553 delete I->second.first;
1554 I->second.first = 0;
1558 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1559 if (!ForwardRefVals.empty())
1560 return P.Error(ForwardRefVals.begin()->second.second,
1561 "use of undefined value '%" + ForwardRefVals.begin()->first +
1562 "'");
1563 if (!ForwardRefValIDs.empty())
1564 return P.Error(ForwardRefValIDs.begin()->second.second,
1565 "use of undefined value '%" +
1566 utostr(ForwardRefValIDs.begin()->first) + "'");
1567 return false;
1571 /// GetVal - Get a value with the specified name or ID, creating a
1572 /// forward reference record if needed. This can return null if the value
1573 /// exists but does not have the right type.
1574 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1575 const Type *Ty, LocTy Loc) {
1576 // Look this name up in the normal function symbol table.
1577 Value *Val = F.getValueSymbolTable().lookup(Name);
1579 // If this is a forward reference for the value, see if we already created a
1580 // forward ref record.
1581 if (Val == 0) {
1582 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1583 I = ForwardRefVals.find(Name);
1584 if (I != ForwardRefVals.end())
1585 Val = I->second.first;
1588 // If we have the value in the symbol table or fwd-ref table, return it.
1589 if (Val) {
1590 if (Val->getType() == Ty) return Val;
1591 if (Ty == Type::getLabelTy(F.getContext()))
1592 P.Error(Loc, "'%" + Name + "' is not a basic block");
1593 else
1594 P.Error(Loc, "'%" + Name + "' defined with type '" +
1595 Val->getType()->getDescription() + "'");
1596 return 0;
1599 // Don't make placeholders with invalid type.
1600 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1601 Ty != Type::getLabelTy(F.getContext())) {
1602 P.Error(Loc, "invalid use of a non-first-class type");
1603 return 0;
1606 // Otherwise, create a new forward reference for this value and remember it.
1607 Value *FwdVal;
1608 if (Ty == Type::getLabelTy(F.getContext()))
1609 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1610 else
1611 FwdVal = new Argument(Ty, Name);
1613 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1614 return FwdVal;
1617 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1618 LocTy Loc) {
1619 // Look this name up in the normal function symbol table.
1620 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1622 // If this is a forward reference for the value, see if we already created a
1623 // forward ref record.
1624 if (Val == 0) {
1625 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1626 I = ForwardRefValIDs.find(ID);
1627 if (I != ForwardRefValIDs.end())
1628 Val = I->second.first;
1631 // If we have the value in the symbol table or fwd-ref table, return it.
1632 if (Val) {
1633 if (Val->getType() == Ty) return Val;
1634 if (Ty == Type::getLabelTy(F.getContext()))
1635 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1636 else
1637 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1638 Val->getType()->getDescription() + "'");
1639 return 0;
1642 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1643 Ty != Type::getLabelTy(F.getContext())) {
1644 P.Error(Loc, "invalid use of a non-first-class type");
1645 return 0;
1648 // Otherwise, create a new forward reference for this value and remember it.
1649 Value *FwdVal;
1650 if (Ty == Type::getLabelTy(F.getContext()))
1651 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1652 else
1653 FwdVal = new Argument(Ty);
1655 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1656 return FwdVal;
1659 /// SetInstName - After an instruction is parsed and inserted into its
1660 /// basic block, this installs its name.
1661 bool LLParser::PerFunctionState::SetInstName(int NameID,
1662 const std::string &NameStr,
1663 LocTy NameLoc, Instruction *Inst) {
1664 // If this instruction has void type, it cannot have a name or ID specified.
1665 if (Inst->getType() == Type::getVoidTy(F.getContext())) {
1666 if (NameID != -1 || !NameStr.empty())
1667 return P.Error(NameLoc, "instructions returning void cannot have a name");
1668 return false;
1671 // If this was a numbered instruction, verify that the instruction is the
1672 // expected value and resolve any forward references.
1673 if (NameStr.empty()) {
1674 // If neither a name nor an ID was specified, just use the next ID.
1675 if (NameID == -1)
1676 NameID = NumberedVals.size();
1678 if (unsigned(NameID) != NumberedVals.size())
1679 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1680 utostr(NumberedVals.size()) + "'");
1682 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1683 ForwardRefValIDs.find(NameID);
1684 if (FI != ForwardRefValIDs.end()) {
1685 if (FI->second.first->getType() != Inst->getType())
1686 return P.Error(NameLoc, "instruction forward referenced with type '" +
1687 FI->second.first->getType()->getDescription() + "'");
1688 FI->second.first->replaceAllUsesWith(Inst);
1689 delete FI->second.first;
1690 ForwardRefValIDs.erase(FI);
1693 NumberedVals.push_back(Inst);
1694 return false;
1697 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1698 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1699 FI = ForwardRefVals.find(NameStr);
1700 if (FI != ForwardRefVals.end()) {
1701 if (FI->second.first->getType() != Inst->getType())
1702 return P.Error(NameLoc, "instruction forward referenced with type '" +
1703 FI->second.first->getType()->getDescription() + "'");
1704 FI->second.first->replaceAllUsesWith(Inst);
1705 delete FI->second.first;
1706 ForwardRefVals.erase(FI);
1709 // Set the name on the instruction.
1710 Inst->setName(NameStr);
1712 if (Inst->getNameStr() != NameStr)
1713 return P.Error(NameLoc, "multiple definition of local value named '" +
1714 NameStr + "'");
1715 return false;
1718 /// GetBB - Get a basic block with the specified name or ID, creating a
1719 /// forward reference record if needed.
1720 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1721 LocTy Loc) {
1722 return cast_or_null<BasicBlock>(GetVal(Name,
1723 Type::getLabelTy(F.getContext()), Loc));
1726 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1727 return cast_or_null<BasicBlock>(GetVal(ID,
1728 Type::getLabelTy(F.getContext()), Loc));
1731 /// DefineBB - Define the specified basic block, which is either named or
1732 /// unnamed. If there is an error, this returns null otherwise it returns
1733 /// the block being defined.
1734 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1735 LocTy Loc) {
1736 BasicBlock *BB;
1737 if (Name.empty())
1738 BB = GetBB(NumberedVals.size(), Loc);
1739 else
1740 BB = GetBB(Name, Loc);
1741 if (BB == 0) return 0; // Already diagnosed error.
1743 // Move the block to the end of the function. Forward ref'd blocks are
1744 // inserted wherever they happen to be referenced.
1745 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1747 // Remove the block from forward ref sets.
1748 if (Name.empty()) {
1749 ForwardRefValIDs.erase(NumberedVals.size());
1750 NumberedVals.push_back(BB);
1751 } else {
1752 // BB forward references are already in the function symbol table.
1753 ForwardRefVals.erase(Name);
1756 return BB;
1759 //===----------------------------------------------------------------------===//
1760 // Constants.
1761 //===----------------------------------------------------------------------===//
1763 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1764 /// type implied. For example, if we parse "4" we don't know what integer type
1765 /// it has. The value will later be combined with its type and checked for
1766 /// sanity.
1767 bool LLParser::ParseValID(ValID &ID) {
1768 ID.Loc = Lex.getLoc();
1769 switch (Lex.getKind()) {
1770 default: return TokError("expected value token");
1771 case lltok::GlobalID: // @42
1772 ID.UIntVal = Lex.getUIntVal();
1773 ID.Kind = ValID::t_GlobalID;
1774 break;
1775 case lltok::GlobalVar: // @foo
1776 ID.StrVal = Lex.getStrVal();
1777 ID.Kind = ValID::t_GlobalName;
1778 break;
1779 case lltok::LocalVarID: // %42
1780 ID.UIntVal = Lex.getUIntVal();
1781 ID.Kind = ValID::t_LocalID;
1782 break;
1783 case lltok::LocalVar: // %foo
1784 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1785 ID.StrVal = Lex.getStrVal();
1786 ID.Kind = ValID::t_LocalName;
1787 break;
1788 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1789 ID.Kind = ValID::t_Metadata;
1790 Lex.Lex();
1791 if (Lex.getKind() == lltok::lbrace) {
1792 SmallVector<Value*, 16> Elts;
1793 if (ParseMDNodeVector(Elts) ||
1794 ParseToken(lltok::rbrace, "expected end of metadata node"))
1795 return true;
1797 ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1798 return false;
1801 // Standalone metadata reference
1802 // !{ ..., !42, ... }
1803 if (!ParseMDNode(ID.MetadataVal))
1804 return false;
1806 // MDString:
1807 // ::= '!' STRINGCONSTANT
1808 if (ParseMDString(ID.MetadataVal)) return true;
1809 ID.Kind = ValID::t_Metadata;
1810 return false;
1812 case lltok::APSInt:
1813 ID.APSIntVal = Lex.getAPSIntVal();
1814 ID.Kind = ValID::t_APSInt;
1815 break;
1816 case lltok::APFloat:
1817 ID.APFloatVal = Lex.getAPFloatVal();
1818 ID.Kind = ValID::t_APFloat;
1819 break;
1820 case lltok::kw_true:
1821 ID.ConstantVal = ConstantInt::getTrue(Context);
1822 ID.Kind = ValID::t_Constant;
1823 break;
1824 case lltok::kw_false:
1825 ID.ConstantVal = ConstantInt::getFalse(Context);
1826 ID.Kind = ValID::t_Constant;
1827 break;
1828 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1829 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1830 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1832 case lltok::lbrace: {
1833 // ValID ::= '{' ConstVector '}'
1834 Lex.Lex();
1835 SmallVector<Constant*, 16> Elts;
1836 if (ParseGlobalValueVector(Elts) ||
1837 ParseToken(lltok::rbrace, "expected end of struct constant"))
1838 return true;
1840 ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1841 Elts.size(), false);
1842 ID.Kind = ValID::t_Constant;
1843 return false;
1845 case lltok::less: {
1846 // ValID ::= '<' ConstVector '>' --> Vector.
1847 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1848 Lex.Lex();
1849 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1851 SmallVector<Constant*, 16> Elts;
1852 LocTy FirstEltLoc = Lex.getLoc();
1853 if (ParseGlobalValueVector(Elts) ||
1854 (isPackedStruct &&
1855 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1856 ParseToken(lltok::greater, "expected end of constant"))
1857 return true;
1859 if (isPackedStruct) {
1860 ID.ConstantVal =
1861 ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1862 ID.Kind = ValID::t_Constant;
1863 return false;
1866 if (Elts.empty())
1867 return Error(ID.Loc, "constant vector must not be empty");
1869 if (!Elts[0]->getType()->isInteger() &&
1870 !Elts[0]->getType()->isFloatingPoint())
1871 return Error(FirstEltLoc,
1872 "vector elements must have integer or floating point type");
1874 // Verify that all the vector elements have the same type.
1875 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1876 if (Elts[i]->getType() != Elts[0]->getType())
1877 return Error(FirstEltLoc,
1878 "vector element #" + utostr(i) +
1879 " is not of type '" + Elts[0]->getType()->getDescription());
1881 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1882 ID.Kind = ValID::t_Constant;
1883 return false;
1885 case lltok::lsquare: { // Array Constant
1886 Lex.Lex();
1887 SmallVector<Constant*, 16> Elts;
1888 LocTy FirstEltLoc = Lex.getLoc();
1889 if (ParseGlobalValueVector(Elts) ||
1890 ParseToken(lltok::rsquare, "expected end of array constant"))
1891 return true;
1893 // Handle empty element.
1894 if (Elts.empty()) {
1895 // Use undef instead of an array because it's inconvenient to determine
1896 // the element type at this point, there being no elements to examine.
1897 ID.Kind = ValID::t_EmptyArray;
1898 return false;
1901 if (!Elts[0]->getType()->isFirstClassType())
1902 return Error(FirstEltLoc, "invalid array element type: " +
1903 Elts[0]->getType()->getDescription());
1905 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1907 // Verify all elements are correct type!
1908 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1909 if (Elts[i]->getType() != Elts[0]->getType())
1910 return Error(FirstEltLoc,
1911 "array element #" + utostr(i) +
1912 " is not of type '" +Elts[0]->getType()->getDescription());
1915 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1916 ID.Kind = ValID::t_Constant;
1917 return false;
1919 case lltok::kw_c: // c "foo"
1920 Lex.Lex();
1921 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
1922 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1923 ID.Kind = ValID::t_Constant;
1924 return false;
1926 case lltok::kw_asm: {
1927 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1928 bool HasSideEffect;
1929 Lex.Lex();
1930 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1931 ParseStringConstant(ID.StrVal) ||
1932 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1933 ParseToken(lltok::StringConstant, "expected constraint string"))
1934 return true;
1935 ID.StrVal2 = Lex.getStrVal();
1936 ID.UIntVal = HasSideEffect;
1937 ID.Kind = ValID::t_InlineAsm;
1938 return false;
1941 case lltok::kw_trunc:
1942 case lltok::kw_zext:
1943 case lltok::kw_sext:
1944 case lltok::kw_fptrunc:
1945 case lltok::kw_fpext:
1946 case lltok::kw_bitcast:
1947 case lltok::kw_uitofp:
1948 case lltok::kw_sitofp:
1949 case lltok::kw_fptoui:
1950 case lltok::kw_fptosi:
1951 case lltok::kw_inttoptr:
1952 case lltok::kw_ptrtoint: {
1953 unsigned Opc = Lex.getUIntVal();
1954 PATypeHolder DestTy(Type::getVoidTy(Context));
1955 Constant *SrcVal;
1956 Lex.Lex();
1957 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1958 ParseGlobalTypeAndValue(SrcVal) ||
1959 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1960 ParseType(DestTy) ||
1961 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1962 return true;
1963 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1964 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1965 SrcVal->getType()->getDescription() + "' to '" +
1966 DestTy->getDescription() + "'");
1967 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
1968 SrcVal, DestTy);
1969 ID.Kind = ValID::t_Constant;
1970 return false;
1972 case lltok::kw_extractvalue: {
1973 Lex.Lex();
1974 Constant *Val;
1975 SmallVector<unsigned, 4> Indices;
1976 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1977 ParseGlobalTypeAndValue(Val) ||
1978 ParseIndexList(Indices) ||
1979 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1980 return true;
1981 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1982 return Error(ID.Loc, "extractvalue operand must be array or struct");
1983 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1984 Indices.end()))
1985 return Error(ID.Loc, "invalid indices for extractvalue");
1986 ID.ConstantVal =
1987 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1988 ID.Kind = ValID::t_Constant;
1989 return false;
1991 case lltok::kw_insertvalue: {
1992 Lex.Lex();
1993 Constant *Val0, *Val1;
1994 SmallVector<unsigned, 4> Indices;
1995 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1996 ParseGlobalTypeAndValue(Val0) ||
1997 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1998 ParseGlobalTypeAndValue(Val1) ||
1999 ParseIndexList(Indices) ||
2000 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2001 return true;
2002 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2003 return Error(ID.Loc, "extractvalue operand must be array or struct");
2004 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2005 Indices.end()))
2006 return Error(ID.Loc, "invalid indices for insertvalue");
2007 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2008 Indices.data(), Indices.size());
2009 ID.Kind = ValID::t_Constant;
2010 return false;
2012 case lltok::kw_icmp:
2013 case lltok::kw_fcmp: {
2014 unsigned PredVal, Opc = Lex.getUIntVal();
2015 Constant *Val0, *Val1;
2016 Lex.Lex();
2017 if (ParseCmpPredicate(PredVal, Opc) ||
2018 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2019 ParseGlobalTypeAndValue(Val0) ||
2020 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2021 ParseGlobalTypeAndValue(Val1) ||
2022 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2023 return true;
2025 if (Val0->getType() != Val1->getType())
2026 return Error(ID.Loc, "compare operands must have the same type");
2028 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2030 if (Opc == Instruction::FCmp) {
2031 if (!Val0->getType()->isFPOrFPVector())
2032 return Error(ID.Loc, "fcmp requires floating point operands");
2033 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2034 } else {
2035 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2036 if (!Val0->getType()->isIntOrIntVector() &&
2037 !isa<PointerType>(Val0->getType()))
2038 return Error(ID.Loc, "icmp requires pointer or integer operands");
2039 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2041 ID.Kind = ValID::t_Constant;
2042 return false;
2045 // Binary Operators.
2046 case lltok::kw_add:
2047 case lltok::kw_fadd:
2048 case lltok::kw_sub:
2049 case lltok::kw_fsub:
2050 case lltok::kw_mul:
2051 case lltok::kw_fmul:
2052 case lltok::kw_udiv:
2053 case lltok::kw_sdiv:
2054 case lltok::kw_fdiv:
2055 case lltok::kw_urem:
2056 case lltok::kw_srem:
2057 case lltok::kw_frem: {
2058 bool NUW = false;
2059 bool NSW = false;
2060 bool Exact = false;
2061 unsigned Opc = Lex.getUIntVal();
2062 Constant *Val0, *Val1;
2063 Lex.Lex();
2064 LocTy ModifierLoc = Lex.getLoc();
2065 if (Opc == Instruction::Add ||
2066 Opc == Instruction::Sub ||
2067 Opc == Instruction::Mul) {
2068 if (EatIfPresent(lltok::kw_nuw))
2069 NUW = true;
2070 if (EatIfPresent(lltok::kw_nsw)) {
2071 NSW = true;
2072 if (EatIfPresent(lltok::kw_nuw))
2073 NUW = true;
2075 } else if (Opc == Instruction::SDiv) {
2076 if (EatIfPresent(lltok::kw_exact))
2077 Exact = true;
2079 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2080 ParseGlobalTypeAndValue(Val0) ||
2081 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2082 ParseGlobalTypeAndValue(Val1) ||
2083 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2084 return true;
2085 if (Val0->getType() != Val1->getType())
2086 return Error(ID.Loc, "operands of constexpr must have same type");
2087 if (!Val0->getType()->isIntOrIntVector()) {
2088 if (NUW)
2089 return Error(ModifierLoc, "nuw only applies to integer operations");
2090 if (NSW)
2091 return Error(ModifierLoc, "nsw only applies to integer operations");
2093 // API compatibility: Accept either integer or floating-point types with
2094 // add, sub, and mul.
2095 if (!Val0->getType()->isIntOrIntVector() &&
2096 !Val0->getType()->isFPOrFPVector())
2097 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2098 Constant *C = ConstantExpr::get(Opc, Val0, Val1);
2099 if (NUW)
2100 cast<OverflowingBinaryOperator>(C)->setHasNoUnsignedWrap(true);
2101 if (NSW)
2102 cast<OverflowingBinaryOperator>(C)->setHasNoSignedWrap(true);
2103 if (Exact)
2104 cast<SDivOperator>(C)->setIsExact(true);
2105 ID.ConstantVal = C;
2106 ID.Kind = ValID::t_Constant;
2107 return false;
2110 // Logical Operations
2111 case lltok::kw_shl:
2112 case lltok::kw_lshr:
2113 case lltok::kw_ashr:
2114 case lltok::kw_and:
2115 case lltok::kw_or:
2116 case lltok::kw_xor: {
2117 unsigned Opc = Lex.getUIntVal();
2118 Constant *Val0, *Val1;
2119 Lex.Lex();
2120 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2121 ParseGlobalTypeAndValue(Val0) ||
2122 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2123 ParseGlobalTypeAndValue(Val1) ||
2124 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2125 return true;
2126 if (Val0->getType() != Val1->getType())
2127 return Error(ID.Loc, "operands of constexpr must have same type");
2128 if (!Val0->getType()->isIntOrIntVector())
2129 return Error(ID.Loc,
2130 "constexpr requires integer or integer vector operands");
2131 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2132 ID.Kind = ValID::t_Constant;
2133 return false;
2136 case lltok::kw_getelementptr:
2137 case lltok::kw_shufflevector:
2138 case lltok::kw_insertelement:
2139 case lltok::kw_extractelement:
2140 case lltok::kw_select: {
2141 unsigned Opc = Lex.getUIntVal();
2142 SmallVector<Constant*, 16> Elts;
2143 bool InBounds = false;
2144 Lex.Lex();
2145 if (Opc == Instruction::GetElementPtr)
2146 InBounds = EatIfPresent(lltok::kw_inbounds);
2147 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2148 ParseGlobalValueVector(Elts) ||
2149 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2150 return true;
2152 if (Opc == Instruction::GetElementPtr) {
2153 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2154 return Error(ID.Loc, "getelementptr requires pointer operand");
2156 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2157 (Value**)(Elts.data() + 1),
2158 Elts.size() - 1))
2159 return Error(ID.Loc, "invalid indices for getelementptr");
2160 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
2161 Elts.data() + 1, Elts.size() - 1);
2162 if (InBounds)
2163 cast<GEPOperator>(ID.ConstantVal)->setIsInBounds(true);
2164 } else if (Opc == Instruction::Select) {
2165 if (Elts.size() != 3)
2166 return Error(ID.Loc, "expected three operands to select");
2167 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2168 Elts[2]))
2169 return Error(ID.Loc, Reason);
2170 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2171 } else if (Opc == Instruction::ShuffleVector) {
2172 if (Elts.size() != 3)
2173 return Error(ID.Loc, "expected three operands to shufflevector");
2174 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2175 return Error(ID.Loc, "invalid operands to shufflevector");
2176 ID.ConstantVal =
2177 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2178 } else if (Opc == Instruction::ExtractElement) {
2179 if (Elts.size() != 2)
2180 return Error(ID.Loc, "expected two operands to extractelement");
2181 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2182 return Error(ID.Loc, "invalid extractelement operands");
2183 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2184 } else {
2185 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2186 if (Elts.size() != 3)
2187 return Error(ID.Loc, "expected three operands to insertelement");
2188 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2189 return Error(ID.Loc, "invalid insertelement operands");
2190 ID.ConstantVal =
2191 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2194 ID.Kind = ValID::t_Constant;
2195 return false;
2199 Lex.Lex();
2200 return false;
2203 /// ParseGlobalValue - Parse a global value with the specified type.
2204 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2205 V = 0;
2206 ValID ID;
2207 return ParseValID(ID) ||
2208 ConvertGlobalValIDToValue(Ty, ID, V);
2211 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2212 /// constant.
2213 bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2214 Constant *&V) {
2215 if (isa<FunctionType>(Ty))
2216 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2218 switch (ID.Kind) {
2219 default: llvm_unreachable("Unknown ValID!");
2220 case ValID::t_Metadata:
2221 return Error(ID.Loc, "invalid use of metadata");
2222 case ValID::t_LocalID:
2223 case ValID::t_LocalName:
2224 return Error(ID.Loc, "invalid use of function-local name");
2225 case ValID::t_InlineAsm:
2226 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2227 case ValID::t_GlobalName:
2228 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2229 return V == 0;
2230 case ValID::t_GlobalID:
2231 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2232 return V == 0;
2233 case ValID::t_APSInt:
2234 if (!isa<IntegerType>(Ty))
2235 return Error(ID.Loc, "integer constant must have integer type");
2236 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2237 V = ConstantInt::get(Context, ID.APSIntVal);
2238 return false;
2239 case ValID::t_APFloat:
2240 if (!Ty->isFloatingPoint() ||
2241 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2242 return Error(ID.Loc, "floating point constant invalid for type");
2244 // The lexer has no type info, so builds all float and double FP constants
2245 // as double. Fix this here. Long double does not need this.
2246 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2247 Ty == Type::getFloatTy(Context)) {
2248 bool Ignored;
2249 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2250 &Ignored);
2252 V = ConstantFP::get(Context, ID.APFloatVal);
2254 if (V->getType() != Ty)
2255 return Error(ID.Loc, "floating point constant does not have type '" +
2256 Ty->getDescription() + "'");
2258 return false;
2259 case ValID::t_Null:
2260 if (!isa<PointerType>(Ty))
2261 return Error(ID.Loc, "null must be a pointer type");
2262 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2263 return false;
2264 case ValID::t_Undef:
2265 // FIXME: LabelTy should not be a first-class type.
2266 if ((!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context)) &&
2267 !isa<OpaqueType>(Ty))
2268 return Error(ID.Loc, "invalid type for undef constant");
2269 V = UndefValue::get(Ty);
2270 return false;
2271 case ValID::t_EmptyArray:
2272 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2273 return Error(ID.Loc, "invalid empty array initializer");
2274 V = UndefValue::get(Ty);
2275 return false;
2276 case ValID::t_Zero:
2277 // FIXME: LabelTy should not be a first-class type.
2278 if (!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context))
2279 return Error(ID.Loc, "invalid type for null constant");
2280 V = Constant::getNullValue(Ty);
2281 return false;
2282 case ValID::t_Constant:
2283 if (ID.ConstantVal->getType() != Ty)
2284 return Error(ID.Loc, "constant expression type mismatch");
2285 V = ID.ConstantVal;
2286 return false;
2290 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2291 PATypeHolder Type(Type::getVoidTy(Context));
2292 return ParseType(Type) ||
2293 ParseGlobalValue(Type, V);
2296 /// ParseGlobalValueVector
2297 /// ::= /*empty*/
2298 /// ::= TypeAndValue (',' TypeAndValue)*
2299 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2300 // Empty list.
2301 if (Lex.getKind() == lltok::rbrace ||
2302 Lex.getKind() == lltok::rsquare ||
2303 Lex.getKind() == lltok::greater ||
2304 Lex.getKind() == lltok::rparen)
2305 return false;
2307 Constant *C;
2308 if (ParseGlobalTypeAndValue(C)) return true;
2309 Elts.push_back(C);
2311 while (EatIfPresent(lltok::comma)) {
2312 if (ParseGlobalTypeAndValue(C)) return true;
2313 Elts.push_back(C);
2316 return false;
2320 //===----------------------------------------------------------------------===//
2321 // Function Parsing.
2322 //===----------------------------------------------------------------------===//
2324 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2325 PerFunctionState &PFS) {
2326 if (ID.Kind == ValID::t_LocalID)
2327 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2328 else if (ID.Kind == ValID::t_LocalName)
2329 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2330 else if (ID.Kind == ValID::t_InlineAsm) {
2331 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2332 const FunctionType *FTy =
2333 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2334 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2335 return Error(ID.Loc, "invalid type for inline asm constraint string");
2336 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2337 return false;
2338 } else if (ID.Kind == ValID::t_Metadata) {
2339 V = ID.MetadataVal;
2340 } else {
2341 Constant *C;
2342 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2343 V = C;
2344 return false;
2347 return V == 0;
2350 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2351 V = 0;
2352 ValID ID;
2353 return ParseValID(ID) ||
2354 ConvertValIDToValue(Ty, ID, V, PFS);
2357 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2358 PATypeHolder T(Type::getVoidTy(Context));
2359 return ParseType(T) ||
2360 ParseValue(T, V, PFS);
2363 /// FunctionHeader
2364 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2365 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2366 /// OptionalAlign OptGC
2367 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2368 // Parse the linkage.
2369 LocTy LinkageLoc = Lex.getLoc();
2370 unsigned Linkage;
2372 unsigned Visibility, RetAttrs;
2373 CallingConv::ID CC;
2374 PATypeHolder RetType(Type::getVoidTy(Context));
2375 LocTy RetTypeLoc = Lex.getLoc();
2376 if (ParseOptionalLinkage(Linkage) ||
2377 ParseOptionalVisibility(Visibility) ||
2378 ParseOptionalCallingConv(CC) ||
2379 ParseOptionalAttrs(RetAttrs, 1) ||
2380 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2381 return true;
2383 // Verify that the linkage is ok.
2384 switch ((GlobalValue::LinkageTypes)Linkage) {
2385 case GlobalValue::ExternalLinkage:
2386 break; // always ok.
2387 case GlobalValue::DLLImportLinkage:
2388 case GlobalValue::ExternalWeakLinkage:
2389 if (isDefine)
2390 return Error(LinkageLoc, "invalid linkage for function definition");
2391 break;
2392 case GlobalValue::PrivateLinkage:
2393 case GlobalValue::LinkerPrivateLinkage:
2394 case GlobalValue::InternalLinkage:
2395 case GlobalValue::AvailableExternallyLinkage:
2396 case GlobalValue::LinkOnceAnyLinkage:
2397 case GlobalValue::LinkOnceODRLinkage:
2398 case GlobalValue::WeakAnyLinkage:
2399 case GlobalValue::WeakODRLinkage:
2400 case GlobalValue::DLLExportLinkage:
2401 if (!isDefine)
2402 return Error(LinkageLoc, "invalid linkage for function declaration");
2403 break;
2404 case GlobalValue::AppendingLinkage:
2405 case GlobalValue::GhostLinkage:
2406 case GlobalValue::CommonLinkage:
2407 return Error(LinkageLoc, "invalid function linkage type");
2410 if (!FunctionType::isValidReturnType(RetType) ||
2411 isa<OpaqueType>(RetType))
2412 return Error(RetTypeLoc, "invalid function return type");
2414 LocTy NameLoc = Lex.getLoc();
2416 std::string FunctionName;
2417 if (Lex.getKind() == lltok::GlobalVar) {
2418 FunctionName = Lex.getStrVal();
2419 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2420 unsigned NameID = Lex.getUIntVal();
2422 if (NameID != NumberedVals.size())
2423 return TokError("function expected to be numbered '%" +
2424 utostr(NumberedVals.size()) + "'");
2425 } else {
2426 return TokError("expected function name");
2429 Lex.Lex();
2431 if (Lex.getKind() != lltok::lparen)
2432 return TokError("expected '(' in function argument list");
2434 std::vector<ArgInfo> ArgList;
2435 bool isVarArg;
2436 unsigned FuncAttrs;
2437 std::string Section;
2438 unsigned Alignment;
2439 std::string GC;
2441 if (ParseArgumentList(ArgList, isVarArg, false) ||
2442 ParseOptionalAttrs(FuncAttrs, 2) ||
2443 (EatIfPresent(lltok::kw_section) &&
2444 ParseStringConstant(Section)) ||
2445 ParseOptionalAlignment(Alignment) ||
2446 (EatIfPresent(lltok::kw_gc) &&
2447 ParseStringConstant(GC)))
2448 return true;
2450 // If the alignment was parsed as an attribute, move to the alignment field.
2451 if (FuncAttrs & Attribute::Alignment) {
2452 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2453 FuncAttrs &= ~Attribute::Alignment;
2456 // Okay, if we got here, the function is syntactically valid. Convert types
2457 // and do semantic checks.
2458 std::vector<const Type*> ParamTypeList;
2459 SmallVector<AttributeWithIndex, 8> Attrs;
2460 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2461 // attributes.
2462 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2463 if (FuncAttrs & ObsoleteFuncAttrs) {
2464 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2465 FuncAttrs &= ~ObsoleteFuncAttrs;
2468 if (RetAttrs != Attribute::None)
2469 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2471 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2472 ParamTypeList.push_back(ArgList[i].Type);
2473 if (ArgList[i].Attrs != Attribute::None)
2474 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2477 if (FuncAttrs != Attribute::None)
2478 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2480 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2482 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2483 RetType != Type::getVoidTy(Context))
2484 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2486 const FunctionType *FT =
2487 FunctionType::get(RetType, ParamTypeList, isVarArg);
2488 const PointerType *PFT = PointerType::getUnqual(FT);
2490 Fn = 0;
2491 if (!FunctionName.empty()) {
2492 // If this was a definition of a forward reference, remove the definition
2493 // from the forward reference table and fill in the forward ref.
2494 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2495 ForwardRefVals.find(FunctionName);
2496 if (FRVI != ForwardRefVals.end()) {
2497 Fn = M->getFunction(FunctionName);
2498 ForwardRefVals.erase(FRVI);
2499 } else if ((Fn = M->getFunction(FunctionName))) {
2500 // If this function already exists in the symbol table, then it is
2501 // multiply defined. We accept a few cases for old backwards compat.
2502 // FIXME: Remove this stuff for LLVM 3.0.
2503 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2504 (!Fn->isDeclaration() && isDefine)) {
2505 // If the redefinition has different type or different attributes,
2506 // reject it. If both have bodies, reject it.
2507 return Error(NameLoc, "invalid redefinition of function '" +
2508 FunctionName + "'");
2509 } else if (Fn->isDeclaration()) {
2510 // Make sure to strip off any argument names so we can't get conflicts.
2511 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2512 AI != AE; ++AI)
2513 AI->setName("");
2517 } else {
2518 // If this is a definition of a forward referenced function, make sure the
2519 // types agree.
2520 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2521 = ForwardRefValIDs.find(NumberedVals.size());
2522 if (I != ForwardRefValIDs.end()) {
2523 Fn = cast<Function>(I->second.first);
2524 if (Fn->getType() != PFT)
2525 return Error(NameLoc, "type of definition and forward reference of '@" +
2526 utostr(NumberedVals.size()) +"' disagree");
2527 ForwardRefValIDs.erase(I);
2531 if (Fn == 0)
2532 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2533 else // Move the forward-reference to the correct spot in the module.
2534 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2536 if (FunctionName.empty())
2537 NumberedVals.push_back(Fn);
2539 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2540 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2541 Fn->setCallingConv(CC);
2542 Fn->setAttributes(PAL);
2543 Fn->setAlignment(Alignment);
2544 Fn->setSection(Section);
2545 if (!GC.empty()) Fn->setGC(GC.c_str());
2547 // Add all of the arguments we parsed to the function.
2548 Function::arg_iterator ArgIt = Fn->arg_begin();
2549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2550 // If the argument has a name, insert it into the argument symbol table.
2551 if (ArgList[i].Name.empty()) continue;
2553 // Set the name, if it conflicted, it will be auto-renamed.
2554 ArgIt->setName(ArgList[i].Name);
2556 if (ArgIt->getNameStr() != ArgList[i].Name)
2557 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2558 ArgList[i].Name + "'");
2561 return false;
2565 /// ParseFunctionBody
2566 /// ::= '{' BasicBlock+ '}'
2567 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2569 bool LLParser::ParseFunctionBody(Function &Fn) {
2570 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2571 return TokError("expected '{' in function body");
2572 Lex.Lex(); // eat the {.
2574 PerFunctionState PFS(*this, Fn);
2576 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2577 if (ParseBasicBlock(PFS)) return true;
2579 // Eat the }.
2580 Lex.Lex();
2582 // Verify function is ok.
2583 return PFS.VerifyFunctionComplete();
2586 /// ParseBasicBlock
2587 /// ::= LabelStr? Instruction*
2588 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2589 // If this basic block starts out with a name, remember it.
2590 std::string Name;
2591 LocTy NameLoc = Lex.getLoc();
2592 if (Lex.getKind() == lltok::LabelStr) {
2593 Name = Lex.getStrVal();
2594 Lex.Lex();
2597 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2598 if (BB == 0) return true;
2600 std::string NameStr;
2602 // Parse the instructions in this block until we get a terminator.
2603 Instruction *Inst;
2604 do {
2605 // This instruction may have three possibilities for a name: a) none
2606 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2607 LocTy NameLoc = Lex.getLoc();
2608 int NameID = -1;
2609 NameStr = "";
2611 if (Lex.getKind() == lltok::LocalVarID) {
2612 NameID = Lex.getUIntVal();
2613 Lex.Lex();
2614 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2615 return true;
2616 } else if (Lex.getKind() == lltok::LocalVar ||
2617 // FIXME: REMOVE IN LLVM 3.0
2618 Lex.getKind() == lltok::StringConstant) {
2619 NameStr = Lex.getStrVal();
2620 Lex.Lex();
2621 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2622 return true;
2625 if (ParseInstruction(Inst, BB, PFS)) return true;
2627 BB->getInstList().push_back(Inst);
2629 // Set the name on the instruction.
2630 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2631 } while (!isa<TerminatorInst>(Inst));
2633 return false;
2636 //===----------------------------------------------------------------------===//
2637 // Instruction Parsing.
2638 //===----------------------------------------------------------------------===//
2640 /// ParseInstruction - Parse one of the many different instructions.
2642 bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2643 PerFunctionState &PFS) {
2644 lltok::Kind Token = Lex.getKind();
2645 if (Token == lltok::Eof)
2646 return TokError("found end of file when expecting more instructions");
2647 LocTy Loc = Lex.getLoc();
2648 unsigned KeywordVal = Lex.getUIntVal();
2649 Lex.Lex(); // Eat the keyword.
2651 switch (Token) {
2652 default: return Error(Loc, "expected instruction opcode");
2653 // Terminator Instructions.
2654 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false;
2655 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2656 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2657 case lltok::kw_br: return ParseBr(Inst, PFS);
2658 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2659 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2660 // Binary Operators.
2661 case lltok::kw_add:
2662 case lltok::kw_sub:
2663 case lltok::kw_mul: {
2664 bool NUW = false;
2665 bool NSW = false;
2666 LocTy ModifierLoc = Lex.getLoc();
2667 if (EatIfPresent(lltok::kw_nuw))
2668 NUW = true;
2669 if (EatIfPresent(lltok::kw_nsw)) {
2670 NSW = true;
2671 if (EatIfPresent(lltok::kw_nuw))
2672 NUW = true;
2674 // API compatibility: Accept either integer or floating-point types.
2675 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2676 if (!Result) {
2677 if (!Inst->getType()->isIntOrIntVector()) {
2678 if (NUW)
2679 return Error(ModifierLoc, "nuw only applies to integer operations");
2680 if (NSW)
2681 return Error(ModifierLoc, "nsw only applies to integer operations");
2683 if (NUW)
2684 cast<OverflowingBinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2685 if (NSW)
2686 cast<OverflowingBinaryOperator>(Inst)->setHasNoSignedWrap(true);
2688 return Result;
2690 case lltok::kw_fadd:
2691 case lltok::kw_fsub:
2692 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2694 case lltok::kw_sdiv: {
2695 bool Exact = false;
2696 if (EatIfPresent(lltok::kw_exact))
2697 Exact = true;
2698 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2699 if (!Result)
2700 if (Exact)
2701 cast<SDivOperator>(Inst)->setIsExact(true);
2702 return Result;
2705 case lltok::kw_udiv:
2706 case lltok::kw_urem:
2707 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2708 case lltok::kw_fdiv:
2709 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2710 case lltok::kw_shl:
2711 case lltok::kw_lshr:
2712 case lltok::kw_ashr:
2713 case lltok::kw_and:
2714 case lltok::kw_or:
2715 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2716 case lltok::kw_icmp:
2717 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
2718 // Casts.
2719 case lltok::kw_trunc:
2720 case lltok::kw_zext:
2721 case lltok::kw_sext:
2722 case lltok::kw_fptrunc:
2723 case lltok::kw_fpext:
2724 case lltok::kw_bitcast:
2725 case lltok::kw_uitofp:
2726 case lltok::kw_sitofp:
2727 case lltok::kw_fptoui:
2728 case lltok::kw_fptosi:
2729 case lltok::kw_inttoptr:
2730 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2731 // Other.
2732 case lltok::kw_select: return ParseSelect(Inst, PFS);
2733 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2734 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2735 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2736 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2737 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2738 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2739 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2740 // Memory.
2741 case lltok::kw_alloca:
2742 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2743 case lltok::kw_free: return ParseFree(Inst, PFS);
2744 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2745 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2746 case lltok::kw_volatile:
2747 if (EatIfPresent(lltok::kw_load))
2748 return ParseLoad(Inst, PFS, true);
2749 else if (EatIfPresent(lltok::kw_store))
2750 return ParseStore(Inst, PFS, true);
2751 else
2752 return TokError("expected 'load' or 'store'");
2753 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2754 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2755 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2756 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2760 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2761 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2762 if (Opc == Instruction::FCmp) {
2763 switch (Lex.getKind()) {
2764 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2765 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2766 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2767 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2768 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2769 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2770 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2771 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2772 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2773 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2774 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2775 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2776 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2777 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2778 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2779 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2780 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2782 } else {
2783 switch (Lex.getKind()) {
2784 default: TokError("expected icmp predicate (e.g. 'eq')");
2785 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2786 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2787 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2788 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2789 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2790 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2791 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2792 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2793 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2794 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2797 Lex.Lex();
2798 return false;
2801 //===----------------------------------------------------------------------===//
2802 // Terminator Instructions.
2803 //===----------------------------------------------------------------------===//
2805 /// ParseRet - Parse a return instruction.
2806 /// ::= 'ret' void
2807 /// ::= 'ret' TypeAndValue
2808 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2809 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2810 PerFunctionState &PFS) {
2811 PATypeHolder Ty(Type::getVoidTy(Context));
2812 if (ParseType(Ty, true /*void allowed*/)) return true;
2814 if (Ty == Type::getVoidTy(Context)) {
2815 Inst = ReturnInst::Create(Context);
2816 return false;
2819 Value *RV;
2820 if (ParseValue(Ty, RV, PFS)) return true;
2822 // The normal case is one return value.
2823 if (Lex.getKind() == lltok::comma) {
2824 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2825 // of 'ret {i32,i32} {i32 1, i32 2}'
2826 SmallVector<Value*, 8> RVs;
2827 RVs.push_back(RV);
2829 while (EatIfPresent(lltok::comma)) {
2830 if (ParseTypeAndValue(RV, PFS)) return true;
2831 RVs.push_back(RV);
2834 RV = UndefValue::get(PFS.getFunction().getReturnType());
2835 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2836 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2837 BB->getInstList().push_back(I);
2838 RV = I;
2841 Inst = ReturnInst::Create(Context, RV);
2842 return false;
2846 /// ParseBr
2847 /// ::= 'br' TypeAndValue
2848 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2849 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2850 LocTy Loc, Loc2;
2851 Value *Op0, *Op1, *Op2;
2852 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2854 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2855 Inst = BranchInst::Create(BB);
2856 return false;
2859 if (Op0->getType() != Type::getInt1Ty(Context))
2860 return Error(Loc, "branch condition must have 'i1' type");
2862 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2863 ParseTypeAndValue(Op1, Loc, PFS) ||
2864 ParseToken(lltok::comma, "expected ',' after true destination") ||
2865 ParseTypeAndValue(Op2, Loc2, PFS))
2866 return true;
2868 if (!isa<BasicBlock>(Op1))
2869 return Error(Loc, "true destination of branch must be a basic block");
2870 if (!isa<BasicBlock>(Op2))
2871 return Error(Loc2, "true destination of branch must be a basic block");
2873 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2874 return false;
2877 /// ParseSwitch
2878 /// Instruction
2879 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2880 /// JumpTable
2881 /// ::= (TypeAndValue ',' TypeAndValue)*
2882 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2883 LocTy CondLoc, BBLoc;
2884 Value *Cond, *DefaultBB;
2885 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2886 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2887 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2888 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2889 return true;
2891 if (!isa<IntegerType>(Cond->getType()))
2892 return Error(CondLoc, "switch condition must have integer type");
2893 if (!isa<BasicBlock>(DefaultBB))
2894 return Error(BBLoc, "default destination must be a basic block");
2896 // Parse the jump table pairs.
2897 SmallPtrSet<Value*, 32> SeenCases;
2898 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2899 while (Lex.getKind() != lltok::rsquare) {
2900 Value *Constant, *DestBB;
2902 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2903 ParseToken(lltok::comma, "expected ',' after case value") ||
2904 ParseTypeAndValue(DestBB, BBLoc, PFS))
2905 return true;
2907 if (!SeenCases.insert(Constant))
2908 return Error(CondLoc, "duplicate case value in switch");
2909 if (!isa<ConstantInt>(Constant))
2910 return Error(CondLoc, "case value is not a constant integer");
2911 if (!isa<BasicBlock>(DestBB))
2912 return Error(BBLoc, "case destination is not a basic block");
2914 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2915 cast<BasicBlock>(DestBB)));
2918 Lex.Lex(); // Eat the ']'.
2920 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2921 Table.size());
2922 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2923 SI->addCase(Table[i].first, Table[i].second);
2924 Inst = SI;
2925 return false;
2928 /// ParseInvoke
2929 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2930 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2931 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2932 LocTy CallLoc = Lex.getLoc();
2933 unsigned RetAttrs, FnAttrs;
2934 CallingConv::ID CC;
2935 PATypeHolder RetType(Type::getVoidTy(Context));
2936 LocTy RetTypeLoc;
2937 ValID CalleeID;
2938 SmallVector<ParamInfo, 16> ArgList;
2940 Value *NormalBB, *UnwindBB;
2941 if (ParseOptionalCallingConv(CC) ||
2942 ParseOptionalAttrs(RetAttrs, 1) ||
2943 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2944 ParseValID(CalleeID) ||
2945 ParseParameterList(ArgList, PFS) ||
2946 ParseOptionalAttrs(FnAttrs, 2) ||
2947 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2948 ParseTypeAndValue(NormalBB, PFS) ||
2949 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2950 ParseTypeAndValue(UnwindBB, PFS))
2951 return true;
2953 if (!isa<BasicBlock>(NormalBB))
2954 return Error(CallLoc, "normal destination is not a basic block");
2955 if (!isa<BasicBlock>(UnwindBB))
2956 return Error(CallLoc, "unwind destination is not a basic block");
2958 // If RetType is a non-function pointer type, then this is the short syntax
2959 // for the call, which means that RetType is just the return type. Infer the
2960 // rest of the function argument types from the arguments that are present.
2961 const PointerType *PFTy = 0;
2962 const FunctionType *Ty = 0;
2963 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2964 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2965 // Pull out the types of all of the arguments...
2966 std::vector<const Type*> ParamTypes;
2967 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2968 ParamTypes.push_back(ArgList[i].V->getType());
2970 if (!FunctionType::isValidReturnType(RetType))
2971 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2973 Ty = FunctionType::get(RetType, ParamTypes, false);
2974 PFTy = PointerType::getUnqual(Ty);
2977 // Look up the callee.
2978 Value *Callee;
2979 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2981 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2982 // function attributes.
2983 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2984 if (FnAttrs & ObsoleteFuncAttrs) {
2985 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2986 FnAttrs &= ~ObsoleteFuncAttrs;
2989 // Set up the Attributes for the function.
2990 SmallVector<AttributeWithIndex, 8> Attrs;
2991 if (RetAttrs != Attribute::None)
2992 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2994 SmallVector<Value*, 8> Args;
2996 // Loop through FunctionType's arguments and ensure they are specified
2997 // correctly. Also, gather any parameter attributes.
2998 FunctionType::param_iterator I = Ty->param_begin();
2999 FunctionType::param_iterator E = Ty->param_end();
3000 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3001 const Type *ExpectedTy = 0;
3002 if (I != E) {
3003 ExpectedTy = *I++;
3004 } else if (!Ty->isVarArg()) {
3005 return Error(ArgList[i].Loc, "too many arguments specified");
3008 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3009 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3010 ExpectedTy->getDescription() + "'");
3011 Args.push_back(ArgList[i].V);
3012 if (ArgList[i].Attrs != Attribute::None)
3013 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3016 if (I != E)
3017 return Error(CallLoc, "not enough parameters specified for call");
3019 if (FnAttrs != Attribute::None)
3020 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3022 // Finish off the Attributes and check them
3023 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3025 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
3026 cast<BasicBlock>(UnwindBB),
3027 Args.begin(), Args.end());
3028 II->setCallingConv(CC);
3029 II->setAttributes(PAL);
3030 Inst = II;
3031 return false;
3036 //===----------------------------------------------------------------------===//
3037 // Binary Operators.
3038 //===----------------------------------------------------------------------===//
3040 /// ParseArithmetic
3041 /// ::= ArithmeticOps TypeAndValue ',' Value
3043 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3044 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3045 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3046 unsigned Opc, unsigned OperandType) {
3047 LocTy Loc; Value *LHS, *RHS;
3048 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3049 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3050 ParseValue(LHS->getType(), RHS, PFS))
3051 return true;
3053 bool Valid;
3054 switch (OperandType) {
3055 default: llvm_unreachable("Unknown operand type!");
3056 case 0: // int or FP.
3057 Valid = LHS->getType()->isIntOrIntVector() ||
3058 LHS->getType()->isFPOrFPVector();
3059 break;
3060 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3061 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3064 if (!Valid)
3065 return Error(Loc, "invalid operand type for instruction");
3067 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3068 return false;
3071 /// ParseLogical
3072 /// ::= ArithmeticOps TypeAndValue ',' Value {
3073 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3074 unsigned Opc) {
3075 LocTy Loc; Value *LHS, *RHS;
3076 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3077 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3078 ParseValue(LHS->getType(), RHS, PFS))
3079 return true;
3081 if (!LHS->getType()->isIntOrIntVector())
3082 return Error(Loc,"instruction requires integer or integer vector operands");
3084 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3085 return false;
3089 /// ParseCompare
3090 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3091 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3092 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3093 unsigned Opc) {
3094 // Parse the integer/fp comparison predicate.
3095 LocTy Loc;
3096 unsigned Pred;
3097 Value *LHS, *RHS;
3098 if (ParseCmpPredicate(Pred, Opc) ||
3099 ParseTypeAndValue(LHS, Loc, PFS) ||
3100 ParseToken(lltok::comma, "expected ',' after compare value") ||
3101 ParseValue(LHS->getType(), RHS, PFS))
3102 return true;
3104 if (Opc == Instruction::FCmp) {
3105 if (!LHS->getType()->isFPOrFPVector())
3106 return Error(Loc, "fcmp requires floating point operands");
3107 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3108 } else {
3109 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3110 if (!LHS->getType()->isIntOrIntVector() &&
3111 !isa<PointerType>(LHS->getType()))
3112 return Error(Loc, "icmp requires integer operands");
3113 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3115 return false;
3118 //===----------------------------------------------------------------------===//
3119 // Other Instructions.
3120 //===----------------------------------------------------------------------===//
3123 /// ParseCast
3124 /// ::= CastOpc TypeAndValue 'to' Type
3125 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3126 unsigned Opc) {
3127 LocTy Loc; Value *Op;
3128 PATypeHolder DestTy(Type::getVoidTy(Context));
3129 if (ParseTypeAndValue(Op, Loc, PFS) ||
3130 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3131 ParseType(DestTy))
3132 return true;
3134 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3135 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3136 return Error(Loc, "invalid cast opcode for cast from '" +
3137 Op->getType()->getDescription() + "' to '" +
3138 DestTy->getDescription() + "'");
3140 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3141 return false;
3144 /// ParseSelect
3145 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3146 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3147 LocTy Loc;
3148 Value *Op0, *Op1, *Op2;
3149 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3150 ParseToken(lltok::comma, "expected ',' after select condition") ||
3151 ParseTypeAndValue(Op1, PFS) ||
3152 ParseToken(lltok::comma, "expected ',' after select value") ||
3153 ParseTypeAndValue(Op2, PFS))
3154 return true;
3156 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3157 return Error(Loc, Reason);
3159 Inst = SelectInst::Create(Op0, Op1, Op2);
3160 return false;
3163 /// ParseVA_Arg
3164 /// ::= 'va_arg' TypeAndValue ',' Type
3165 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3166 Value *Op;
3167 PATypeHolder EltTy(Type::getVoidTy(Context));
3168 LocTy TypeLoc;
3169 if (ParseTypeAndValue(Op, PFS) ||
3170 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3171 ParseType(EltTy, TypeLoc))
3172 return true;
3174 if (!EltTy->isFirstClassType())
3175 return Error(TypeLoc, "va_arg requires operand with first class type");
3177 Inst = new VAArgInst(Op, EltTy);
3178 return false;
3181 /// ParseExtractElement
3182 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3183 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3184 LocTy Loc;
3185 Value *Op0, *Op1;
3186 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3187 ParseToken(lltok::comma, "expected ',' after extract value") ||
3188 ParseTypeAndValue(Op1, PFS))
3189 return true;
3191 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3192 return Error(Loc, "invalid extractelement operands");
3194 Inst = ExtractElementInst::Create(Op0, Op1);
3195 return false;
3198 /// ParseInsertElement
3199 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3200 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3201 LocTy Loc;
3202 Value *Op0, *Op1, *Op2;
3203 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3204 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3205 ParseTypeAndValue(Op1, PFS) ||
3206 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3207 ParseTypeAndValue(Op2, PFS))
3208 return true;
3210 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3211 return Error(Loc, "invalid insertelement operands");
3213 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3214 return false;
3217 /// ParseShuffleVector
3218 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3219 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3220 LocTy Loc;
3221 Value *Op0, *Op1, *Op2;
3222 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3223 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3224 ParseTypeAndValue(Op1, PFS) ||
3225 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3226 ParseTypeAndValue(Op2, PFS))
3227 return true;
3229 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3230 return Error(Loc, "invalid extractelement operands");
3232 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3233 return false;
3236 /// ParsePHI
3237 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3238 bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3239 PATypeHolder Ty(Type::getVoidTy(Context));
3240 Value *Op0, *Op1;
3241 LocTy TypeLoc = Lex.getLoc();
3243 if (ParseType(Ty) ||
3244 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3245 ParseValue(Ty, Op0, PFS) ||
3246 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3247 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3248 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3249 return true;
3251 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3252 while (1) {
3253 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3255 if (!EatIfPresent(lltok::comma))
3256 break;
3258 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3259 ParseValue(Ty, Op0, PFS) ||
3260 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3261 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3262 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3263 return true;
3266 if (!Ty->isFirstClassType())
3267 return Error(TypeLoc, "phi node must have first class type");
3269 PHINode *PN = PHINode::Create(Ty);
3270 PN->reserveOperandSpace(PHIVals.size());
3271 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3272 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3273 Inst = PN;
3274 return false;
3277 /// ParseCall
3278 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3279 /// ParameterList OptionalAttrs
3280 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3281 bool isTail) {
3282 unsigned RetAttrs, FnAttrs;
3283 CallingConv::ID CC;
3284 PATypeHolder RetType(Type::getVoidTy(Context));
3285 LocTy RetTypeLoc;
3286 ValID CalleeID;
3287 SmallVector<ParamInfo, 16> ArgList;
3288 LocTy CallLoc = Lex.getLoc();
3290 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3291 ParseOptionalCallingConv(CC) ||
3292 ParseOptionalAttrs(RetAttrs, 1) ||
3293 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3294 ParseValID(CalleeID) ||
3295 ParseParameterList(ArgList, PFS) ||
3296 ParseOptionalAttrs(FnAttrs, 2))
3297 return true;
3299 // If RetType is a non-function pointer type, then this is the short syntax
3300 // for the call, which means that RetType is just the return type. Infer the
3301 // rest of the function argument types from the arguments that are present.
3302 const PointerType *PFTy = 0;
3303 const FunctionType *Ty = 0;
3304 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3305 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3306 // Pull out the types of all of the arguments...
3307 std::vector<const Type*> ParamTypes;
3308 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3309 ParamTypes.push_back(ArgList[i].V->getType());
3311 if (!FunctionType::isValidReturnType(RetType))
3312 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3314 Ty = FunctionType::get(RetType, ParamTypes, false);
3315 PFTy = PointerType::getUnqual(Ty);
3318 // Look up the callee.
3319 Value *Callee;
3320 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3322 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3323 // function attributes.
3324 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3325 if (FnAttrs & ObsoleteFuncAttrs) {
3326 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3327 FnAttrs &= ~ObsoleteFuncAttrs;
3330 // Set up the Attributes for the function.
3331 SmallVector<AttributeWithIndex, 8> Attrs;
3332 if (RetAttrs != Attribute::None)
3333 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3335 SmallVector<Value*, 8> Args;
3337 // Loop through FunctionType's arguments and ensure they are specified
3338 // correctly. Also, gather any parameter attributes.
3339 FunctionType::param_iterator I = Ty->param_begin();
3340 FunctionType::param_iterator E = Ty->param_end();
3341 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3342 const Type *ExpectedTy = 0;
3343 if (I != E) {
3344 ExpectedTy = *I++;
3345 } else if (!Ty->isVarArg()) {
3346 return Error(ArgList[i].Loc, "too many arguments specified");
3349 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3350 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3351 ExpectedTy->getDescription() + "'");
3352 Args.push_back(ArgList[i].V);
3353 if (ArgList[i].Attrs != Attribute::None)
3354 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3357 if (I != E)
3358 return Error(CallLoc, "not enough parameters specified for call");
3360 if (FnAttrs != Attribute::None)
3361 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3363 // Finish off the Attributes and check them
3364 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3366 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3367 CI->setTailCall(isTail);
3368 CI->setCallingConv(CC);
3369 CI->setAttributes(PAL);
3370 Inst = CI;
3371 return false;
3374 //===----------------------------------------------------------------------===//
3375 // Memory Instructions.
3376 //===----------------------------------------------------------------------===//
3378 /// ParseAlloc
3379 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3380 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3381 bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3382 unsigned Opc) {
3383 PATypeHolder Ty(Type::getVoidTy(Context));
3384 Value *Size = 0;
3385 LocTy SizeLoc;
3386 unsigned Alignment = 0;
3387 if (ParseType(Ty)) return true;
3389 if (EatIfPresent(lltok::comma)) {
3390 if (Lex.getKind() == lltok::kw_align) {
3391 if (ParseOptionalAlignment(Alignment)) return true;
3392 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3393 ParseOptionalCommaAlignment(Alignment)) {
3394 return true;
3398 if (Size && Size->getType() != Type::getInt32Ty(Context))
3399 return Error(SizeLoc, "element count must be i32");
3401 if (Opc == Instruction::Malloc)
3402 Inst = new MallocInst(Ty, Size, Alignment);
3403 else
3404 Inst = new AllocaInst(Ty, Size, Alignment);
3405 return false;
3408 /// ParseFree
3409 /// ::= 'free' TypeAndValue
3410 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3411 Value *Val; LocTy Loc;
3412 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3413 if (!isa<PointerType>(Val->getType()))
3414 return Error(Loc, "operand to free must be a pointer");
3415 Inst = new FreeInst(Val);
3416 return false;
3419 /// ParseLoad
3420 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3421 bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3422 bool isVolatile) {
3423 Value *Val; LocTy Loc;
3424 unsigned Alignment;
3425 if (ParseTypeAndValue(Val, Loc, PFS) ||
3426 ParseOptionalCommaAlignment(Alignment))
3427 return true;
3429 if (!isa<PointerType>(Val->getType()) ||
3430 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3431 return Error(Loc, "load operand must be a pointer to a first class type");
3433 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3434 return false;
3437 /// ParseStore
3438 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3439 bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3440 bool isVolatile) {
3441 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3442 unsigned Alignment;
3443 if (ParseTypeAndValue(Val, Loc, PFS) ||
3444 ParseToken(lltok::comma, "expected ',' after store operand") ||
3445 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3446 ParseOptionalCommaAlignment(Alignment))
3447 return true;
3449 if (!isa<PointerType>(Ptr->getType()))
3450 return Error(PtrLoc, "store operand must be a pointer");
3451 if (!Val->getType()->isFirstClassType())
3452 return Error(Loc, "store operand must be a first class value");
3453 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3454 return Error(Loc, "stored value and pointer type do not match");
3456 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3457 return false;
3460 /// ParseGetResult
3461 /// ::= 'getresult' TypeAndValue ',' i32
3462 /// FIXME: Remove support for getresult in LLVM 3.0
3463 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3464 Value *Val; LocTy ValLoc, EltLoc;
3465 unsigned Element;
3466 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3467 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3468 ParseUInt32(Element, EltLoc))
3469 return true;
3471 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3472 return Error(ValLoc, "getresult inst requires an aggregate operand");
3473 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3474 return Error(EltLoc, "invalid getresult index for value");
3475 Inst = ExtractValueInst::Create(Val, Element);
3476 return false;
3479 /// ParseGetElementPtr
3480 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3481 bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3482 Value *Ptr, *Val; LocTy Loc, EltLoc;
3484 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3486 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3488 if (!isa<PointerType>(Ptr->getType()))
3489 return Error(Loc, "base of getelementptr must be a pointer");
3491 SmallVector<Value*, 16> Indices;
3492 while (EatIfPresent(lltok::comma)) {
3493 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3494 if (!isa<IntegerType>(Val->getType()))
3495 return Error(EltLoc, "getelementptr index must be an integer");
3496 Indices.push_back(Val);
3499 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3500 Indices.begin(), Indices.end()))
3501 return Error(Loc, "invalid getelementptr indices");
3502 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3503 if (InBounds)
3504 cast<GEPOperator>(Inst)->setIsInBounds(true);
3505 return false;
3508 /// ParseExtractValue
3509 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3510 bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3511 Value *Val; LocTy Loc;
3512 SmallVector<unsigned, 4> Indices;
3513 if (ParseTypeAndValue(Val, Loc, PFS) ||
3514 ParseIndexList(Indices))
3515 return true;
3517 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3518 return Error(Loc, "extractvalue operand must be array or struct");
3520 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3521 Indices.end()))
3522 return Error(Loc, "invalid indices for extractvalue");
3523 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3524 return false;
3527 /// ParseInsertValue
3528 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3529 bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3530 Value *Val0, *Val1; LocTy Loc0, Loc1;
3531 SmallVector<unsigned, 4> Indices;
3532 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3533 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3534 ParseTypeAndValue(Val1, Loc1, PFS) ||
3535 ParseIndexList(Indices))
3536 return true;
3538 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3539 return Error(Loc0, "extractvalue operand must be array or struct");
3541 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3542 Indices.end()))
3543 return Error(Loc0, "invalid indices for insertvalue");
3544 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3545 return false;
3548 //===----------------------------------------------------------------------===//
3549 // Embedded metadata.
3550 //===----------------------------------------------------------------------===//
3552 /// ParseMDNodeVector
3553 /// ::= Element (',' Element)*
3554 /// Element
3555 /// ::= 'null' | TypeAndValue
3556 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3557 assert(Lex.getKind() == lltok::lbrace);
3558 Lex.Lex();
3559 do {
3560 Value *V = 0;
3561 if (Lex.getKind() == lltok::kw_null) {
3562 Lex.Lex();
3563 V = 0;
3564 } else {
3565 PATypeHolder Ty(Type::getVoidTy(Context));
3566 if (ParseType(Ty)) return true;
3567 if (Lex.getKind() == lltok::Metadata) {
3568 Lex.Lex();
3569 MetadataBase *Node = 0;
3570 if (!ParseMDNode(Node))
3571 V = Node;
3572 else {
3573 MetadataBase *MDS = 0;
3574 if (ParseMDString(MDS)) return true;
3575 V = MDS;
3577 } else {
3578 Constant *C;
3579 if (ParseGlobalValue(Ty, C)) return true;
3580 V = C;
3583 Elts.push_back(V);
3584 } while (EatIfPresent(lltok::comma));
3586 return false;