Fix comment for consistency sake.
[llvm/avr.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
bloba92d923a7d3c59efac574bf00ff99af41aacd9b1
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/DwarfWriter.h"
26 #include "llvm/Analysis/DebugInfo.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCInst.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCStreamer.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/FormattedStream.h"
34 #include "llvm/Support/Mangler.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetLowering.h"
38 #include "llvm/Target/TargetLoweringObjectFile.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include <cerrno>
45 using namespace llvm;
47 static cl::opt<cl::boolOrDefault>
48 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
49 cl::init(cl::BOU_UNSET));
51 char AsmPrinter::ID = 0;
52 AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
53 const MCAsmInfo *T, bool VDef)
54 : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
55 TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
57 OutContext(*new MCContext()),
58 OutStreamer(*createAsmStreamer(OutContext, O, *T, this)),
60 LastMI(0), LastFn(0), Counter(~0U),
61 PrevDLT(0, ~0U, ~0U) {
62 DW = 0; MMI = 0;
63 switch (AsmVerbose) {
64 case cl::BOU_UNSET: VerboseAsm = VDef; break;
65 case cl::BOU_TRUE: VerboseAsm = true; break;
66 case cl::BOU_FALSE: VerboseAsm = false; break;
70 AsmPrinter::~AsmPrinter() {
71 for (gcp_iterator I = GCMetadataPrinters.begin(),
72 E = GCMetadataPrinters.end(); I != E; ++I)
73 delete I->second;
75 delete &OutStreamer;
76 delete &OutContext;
79 TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
80 return TM.getTargetLowering()->getObjFileLowering();
83 /// getCurrentSection() - Return the current section we are emitting to.
84 const MCSection *AsmPrinter::getCurrentSection() const {
85 return OutStreamer.getCurrentSection();
89 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
90 AU.setPreservesAll();
91 MachineFunctionPass::getAnalysisUsage(AU);
92 AU.addRequired<GCModuleInfo>();
93 if (VerboseAsm)
94 AU.addRequired<MachineLoopInfo>();
97 bool AsmPrinter::doInitialization(Module &M) {
98 // Initialize TargetLoweringObjectFile.
99 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
100 .Initialize(OutContext, TM);
102 Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
103 MAI->getLinkerPrivateGlobalPrefix());
105 if (MAI->doesAllowQuotesInName())
106 Mang->setUseQuotes(true);
108 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
109 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
111 if (MAI->hasSingleParameterDotFile()) {
112 /* Very minimal debug info. It is ignored if we emit actual
113 debug info. If we don't, this at helps the user find where
114 a function came from. */
115 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
118 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
119 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
120 MP->beginAssembly(O, *this, *MAI);
122 if (!M.getModuleInlineAsm().empty())
123 O << MAI->getCommentString() << " Start of file scope inline assembly\n"
124 << M.getModuleInlineAsm()
125 << '\n' << MAI->getCommentString()
126 << " End of file scope inline assembly\n";
128 if (MAI->doesSupportDebugInformation() ||
129 MAI->doesSupportExceptionHandling()) {
130 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
131 if (MMI)
132 MMI->AnalyzeModule(M);
133 DW = getAnalysisIfAvailable<DwarfWriter>();
134 if (DW)
135 DW->BeginModule(&M, MMI, O, this, MAI);
138 return false;
141 bool AsmPrinter::doFinalization(Module &M) {
142 // Emit global variables.
143 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
144 I != E; ++I)
145 PrintGlobalVariable(I);
147 // Emit final debug information.
148 if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
149 DW->EndModule();
151 // If the target wants to know about weak references, print them all.
152 if (MAI->getWeakRefDirective()) {
153 // FIXME: This is not lazy, it would be nice to only print weak references
154 // to stuff that is actually used. Note that doing so would require targets
155 // to notice uses in operands (due to constant exprs etc). This should
156 // happen with the MC stuff eventually.
158 // Print out module-level global variables here.
159 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
160 I != E; ++I) {
161 if (I->hasExternalWeakLinkage())
162 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
165 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
166 if (I->hasExternalWeakLinkage())
167 O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
171 if (MAI->getSetDirective()) {
172 O << '\n';
173 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
174 I != E; ++I) {
175 std::string Name = Mang->getMangledName(I);
177 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
178 std::string Target = Mang->getMangledName(GV);
180 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
181 O << "\t.globl\t" << Name << '\n';
182 else if (I->hasWeakLinkage())
183 O << MAI->getWeakRefDirective() << Name << '\n';
184 else if (!I->hasLocalLinkage())
185 llvm_unreachable("Invalid alias linkage");
187 printVisibility(Name, I->getVisibility());
189 O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
193 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
194 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
195 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
196 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
197 MP->finishAssembly(O, *this, *MAI);
199 // If we don't have any trampolines, then we don't require stack memory
200 // to be executable. Some targets have a directive to declare this.
201 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
202 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
203 if (MAI->getNonexecutableStackDirective())
204 O << MAI->getNonexecutableStackDirective() << '\n';
206 delete Mang; Mang = 0;
207 DW = 0; MMI = 0;
209 OutStreamer.Finish();
210 return false;
213 std::string
214 AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
215 assert(MF && "No machine function?");
216 return Mang->getMangledName(MF->getFunction(), ".eh",
217 MAI->is_EHSymbolPrivate());
220 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
221 // What's my mangled name?
222 CurrentFnName = Mang->getMangledName(MF.getFunction());
223 IncrementFunctionNumber();
225 if (VerboseAsm) {
226 LI = &getAnalysis<MachineLoopInfo>();
230 namespace {
231 // SectionCPs - Keep track the alignment, constpool entries per Section.
232 struct SectionCPs {
233 const MCSection *S;
234 unsigned Alignment;
235 SmallVector<unsigned, 4> CPEs;
236 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
240 /// EmitConstantPool - Print to the current output stream assembly
241 /// representations of the constants in the constant pool MCP. This is
242 /// used to print out constants which have been "spilled to memory" by
243 /// the code generator.
245 void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
246 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
247 if (CP.empty()) return;
249 // Calculate sections for constant pool entries. We collect entries to go into
250 // the same section together to reduce amount of section switch statements.
251 SmallVector<SectionCPs, 4> CPSections;
252 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
253 const MachineConstantPoolEntry &CPE = CP[i];
254 unsigned Align = CPE.getAlignment();
256 SectionKind Kind;
257 switch (CPE.getRelocationInfo()) {
258 default: llvm_unreachable("Unknown section kind");
259 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
260 case 1:
261 Kind = SectionKind::getReadOnlyWithRelLocal();
262 break;
263 case 0:
264 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
265 case 4: Kind = SectionKind::getMergeableConst4(); break;
266 case 8: Kind = SectionKind::getMergeableConst8(); break;
267 case 16: Kind = SectionKind::getMergeableConst16();break;
268 default: Kind = SectionKind::getMergeableConst(); break;
272 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
274 // The number of sections are small, just do a linear search from the
275 // last section to the first.
276 bool Found = false;
277 unsigned SecIdx = CPSections.size();
278 while (SecIdx != 0) {
279 if (CPSections[--SecIdx].S == S) {
280 Found = true;
281 break;
284 if (!Found) {
285 SecIdx = CPSections.size();
286 CPSections.push_back(SectionCPs(S, Align));
289 if (Align > CPSections[SecIdx].Alignment)
290 CPSections[SecIdx].Alignment = Align;
291 CPSections[SecIdx].CPEs.push_back(i);
294 // Now print stuff into the calculated sections.
295 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
296 OutStreamer.SwitchSection(CPSections[i].S);
297 EmitAlignment(Log2_32(CPSections[i].Alignment));
299 unsigned Offset = 0;
300 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
301 unsigned CPI = CPSections[i].CPEs[j];
302 MachineConstantPoolEntry CPE = CP[CPI];
304 // Emit inter-object padding for alignment.
305 unsigned AlignMask = CPE.getAlignment() - 1;
306 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
307 EmitZeros(NewOffset - Offset);
309 const Type *Ty = CPE.getType();
310 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
312 O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
313 << CPI << ':';
314 if (VerboseAsm) {
315 O.PadToColumn(MAI->getCommentColumn());
316 O << MAI->getCommentString() << " constant ";
317 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
319 O << '\n';
320 if (CPE.isMachineConstantPoolEntry())
321 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
322 else
323 EmitGlobalConstant(CPE.Val.ConstVal);
328 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
329 /// by the current function to the current output stream.
331 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
332 MachineFunction &MF) {
333 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
334 if (JT.empty()) return;
336 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
338 // Pick the directive to use to print the jump table entries, and switch to
339 // the appropriate section.
340 TargetLowering *LoweringInfo = TM.getTargetLowering();
342 const Function *F = MF.getFunction();
343 bool JTInDiffSection = false;
344 if (F->isWeakForLinker() ||
345 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
346 // In PIC mode, we need to emit the jump table to the same section as the
347 // function body itself, otherwise the label differences won't make sense.
348 // We should also do if the section name is NULL or function is declared in
349 // discardable section.
350 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
351 TM));
352 } else {
353 // Otherwise, drop it in the readonly section.
354 const MCSection *ReadOnlySection =
355 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
356 OutStreamer.SwitchSection(ReadOnlySection);
357 JTInDiffSection = true;
360 EmitAlignment(Log2_32(MJTI->getAlignment()));
362 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
363 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
365 // If this jump table was deleted, ignore it.
366 if (JTBBs.empty()) continue;
368 // For PIC codegen, if possible we want to use the SetDirective to reduce
369 // the number of relocations the assembler will generate for the jump table.
370 // Set directives are all printed before the jump table itself.
371 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
372 if (MAI->getSetDirective() && IsPic)
373 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
374 if (EmittedSets.insert(JTBBs[ii]))
375 printPICJumpTableSetLabel(i, JTBBs[ii]);
377 // On some targets (e.g. darwin) we want to emit two consequtive labels
378 // before each jump table. The first label is never referenced, but tells
379 // the assembler and linker the extents of the jump table object. The
380 // second label is actually referenced by the code.
381 if (JTInDiffSection) {
382 if (const char *JTLabelPrefix = MAI->getJumpTableSpecialLabelPrefix())
383 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
386 O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
387 << '_' << i << ":\n";
389 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
390 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
391 O << '\n';
396 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
397 const MachineBasicBlock *MBB,
398 unsigned uid) const {
399 bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
401 // Use JumpTableDirective otherwise honor the entry size from the jump table
402 // info.
403 const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
404 bool HadJTEntryDirective = JTEntryDirective != NULL;
405 if (!HadJTEntryDirective) {
406 JTEntryDirective = MJTI->getEntrySize() == 4 ?
407 MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
410 O << JTEntryDirective << ' ';
412 // If we have emitted set directives for the jump table entries, print
413 // them rather than the entries themselves. If we're emitting PIC, then
414 // emit the table entries as differences between two text section labels.
415 // If we're emitting non-PIC code, then emit the entries as direct
416 // references to the target basic blocks.
417 if (!isPIC) {
418 printBasicBlockLabel(MBB, false, false, false);
419 } else if (MAI->getSetDirective()) {
420 O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
421 << '_' << uid << "_set_" << MBB->getNumber();
422 } else {
423 printBasicBlockLabel(MBB, false, false, false);
424 // If the arch uses custom Jump Table directives, don't calc relative to
425 // JT
426 if (!HadJTEntryDirective)
427 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
428 << getFunctionNumber() << '_' << uid;
433 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
434 /// special global used by LLVM. If so, emit it and return true, otherwise
435 /// do nothing and return false.
436 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
437 if (GV->getName() == "llvm.used") {
438 if (MAI->getUsedDirective() != 0) // No need to emit this at all.
439 EmitLLVMUsedList(GV->getInitializer());
440 return true;
443 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
444 if (GV->getSection() == "llvm.metadata" ||
445 GV->hasAvailableExternallyLinkage())
446 return true;
448 if (!GV->hasAppendingLinkage()) return false;
450 assert(GV->hasInitializer() && "Not a special LLVM global!");
452 const TargetData *TD = TM.getTargetData();
453 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
454 if (GV->getName() == "llvm.global_ctors") {
455 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
456 EmitAlignment(Align, 0);
457 EmitXXStructorList(GV->getInitializer());
458 return true;
461 if (GV->getName() == "llvm.global_dtors") {
462 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
463 EmitAlignment(Align, 0);
464 EmitXXStructorList(GV->getInitializer());
465 return true;
468 return false;
471 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
472 /// global in the specified llvm.used list for which emitUsedDirectiveFor
473 /// is true, as being used with this directive.
474 void AsmPrinter::EmitLLVMUsedList(Constant *List) {
475 const char *Directive = MAI->getUsedDirective();
477 // Should be an array of 'i8*'.
478 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
479 if (InitList == 0) return;
481 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
482 const GlobalValue *GV =
483 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
484 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
485 O << Directive;
486 EmitConstantValueOnly(InitList->getOperand(i));
487 O << '\n';
492 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
493 /// function pointers, ignoring the init priority.
494 void AsmPrinter::EmitXXStructorList(Constant *List) {
495 // Should be an array of '{ int, void ()* }' structs. The first value is the
496 // init priority, which we ignore.
497 if (!isa<ConstantArray>(List)) return;
498 ConstantArray *InitList = cast<ConstantArray>(List);
499 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
500 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
501 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
503 if (CS->getOperand(1)->isNullValue())
504 return; // Found a null terminator, exit printing.
505 // Emit the function pointer.
506 EmitGlobalConstant(CS->getOperand(1));
510 /// getGlobalLinkName - Returns the asm/link name of of the specified
511 /// global variable. Should be overridden by each target asm printer to
512 /// generate the appropriate value.
513 const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
514 std::string &LinkName) const {
515 if (isa<Function>(GV)) {
516 LinkName += MAI->getFunctionAddrPrefix();
517 LinkName += Mang->getMangledName(GV);
518 LinkName += MAI->getFunctionAddrSuffix();
519 } else {
520 LinkName += MAI->getGlobalVarAddrPrefix();
521 LinkName += Mang->getMangledName(GV);
522 LinkName += MAI->getGlobalVarAddrSuffix();
525 return LinkName;
528 /// EmitExternalGlobal - Emit the external reference to a global variable.
529 /// Should be overridden if an indirect reference should be used.
530 void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
531 std::string GLN;
532 O << getGlobalLinkName(GV, GLN);
537 //===----------------------------------------------------------------------===//
538 /// LEB 128 number encoding.
540 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
541 /// representing an unsigned leb128 value.
542 void AsmPrinter::PrintULEB128(unsigned Value) const {
543 char Buffer[20];
544 do {
545 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
546 Value >>= 7;
547 if (Value) Byte |= 0x80;
548 O << "0x" << utohex_buffer(Byte, Buffer+20);
549 if (Value) O << ", ";
550 } while (Value);
553 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
554 /// representing a signed leb128 value.
555 void AsmPrinter::PrintSLEB128(int Value) const {
556 int Sign = Value >> (8 * sizeof(Value) - 1);
557 bool IsMore;
558 char Buffer[20];
560 do {
561 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
562 Value >>= 7;
563 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
564 if (IsMore) Byte |= 0x80;
565 O << "0x" << utohex_buffer(Byte, Buffer+20);
566 if (IsMore) O << ", ";
567 } while (IsMore);
570 //===--------------------------------------------------------------------===//
571 // Emission and print routines
574 /// PrintHex - Print a value as a hexidecimal value.
576 void AsmPrinter::PrintHex(int Value) const {
577 char Buffer[20];
578 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
581 /// EOL - Print a newline character to asm stream. If a comment is present
582 /// then it will be printed first. Comments should not contain '\n'.
583 void AsmPrinter::EOL() const {
584 O << '\n';
587 void AsmPrinter::EOL(const std::string &Comment) const {
588 if (VerboseAsm && !Comment.empty()) {
589 O.PadToColumn(MAI->getCommentColumn());
590 O << MAI->getCommentString()
591 << ' '
592 << Comment;
594 O << '\n';
597 void AsmPrinter::EOL(const char* Comment) const {
598 if (VerboseAsm && *Comment) {
599 O.PadToColumn(MAI->getCommentColumn());
600 O << MAI->getCommentString()
601 << ' '
602 << Comment;
604 O << '\n';
607 static const char *DecodeDWARFEncoding(unsigned Encoding) {
608 switch (Encoding) {
609 case dwarf::DW_EH_PE_absptr:
610 return "absptr";
611 case dwarf::DW_EH_PE_omit:
612 return "omit";
613 case dwarf::DW_EH_PE_pcrel:
614 return "pcrel";
615 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
616 return "pcrel udata4";
617 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
618 return "pcrel sdata4";
619 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
620 return "pcrel udata8";
621 case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
622 return "pcrel sdata8";
623 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
624 return "indirect pcrel udata4";
625 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
626 return "indirect pcrel sdata4";
627 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
628 return "indirect pcrel udata8";
629 case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
630 return "indirect pcrel sdata8";
633 return 0;
636 void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
637 if (VerboseAsm && *Comment) {
638 O.PadToColumn(MAI->getCommentColumn());
639 O << MAI->getCommentString()
640 << ' '
641 << Comment;
643 if (const char *EncStr = DecodeDWARFEncoding(Encoding))
644 O << " (" << EncStr << ')';
646 O << '\n';
649 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
650 /// unsigned leb128 value.
651 void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
652 if (MAI->hasLEB128()) {
653 O << "\t.uleb128\t"
654 << Value;
655 } else {
656 O << MAI->getData8bitsDirective();
657 PrintULEB128(Value);
661 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
662 /// signed leb128 value.
663 void AsmPrinter::EmitSLEB128Bytes(int Value) const {
664 if (MAI->hasLEB128()) {
665 O << "\t.sleb128\t"
666 << Value;
667 } else {
668 O << MAI->getData8bitsDirective();
669 PrintSLEB128(Value);
673 /// EmitInt8 - Emit a byte directive and value.
675 void AsmPrinter::EmitInt8(int Value) const {
676 O << MAI->getData8bitsDirective();
677 PrintHex(Value & 0xFF);
680 /// EmitInt16 - Emit a short directive and value.
682 void AsmPrinter::EmitInt16(int Value) const {
683 O << MAI->getData16bitsDirective();
684 PrintHex(Value & 0xFFFF);
687 /// EmitInt32 - Emit a long directive and value.
689 void AsmPrinter::EmitInt32(int Value) const {
690 O << MAI->getData32bitsDirective();
691 PrintHex(Value);
694 /// EmitInt64 - Emit a long long directive and value.
696 void AsmPrinter::EmitInt64(uint64_t Value) const {
697 if (MAI->getData64bitsDirective()) {
698 O << MAI->getData64bitsDirective();
699 PrintHex(Value);
700 } else {
701 if (TM.getTargetData()->isBigEndian()) {
702 EmitInt32(unsigned(Value >> 32)); O << '\n';
703 EmitInt32(unsigned(Value));
704 } else {
705 EmitInt32(unsigned(Value)); O << '\n';
706 EmitInt32(unsigned(Value >> 32));
711 /// toOctal - Convert the low order bits of X into an octal digit.
713 static inline char toOctal(int X) {
714 return (X&7)+'0';
717 /// printStringChar - Print a char, escaped if necessary.
719 static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
720 if (C == '"') {
721 O << "\\\"";
722 } else if (C == '\\') {
723 O << "\\\\";
724 } else if (isprint((unsigned char)C)) {
725 O << C;
726 } else {
727 switch(C) {
728 case '\b': O << "\\b"; break;
729 case '\f': O << "\\f"; break;
730 case '\n': O << "\\n"; break;
731 case '\r': O << "\\r"; break;
732 case '\t': O << "\\t"; break;
733 default:
734 O << '\\';
735 O << toOctal(C >> 6);
736 O << toOctal(C >> 3);
737 O << toOctal(C >> 0);
738 break;
743 /// EmitString - Emit a string with quotes and a null terminator.
744 /// Special characters are emitted properly.
745 /// \literal (Eg. '\t') \endliteral
746 void AsmPrinter::EmitString(const std::string &String) const {
747 EmitString(String.c_str(), String.size());
750 void AsmPrinter::EmitString(const char *String, unsigned Size) const {
751 const char* AscizDirective = MAI->getAscizDirective();
752 if (AscizDirective)
753 O << AscizDirective;
754 else
755 O << MAI->getAsciiDirective();
756 O << '\"';
757 for (unsigned i = 0; i < Size; ++i)
758 printStringChar(O, String[i]);
759 if (AscizDirective)
760 O << '\"';
761 else
762 O << "\\0\"";
766 /// EmitFile - Emit a .file directive.
767 void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
768 O << "\t.file\t" << Number << " \"";
769 for (unsigned i = 0, N = Name.size(); i < N; ++i)
770 printStringChar(O, Name[i]);
771 O << '\"';
775 //===----------------------------------------------------------------------===//
777 // EmitAlignment - Emit an alignment directive to the specified power of
778 // two boundary. For example, if you pass in 3 here, you will get an 8
779 // byte alignment. If a global value is specified, and if that global has
780 // an explicit alignment requested, it will unconditionally override the
781 // alignment request. However, if ForcedAlignBits is specified, this value
782 // has final say: the ultimate alignment will be the max of ForcedAlignBits
783 // and the alignment computed with NumBits and the global.
785 // The algorithm is:
786 // Align = NumBits;
787 // if (GV && GV->hasalignment) Align = GV->getalignment();
788 // Align = std::max(Align, ForcedAlignBits);
790 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
791 unsigned ForcedAlignBits,
792 bool UseFillExpr) const {
793 if (GV && GV->getAlignment())
794 NumBits = Log2_32(GV->getAlignment());
795 NumBits = std::max(NumBits, ForcedAlignBits);
797 if (NumBits == 0) return; // No need to emit alignment.
799 unsigned FillValue = 0;
800 if (getCurrentSection()->getKind().isText())
801 FillValue = MAI->getTextAlignFillValue();
803 OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
806 /// EmitZeros - Emit a block of zeros.
808 void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
809 if (NumZeros) {
810 if (MAI->getZeroDirective()) {
811 O << MAI->getZeroDirective() << NumZeros;
812 if (MAI->getZeroDirectiveSuffix())
813 O << MAI->getZeroDirectiveSuffix();
814 O << '\n';
815 } else {
816 for (; NumZeros; --NumZeros)
817 O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
822 // Print out the specified constant, without a storage class. Only the
823 // constants valid in constant expressions can occur here.
824 void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
825 if (CV->isNullValue() || isa<UndefValue>(CV))
826 O << '0';
827 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
828 O << CI->getZExtValue();
829 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
830 // This is a constant address for a global variable or function. Use the
831 // name of the variable or function as the address value, possibly
832 // decorating it with GlobalVarAddrPrefix/Suffix or
833 // FunctionAddrPrefix/Suffix (these all default to "" )
834 if (isa<Function>(GV)) {
835 O << MAI->getFunctionAddrPrefix()
836 << Mang->getMangledName(GV)
837 << MAI->getFunctionAddrSuffix();
838 } else {
839 O << MAI->getGlobalVarAddrPrefix()
840 << Mang->getMangledName(GV)
841 << MAI->getGlobalVarAddrSuffix();
843 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
844 const TargetData *TD = TM.getTargetData();
845 unsigned Opcode = CE->getOpcode();
846 switch (Opcode) {
847 case Instruction::Trunc:
848 case Instruction::ZExt:
849 case Instruction::SExt:
850 case Instruction::FPTrunc:
851 case Instruction::FPExt:
852 case Instruction::UIToFP:
853 case Instruction::SIToFP:
854 case Instruction::FPToUI:
855 case Instruction::FPToSI:
856 llvm_unreachable("FIXME: Don't support this constant cast expr");
857 case Instruction::GetElementPtr: {
858 // generate a symbolic expression for the byte address
859 const Constant *ptrVal = CE->getOperand(0);
860 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
861 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
862 idxVec.size())) {
863 // Truncate/sext the offset to the pointer size.
864 if (TD->getPointerSizeInBits() != 64) {
865 int SExtAmount = 64-TD->getPointerSizeInBits();
866 Offset = (Offset << SExtAmount) >> SExtAmount;
869 if (Offset)
870 O << '(';
871 EmitConstantValueOnly(ptrVal);
872 if (Offset > 0)
873 O << ") + " << Offset;
874 else if (Offset < 0)
875 O << ") - " << -Offset;
876 } else {
877 EmitConstantValueOnly(ptrVal);
879 break;
881 case Instruction::BitCast:
882 return EmitConstantValueOnly(CE->getOperand(0));
884 case Instruction::IntToPtr: {
885 // Handle casts to pointers by changing them into casts to the appropriate
886 // integer type. This promotes constant folding and simplifies this code.
887 Constant *Op = CE->getOperand(0);
888 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
889 false/*ZExt*/);
890 return EmitConstantValueOnly(Op);
894 case Instruction::PtrToInt: {
895 // Support only foldable casts to/from pointers that can be eliminated by
896 // changing the pointer to the appropriately sized integer type.
897 Constant *Op = CE->getOperand(0);
898 const Type *Ty = CE->getType();
900 // We can emit the pointer value into this slot if the slot is an
901 // integer slot greater or equal to the size of the pointer.
902 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
903 return EmitConstantValueOnly(Op);
905 O << "((";
906 EmitConstantValueOnly(Op);
907 APInt ptrMask =
908 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
910 SmallString<40> S;
911 ptrMask.toStringUnsigned(S);
912 O << ") & " << S.str() << ')';
913 break;
915 case Instruction::Add:
916 case Instruction::Sub:
917 case Instruction::And:
918 case Instruction::Or:
919 case Instruction::Xor:
920 O << '(';
921 EmitConstantValueOnly(CE->getOperand(0));
922 O << ')';
923 switch (Opcode) {
924 case Instruction::Add:
925 O << " + ";
926 break;
927 case Instruction::Sub:
928 O << " - ";
929 break;
930 case Instruction::And:
931 O << " & ";
932 break;
933 case Instruction::Or:
934 O << " | ";
935 break;
936 case Instruction::Xor:
937 O << " ^ ";
938 break;
939 default:
940 break;
942 O << '(';
943 EmitConstantValueOnly(CE->getOperand(1));
944 O << ')';
945 break;
946 default:
947 llvm_unreachable("Unsupported operator!");
949 } else {
950 llvm_unreachable("Unknown constant value!");
954 /// printAsCString - Print the specified array as a C compatible string, only if
955 /// the predicate isString is true.
957 static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
958 unsigned LastElt) {
959 assert(CVA->isString() && "Array is not string compatible!");
961 O << '\"';
962 for (unsigned i = 0; i != LastElt; ++i) {
963 unsigned char C =
964 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
965 printStringChar(O, C);
967 O << '\"';
970 /// EmitString - Emit a zero-byte-terminated string constant.
972 void AsmPrinter::EmitString(const ConstantArray *CVA) const {
973 unsigned NumElts = CVA->getNumOperands();
974 if (MAI->getAscizDirective() && NumElts &&
975 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
976 O << MAI->getAscizDirective();
977 printAsCString(O, CVA, NumElts-1);
978 } else {
979 O << MAI->getAsciiDirective();
980 printAsCString(O, CVA, NumElts);
982 O << '\n';
985 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
986 unsigned AddrSpace) {
987 if (CVA->isString()) {
988 EmitString(CVA);
989 } else { // Not a string. Print the values in successive locations
990 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
991 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
995 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
996 const VectorType *PTy = CP->getType();
998 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
999 EmitGlobalConstant(CP->getOperand(I));
1002 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
1003 unsigned AddrSpace) {
1004 // Print the fields in successive locations. Pad to align if needed!
1005 const TargetData *TD = TM.getTargetData();
1006 unsigned Size = TD->getTypeAllocSize(CVS->getType());
1007 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
1008 uint64_t sizeSoFar = 0;
1009 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
1010 const Constant* field = CVS->getOperand(i);
1012 // Check if padding is needed and insert one or more 0s.
1013 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1014 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1015 - cvsLayout->getElementOffset(i)) - fieldSize;
1016 sizeSoFar += fieldSize + padSize;
1018 // Now print the actual field value.
1019 EmitGlobalConstant(field, AddrSpace);
1021 // Insert padding - this may include padding to increase the size of the
1022 // current field up to the ABI size (if the struct is not packed) as well
1023 // as padding to ensure that the next field starts at the right offset.
1024 EmitZeros(padSize, AddrSpace);
1026 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1027 "Layout of constant struct may be incorrect!");
1030 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1031 unsigned AddrSpace) {
1032 // FP Constants are printed as integer constants to avoid losing
1033 // precision...
1034 LLVMContext &Context = CFP->getContext();
1035 const TargetData *TD = TM.getTargetData();
1036 if (CFP->getType() == Type::getDoubleTy(Context)) {
1037 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1038 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1039 if (MAI->getData64bitsDirective(AddrSpace)) {
1040 O << MAI->getData64bitsDirective(AddrSpace) << i;
1041 if (VerboseAsm) {
1042 O.PadToColumn(MAI->getCommentColumn());
1043 O << MAI->getCommentString() << " double " << Val;
1045 O << '\n';
1046 } else if (TD->isBigEndian()) {
1047 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1048 if (VerboseAsm) {
1049 O.PadToColumn(MAI->getCommentColumn());
1050 O << MAI->getCommentString()
1051 << " most significant word of double " << Val;
1053 O << '\n';
1054 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1055 if (VerboseAsm) {
1056 O.PadToColumn(MAI->getCommentColumn());
1057 O << MAI->getCommentString()
1058 << " least significant word of double " << Val;
1060 O << '\n';
1061 } else {
1062 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1063 if (VerboseAsm) {
1064 O.PadToColumn(MAI->getCommentColumn());
1065 O << MAI->getCommentString()
1066 << " least significant word of double " << Val;
1068 O << '\n';
1069 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1070 if (VerboseAsm) {
1071 O.PadToColumn(MAI->getCommentColumn());
1072 O << MAI->getCommentString()
1073 << " most significant word of double " << Val;
1075 O << '\n';
1077 return;
1078 } else if (CFP->getType() == Type::getFloatTy(Context)) {
1079 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1080 O << MAI->getData32bitsDirective(AddrSpace)
1081 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1082 if (VerboseAsm) {
1083 O.PadToColumn(MAI->getCommentColumn());
1084 O << MAI->getCommentString() << " float " << Val;
1086 O << '\n';
1087 return;
1088 } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) {
1089 // all long double variants are printed as hex
1090 // api needed to prevent premature destruction
1091 APInt api = CFP->getValueAPF().bitcastToAPInt();
1092 const uint64_t *p = api.getRawData();
1093 // Convert to double so we can print the approximate val as a comment.
1094 APFloat DoubleVal = CFP->getValueAPF();
1095 bool ignored;
1096 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1097 &ignored);
1098 if (TD->isBigEndian()) {
1099 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1100 if (VerboseAsm) {
1101 O.PadToColumn(MAI->getCommentColumn());
1102 O << MAI->getCommentString()
1103 << " most significant halfword of x86_fp80 ~"
1104 << DoubleVal.convertToDouble();
1106 O << '\n';
1107 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1108 if (VerboseAsm) {
1109 O.PadToColumn(MAI->getCommentColumn());
1110 O << MAI->getCommentString() << " next halfword";
1112 O << '\n';
1113 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1114 if (VerboseAsm) {
1115 O.PadToColumn(MAI->getCommentColumn());
1116 O << MAI->getCommentString() << " next halfword";
1118 O << '\n';
1119 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1120 if (VerboseAsm) {
1121 O.PadToColumn(MAI->getCommentColumn());
1122 O << MAI->getCommentString() << " next halfword";
1124 O << '\n';
1125 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1126 if (VerboseAsm) {
1127 O.PadToColumn(MAI->getCommentColumn());
1128 O << MAI->getCommentString()
1129 << " least significant halfword";
1131 O << '\n';
1132 } else {
1133 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1134 if (VerboseAsm) {
1135 O.PadToColumn(MAI->getCommentColumn());
1136 O << MAI->getCommentString()
1137 << " least significant halfword of x86_fp80 ~"
1138 << DoubleVal.convertToDouble();
1140 O << '\n';
1141 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1142 if (VerboseAsm) {
1143 O.PadToColumn(MAI->getCommentColumn());
1144 O << MAI->getCommentString()
1145 << " next halfword";
1147 O << '\n';
1148 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1149 if (VerboseAsm) {
1150 O.PadToColumn(MAI->getCommentColumn());
1151 O << MAI->getCommentString()
1152 << " next halfword";
1154 O << '\n';
1155 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1156 if (VerboseAsm) {
1157 O.PadToColumn(MAI->getCommentColumn());
1158 O << MAI->getCommentString()
1159 << " next halfword";
1161 O << '\n';
1162 O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1163 if (VerboseAsm) {
1164 O.PadToColumn(MAI->getCommentColumn());
1165 O << MAI->getCommentString()
1166 << " most significant halfword";
1168 O << '\n';
1170 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1171 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1172 return;
1173 } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) {
1174 // all long double variants are printed as hex
1175 // api needed to prevent premature destruction
1176 APInt api = CFP->getValueAPF().bitcastToAPInt();
1177 const uint64_t *p = api.getRawData();
1178 if (TD->isBigEndian()) {
1179 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1180 if (VerboseAsm) {
1181 O.PadToColumn(MAI->getCommentColumn());
1182 O << MAI->getCommentString()
1183 << " most significant word of ppc_fp128";
1185 O << '\n';
1186 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1187 if (VerboseAsm) {
1188 O.PadToColumn(MAI->getCommentColumn());
1189 O << MAI->getCommentString()
1190 << " next word";
1192 O << '\n';
1193 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1194 if (VerboseAsm) {
1195 O.PadToColumn(MAI->getCommentColumn());
1196 O << MAI->getCommentString()
1197 << " next word";
1199 O << '\n';
1200 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1201 if (VerboseAsm) {
1202 O.PadToColumn(MAI->getCommentColumn());
1203 O << MAI->getCommentString()
1204 << " least significant word";
1206 O << '\n';
1207 } else {
1208 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1209 if (VerboseAsm) {
1210 O.PadToColumn(MAI->getCommentColumn());
1211 O << MAI->getCommentString()
1212 << " least significant word of ppc_fp128";
1214 O << '\n';
1215 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1216 if (VerboseAsm) {
1217 O.PadToColumn(MAI->getCommentColumn());
1218 O << MAI->getCommentString()
1219 << " next word";
1221 O << '\n';
1222 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1223 if (VerboseAsm) {
1224 O.PadToColumn(MAI->getCommentColumn());
1225 O << MAI->getCommentString()
1226 << " next word";
1228 O << '\n';
1229 O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1230 if (VerboseAsm) {
1231 O.PadToColumn(MAI->getCommentColumn());
1232 O << MAI->getCommentString()
1233 << " most significant word";
1235 O << '\n';
1237 return;
1238 } else llvm_unreachable("Floating point constant type not handled");
1241 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1242 unsigned AddrSpace) {
1243 const TargetData *TD = TM.getTargetData();
1244 unsigned BitWidth = CI->getBitWidth();
1245 assert(isPowerOf2_32(BitWidth) &&
1246 "Non-power-of-2-sized integers not handled!");
1248 // We don't expect assemblers to support integer data directives
1249 // for more than 64 bits, so we emit the data in at most 64-bit
1250 // quantities at a time.
1251 const uint64_t *RawData = CI->getValue().getRawData();
1252 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1253 uint64_t Val;
1254 if (TD->isBigEndian())
1255 Val = RawData[e - i - 1];
1256 else
1257 Val = RawData[i];
1259 if (MAI->getData64bitsDirective(AddrSpace))
1260 O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1261 else if (TD->isBigEndian()) {
1262 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1263 if (VerboseAsm) {
1264 O.PadToColumn(MAI->getCommentColumn());
1265 O << MAI->getCommentString()
1266 << " most significant half of i64 " << Val;
1268 O << '\n';
1269 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1270 if (VerboseAsm) {
1271 O.PadToColumn(MAI->getCommentColumn());
1272 O << MAI->getCommentString()
1273 << " least significant half of i64 " << Val;
1275 O << '\n';
1276 } else {
1277 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1278 if (VerboseAsm) {
1279 O.PadToColumn(MAI->getCommentColumn());
1280 O << MAI->getCommentString()
1281 << " least significant half of i64 " << Val;
1283 O << '\n';
1284 O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1285 if (VerboseAsm) {
1286 O.PadToColumn(MAI->getCommentColumn());
1287 O << MAI->getCommentString()
1288 << " most significant half of i64 " << Val;
1290 O << '\n';
1295 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1296 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1297 const TargetData *TD = TM.getTargetData();
1298 const Type *type = CV->getType();
1299 unsigned Size = TD->getTypeAllocSize(type);
1301 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1302 EmitZeros(Size, AddrSpace);
1303 return;
1304 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1305 EmitGlobalConstantArray(CVA , AddrSpace);
1306 return;
1307 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1308 EmitGlobalConstantStruct(CVS, AddrSpace);
1309 return;
1310 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1311 EmitGlobalConstantFP(CFP, AddrSpace);
1312 return;
1313 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1314 // Small integers are handled below; large integers are handled here.
1315 if (Size > 4) {
1316 EmitGlobalConstantLargeInt(CI, AddrSpace);
1317 return;
1319 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1320 EmitGlobalConstantVector(CP);
1321 return;
1324 printDataDirective(type, AddrSpace);
1325 EmitConstantValueOnly(CV);
1326 if (VerboseAsm) {
1327 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1328 SmallString<40> S;
1329 CI->getValue().toStringUnsigned(S, 16);
1330 O.PadToColumn(MAI->getCommentColumn());
1331 O << MAI->getCommentString() << " 0x" << S.str();
1334 O << '\n';
1337 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1338 // Target doesn't support this yet!
1339 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1342 /// PrintSpecial - Print information related to the specified machine instr
1343 /// that is independent of the operand, and may be independent of the instr
1344 /// itself. This can be useful for portably encoding the comment character
1345 /// or other bits of target-specific knowledge into the asmstrings. The
1346 /// syntax used is ${:comment}. Targets can override this to add support
1347 /// for their own strange codes.
1348 void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1349 if (!strcmp(Code, "private")) {
1350 O << MAI->getPrivateGlobalPrefix();
1351 } else if (!strcmp(Code, "comment")) {
1352 if (VerboseAsm)
1353 O << MAI->getCommentString();
1354 } else if (!strcmp(Code, "uid")) {
1355 // Comparing the address of MI isn't sufficient, because machineinstrs may
1356 // be allocated to the same address across functions.
1357 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1359 // If this is a new LastFn instruction, bump the counter.
1360 if (LastMI != MI || LastFn != ThisF) {
1361 ++Counter;
1362 LastMI = MI;
1363 LastFn = ThisF;
1365 O << Counter;
1366 } else {
1367 std::string msg;
1368 raw_string_ostream Msg(msg);
1369 Msg << "Unknown special formatter '" << Code
1370 << "' for machine instr: " << *MI;
1371 llvm_report_error(Msg.str());
1375 /// processDebugLoc - Processes the debug information of each machine
1376 /// instruction's DebugLoc.
1377 void AsmPrinter::processDebugLoc(DebugLoc DL) {
1378 if (!MAI || !DW)
1379 return;
1381 if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1382 if (!DL.isUnknown()) {
1383 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1385 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1386 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1387 DICompileUnit(CurDLT.CompileUnit)));
1389 PrevDLT = CurDLT;
1394 /// printInlineAsm - This method formats and prints the specified machine
1395 /// instruction that is an inline asm.
1396 void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1397 unsigned NumOperands = MI->getNumOperands();
1399 // Count the number of register definitions.
1400 unsigned NumDefs = 0;
1401 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1402 ++NumDefs)
1403 assert(NumDefs != NumOperands-1 && "No asm string?");
1405 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1407 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1408 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1410 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1411 // These are useful to see where empty asm's wound up.
1412 if (AsmStr[0] == 0) {
1413 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1414 O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1415 return;
1418 O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
1420 // The variant of the current asmprinter.
1421 int AsmPrinterVariant = MAI->getAssemblerDialect();
1423 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1424 const char *LastEmitted = AsmStr; // One past the last character emitted.
1426 while (*LastEmitted) {
1427 switch (*LastEmitted) {
1428 default: {
1429 // Not a special case, emit the string section literally.
1430 const char *LiteralEnd = LastEmitted+1;
1431 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1432 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1433 ++LiteralEnd;
1434 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1435 O.write(LastEmitted, LiteralEnd-LastEmitted);
1436 LastEmitted = LiteralEnd;
1437 break;
1439 case '\n':
1440 ++LastEmitted; // Consume newline character.
1441 O << '\n'; // Indent code with newline.
1442 break;
1443 case '$': {
1444 ++LastEmitted; // Consume '$' character.
1445 bool Done = true;
1447 // Handle escapes.
1448 switch (*LastEmitted) {
1449 default: Done = false; break;
1450 case '$': // $$ -> $
1451 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1452 O << '$';
1453 ++LastEmitted; // Consume second '$' character.
1454 break;
1455 case '(': // $( -> same as GCC's { character.
1456 ++LastEmitted; // Consume '(' character.
1457 if (CurVariant != -1) {
1458 llvm_report_error("Nested variants found in inline asm string: '"
1459 + std::string(AsmStr) + "'");
1461 CurVariant = 0; // We're in the first variant now.
1462 break;
1463 case '|':
1464 ++LastEmitted; // consume '|' character.
1465 if (CurVariant == -1)
1466 O << '|'; // this is gcc's behavior for | outside a variant
1467 else
1468 ++CurVariant; // We're in the next variant.
1469 break;
1470 case ')': // $) -> same as GCC's } char.
1471 ++LastEmitted; // consume ')' character.
1472 if (CurVariant == -1)
1473 O << '}'; // this is gcc's behavior for } outside a variant
1474 else
1475 CurVariant = -1;
1476 break;
1478 if (Done) break;
1480 bool HasCurlyBraces = false;
1481 if (*LastEmitted == '{') { // ${variable}
1482 ++LastEmitted; // Consume '{' character.
1483 HasCurlyBraces = true;
1486 // If we have ${:foo}, then this is not a real operand reference, it is a
1487 // "magic" string reference, just like in .td files. Arrange to call
1488 // PrintSpecial.
1489 if (HasCurlyBraces && *LastEmitted == ':') {
1490 ++LastEmitted;
1491 const char *StrStart = LastEmitted;
1492 const char *StrEnd = strchr(StrStart, '}');
1493 if (StrEnd == 0) {
1494 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1495 + std::string(AsmStr) + "'");
1498 std::string Val(StrStart, StrEnd);
1499 PrintSpecial(MI, Val.c_str());
1500 LastEmitted = StrEnd+1;
1501 break;
1504 const char *IDStart = LastEmitted;
1505 char *IDEnd;
1506 errno = 0;
1507 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1508 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1509 llvm_report_error("Bad $ operand number in inline asm string: '"
1510 + std::string(AsmStr) + "'");
1512 LastEmitted = IDEnd;
1514 char Modifier[2] = { 0, 0 };
1516 if (HasCurlyBraces) {
1517 // If we have curly braces, check for a modifier character. This
1518 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1519 if (*LastEmitted == ':') {
1520 ++LastEmitted; // Consume ':' character.
1521 if (*LastEmitted == 0) {
1522 llvm_report_error("Bad ${:} expression in inline asm string: '"
1523 + std::string(AsmStr) + "'");
1526 Modifier[0] = *LastEmitted;
1527 ++LastEmitted; // Consume modifier character.
1530 if (*LastEmitted != '}') {
1531 llvm_report_error("Bad ${} expression in inline asm string: '"
1532 + std::string(AsmStr) + "'");
1534 ++LastEmitted; // Consume '}' character.
1537 if ((unsigned)Val >= NumOperands-1) {
1538 llvm_report_error("Invalid $ operand number in inline asm string: '"
1539 + std::string(AsmStr) + "'");
1542 // Okay, we finally have a value number. Ask the target to print this
1543 // operand!
1544 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1545 unsigned OpNo = 1;
1547 bool Error = false;
1549 // Scan to find the machine operand number for the operand.
1550 for (; Val; --Val) {
1551 if (OpNo >= MI->getNumOperands()) break;
1552 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1553 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1556 if (OpNo >= MI->getNumOperands()) {
1557 Error = true;
1558 } else {
1559 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1560 ++OpNo; // Skip over the ID number.
1562 if (Modifier[0]=='l') // labels are target independent
1563 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1564 false, false, false);
1565 else {
1566 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1567 if ((OpFlags & 7) == 4) {
1568 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1569 Modifier[0] ? Modifier : 0);
1570 } else {
1571 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1572 Modifier[0] ? Modifier : 0);
1576 if (Error) {
1577 std::string msg;
1578 raw_string_ostream Msg(msg);
1579 Msg << "Invalid operand found in inline asm: '"
1580 << AsmStr << "'\n";
1581 MI->print(Msg);
1582 llvm_report_error(Msg.str());
1585 break;
1589 O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
1592 /// printImplicitDef - This method prints the specified machine instruction
1593 /// that is an implicit def.
1594 void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1595 if (VerboseAsm) {
1596 O.PadToColumn(MAI->getCommentColumn());
1597 O << MAI->getCommentString() << " implicit-def: "
1598 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1602 /// printLabel - This method prints a local label used by debug and
1603 /// exception handling tables.
1604 void AsmPrinter::printLabel(const MachineInstr *MI) const {
1605 printLabel(MI->getOperand(0).getImm());
1608 void AsmPrinter::printLabel(unsigned Id) const {
1609 O << MAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1612 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1613 /// instruction, using the specified assembler variant. Targets should
1614 /// overried this to format as appropriate.
1615 bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1616 unsigned AsmVariant, const char *ExtraCode) {
1617 // Target doesn't support this yet!
1618 return true;
1621 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1622 unsigned AsmVariant,
1623 const char *ExtraCode) {
1624 // Target doesn't support this yet!
1625 return true;
1628 /// printBasicBlockLabel - This method prints the label for the specified
1629 /// MachineBasicBlock
1630 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1631 bool printAlign,
1632 bool printColon,
1633 bool printComment) const {
1634 if (printAlign) {
1635 unsigned Align = MBB->getAlignment();
1636 if (Align)
1637 EmitAlignment(Log2_32(Align));
1640 O << MAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1641 << MBB->getNumber();
1642 if (printColon)
1643 O << ':';
1644 if (printComment) {
1645 if (const BasicBlock *BB = MBB->getBasicBlock())
1646 if (BB->hasName()) {
1647 O.PadToColumn(MAI->getCommentColumn());
1648 O << MAI->getCommentString() << ' ';
1649 WriteAsOperand(O, BB, /*PrintType=*/false);
1652 if (printColon)
1653 EmitComments(*MBB);
1657 /// printPICJumpTableSetLabel - This method prints a set label for the
1658 /// specified MachineBasicBlock for a jumptable entry.
1659 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1660 const MachineBasicBlock *MBB) const {
1661 if (!MAI->getSetDirective())
1662 return;
1664 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1665 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1666 printBasicBlockLabel(MBB, false, false, false);
1667 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1668 << '_' << uid << '\n';
1671 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1672 const MachineBasicBlock *MBB) const {
1673 if (!MAI->getSetDirective())
1674 return;
1676 O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
1677 << getFunctionNumber() << '_' << uid << '_' << uid2
1678 << "_set_" << MBB->getNumber() << ',';
1679 printBasicBlockLabel(MBB, false, false, false);
1680 O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1681 << '_' << uid << '_' << uid2 << '\n';
1684 /// printDataDirective - This method prints the asm directive for the
1685 /// specified type.
1686 void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1687 const TargetData *TD = TM.getTargetData();
1688 switch (type->getTypeID()) {
1689 case Type::FloatTyID: case Type::DoubleTyID:
1690 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1691 assert(0 && "Should have already output floating point constant.");
1692 default:
1693 assert(0 && "Can't handle printing this type of thing");
1694 case Type::IntegerTyID: {
1695 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1696 if (BitWidth <= 8)
1697 O << MAI->getData8bitsDirective(AddrSpace);
1698 else if (BitWidth <= 16)
1699 O << MAI->getData16bitsDirective(AddrSpace);
1700 else if (BitWidth <= 32)
1701 O << MAI->getData32bitsDirective(AddrSpace);
1702 else if (BitWidth <= 64) {
1703 assert(MAI->getData64bitsDirective(AddrSpace) &&
1704 "Target cannot handle 64-bit constant exprs!");
1705 O << MAI->getData64bitsDirective(AddrSpace);
1706 } else {
1707 llvm_unreachable("Target cannot handle given data directive width!");
1709 break;
1711 case Type::PointerTyID:
1712 if (TD->getPointerSize() == 8) {
1713 assert(MAI->getData64bitsDirective(AddrSpace) &&
1714 "Target cannot handle 64-bit pointer exprs!");
1715 O << MAI->getData64bitsDirective(AddrSpace);
1716 } else if (TD->getPointerSize() == 2) {
1717 O << MAI->getData16bitsDirective(AddrSpace);
1718 } else if (TD->getPointerSize() == 1) {
1719 O << MAI->getData8bitsDirective(AddrSpace);
1720 } else {
1721 O << MAI->getData32bitsDirective(AddrSpace);
1723 break;
1727 void AsmPrinter::printVisibility(const std::string& Name,
1728 unsigned Visibility) const {
1729 if (Visibility == GlobalValue::HiddenVisibility) {
1730 if (const char *Directive = MAI->getHiddenDirective())
1731 O << Directive << Name << '\n';
1732 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1733 if (const char *Directive = MAI->getProtectedDirective())
1734 O << Directive << Name << '\n';
1738 void AsmPrinter::printOffset(int64_t Offset) const {
1739 if (Offset > 0)
1740 O << '+' << Offset;
1741 else if (Offset < 0)
1742 O << Offset;
1745 void AsmPrinter::printMCInst(const MCInst *MI) {
1746 llvm_unreachable("MCInst printing unavailable on this target!");
1749 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1750 if (!S->usesMetadata())
1751 return 0;
1753 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1754 if (GCPI != GCMetadataPrinters.end())
1755 return GCPI->second;
1757 const char *Name = S->getName().c_str();
1759 for (GCMetadataPrinterRegistry::iterator
1760 I = GCMetadataPrinterRegistry::begin(),
1761 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1762 if (strcmp(Name, I->getName()) == 0) {
1763 GCMetadataPrinter *GMP = I->instantiate();
1764 GMP->S = S;
1765 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1766 return GMP;
1769 errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1770 llvm_unreachable(0);
1773 /// EmitComments - Pretty-print comments for instructions
1774 void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1775 if (!VerboseAsm ||
1776 MI.getDebugLoc().isUnknown())
1777 return;
1779 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1781 // Print source line info.
1782 O.PadToColumn(MAI->getCommentColumn());
1783 O << MAI->getCommentString() << " SrcLine ";
1784 if (DLT.CompileUnit) {
1785 std::string Str;
1786 DICompileUnit CU(DLT.CompileUnit);
1787 O << CU.getFilename(Str) << " ";
1789 O << DLT.Line;
1790 if (DLT.Col != 0)
1791 O << ":" << DLT.Col;
1794 /// EmitComments - Pretty-print comments for instructions
1795 void AsmPrinter::EmitComments(const MCInst &MI) const {
1796 if (!VerboseAsm ||
1797 MI.getDebugLoc().isUnknown())
1798 return;
1800 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1802 // Print source line info
1803 O.PadToColumn(MAI->getCommentColumn());
1804 O << MAI->getCommentString() << " SrcLine ";
1805 if (DLT.CompileUnit) {
1806 std::string Str;
1807 DICompileUnit CU(DLT.CompileUnit);
1808 O << CU.getFilename(Str) << " ";
1810 O << DLT.Line;
1811 if (DLT.Col != 0)
1812 O << ":" << DLT.Col;
1815 /// PrintChildLoopComment - Print comments about child loops within
1816 /// the loop for this basic block, with nesting.
1818 static void PrintChildLoopComment(formatted_raw_ostream &O,
1819 const MachineLoop *loop,
1820 const MCAsmInfo *MAI,
1821 int FunctionNumber) {
1822 // Add child loop information
1823 for(MachineLoop::iterator cl = loop->begin(),
1824 clend = loop->end();
1825 cl != clend;
1826 ++cl) {
1827 MachineBasicBlock *Header = (*cl)->getHeader();
1828 assert(Header && "No header for loop");
1830 O << '\n';
1831 O.PadToColumn(MAI->getCommentColumn());
1833 O << MAI->getCommentString();
1834 O.indent(((*cl)->getLoopDepth()-1)*2)
1835 << " Child Loop BB" << FunctionNumber << "_"
1836 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1838 PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
1842 /// EmitComments - Pretty-print comments for basic blocks
1843 void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
1845 if (VerboseAsm) {
1846 // Add loop depth information
1847 const MachineLoop *loop = LI->getLoopFor(&MBB);
1849 if (loop) {
1850 // Print a newline after bb# annotation.
1851 O << "\n";
1852 O.PadToColumn(MAI->getCommentColumn());
1853 O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1854 << '\n';
1856 O.PadToColumn(MAI->getCommentColumn());
1858 MachineBasicBlock *Header = loop->getHeader();
1859 assert(Header && "No header for loop");
1861 if (Header == &MBB) {
1862 O << MAI->getCommentString() << " Loop Header";
1863 PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
1865 else {
1866 O << MAI->getCommentString() << " Loop Header is BB"
1867 << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1870 if (loop->empty()) {
1871 O << '\n';
1872 O.PadToColumn(MAI->getCommentColumn());
1873 O << MAI->getCommentString() << " Inner Loop";
1876 // Add parent loop information
1877 for (const MachineLoop *CurLoop = loop->getParentLoop();
1878 CurLoop;
1879 CurLoop = CurLoop->getParentLoop()) {
1880 MachineBasicBlock *Header = CurLoop->getHeader();
1881 assert(Header && "No header for loop");
1883 O << '\n';
1884 O.PadToColumn(MAI->getCommentColumn());
1885 O << MAI->getCommentString();
1886 O.indent((CurLoop->getLoopDepth()-1)*2)
1887 << " Inside Loop BB" << getFunctionNumber() << "_"
1888 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();