1 //===-- BranchFolding.cpp - Fold machine code branch instructions ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass forwards branches to unconditional branches to make them branch
11 // directly to the target block. This pass often results in dead MBB's, which
14 // Note that this pass must be run after register allocation, it cannot handle
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "branchfolding"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/RegisterScavenging.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
38 STATISTIC(NumDeadBlocks
, "Number of dead blocks removed");
39 STATISTIC(NumBranchOpts
, "Number of branches optimized");
40 STATISTIC(NumTailMerge
, "Number of block tails merged");
41 static cl::opt
<cl::boolOrDefault
> FlagEnableTailMerge("enable-tail-merge",
42 cl::init(cl::BOU_UNSET
), cl::Hidden
);
43 // Throttle for huge numbers of predecessors (compile speed problems)
44 static cl::opt
<unsigned>
45 TailMergeThreshold("tail-merge-threshold",
46 cl::desc("Max number of predecessors to consider tail merging"),
47 cl::init(150), cl::Hidden
);
50 struct VISIBILITY_HIDDEN BranchFolder
: public MachineFunctionPass
{
52 explicit BranchFolder(bool defaultEnableTailMerge
) :
53 MachineFunctionPass(&ID
) {
54 switch (FlagEnableTailMerge
) {
55 case cl::BOU_UNSET
: EnableTailMerge
= defaultEnableTailMerge
; break;
56 case cl::BOU_TRUE
: EnableTailMerge
= true; break;
57 case cl::BOU_FALSE
: EnableTailMerge
= false; break;
61 virtual bool runOnMachineFunction(MachineFunction
&MF
);
62 virtual const char *getPassName() const { return "Control Flow Optimizer"; }
63 const TargetInstrInfo
*TII
;
64 MachineModuleInfo
*MMI
;
69 bool TailMergeBlocks(MachineFunction
&MF
);
70 bool TryMergeBlocks(MachineBasicBlock
* SuccBB
,
71 MachineBasicBlock
* PredBB
);
72 void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
73 MachineBasicBlock
*NewDest
);
74 MachineBasicBlock
*SplitMBBAt(MachineBasicBlock
&CurMBB
,
75 MachineBasicBlock::iterator BBI1
);
76 unsigned ComputeSameTails(unsigned CurHash
, unsigned minCommonTailLength
);
77 void RemoveBlocksWithHash(unsigned CurHash
, MachineBasicBlock
* SuccBB
,
78 MachineBasicBlock
* PredBB
);
79 unsigned CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
80 unsigned maxCommonTailLength
);
82 typedef std::pair
<unsigned,MachineBasicBlock
*> MergePotentialsElt
;
83 typedef std::vector
<MergePotentialsElt
>::iterator MPIterator
;
84 std::vector
<MergePotentialsElt
> MergePotentials
;
86 typedef std::pair
<MPIterator
, MachineBasicBlock::iterator
> SameTailElt
;
87 std::vector
<SameTailElt
> SameTails
;
89 const TargetRegisterInfo
*RegInfo
;
92 bool OptimizeBranches(MachineFunction
&MF
);
93 void OptimizeBlock(MachineBasicBlock
*MBB
);
94 void RemoveDeadBlock(MachineBasicBlock
*MBB
);
95 bool OptimizeImpDefsBlock(MachineBasicBlock
*MBB
);
97 bool CanFallThrough(MachineBasicBlock
*CurBB
);
98 bool CanFallThrough(MachineBasicBlock
*CurBB
, bool BranchUnAnalyzable
,
99 MachineBasicBlock
*TBB
, MachineBasicBlock
*FBB
,
100 const SmallVectorImpl
<MachineOperand
> &Cond
);
102 char BranchFolder::ID
= 0;
105 FunctionPass
*llvm::createBranchFoldingPass(bool DefaultEnableTailMerge
) {
106 return new BranchFolder(DefaultEnableTailMerge
);
109 /// RemoveDeadBlock - Remove the specified dead machine basic block from the
110 /// function, updating the CFG.
111 void BranchFolder::RemoveDeadBlock(MachineBasicBlock
*MBB
) {
112 assert(MBB
->pred_empty() && "MBB must be dead!");
113 DEBUG(errs() << "\nRemoving MBB: " << *MBB
);
115 MachineFunction
*MF
= MBB
->getParent();
116 // drop all successors.
117 while (!MBB
->succ_empty())
118 MBB
->removeSuccessor(MBB
->succ_end()-1);
120 // If there are any labels in the basic block, unregister them from
121 // MachineModuleInfo.
122 if (MMI
&& !MBB
->empty()) {
123 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end();
126 // The label ID # is always operand #0, an immediate.
127 MMI
->InvalidateLabel(I
->getOperand(0).getImm());
135 /// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def
136 /// followed by terminators, and if the implicitly defined registers are not
137 /// used by the terminators, remove those implicit_def's. e.g.
139 /// r0 = implicit_def
140 /// r1 = implicit_def
142 /// This block can be optimized away later if the implicit instructions are
144 bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock
*MBB
) {
145 SmallSet
<unsigned, 4> ImpDefRegs
;
146 MachineBasicBlock::iterator I
= MBB
->begin();
147 while (I
!= MBB
->end()) {
148 if (I
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
)
150 unsigned Reg
= I
->getOperand(0).getReg();
151 ImpDefRegs
.insert(Reg
);
152 for (const unsigned *SubRegs
= RegInfo
->getSubRegisters(Reg
);
153 unsigned SubReg
= *SubRegs
; ++SubRegs
)
154 ImpDefRegs
.insert(SubReg
);
157 if (ImpDefRegs
.empty())
160 MachineBasicBlock::iterator FirstTerm
= I
;
161 while (I
!= MBB
->end()) {
162 if (!TII
->isUnpredicatedTerminator(I
))
164 // See if it uses any of the implicitly defined registers.
165 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
166 MachineOperand
&MO
= I
->getOperand(i
);
167 if (!MO
.isReg() || !MO
.isUse())
169 unsigned Reg
= MO
.getReg();
170 if (ImpDefRegs
.count(Reg
))
177 while (I
!= FirstTerm
) {
178 MachineInstr
*ImpDefMI
= &*I
;
180 MBB
->erase(ImpDefMI
);
186 bool BranchFolder::runOnMachineFunction(MachineFunction
&MF
) {
187 TII
= MF
.getTarget().getInstrInfo();
188 if (!TII
) return false;
190 RegInfo
= MF
.getTarget().getRegisterInfo();
192 // Fix CFG. The later algorithms expect it to be right.
193 bool EverMadeChange
= false;
194 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; I
++) {
195 MachineBasicBlock
*MBB
= I
, *TBB
= 0, *FBB
= 0;
196 SmallVector
<MachineOperand
, 4> Cond
;
197 if (!TII
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
, true))
198 EverMadeChange
|= MBB
->CorrectExtraCFGEdges(TBB
, FBB
, !Cond
.empty());
199 EverMadeChange
|= OptimizeImpDefsBlock(MBB
);
202 RS
= RegInfo
->requiresRegisterScavenging(MF
) ? new RegScavenger() : NULL
;
204 MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
206 bool MadeChangeThisIteration
= true;
207 while (MadeChangeThisIteration
) {
208 MadeChangeThisIteration
= false;
209 MadeChangeThisIteration
|= TailMergeBlocks(MF
);
210 MadeChangeThisIteration
|= OptimizeBranches(MF
);
211 EverMadeChange
|= MadeChangeThisIteration
;
214 // See if any jump tables have become mergable or dead as the code generator
216 MachineJumpTableInfo
*JTI
= MF
.getJumpTableInfo();
217 const std::vector
<MachineJumpTableEntry
> &JTs
= JTI
->getJumpTables();
219 // Figure out how these jump tables should be merged.
220 std::vector
<unsigned> JTMapping
;
221 JTMapping
.reserve(JTs
.size());
223 // We always keep the 0th jump table.
224 JTMapping
.push_back(0);
226 // Scan the jump tables, seeing if there are any duplicates. Note that this
227 // is N^2, which should be fixed someday.
228 for (unsigned i
= 1, e
= JTs
.size(); i
!= e
; ++i
)
229 JTMapping
.push_back(JTI
->getJumpTableIndex(JTs
[i
].MBBs
));
231 // If a jump table was merge with another one, walk the function rewriting
232 // references to jump tables to reference the new JT ID's. Keep track of
233 // whether we see a jump table idx, if not, we can delete the JT.
234 BitVector
JTIsLive(JTs
.size());
235 for (MachineFunction::iterator BB
= MF
.begin(), E
= MF
.end();
237 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end();
239 for (unsigned op
= 0, e
= I
->getNumOperands(); op
!= e
; ++op
) {
240 MachineOperand
&Op
= I
->getOperand(op
);
241 if (!Op
.isJTI()) continue;
242 unsigned NewIdx
= JTMapping
[Op
.getIndex()];
245 // Remember that this JT is live.
246 JTIsLive
.set(NewIdx
);
250 // Finally, remove dead jump tables. This happens either because the
251 // indirect jump was unreachable (and thus deleted) or because the jump
252 // table was merged with some other one.
253 for (unsigned i
= 0, e
= JTIsLive
.size(); i
!= e
; ++i
)
254 if (!JTIsLive
.test(i
)) {
255 JTI
->RemoveJumpTable(i
);
256 EverMadeChange
= true;
261 return EverMadeChange
;
264 //===----------------------------------------------------------------------===//
265 // Tail Merging of Blocks
266 //===----------------------------------------------------------------------===//
268 /// HashMachineInstr - Compute a hash value for MI and its operands.
269 static unsigned HashMachineInstr(const MachineInstr
*MI
) {
270 unsigned Hash
= MI
->getOpcode();
271 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
272 const MachineOperand
&Op
= MI
->getOperand(i
);
274 // Merge in bits from the operand if easy.
275 unsigned OperandHash
= 0;
276 switch (Op
.getType()) {
277 case MachineOperand::MO_Register
: OperandHash
= Op
.getReg(); break;
278 case MachineOperand::MO_Immediate
: OperandHash
= Op
.getImm(); break;
279 case MachineOperand::MO_MachineBasicBlock
:
280 OperandHash
= Op
.getMBB()->getNumber();
282 case MachineOperand::MO_FrameIndex
:
283 case MachineOperand::MO_ConstantPoolIndex
:
284 case MachineOperand::MO_JumpTableIndex
:
285 OperandHash
= Op
.getIndex();
287 case MachineOperand::MO_GlobalAddress
:
288 case MachineOperand::MO_ExternalSymbol
:
289 // Global address / external symbol are too hard, don't bother, but do
290 // pull in the offset.
291 OperandHash
= Op
.getOffset();
296 Hash
+= ((OperandHash
<< 3) | Op
.getType()) << (i
&31);
301 /// HashEndOfMBB - Hash the last few instructions in the MBB. For blocks
302 /// with no successors, we hash two instructions, because cross-jumping
303 /// only saves code when at least two instructions are removed (since a
304 /// branch must be inserted). For blocks with a successor, one of the
305 /// two blocks to be tail-merged will end with a branch already, so
306 /// it gains to cross-jump even for one instruction.
308 static unsigned HashEndOfMBB(const MachineBasicBlock
*MBB
,
309 unsigned minCommonTailLength
) {
310 MachineBasicBlock::const_iterator I
= MBB
->end();
311 if (I
== MBB
->begin())
312 return 0; // Empty MBB.
315 unsigned Hash
= HashMachineInstr(I
);
317 if (I
== MBB
->begin() || minCommonTailLength
== 1)
318 return Hash
; // Single instr MBB.
321 // Hash in the second-to-last instruction.
322 Hash
^= HashMachineInstr(I
) << 2;
326 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
327 /// of instructions they actually have in common together at their end. Return
328 /// iterators for the first shared instruction in each block.
329 static unsigned ComputeCommonTailLength(MachineBasicBlock
*MBB1
,
330 MachineBasicBlock
*MBB2
,
331 MachineBasicBlock::iterator
&I1
,
332 MachineBasicBlock::iterator
&I2
) {
336 unsigned TailLen
= 0;
337 while (I1
!= MBB1
->begin() && I2
!= MBB2
->begin()) {
339 if (!I1
->isIdenticalTo(I2
) ||
340 // FIXME: This check is dubious. It's used to get around a problem where
341 // people incorrectly expect inline asm directives to remain in the same
342 // relative order. This is untenable because normal compiler
343 // optimizations (like this one) may reorder and/or merge these
345 I1
->getOpcode() == TargetInstrInfo::INLINEASM
) {
354 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
355 /// after it, replacing it with an unconditional branch to NewDest. This
356 /// returns true if OldInst's block is modified, false if NewDest is modified.
357 void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
358 MachineBasicBlock
*NewDest
) {
359 MachineBasicBlock
*OldBB
= OldInst
->getParent();
361 // Remove all the old successors of OldBB from the CFG.
362 while (!OldBB
->succ_empty())
363 OldBB
->removeSuccessor(OldBB
->succ_begin());
365 // Remove all the dead instructions from the end of OldBB.
366 OldBB
->erase(OldInst
, OldBB
->end());
368 // If OldBB isn't immediately before OldBB, insert a branch to it.
369 if (++MachineFunction::iterator(OldBB
) != MachineFunction::iterator(NewDest
))
370 TII
->InsertBranch(*OldBB
, NewDest
, 0, SmallVector
<MachineOperand
, 0>());
371 OldBB
->addSuccessor(NewDest
);
375 /// SplitMBBAt - Given a machine basic block and an iterator into it, split the
376 /// MBB so that the part before the iterator falls into the part starting at the
377 /// iterator. This returns the new MBB.
378 MachineBasicBlock
*BranchFolder::SplitMBBAt(MachineBasicBlock
&CurMBB
,
379 MachineBasicBlock::iterator BBI1
) {
380 MachineFunction
&MF
= *CurMBB
.getParent();
382 // Create the fall-through block.
383 MachineFunction::iterator MBBI
= &CurMBB
;
384 MachineBasicBlock
*NewMBB
=MF
.CreateMachineBasicBlock(CurMBB
.getBasicBlock());
385 CurMBB
.getParent()->insert(++MBBI
, NewMBB
);
387 // Move all the successors of this block to the specified block.
388 NewMBB
->transferSuccessors(&CurMBB
);
390 // Add an edge from CurMBB to NewMBB for the fall-through.
391 CurMBB
.addSuccessor(NewMBB
);
393 // Splice the code over.
394 NewMBB
->splice(NewMBB
->end(), &CurMBB
, BBI1
, CurMBB
.end());
396 // For targets that use the register scavenger, we must maintain LiveIns.
398 RS
->enterBasicBlock(&CurMBB
);
400 RS
->forward(prior(CurMBB
.end()));
401 BitVector
RegsLiveAtExit(RegInfo
->getNumRegs());
402 RS
->getRegsUsed(RegsLiveAtExit
, false);
403 for (unsigned int i
=0, e
=RegInfo
->getNumRegs(); i
!=e
; i
++)
404 if (RegsLiveAtExit
[i
])
405 NewMBB
->addLiveIn(i
);
411 /// EstimateRuntime - Make a rough estimate for how long it will take to run
412 /// the specified code.
413 static unsigned EstimateRuntime(MachineBasicBlock::iterator I
,
414 MachineBasicBlock::iterator E
) {
416 for (; I
!= E
; ++I
) {
417 const TargetInstrDesc
&TID
= I
->getDesc();
420 else if (TID
.mayLoad() || TID
.mayStore())
428 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
429 // branches temporarily for tail merging). In the case where CurMBB ends
430 // with a conditional branch to the next block, optimize by reversing the
431 // test and conditionally branching to SuccMBB instead.
433 static void FixTail(MachineBasicBlock
* CurMBB
, MachineBasicBlock
*SuccBB
,
434 const TargetInstrInfo
*TII
) {
435 MachineFunction
*MF
= CurMBB
->getParent();
436 MachineFunction::iterator I
= next(MachineFunction::iterator(CurMBB
));
437 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
438 SmallVector
<MachineOperand
, 4> Cond
;
439 if (I
!= MF
->end() &&
440 !TII
->AnalyzeBranch(*CurMBB
, TBB
, FBB
, Cond
, true)) {
441 MachineBasicBlock
*NextBB
= I
;
442 if (TBB
== NextBB
&& !Cond
.empty() && !FBB
) {
443 if (!TII
->ReverseBranchCondition(Cond
)) {
444 TII
->RemoveBranch(*CurMBB
);
445 TII
->InsertBranch(*CurMBB
, SuccBB
, NULL
, Cond
);
450 TII
->InsertBranch(*CurMBB
, SuccBB
, NULL
, SmallVector
<MachineOperand
, 0>());
453 static bool MergeCompare(const std::pair
<unsigned,MachineBasicBlock
*> &p
,
454 const std::pair
<unsigned,MachineBasicBlock
*> &q
) {
455 if (p
.first
< q
.first
)
457 else if (p
.first
> q
.first
)
459 else if (p
.second
->getNumber() < q
.second
->getNumber())
461 else if (p
.second
->getNumber() > q
.second
->getNumber())
464 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
465 // an object with itself.
466 #ifndef _GLIBCXX_DEBUG
467 llvm_unreachable("Predecessor appears twice");
473 /// ComputeSameTails - Look through all the blocks in MergePotentials that have
474 /// hash CurHash (guaranteed to match the last element). Build the vector
475 /// SameTails of all those that have the (same) largest number of instructions
476 /// in common of any pair of these blocks. SameTails entries contain an
477 /// iterator into MergePotentials (from which the MachineBasicBlock can be
478 /// found) and a MachineBasicBlock::iterator into that MBB indicating the
479 /// instruction where the matching code sequence begins.
480 /// Order of elements in SameTails is the reverse of the order in which
481 /// those blocks appear in MergePotentials (where they are not necessarily
483 unsigned BranchFolder::ComputeSameTails(unsigned CurHash
,
484 unsigned minCommonTailLength
) {
485 unsigned maxCommonTailLength
= 0U;
487 MachineBasicBlock::iterator TrialBBI1
, TrialBBI2
;
488 MPIterator HighestMPIter
= prior(MergePotentials
.end());
489 for (MPIterator CurMPIter
= prior(MergePotentials
.end()),
490 B
= MergePotentials
.begin();
491 CurMPIter
!=B
&& CurMPIter
->first
==CurHash
;
493 for (MPIterator I
= prior(CurMPIter
); I
->first
==CurHash
; --I
) {
494 unsigned CommonTailLen
= ComputeCommonTailLength(
497 TrialBBI1
, TrialBBI2
);
498 // If we will have to split a block, there should be at least
499 // minCommonTailLength instructions in common; if not, at worst
500 // we will be replacing a fallthrough into the common tail with a
501 // branch, which at worst breaks even with falling through into
502 // the duplicated common tail, so 1 instruction in common is enough.
503 // We will always pick a block we do not have to split as the common
504 // tail if there is one.
505 // (Empty blocks will get forwarded and need not be considered.)
506 if (CommonTailLen
>= minCommonTailLength
||
507 (CommonTailLen
> 0 &&
508 (TrialBBI1
==CurMPIter
->second
->begin() ||
509 TrialBBI2
==I
->second
->begin()))) {
510 if (CommonTailLen
> maxCommonTailLength
) {
512 maxCommonTailLength
= CommonTailLen
;
513 HighestMPIter
= CurMPIter
;
514 SameTails
.push_back(std::make_pair(CurMPIter
, TrialBBI1
));
516 if (HighestMPIter
== CurMPIter
&&
517 CommonTailLen
== maxCommonTailLength
)
518 SameTails
.push_back(std::make_pair(I
, TrialBBI2
));
524 return maxCommonTailLength
;
527 /// RemoveBlocksWithHash - Remove all blocks with hash CurHash from
528 /// MergePotentials, restoring branches at ends of blocks as appropriate.
529 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash
,
530 MachineBasicBlock
* SuccBB
,
531 MachineBasicBlock
* PredBB
) {
532 MPIterator CurMPIter
, B
;
533 for (CurMPIter
= prior(MergePotentials
.end()), B
= MergePotentials
.begin();
534 CurMPIter
->first
==CurHash
;
536 // Put the unconditional branch back, if we need one.
537 MachineBasicBlock
*CurMBB
= CurMPIter
->second
;
538 if (SuccBB
&& CurMBB
!= PredBB
)
539 FixTail(CurMBB
, SuccBB
, TII
);
543 if (CurMPIter
->first
!=CurHash
)
545 MergePotentials
.erase(CurMPIter
, MergePotentials
.end());
548 /// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist
549 /// only of the common tail. Create a block that does by splitting one.
550 unsigned BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
551 unsigned maxCommonTailLength
) {
552 unsigned i
, commonTailIndex
;
553 unsigned TimeEstimate
= ~0U;
554 for (i
=0, commonTailIndex
=0; i
<SameTails
.size(); i
++) {
555 // Use PredBB if possible; that doesn't require a new branch.
556 if (SameTails
[i
].first
->second
==PredBB
) {
560 // Otherwise, make a (fairly bogus) choice based on estimate of
561 // how long it will take the various blocks to execute.
562 unsigned t
= EstimateRuntime(SameTails
[i
].first
->second
->begin(),
563 SameTails
[i
].second
);
564 if (t
<=TimeEstimate
) {
570 MachineBasicBlock::iterator BBI
= SameTails
[commonTailIndex
].second
;
571 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].first
->second
;
573 DEBUG(errs() << "\nSplitting " << MBB
->getNumber() << ", size "
574 << maxCommonTailLength
);
576 MachineBasicBlock
*newMBB
= SplitMBBAt(*MBB
, BBI
);
577 SameTails
[commonTailIndex
].first
->second
= newMBB
;
578 SameTails
[commonTailIndex
].second
= newMBB
->begin();
579 // If we split PredBB, newMBB is the new predecessor.
583 return commonTailIndex
;
586 // See if any of the blocks in MergePotentials (which all have a common single
587 // successor, or all have no successor) can be tail-merged. If there is a
588 // successor, any blocks in MergePotentials that are not tail-merged and
589 // are not immediately before Succ must have an unconditional branch to
590 // Succ added (but the predecessor/successor lists need no adjustment).
591 // The lone predecessor of Succ that falls through into Succ,
592 // if any, is given in PredBB.
594 bool BranchFolder::TryMergeBlocks(MachineBasicBlock
*SuccBB
,
595 MachineBasicBlock
* PredBB
) {
596 // It doesn't make sense to save a single instruction since tail merging
598 // FIXME: Ask the target to provide the threshold?
599 unsigned minCommonTailLength
= (SuccBB
? 1 : 2) + 1;
602 DEBUG(errs() << "\nTryMergeBlocks " << MergePotentials
.size() << '\n');
604 // Sort by hash value so that blocks with identical end sequences sort
606 std::stable_sort(MergePotentials
.begin(), MergePotentials
.end(),MergeCompare
);
608 // Walk through equivalence sets looking for actual exact matches.
609 while (MergePotentials
.size() > 1) {
610 unsigned CurHash
= prior(MergePotentials
.end())->first
;
612 // Build SameTails, identifying the set of blocks with this hash code
613 // and with the maximum number of instructions in common.
614 unsigned maxCommonTailLength
= ComputeSameTails(CurHash
,
615 minCommonTailLength
);
617 // If we didn't find any pair that has at least minCommonTailLength
618 // instructions in common, remove all blocks with this hash code and retry.
619 if (SameTails
.empty()) {
620 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
624 // If one of the blocks is the entire common tail (and not the entry
625 // block, which we can't jump to), we can treat all blocks with this same
626 // tail at once. Use PredBB if that is one of the possibilities, as that
627 // will not introduce any extra branches.
628 MachineBasicBlock
*EntryBB
= MergePotentials
.begin()->second
->
629 getParent()->begin();
630 unsigned int commonTailIndex
, i
;
631 for (commonTailIndex
=SameTails
.size(), i
=0; i
<SameTails
.size(); i
++) {
632 MachineBasicBlock
*MBB
= SameTails
[i
].first
->second
;
633 if (MBB
->begin() == SameTails
[i
].second
&& MBB
!= EntryBB
) {
640 if (commonTailIndex
==SameTails
.size()) {
641 // None of the blocks consist entirely of the common tail.
642 // Split a block so that one does.
643 commonTailIndex
= CreateCommonTailOnlyBlock(PredBB
, maxCommonTailLength
);
646 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].first
->second
;
647 // MBB is common tail. Adjust all other BB's to jump to this one.
648 // Traversal must be forwards so erases work.
649 DEBUG(errs() << "\nUsing common tail " << MBB
->getNumber() << " for ");
650 for (unsigned int i
=0; i
<SameTails
.size(); ++i
) {
651 if (commonTailIndex
==i
)
653 DEBUG(errs() << SameTails
[i
].first
->second
->getNumber() << ",");
654 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
655 ReplaceTailWithBranchTo(SameTails
[i
].second
, MBB
);
656 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
657 MergePotentials
.erase(SameTails
[i
].first
);
659 DEBUG(errs() << "\n");
660 // We leave commonTailIndex in the worklist in case there are other blocks
661 // that match it with a smaller number of instructions.
667 bool BranchFolder::TailMergeBlocks(MachineFunction
&MF
) {
669 if (!EnableTailMerge
) return false;
673 // First find blocks with no successors.
674 MergePotentials
.clear();
675 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
) {
677 MergePotentials
.push_back(std::make_pair(HashEndOfMBB(I
, 2U), I
));
679 // See if we can do any tail merging on those.
680 if (MergePotentials
.size() < TailMergeThreshold
&&
681 MergePotentials
.size() >= 2)
682 MadeChange
|= TryMergeBlocks(NULL
, NULL
);
684 // Look at blocks (IBB) with multiple predecessors (PBB).
685 // We change each predecessor to a canonical form, by
686 // (1) temporarily removing any unconditional branch from the predecessor
688 // (2) alter conditional branches so they branch to the other block
689 // not IBB; this may require adding back an unconditional branch to IBB
690 // later, where there wasn't one coming in. E.g.
692 // fallthrough to QBB
695 // with a conceptual B to IBB after that, which never actually exists.
696 // With those changes, we see whether the predecessors' tails match,
697 // and merge them if so. We change things out of canonical form and
698 // back to the way they were later in the process. (OptimizeBranches
699 // would undo some of this, but we can't use it, because we'd get into
700 // a compile-time infinite loop repeatedly doing and undoing the same
703 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
) {
704 if (I
->pred_size() >= 2 && I
->pred_size() < TailMergeThreshold
) {
705 SmallPtrSet
<MachineBasicBlock
*, 8> UniquePreds
;
706 MachineBasicBlock
*IBB
= I
;
707 MachineBasicBlock
*PredBB
= prior(I
);
708 MergePotentials
.clear();
709 for (MachineBasicBlock::pred_iterator P
= I
->pred_begin(),
712 MachineBasicBlock
* PBB
= *P
;
713 // Skip blocks that loop to themselves, can't tail merge these.
716 // Visit each predecessor only once.
717 if (!UniquePreds
.insert(PBB
))
719 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
720 SmallVector
<MachineOperand
, 4> Cond
;
721 if (!TII
->AnalyzeBranch(*PBB
, TBB
, FBB
, Cond
, true)) {
722 // Failing case: IBB is the target of a cbr, and
723 // we cannot reverse the branch.
724 SmallVector
<MachineOperand
, 4> NewCond(Cond
);
725 if (!Cond
.empty() && TBB
==IBB
) {
726 if (TII
->ReverseBranchCondition(NewCond
))
728 // This is the QBB case described above
730 FBB
= next(MachineFunction::iterator(PBB
));
732 // Failing case: the only way IBB can be reached from PBB is via
733 // exception handling. Happens for landing pads. Would be nice
734 // to have a bit in the edge so we didn't have to do all this.
735 if (IBB
->isLandingPad()) {
736 MachineFunction::iterator IP
= PBB
; IP
++;
737 MachineBasicBlock
* PredNextBB
= NULL
;
741 if (IBB
!=PredNextBB
) // fallthrough
744 if (TBB
!=IBB
&& FBB
!=IBB
) // cbr then ubr
746 } else if (Cond
.empty()) {
750 if (TBB
!=IBB
&& IBB
!=PredNextBB
) // cbr
754 // Remove the unconditional branch at the end, if any.
755 if (TBB
&& (Cond
.empty() || FBB
)) {
756 TII
->RemoveBranch(*PBB
);
758 // reinsert conditional branch only, for now
759 TII
->InsertBranch(*PBB
, (TBB
==IBB
) ? FBB
: TBB
, 0, NewCond
);
761 MergePotentials
.push_back(std::make_pair(HashEndOfMBB(PBB
, 1U), *P
));
764 if (MergePotentials
.size() >= 2)
765 MadeChange
|= TryMergeBlocks(I
, PredBB
);
766 // Reinsert an unconditional branch if needed.
767 // The 1 below can occur as a result of removing blocks in TryMergeBlocks.
768 PredBB
= prior(I
); // this may have been changed in TryMergeBlocks
769 if (MergePotentials
.size()==1 &&
770 MergePotentials
.begin()->second
!= PredBB
)
771 FixTail(MergePotentials
.begin()->second
, I
, TII
);
777 //===----------------------------------------------------------------------===//
778 // Branch Optimization
779 //===----------------------------------------------------------------------===//
781 bool BranchFolder::OptimizeBranches(MachineFunction
&MF
) {
784 // Make sure blocks are numbered in order
787 for (MachineFunction::iterator I
= ++MF
.begin(), E
= MF
.end(); I
!= E
; ) {
788 MachineBasicBlock
*MBB
= I
++;
791 // If it is dead, remove it.
792 if (MBB
->pred_empty()) {
793 RemoveDeadBlock(MBB
);
802 /// CanFallThrough - Return true if the specified block (with the specified
803 /// branch condition) can implicitly transfer control to the block after it by
804 /// falling off the end of it. This should return false if it can reach the
805 /// block after it, but it uses an explicit branch to do so (e.g. a table jump).
807 /// True is a conservative answer.
809 bool BranchFolder::CanFallThrough(MachineBasicBlock
*CurBB
,
810 bool BranchUnAnalyzable
,
811 MachineBasicBlock
*TBB
,
812 MachineBasicBlock
*FBB
,
813 const SmallVectorImpl
<MachineOperand
> &Cond
) {
814 MachineFunction::iterator Fallthrough
= CurBB
;
816 // If FallthroughBlock is off the end of the function, it can't fall through.
817 if (Fallthrough
== CurBB
->getParent()->end())
820 // If FallthroughBlock isn't a successor of CurBB, no fallthrough is possible.
821 if (!CurBB
->isSuccessor(Fallthrough
))
824 // If we couldn't analyze the branch, assume it could fall through.
825 if (BranchUnAnalyzable
) return true;
827 // If there is no branch, control always falls through.
828 if (TBB
== 0) return true;
830 // If there is some explicit branch to the fallthrough block, it can obviously
831 // reach, even though the branch should get folded to fall through implicitly.
832 if (MachineFunction::iterator(TBB
) == Fallthrough
||
833 MachineFunction::iterator(FBB
) == Fallthrough
)
836 // If it's an unconditional branch to some block not the fall through, it
837 // doesn't fall through.
838 if (Cond
.empty()) return false;
840 // Otherwise, if it is conditional and has no explicit false block, it falls
845 /// CanFallThrough - Return true if the specified can implicitly transfer
846 /// control to the block after it by falling off the end of it. This should
847 /// return false if it can reach the block after it, but it uses an explicit
848 /// branch to do so (e.g. a table jump).
850 /// True is a conservative answer.
852 bool BranchFolder::CanFallThrough(MachineBasicBlock
*CurBB
) {
853 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
854 SmallVector
<MachineOperand
, 4> Cond
;
855 bool CurUnAnalyzable
= TII
->AnalyzeBranch(*CurBB
, TBB
, FBB
, Cond
, true);
856 return CanFallThrough(CurBB
, CurUnAnalyzable
, TBB
, FBB
, Cond
);
859 /// IsBetterFallthrough - Return true if it would be clearly better to
860 /// fall-through to MBB1 than to fall through into MBB2. This has to return
861 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
862 /// result in infinite loops.
863 static bool IsBetterFallthrough(MachineBasicBlock
*MBB1
,
864 MachineBasicBlock
*MBB2
) {
865 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
866 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
867 // optimize branches that branch to either a return block or an assert block
868 // into a fallthrough to the return.
869 if (MBB1
->empty() || MBB2
->empty()) return false;
871 // If there is a clear successor ordering we make sure that one block
872 // will fall through to the next
873 if (MBB1
->isSuccessor(MBB2
)) return true;
874 if (MBB2
->isSuccessor(MBB1
)) return false;
876 MachineInstr
*MBB1I
= --MBB1
->end();
877 MachineInstr
*MBB2I
= --MBB2
->end();
878 return MBB2I
->getDesc().isCall() && !MBB1I
->getDesc().isCall();
881 /// OptimizeBlock - Analyze and optimize control flow related to the specified
882 /// block. This is never called on the entry block.
883 void BranchFolder::OptimizeBlock(MachineBasicBlock
*MBB
) {
884 MachineFunction::iterator FallThrough
= MBB
;
887 // If this block is empty, make everyone use its fall-through, not the block
888 // explicitly. Landing pads should not do this since the landing-pad table
889 // points to this block.
890 if (MBB
->empty() && !MBB
->isLandingPad()) {
891 // Dead block? Leave for cleanup later.
892 if (MBB
->pred_empty()) return;
894 if (FallThrough
== MBB
->getParent()->end()) {
895 // TODO: Simplify preds to not branch here if possible!
897 // Rewrite all predecessors of the old block to go to the fallthrough
899 while (!MBB
->pred_empty()) {
900 MachineBasicBlock
*Pred
= *(MBB
->pred_end()-1);
901 Pred
->ReplaceUsesOfBlockWith(MBB
, FallThrough
);
903 // If MBB was the target of a jump table, update jump tables to go to the
904 // fallthrough instead.
905 MBB
->getParent()->getJumpTableInfo()->
906 ReplaceMBBInJumpTables(MBB
, FallThrough
);
912 // Check to see if we can simplify the terminator of the block before this
914 MachineBasicBlock
&PrevBB
= *prior(MachineFunction::iterator(MBB
));
916 MachineBasicBlock
*PriorTBB
= 0, *PriorFBB
= 0;
917 SmallVector
<MachineOperand
, 4> PriorCond
;
918 bool PriorUnAnalyzable
=
919 TII
->AnalyzeBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, true);
920 if (!PriorUnAnalyzable
) {
921 // If the CFG for the prior block has extra edges, remove them.
922 MadeChange
|= PrevBB
.CorrectExtraCFGEdges(PriorTBB
, PriorFBB
,
925 // If the previous branch is conditional and both conditions go to the same
926 // destination, remove the branch, replacing it with an unconditional one or
928 if (PriorTBB
&& PriorTBB
== PriorFBB
) {
929 TII
->RemoveBranch(PrevBB
);
932 TII
->InsertBranch(PrevBB
, PriorTBB
, 0, PriorCond
);
935 return OptimizeBlock(MBB
);
938 // If the previous branch *only* branches to *this* block (conditional or
939 // not) remove the branch.
940 if (PriorTBB
== MBB
&& PriorFBB
== 0) {
941 TII
->RemoveBranch(PrevBB
);
944 return OptimizeBlock(MBB
);
947 // If the prior block branches somewhere else on the condition and here if
948 // the condition is false, remove the uncond second branch.
949 if (PriorFBB
== MBB
) {
950 TII
->RemoveBranch(PrevBB
);
951 TII
->InsertBranch(PrevBB
, PriorTBB
, 0, PriorCond
);
954 return OptimizeBlock(MBB
);
957 // If the prior block branches here on true and somewhere else on false, and
958 // if the branch condition is reversible, reverse the branch to create a
960 if (PriorTBB
== MBB
) {
961 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
962 if (!TII
->ReverseBranchCondition(NewPriorCond
)) {
963 TII
->RemoveBranch(PrevBB
);
964 TII
->InsertBranch(PrevBB
, PriorFBB
, 0, NewPriorCond
);
967 return OptimizeBlock(MBB
);
971 // If this block doesn't fall through (e.g. it ends with an uncond branch or
972 // has no successors) and if the pred falls through into this block, and if
973 // it would otherwise fall through into the block after this, move this
974 // block to the end of the function.
976 // We consider it more likely that execution will stay in the function (e.g.
977 // due to loops) than it is to exit it. This asserts in loops etc, moving
978 // the assert condition out of the loop body.
979 if (!PriorCond
.empty() && PriorFBB
== 0 &&
980 MachineFunction::iterator(PriorTBB
) == FallThrough
&&
981 !CanFallThrough(MBB
)) {
982 bool DoTransform
= true;
984 // We have to be careful that the succs of PredBB aren't both no-successor
985 // blocks. If neither have successors and if PredBB is the second from
986 // last block in the function, we'd just keep swapping the two blocks for
987 // last. Only do the swap if one is clearly better to fall through than
989 if (FallThrough
== --MBB
->getParent()->end() &&
990 !IsBetterFallthrough(PriorTBB
, MBB
))
993 // We don't want to do this transformation if we have control flow like:
1002 // In this case, we could actually be moving the return block *into* a
1004 if (DoTransform
&& !MBB
->succ_empty() &&
1005 (!CanFallThrough(PriorTBB
) || PriorTBB
->empty()))
1006 DoTransform
= false;
1010 // Reverse the branch so we will fall through on the previous true cond.
1011 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1012 if (!TII
->ReverseBranchCondition(NewPriorCond
)) {
1013 DEBUG(errs() << "\nMoving MBB: " << *MBB
1014 << "To make fallthrough to: " << *PriorTBB
<< "\n");
1016 TII
->RemoveBranch(PrevBB
);
1017 TII
->InsertBranch(PrevBB
, MBB
, 0, NewPriorCond
);
1019 // Move this block to the end of the function.
1020 MBB
->moveAfter(--MBB
->getParent()->end());
1029 // Analyze the branch in the current block.
1030 MachineBasicBlock
*CurTBB
= 0, *CurFBB
= 0;
1031 SmallVector
<MachineOperand
, 4> CurCond
;
1032 bool CurUnAnalyzable
= TII
->AnalyzeBranch(*MBB
, CurTBB
, CurFBB
, CurCond
, true);
1033 if (!CurUnAnalyzable
) {
1034 // If the CFG for the prior block has extra edges, remove them.
1035 MadeChange
|= MBB
->CorrectExtraCFGEdges(CurTBB
, CurFBB
, !CurCond
.empty());
1037 // If this is a two-way branch, and the FBB branches to this block, reverse
1038 // the condition so the single-basic-block loop is faster. Instead of:
1039 // Loop: xxx; jcc Out; jmp Loop
1041 // Loop: xxx; jncc Loop; jmp Out
1042 if (CurTBB
&& CurFBB
&& CurFBB
== MBB
&& CurTBB
!= MBB
) {
1043 SmallVector
<MachineOperand
, 4> NewCond(CurCond
);
1044 if (!TII
->ReverseBranchCondition(NewCond
)) {
1045 TII
->RemoveBranch(*MBB
);
1046 TII
->InsertBranch(*MBB
, CurFBB
, CurTBB
, NewCond
);
1049 return OptimizeBlock(MBB
);
1054 // If this branch is the only thing in its block, see if we can forward
1055 // other blocks across it.
1056 if (CurTBB
&& CurCond
.empty() && CurFBB
== 0 &&
1057 MBB
->begin()->getDesc().isBranch() && CurTBB
!= MBB
) {
1058 // This block may contain just an unconditional branch. Because there can
1059 // be 'non-branch terminators' in the block, try removing the branch and
1060 // then seeing if the block is empty.
1061 TII
->RemoveBranch(*MBB
);
1063 // If this block is just an unconditional branch to CurTBB, we can
1064 // usually completely eliminate the block. The only case we cannot
1065 // completely eliminate the block is when the block before this one
1066 // falls through into MBB and we can't understand the prior block's branch
1069 bool PredHasNoFallThrough
= TII
->BlockHasNoFallThrough(PrevBB
);
1070 if (PredHasNoFallThrough
|| !PriorUnAnalyzable
||
1071 !PrevBB
.isSuccessor(MBB
)) {
1072 // If the prior block falls through into us, turn it into an
1073 // explicit branch to us to make updates simpler.
1074 if (!PredHasNoFallThrough
&& PrevBB
.isSuccessor(MBB
) &&
1075 PriorTBB
!= MBB
&& PriorFBB
!= MBB
) {
1076 if (PriorTBB
== 0) {
1077 assert(PriorCond
.empty() && PriorFBB
== 0 &&
1078 "Bad branch analysis");
1081 assert(PriorFBB
== 0 && "Machine CFG out of date!");
1084 TII
->RemoveBranch(PrevBB
);
1085 TII
->InsertBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
);
1088 // Iterate through all the predecessors, revectoring each in-turn.
1090 bool DidChange
= false;
1091 bool HasBranchToSelf
= false;
1092 while(PI
!= MBB
->pred_size()) {
1093 MachineBasicBlock
*PMBB
= *(MBB
->pred_begin() + PI
);
1095 // If this block has an uncond branch to itself, leave it.
1097 HasBranchToSelf
= true;
1100 PMBB
->ReplaceUsesOfBlockWith(MBB
, CurTBB
);
1101 // If this change resulted in PMBB ending in a conditional
1102 // branch where both conditions go to the same destination,
1103 // change this to an unconditional branch (and fix the CFG).
1104 MachineBasicBlock
*NewCurTBB
= 0, *NewCurFBB
= 0;
1105 SmallVector
<MachineOperand
, 4> NewCurCond
;
1106 bool NewCurUnAnalyzable
= TII
->AnalyzeBranch(*PMBB
, NewCurTBB
,
1107 NewCurFBB
, NewCurCond
, true);
1108 if (!NewCurUnAnalyzable
&& NewCurTBB
&& NewCurTBB
== NewCurFBB
) {
1109 TII
->RemoveBranch(*PMBB
);
1111 TII
->InsertBranch(*PMBB
, NewCurTBB
, 0, NewCurCond
);
1114 PMBB
->CorrectExtraCFGEdges(NewCurTBB
, NewCurFBB
, false);
1119 // Change any jumptables to go to the new MBB.
1120 MBB
->getParent()->getJumpTableInfo()->
1121 ReplaceMBBInJumpTables(MBB
, CurTBB
);
1125 if (!HasBranchToSelf
) return;
1130 // Add the branch back if the block is more than just an uncond branch.
1131 TII
->InsertBranch(*MBB
, CurTBB
, 0, CurCond
);
1135 // If the prior block doesn't fall through into this block, and if this
1136 // block doesn't fall through into some other block, see if we can find a
1137 // place to move this block where a fall-through will happen.
1138 if (!CanFallThrough(&PrevBB
, PriorUnAnalyzable
,
1139 PriorTBB
, PriorFBB
, PriorCond
)) {
1140 // Now we know that there was no fall-through into this block, check to
1141 // see if it has a fall-through into its successor.
1142 bool CurFallsThru
= CanFallThrough(MBB
, CurUnAnalyzable
, CurTBB
, CurFBB
,
1145 if (!MBB
->isLandingPad()) {
1146 // Check all the predecessors of this block. If one of them has no fall
1147 // throughs, move this block right after it.
1148 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
1149 E
= MBB
->pred_end(); PI
!= E
; ++PI
) {
1150 // Analyze the branch at the end of the pred.
1151 MachineBasicBlock
*PredBB
= *PI
;
1152 MachineFunction::iterator PredFallthrough
= PredBB
; ++PredFallthrough
;
1153 if (PredBB
!= MBB
&& !CanFallThrough(PredBB
)
1154 && (!CurFallsThru
|| !CurTBB
|| !CurFBB
)
1155 && (!CurFallsThru
|| MBB
->getNumber() >= PredBB
->getNumber())) {
1156 // If the current block doesn't fall through, just move it.
1157 // If the current block can fall through and does not end with a
1158 // conditional branch, we need to append an unconditional jump to
1159 // the (current) next block. To avoid a possible compile-time
1160 // infinite loop, move blocks only backward in this case.
1161 // Also, if there are already 2 branches here, we cannot add a third;
1162 // this means we have the case
1167 MachineBasicBlock
*NextBB
= next(MachineFunction::iterator(MBB
));
1169 TII
->InsertBranch(*MBB
, NextBB
, 0, CurCond
);
1171 MBB
->moveAfter(PredBB
);
1173 return OptimizeBlock(MBB
);
1178 if (!CurFallsThru
) {
1179 // Check all successors to see if we can move this block before it.
1180 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
1181 E
= MBB
->succ_end(); SI
!= E
; ++SI
) {
1182 // Analyze the branch at the end of the block before the succ.
1183 MachineBasicBlock
*SuccBB
= *SI
;
1184 MachineFunction::iterator SuccPrev
= SuccBB
; --SuccPrev
;
1185 std::vector
<MachineOperand
> SuccPrevCond
;
1187 // If this block doesn't already fall-through to that successor, and if
1188 // the succ doesn't already have a block that can fall through into it,
1189 // and if the successor isn't an EH destination, we can arrange for the
1190 // fallthrough to happen.
1191 if (SuccBB
!= MBB
&& !CanFallThrough(SuccPrev
) &&
1192 !SuccBB
->isLandingPad()) {
1193 MBB
->moveBefore(SuccBB
);
1195 return OptimizeBlock(MBB
);
1199 // Okay, there is no really great place to put this block. If, however,
1200 // the block before this one would be a fall-through if this block were
1201 // removed, move this block to the end of the function.
1202 if (FallThrough
!= MBB
->getParent()->end() &&
1203 PrevBB
.isSuccessor(FallThrough
)) {
1204 MBB
->moveAfter(--MBB
->getParent()->end());