1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Target/TargetLoweringObjectFile.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtarget.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
32 TLSModel::Model
getTLSModel(const GlobalValue
*GV
, Reloc::Model reloc
) {
33 bool isLocal
= GV
->hasLocalLinkage();
34 bool isDeclaration
= GV
->isDeclaration();
35 // FIXME: what should we do for protected and internal visibility?
36 // For variables, is internal different from hidden?
37 bool isHidden
= GV
->hasHiddenVisibility();
39 if (reloc
== Reloc::PIC_
) {
40 if (isLocal
|| isHidden
)
41 return TLSModel::LocalDynamic
;
43 return TLSModel::GeneralDynamic
;
45 if (!isDeclaration
|| isHidden
)
46 return TLSModel::LocalExec
;
48 return TLSModel::InitialExec
;
53 /// InitLibcallNames - Set default libcall names.
55 static void InitLibcallNames(const char **Names
) {
56 Names
[RTLIB::SHL_I16
] = "__ashlhi3";
57 Names
[RTLIB::SHL_I32
] = "__ashlsi3";
58 Names
[RTLIB::SHL_I64
] = "__ashldi3";
59 Names
[RTLIB::SHL_I128
] = "__ashlti3";
60 Names
[RTLIB::SRL_I16
] = "__lshrhi3";
61 Names
[RTLIB::SRL_I32
] = "__lshrsi3";
62 Names
[RTLIB::SRL_I64
] = "__lshrdi3";
63 Names
[RTLIB::SRL_I128
] = "__lshrti3";
64 Names
[RTLIB::SRA_I16
] = "__ashrhi3";
65 Names
[RTLIB::SRA_I32
] = "__ashrsi3";
66 Names
[RTLIB::SRA_I64
] = "__ashrdi3";
67 Names
[RTLIB::SRA_I128
] = "__ashrti3";
68 Names
[RTLIB::MUL_I16
] = "__mulhi3";
69 Names
[RTLIB::MUL_I32
] = "__mulsi3";
70 Names
[RTLIB::MUL_I64
] = "__muldi3";
71 Names
[RTLIB::MUL_I128
] = "__multi3";
72 Names
[RTLIB::SDIV_I16
] = "__divhi3";
73 Names
[RTLIB::SDIV_I32
] = "__divsi3";
74 Names
[RTLIB::SDIV_I64
] = "__divdi3";
75 Names
[RTLIB::SDIV_I128
] = "__divti3";
76 Names
[RTLIB::UDIV_I16
] = "__udivhi3";
77 Names
[RTLIB::UDIV_I32
] = "__udivsi3";
78 Names
[RTLIB::UDIV_I64
] = "__udivdi3";
79 Names
[RTLIB::UDIV_I128
] = "__udivti3";
80 Names
[RTLIB::SREM_I16
] = "__modhi3";
81 Names
[RTLIB::SREM_I32
] = "__modsi3";
82 Names
[RTLIB::SREM_I64
] = "__moddi3";
83 Names
[RTLIB::SREM_I128
] = "__modti3";
84 Names
[RTLIB::UREM_I16
] = "__umodhi3";
85 Names
[RTLIB::UREM_I32
] = "__umodsi3";
86 Names
[RTLIB::UREM_I64
] = "__umoddi3";
87 Names
[RTLIB::UREM_I128
] = "__umodti3";
88 Names
[RTLIB::NEG_I32
] = "__negsi2";
89 Names
[RTLIB::NEG_I64
] = "__negdi2";
90 Names
[RTLIB::ADD_F32
] = "__addsf3";
91 Names
[RTLIB::ADD_F64
] = "__adddf3";
92 Names
[RTLIB::ADD_F80
] = "__addxf3";
93 Names
[RTLIB::ADD_PPCF128
] = "__gcc_qadd";
94 Names
[RTLIB::SUB_F32
] = "__subsf3";
95 Names
[RTLIB::SUB_F64
] = "__subdf3";
96 Names
[RTLIB::SUB_F80
] = "__subxf3";
97 Names
[RTLIB::SUB_PPCF128
] = "__gcc_qsub";
98 Names
[RTLIB::MUL_F32
] = "__mulsf3";
99 Names
[RTLIB::MUL_F64
] = "__muldf3";
100 Names
[RTLIB::MUL_F80
] = "__mulxf3";
101 Names
[RTLIB::MUL_PPCF128
] = "__gcc_qmul";
102 Names
[RTLIB::DIV_F32
] = "__divsf3";
103 Names
[RTLIB::DIV_F64
] = "__divdf3";
104 Names
[RTLIB::DIV_F80
] = "__divxf3";
105 Names
[RTLIB::DIV_PPCF128
] = "__gcc_qdiv";
106 Names
[RTLIB::REM_F32
] = "fmodf";
107 Names
[RTLIB::REM_F64
] = "fmod";
108 Names
[RTLIB::REM_F80
] = "fmodl";
109 Names
[RTLIB::REM_PPCF128
] = "fmodl";
110 Names
[RTLIB::POWI_F32
] = "__powisf2";
111 Names
[RTLIB::POWI_F64
] = "__powidf2";
112 Names
[RTLIB::POWI_F80
] = "__powixf2";
113 Names
[RTLIB::POWI_PPCF128
] = "__powitf2";
114 Names
[RTLIB::SQRT_F32
] = "sqrtf";
115 Names
[RTLIB::SQRT_F64
] = "sqrt";
116 Names
[RTLIB::SQRT_F80
] = "sqrtl";
117 Names
[RTLIB::SQRT_PPCF128
] = "sqrtl";
118 Names
[RTLIB::LOG_F32
] = "logf";
119 Names
[RTLIB::LOG_F64
] = "log";
120 Names
[RTLIB::LOG_F80
] = "logl";
121 Names
[RTLIB::LOG_PPCF128
] = "logl";
122 Names
[RTLIB::LOG2_F32
] = "log2f";
123 Names
[RTLIB::LOG2_F64
] = "log2";
124 Names
[RTLIB::LOG2_F80
] = "log2l";
125 Names
[RTLIB::LOG2_PPCF128
] = "log2l";
126 Names
[RTLIB::LOG10_F32
] = "log10f";
127 Names
[RTLIB::LOG10_F64
] = "log10";
128 Names
[RTLIB::LOG10_F80
] = "log10l";
129 Names
[RTLIB::LOG10_PPCF128
] = "log10l";
130 Names
[RTLIB::EXP_F32
] = "expf";
131 Names
[RTLIB::EXP_F64
] = "exp";
132 Names
[RTLIB::EXP_F80
] = "expl";
133 Names
[RTLIB::EXP_PPCF128
] = "expl";
134 Names
[RTLIB::EXP2_F32
] = "exp2f";
135 Names
[RTLIB::EXP2_F64
] = "exp2";
136 Names
[RTLIB::EXP2_F80
] = "exp2l";
137 Names
[RTLIB::EXP2_PPCF128
] = "exp2l";
138 Names
[RTLIB::SIN_F32
] = "sinf";
139 Names
[RTLIB::SIN_F64
] = "sin";
140 Names
[RTLIB::SIN_F80
] = "sinl";
141 Names
[RTLIB::SIN_PPCF128
] = "sinl";
142 Names
[RTLIB::COS_F32
] = "cosf";
143 Names
[RTLIB::COS_F64
] = "cos";
144 Names
[RTLIB::COS_F80
] = "cosl";
145 Names
[RTLIB::COS_PPCF128
] = "cosl";
146 Names
[RTLIB::POW_F32
] = "powf";
147 Names
[RTLIB::POW_F64
] = "pow";
148 Names
[RTLIB::POW_F80
] = "powl";
149 Names
[RTLIB::POW_PPCF128
] = "powl";
150 Names
[RTLIB::CEIL_F32
] = "ceilf";
151 Names
[RTLIB::CEIL_F64
] = "ceil";
152 Names
[RTLIB::CEIL_F80
] = "ceill";
153 Names
[RTLIB::CEIL_PPCF128
] = "ceill";
154 Names
[RTLIB::TRUNC_F32
] = "truncf";
155 Names
[RTLIB::TRUNC_F64
] = "trunc";
156 Names
[RTLIB::TRUNC_F80
] = "truncl";
157 Names
[RTLIB::TRUNC_PPCF128
] = "truncl";
158 Names
[RTLIB::RINT_F32
] = "rintf";
159 Names
[RTLIB::RINT_F64
] = "rint";
160 Names
[RTLIB::RINT_F80
] = "rintl";
161 Names
[RTLIB::RINT_PPCF128
] = "rintl";
162 Names
[RTLIB::NEARBYINT_F32
] = "nearbyintf";
163 Names
[RTLIB::NEARBYINT_F64
] = "nearbyint";
164 Names
[RTLIB::NEARBYINT_F80
] = "nearbyintl";
165 Names
[RTLIB::NEARBYINT_PPCF128
] = "nearbyintl";
166 Names
[RTLIB::FLOOR_F32
] = "floorf";
167 Names
[RTLIB::FLOOR_F64
] = "floor";
168 Names
[RTLIB::FLOOR_F80
] = "floorl";
169 Names
[RTLIB::FLOOR_PPCF128
] = "floorl";
170 Names
[RTLIB::FPEXT_F32_F64
] = "__extendsfdf2";
171 Names
[RTLIB::FPROUND_F64_F32
] = "__truncdfsf2";
172 Names
[RTLIB::FPROUND_F80_F32
] = "__truncxfsf2";
173 Names
[RTLIB::FPROUND_PPCF128_F32
] = "__trunctfsf2";
174 Names
[RTLIB::FPROUND_F80_F64
] = "__truncxfdf2";
175 Names
[RTLIB::FPROUND_PPCF128_F64
] = "__trunctfdf2";
176 Names
[RTLIB::FPTOSINT_F32_I8
] = "__fixsfi8";
177 Names
[RTLIB::FPTOSINT_F32_I16
] = "__fixsfi16";
178 Names
[RTLIB::FPTOSINT_F32_I32
] = "__fixsfsi";
179 Names
[RTLIB::FPTOSINT_F32_I64
] = "__fixsfdi";
180 Names
[RTLIB::FPTOSINT_F32_I128
] = "__fixsfti";
181 Names
[RTLIB::FPTOSINT_F64_I32
] = "__fixdfsi";
182 Names
[RTLIB::FPTOSINT_F64_I64
] = "__fixdfdi";
183 Names
[RTLIB::FPTOSINT_F64_I128
] = "__fixdfti";
184 Names
[RTLIB::FPTOSINT_F80_I32
] = "__fixxfsi";
185 Names
[RTLIB::FPTOSINT_F80_I64
] = "__fixxfdi";
186 Names
[RTLIB::FPTOSINT_F80_I128
] = "__fixxfti";
187 Names
[RTLIB::FPTOSINT_PPCF128_I32
] = "__fixtfsi";
188 Names
[RTLIB::FPTOSINT_PPCF128_I64
] = "__fixtfdi";
189 Names
[RTLIB::FPTOSINT_PPCF128_I128
] = "__fixtfti";
190 Names
[RTLIB::FPTOUINT_F32_I8
] = "__fixunssfi8";
191 Names
[RTLIB::FPTOUINT_F32_I16
] = "__fixunssfi16";
192 Names
[RTLIB::FPTOUINT_F32_I32
] = "__fixunssfsi";
193 Names
[RTLIB::FPTOUINT_F32_I64
] = "__fixunssfdi";
194 Names
[RTLIB::FPTOUINT_F32_I128
] = "__fixunssfti";
195 Names
[RTLIB::FPTOUINT_F64_I32
] = "__fixunsdfsi";
196 Names
[RTLIB::FPTOUINT_F64_I64
] = "__fixunsdfdi";
197 Names
[RTLIB::FPTOUINT_F64_I128
] = "__fixunsdfti";
198 Names
[RTLIB::FPTOUINT_F80_I32
] = "__fixunsxfsi";
199 Names
[RTLIB::FPTOUINT_F80_I64
] = "__fixunsxfdi";
200 Names
[RTLIB::FPTOUINT_F80_I128
] = "__fixunsxfti";
201 Names
[RTLIB::FPTOUINT_PPCF128_I32
] = "__fixunstfsi";
202 Names
[RTLIB::FPTOUINT_PPCF128_I64
] = "__fixunstfdi";
203 Names
[RTLIB::FPTOUINT_PPCF128_I128
] = "__fixunstfti";
204 Names
[RTLIB::SINTTOFP_I32_F32
] = "__floatsisf";
205 Names
[RTLIB::SINTTOFP_I32_F64
] = "__floatsidf";
206 Names
[RTLIB::SINTTOFP_I32_F80
] = "__floatsixf";
207 Names
[RTLIB::SINTTOFP_I32_PPCF128
] = "__floatsitf";
208 Names
[RTLIB::SINTTOFP_I64_F32
] = "__floatdisf";
209 Names
[RTLIB::SINTTOFP_I64_F64
] = "__floatdidf";
210 Names
[RTLIB::SINTTOFP_I64_F80
] = "__floatdixf";
211 Names
[RTLIB::SINTTOFP_I64_PPCF128
] = "__floatditf";
212 Names
[RTLIB::SINTTOFP_I128_F32
] = "__floattisf";
213 Names
[RTLIB::SINTTOFP_I128_F64
] = "__floattidf";
214 Names
[RTLIB::SINTTOFP_I128_F80
] = "__floattixf";
215 Names
[RTLIB::SINTTOFP_I128_PPCF128
] = "__floattitf";
216 Names
[RTLIB::UINTTOFP_I32_F32
] = "__floatunsisf";
217 Names
[RTLIB::UINTTOFP_I32_F64
] = "__floatunsidf";
218 Names
[RTLIB::UINTTOFP_I32_F80
] = "__floatunsixf";
219 Names
[RTLIB::UINTTOFP_I32_PPCF128
] = "__floatunsitf";
220 Names
[RTLIB::UINTTOFP_I64_F32
] = "__floatundisf";
221 Names
[RTLIB::UINTTOFP_I64_F64
] = "__floatundidf";
222 Names
[RTLIB::UINTTOFP_I64_F80
] = "__floatundixf";
223 Names
[RTLIB::UINTTOFP_I64_PPCF128
] = "__floatunditf";
224 Names
[RTLIB::UINTTOFP_I128_F32
] = "__floatuntisf";
225 Names
[RTLIB::UINTTOFP_I128_F64
] = "__floatuntidf";
226 Names
[RTLIB::UINTTOFP_I128_F80
] = "__floatuntixf";
227 Names
[RTLIB::UINTTOFP_I128_PPCF128
] = "__floatuntitf";
228 Names
[RTLIB::OEQ_F32
] = "__eqsf2";
229 Names
[RTLIB::OEQ_F64
] = "__eqdf2";
230 Names
[RTLIB::UNE_F32
] = "__nesf2";
231 Names
[RTLIB::UNE_F64
] = "__nedf2";
232 Names
[RTLIB::OGE_F32
] = "__gesf2";
233 Names
[RTLIB::OGE_F64
] = "__gedf2";
234 Names
[RTLIB::OLT_F32
] = "__ltsf2";
235 Names
[RTLIB::OLT_F64
] = "__ltdf2";
236 Names
[RTLIB::OLE_F32
] = "__lesf2";
237 Names
[RTLIB::OLE_F64
] = "__ledf2";
238 Names
[RTLIB::OGT_F32
] = "__gtsf2";
239 Names
[RTLIB::OGT_F64
] = "__gtdf2";
240 Names
[RTLIB::UO_F32
] = "__unordsf2";
241 Names
[RTLIB::UO_F64
] = "__unorddf2";
242 Names
[RTLIB::O_F32
] = "__unordsf2";
243 Names
[RTLIB::O_F64
] = "__unorddf2";
244 Names
[RTLIB::MEMCPY
] = "memcpy";
245 Names
[RTLIB::MEMMOVE
] = "memmove";
246 Names
[RTLIB::MEMSET
] = "memset";
247 Names
[RTLIB::UNWIND_RESUME
] = "_Unwind_Resume";
250 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
252 static void InitLibcallCallingConvs(CallingConv::ID
*CCs
) {
253 for (int i
= 0; i
< RTLIB::UNKNOWN_LIBCALL
; ++i
) {
254 CCs
[i
] = CallingConv::C
;
258 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
259 /// UNKNOWN_LIBCALL if there is none.
260 RTLIB::Libcall
RTLIB::getFPEXT(EVT OpVT
, EVT RetVT
) {
261 if (OpVT
== MVT::f32
) {
262 if (RetVT
== MVT::f64
)
263 return FPEXT_F32_F64
;
265 return UNKNOWN_LIBCALL
;
268 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
269 /// UNKNOWN_LIBCALL if there is none.
270 RTLIB::Libcall
RTLIB::getFPROUND(EVT OpVT
, EVT RetVT
) {
271 if (RetVT
== MVT::f32
) {
272 if (OpVT
== MVT::f64
)
273 return FPROUND_F64_F32
;
274 if (OpVT
== MVT::f80
)
275 return FPROUND_F80_F32
;
276 if (OpVT
== MVT::ppcf128
)
277 return FPROUND_PPCF128_F32
;
278 } else if (RetVT
== MVT::f64
) {
279 if (OpVT
== MVT::f80
)
280 return FPROUND_F80_F64
;
281 if (OpVT
== MVT::ppcf128
)
282 return FPROUND_PPCF128_F64
;
284 return UNKNOWN_LIBCALL
;
287 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
288 /// UNKNOWN_LIBCALL if there is none.
289 RTLIB::Libcall
RTLIB::getFPTOSINT(EVT OpVT
, EVT RetVT
) {
290 if (OpVT
== MVT::f32
) {
291 if (RetVT
== MVT::i8
)
292 return FPTOSINT_F32_I8
;
293 if (RetVT
== MVT::i16
)
294 return FPTOSINT_F32_I16
;
295 if (RetVT
== MVT::i32
)
296 return FPTOSINT_F32_I32
;
297 if (RetVT
== MVT::i64
)
298 return FPTOSINT_F32_I64
;
299 if (RetVT
== MVT::i128
)
300 return FPTOSINT_F32_I128
;
301 } else if (OpVT
== MVT::f64
) {
302 if (RetVT
== MVT::i32
)
303 return FPTOSINT_F64_I32
;
304 if (RetVT
== MVT::i64
)
305 return FPTOSINT_F64_I64
;
306 if (RetVT
== MVT::i128
)
307 return FPTOSINT_F64_I128
;
308 } else if (OpVT
== MVT::f80
) {
309 if (RetVT
== MVT::i32
)
310 return FPTOSINT_F80_I32
;
311 if (RetVT
== MVT::i64
)
312 return FPTOSINT_F80_I64
;
313 if (RetVT
== MVT::i128
)
314 return FPTOSINT_F80_I128
;
315 } else if (OpVT
== MVT::ppcf128
) {
316 if (RetVT
== MVT::i32
)
317 return FPTOSINT_PPCF128_I32
;
318 if (RetVT
== MVT::i64
)
319 return FPTOSINT_PPCF128_I64
;
320 if (RetVT
== MVT::i128
)
321 return FPTOSINT_PPCF128_I128
;
323 return UNKNOWN_LIBCALL
;
326 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
327 /// UNKNOWN_LIBCALL if there is none.
328 RTLIB::Libcall
RTLIB::getFPTOUINT(EVT OpVT
, EVT RetVT
) {
329 if (OpVT
== MVT::f32
) {
330 if (RetVT
== MVT::i8
)
331 return FPTOUINT_F32_I8
;
332 if (RetVT
== MVT::i16
)
333 return FPTOUINT_F32_I16
;
334 if (RetVT
== MVT::i32
)
335 return FPTOUINT_F32_I32
;
336 if (RetVT
== MVT::i64
)
337 return FPTOUINT_F32_I64
;
338 if (RetVT
== MVT::i128
)
339 return FPTOUINT_F32_I128
;
340 } else if (OpVT
== MVT::f64
) {
341 if (RetVT
== MVT::i32
)
342 return FPTOUINT_F64_I32
;
343 if (RetVT
== MVT::i64
)
344 return FPTOUINT_F64_I64
;
345 if (RetVT
== MVT::i128
)
346 return FPTOUINT_F64_I128
;
347 } else if (OpVT
== MVT::f80
) {
348 if (RetVT
== MVT::i32
)
349 return FPTOUINT_F80_I32
;
350 if (RetVT
== MVT::i64
)
351 return FPTOUINT_F80_I64
;
352 if (RetVT
== MVT::i128
)
353 return FPTOUINT_F80_I128
;
354 } else if (OpVT
== MVT::ppcf128
) {
355 if (RetVT
== MVT::i32
)
356 return FPTOUINT_PPCF128_I32
;
357 if (RetVT
== MVT::i64
)
358 return FPTOUINT_PPCF128_I64
;
359 if (RetVT
== MVT::i128
)
360 return FPTOUINT_PPCF128_I128
;
362 return UNKNOWN_LIBCALL
;
365 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall
RTLIB::getSINTTOFP(EVT OpVT
, EVT RetVT
) {
368 if (OpVT
== MVT::i32
) {
369 if (RetVT
== MVT::f32
)
370 return SINTTOFP_I32_F32
;
371 else if (RetVT
== MVT::f64
)
372 return SINTTOFP_I32_F64
;
373 else if (RetVT
== MVT::f80
)
374 return SINTTOFP_I32_F80
;
375 else if (RetVT
== MVT::ppcf128
)
376 return SINTTOFP_I32_PPCF128
;
377 } else if (OpVT
== MVT::i64
) {
378 if (RetVT
== MVT::f32
)
379 return SINTTOFP_I64_F32
;
380 else if (RetVT
== MVT::f64
)
381 return SINTTOFP_I64_F64
;
382 else if (RetVT
== MVT::f80
)
383 return SINTTOFP_I64_F80
;
384 else if (RetVT
== MVT::ppcf128
)
385 return SINTTOFP_I64_PPCF128
;
386 } else if (OpVT
== MVT::i128
) {
387 if (RetVT
== MVT::f32
)
388 return SINTTOFP_I128_F32
;
389 else if (RetVT
== MVT::f64
)
390 return SINTTOFP_I128_F64
;
391 else if (RetVT
== MVT::f80
)
392 return SINTTOFP_I128_F80
;
393 else if (RetVT
== MVT::ppcf128
)
394 return SINTTOFP_I128_PPCF128
;
396 return UNKNOWN_LIBCALL
;
399 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
400 /// UNKNOWN_LIBCALL if there is none.
401 RTLIB::Libcall
RTLIB::getUINTTOFP(EVT OpVT
, EVT RetVT
) {
402 if (OpVT
== MVT::i32
) {
403 if (RetVT
== MVT::f32
)
404 return UINTTOFP_I32_F32
;
405 else if (RetVT
== MVT::f64
)
406 return UINTTOFP_I32_F64
;
407 else if (RetVT
== MVT::f80
)
408 return UINTTOFP_I32_F80
;
409 else if (RetVT
== MVT::ppcf128
)
410 return UINTTOFP_I32_PPCF128
;
411 } else if (OpVT
== MVT::i64
) {
412 if (RetVT
== MVT::f32
)
413 return UINTTOFP_I64_F32
;
414 else if (RetVT
== MVT::f64
)
415 return UINTTOFP_I64_F64
;
416 else if (RetVT
== MVT::f80
)
417 return UINTTOFP_I64_F80
;
418 else if (RetVT
== MVT::ppcf128
)
419 return UINTTOFP_I64_PPCF128
;
420 } else if (OpVT
== MVT::i128
) {
421 if (RetVT
== MVT::f32
)
422 return UINTTOFP_I128_F32
;
423 else if (RetVT
== MVT::f64
)
424 return UINTTOFP_I128_F64
;
425 else if (RetVT
== MVT::f80
)
426 return UINTTOFP_I128_F80
;
427 else if (RetVT
== MVT::ppcf128
)
428 return UINTTOFP_I128_PPCF128
;
430 return UNKNOWN_LIBCALL
;
433 /// InitCmpLibcallCCs - Set default comparison libcall CC.
435 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
436 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
437 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
438 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
439 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
440 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
441 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
442 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
443 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
444 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
445 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
446 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
447 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
448 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
449 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
450 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
451 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
452 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
455 /// NOTE: The constructor takes ownership of TLOF.
456 TargetLowering::TargetLowering(TargetMachine
&tm
,TargetLoweringObjectFile
*tlof
)
457 : TM(tm
), TD(TM
.getTargetData()), TLOF(*tlof
) {
458 // All operations default to being supported.
459 memset(OpActions
, 0, sizeof(OpActions
));
460 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
461 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
462 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
463 memset(ConvertActions
, 0, sizeof(ConvertActions
));
464 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
466 // Set default actions for various operations.
467 for (unsigned VT
= 0; VT
!= (unsigned)MVT::LAST_VALUETYPE
; ++VT
) {
468 // Default all indexed load / store to expand.
469 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
470 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
471 setIndexedLoadAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
472 setIndexedStoreAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
475 // These operations default to expand.
476 setOperationAction(ISD::FGETSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
477 setOperationAction(ISD::CONCAT_VECTORS
, (MVT::SimpleValueType
)VT
, Expand
);
480 // Most targets ignore the @llvm.prefetch intrinsic.
481 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
483 // ConstantFP nodes default to expand. Targets can either change this to
484 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
485 // to optimize expansions for certain constants.
486 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
487 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
488 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
490 // These library functions default to expand.
491 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
492 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
493 setOperationAction(ISD::FLOG10
,MVT::f64
, Expand
);
494 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
495 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
496 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
497 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
498 setOperationAction(ISD::FLOG10
,MVT::f32
, Expand
);
499 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
500 setOperationAction(ISD::FEXP2
, MVT::f32
, Expand
);
502 // Default ISD::TRAP to expand (which turns it into abort).
503 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
505 IsLittleEndian
= TD
->isLittleEndian();
506 UsesGlobalOffsetTable
= false;
507 ShiftAmountTy
= PointerTy
= MVT::getIntegerVT(8*TD
->getPointerSize());
508 memset(RegClassForVT
, 0,MVT::LAST_VALUETYPE
*sizeof(TargetRegisterClass
*));
509 memset(TargetDAGCombineArray
, 0, array_lengthof(TargetDAGCombineArray
));
510 maxStoresPerMemset
= maxStoresPerMemcpy
= maxStoresPerMemmove
= 8;
511 benefitFromCodePlacementOpt
= false;
512 UseUnderscoreSetJmp
= false;
513 UseUnderscoreLongJmp
= false;
514 SelectIsExpensive
= false;
515 IntDivIsCheap
= false;
516 Pow2DivIsCheap
= false;
517 StackPointerRegisterToSaveRestore
= 0;
518 ExceptionPointerRegister
= 0;
519 ExceptionSelectorRegister
= 0;
520 BooleanContents
= UndefinedBooleanContent
;
521 SchedPreferenceInfo
= SchedulingForLatency
;
523 JumpBufAlignment
= 0;
524 IfCvtBlockSizeLimit
= 2;
525 IfCvtDupBlockSizeLimit
= 0;
526 PrefLoopAlignment
= 0;
528 InitLibcallNames(LibcallRoutineNames
);
529 InitCmpLibcallCCs(CmpLibcallCCs
);
530 InitLibcallCallingConvs(LibcallCallingConvs
);
532 // Tell Legalize whether the assembler supports DEBUG_LOC.
533 const MCAsmInfo
*TASM
= TM
.getMCAsmInfo();
534 if (!TASM
|| !TASM
->hasDotLocAndDotFile())
535 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
538 TargetLowering::~TargetLowering() {
542 static unsigned getVectorTypeBreakdownMVT(MVT VT
, MVT
&IntermediateVT
,
543 unsigned &NumIntermediates
,
545 TargetLowering
* TLI
) {
546 // Figure out the right, legal destination reg to copy into.
547 unsigned NumElts
= VT
.getVectorNumElements();
548 MVT EltTy
= VT
.getVectorElementType();
550 unsigned NumVectorRegs
= 1;
552 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
553 // could break down into LHS/RHS like LegalizeDAG does.
554 if (!isPowerOf2_32(NumElts
)) {
555 NumVectorRegs
= NumElts
;
559 // Divide the input until we get to a supported size. This will always
560 // end with a scalar if the target doesn't support vectors.
561 while (NumElts
> 1 && !TLI
->isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
566 NumIntermediates
= NumVectorRegs
;
568 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
569 if (!TLI
->isTypeLegal(NewVT
))
571 IntermediateVT
= NewVT
;
573 EVT DestVT
= TLI
->getRegisterType(NewVT
);
575 if (EVT(DestVT
).bitsLT(NewVT
)) {
576 // Value is expanded, e.g. i64 -> i16.
577 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
579 // Otherwise, promotion or legal types use the same number of registers as
580 // the vector decimated to the appropriate level.
581 return NumVectorRegs
;
587 /// computeRegisterProperties - Once all of the register classes are added,
588 /// this allows us to compute derived properties we expose.
589 void TargetLowering::computeRegisterProperties() {
590 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
591 "Too many value types for ValueTypeActions to hold!");
593 // Everything defaults to needing one register.
594 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
595 NumRegistersForVT
[i
] = 1;
596 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
598 // ...except isVoid, which doesn't need any registers.
599 NumRegistersForVT
[MVT::isVoid
] = 0;
601 // Find the largest integer register class.
602 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
603 for (; RegClassForVT
[LargestIntReg
] == 0; --LargestIntReg
)
604 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
606 // Every integer value type larger than this largest register takes twice as
607 // many registers to represent as the previous ValueType.
608 for (unsigned ExpandedReg
= LargestIntReg
+ 1; ; ++ExpandedReg
) {
609 EVT EVT
= (MVT::SimpleValueType
)ExpandedReg
;
610 if (!EVT
.isInteger())
612 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
613 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
614 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
615 ValueTypeActions
.setTypeAction(EVT
, Expand
);
618 // Inspect all of the ValueType's smaller than the largest integer
619 // register to see which ones need promotion.
620 unsigned LegalIntReg
= LargestIntReg
;
621 for (unsigned IntReg
= LargestIntReg
- 1;
622 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
623 EVT IVT
= (MVT::SimpleValueType
)IntReg
;
624 if (isTypeLegal(IVT
)) {
625 LegalIntReg
= IntReg
;
627 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
628 (MVT::SimpleValueType
)LegalIntReg
;
629 ValueTypeActions
.setTypeAction(IVT
, Promote
);
633 // ppcf128 type is really two f64's.
634 if (!isTypeLegal(MVT::ppcf128
)) {
635 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
636 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
637 TransformToType
[MVT::ppcf128
] = MVT::f64
;
638 ValueTypeActions
.setTypeAction(MVT::ppcf128
, Expand
);
641 // Decide how to handle f64. If the target does not have native f64 support,
642 // expand it to i64 and we will be generating soft float library calls.
643 if (!isTypeLegal(MVT::f64
)) {
644 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
645 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
646 TransformToType
[MVT::f64
] = MVT::i64
;
647 ValueTypeActions
.setTypeAction(MVT::f64
, Expand
);
650 // Decide how to handle f32. If the target does not have native support for
651 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
652 if (!isTypeLegal(MVT::f32
)) {
653 if (isTypeLegal(MVT::f64
)) {
654 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::f64
];
655 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::f64
];
656 TransformToType
[MVT::f32
] = MVT::f64
;
657 ValueTypeActions
.setTypeAction(MVT::f32
, Promote
);
659 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
660 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
661 TransformToType
[MVT::f32
] = MVT::i32
;
662 ValueTypeActions
.setTypeAction(MVT::f32
, Expand
);
666 // Loop over all of the vector value types to see which need transformations.
667 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
668 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
669 MVT VT
= (MVT::SimpleValueType
)i
;
670 if (!isTypeLegal(VT
)) {
673 unsigned NumIntermediates
;
674 NumRegistersForVT
[i
] =
675 getVectorTypeBreakdownMVT(VT
, IntermediateVT
, NumIntermediates
,
677 RegisterTypeForVT
[i
] = RegisterVT
;
679 // Determine if there is a legal wider type.
680 bool IsLegalWiderType
= false;
681 EVT EltVT
= VT
.getVectorElementType();
682 unsigned NElts
= VT
.getVectorNumElements();
683 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
684 EVT SVT
= (MVT::SimpleValueType
)nVT
;
685 if (isTypeLegal(SVT
) && SVT
.getVectorElementType() == EltVT
&&
686 SVT
.getVectorNumElements() > NElts
) {
687 TransformToType
[i
] = SVT
;
688 ValueTypeActions
.setTypeAction(VT
, Promote
);
689 IsLegalWiderType
= true;
693 if (!IsLegalWiderType
) {
694 EVT NVT
= VT
.getPow2VectorType();
696 // Type is already a power of 2. The default action is to split.
697 TransformToType
[i
] = MVT::Other
;
698 ValueTypeActions
.setTypeAction(VT
, Expand
);
700 TransformToType
[i
] = NVT
;
701 ValueTypeActions
.setTypeAction(VT
, Promote
);
708 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
713 MVT::SimpleValueType
TargetLowering::getSetCCResultType(EVT VT
) const {
714 return PointerTy
.SimpleTy
;
717 /// getVectorTypeBreakdown - Vector types are broken down into some number of
718 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
719 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
720 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
722 /// This method returns the number of registers needed, and the VT for each
723 /// register. It also returns the VT and quantity of the intermediate values
724 /// before they are promoted/expanded.
726 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
728 unsigned &NumIntermediates
,
729 EVT
&RegisterVT
) const {
730 // Figure out the right, legal destination reg to copy into.
731 unsigned NumElts
= VT
.getVectorNumElements();
732 EVT EltTy
= VT
.getVectorElementType();
734 unsigned NumVectorRegs
= 1;
736 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
737 // could break down into LHS/RHS like LegalizeDAG does.
738 if (!isPowerOf2_32(NumElts
)) {
739 NumVectorRegs
= NumElts
;
743 // Divide the input until we get to a supported size. This will always
744 // end with a scalar if the target doesn't support vectors.
745 while (NumElts
> 1 && !isTypeLegal(
746 EVT::getVectorVT(Context
, EltTy
, NumElts
))) {
751 NumIntermediates
= NumVectorRegs
;
753 EVT NewVT
= EVT::getVectorVT(Context
, EltTy
, NumElts
);
754 if (!isTypeLegal(NewVT
))
756 IntermediateVT
= NewVT
;
758 EVT DestVT
= getRegisterType(Context
, NewVT
);
760 if (DestVT
.bitsLT(NewVT
)) {
761 // Value is expanded, e.g. i64 -> i16.
762 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
764 // Otherwise, promotion or legal types use the same number of registers as
765 // the vector decimated to the appropriate level.
766 return NumVectorRegs
;
772 /// getWidenVectorType: given a vector type, returns the type to widen to
773 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
774 /// If there is no vector type that we want to widen to, returns MVT::Other
775 /// When and where to widen is target dependent based on the cost of
776 /// scalarizing vs using the wider vector type.
777 EVT
TargetLowering::getWidenVectorType(EVT VT
) const {
778 assert(VT
.isVector());
782 // Default is not to widen until moved to LegalizeTypes
786 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
787 /// function arguments in the caller parameter area. This is the actual
788 /// alignment, not its logarithm.
789 unsigned TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
790 return TD
->getCallFrameTypeAlignment(Ty
);
793 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
794 SelectionDAG
&DAG
) const {
795 if (usesGlobalOffsetTable())
796 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
801 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
802 // Assume that everything is safe in static mode.
803 if (getTargetMachine().getRelocationModel() == Reloc::Static
)
806 // In dynamic-no-pic mode, assume that known defined values are safe.
807 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC
&&
809 !GA
->getGlobal()->isDeclaration() &&
810 !GA
->getGlobal()->isWeakForLinker())
813 // Otherwise assume nothing is safe.
817 //===----------------------------------------------------------------------===//
818 // Optimization Methods
819 //===----------------------------------------------------------------------===//
821 /// ShrinkDemandedConstant - Check to see if the specified operand of the
822 /// specified instruction is a constant integer. If so, check to see if there
823 /// are any bits set in the constant that are not demanded. If so, shrink the
824 /// constant and return true.
825 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op
,
826 const APInt
&Demanded
) {
827 DebugLoc dl
= Op
.getDebugLoc();
829 // FIXME: ISD::SELECT, ISD::SELECT_CC
830 switch (Op
.getOpcode()) {
835 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
836 if (!C
) return false;
838 if (Op
.getOpcode() == ISD::XOR
&&
839 (C
->getAPIntValue() | (~Demanded
)).isAllOnesValue())
842 // if we can expand it to have all bits set, do it
843 if (C
->getAPIntValue().intersects(~Demanded
)) {
844 EVT VT
= Op
.getValueType();
845 SDValue New
= DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op
.getOperand(0),
846 DAG
.getConstant(Demanded
&
849 return CombineTo(Op
, New
);
859 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
860 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
861 /// cast, but it could be generalized for targets with other types of
862 /// implicit widening casts.
864 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op
,
866 const APInt
&Demanded
,
868 assert(Op
.getNumOperands() == 2 &&
869 "ShrinkDemandedOp only supports binary operators!");
870 assert(Op
.getNode()->getNumValues() == 1 &&
871 "ShrinkDemandedOp only supports nodes with one result!");
873 // Don't do this if the node has another user, which may require the
875 if (!Op
.getNode()->hasOneUse())
878 // Search for the smallest integer type with free casts to and from
879 // Op's type. For expedience, just check power-of-2 integer types.
880 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
881 unsigned SmallVTBits
= BitWidth
- Demanded
.countLeadingZeros();
882 if (!isPowerOf2_32(SmallVTBits
))
883 SmallVTBits
= NextPowerOf2(SmallVTBits
);
884 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
885 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
886 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
887 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
888 // We found a type with free casts.
889 SDValue X
= DAG
.getNode(Op
.getOpcode(), dl
, SmallVT
,
890 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
891 Op
.getNode()->getOperand(0)),
892 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
893 Op
.getNode()->getOperand(1)));
894 SDValue Z
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), X
);
895 return CombineTo(Op
, Z
);
901 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
902 /// DemandedMask bits of the result of Op are ever used downstream. If we can
903 /// use this information to simplify Op, create a new simplified DAG node and
904 /// return true, returning the original and new nodes in Old and New. Otherwise,
905 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
906 /// the expression (used to simplify the caller). The KnownZero/One bits may
907 /// only be accurate for those bits in the DemandedMask.
908 bool TargetLowering::SimplifyDemandedBits(SDValue Op
,
909 const APInt
&DemandedMask
,
912 TargetLoweringOpt
&TLO
,
913 unsigned Depth
) const {
914 unsigned BitWidth
= DemandedMask
.getBitWidth();
915 assert(Op
.getValueSizeInBits() == BitWidth
&&
916 "Mask size mismatches value type size!");
917 APInt NewMask
= DemandedMask
;
918 DebugLoc dl
= Op
.getDebugLoc();
920 // Don't know anything.
921 KnownZero
= KnownOne
= APInt(BitWidth
, 0);
923 // Other users may use these bits.
924 if (!Op
.getNode()->hasOneUse()) {
926 // If not at the root, Just compute the KnownZero/KnownOne bits to
927 // simplify things downstream.
928 TLO
.DAG
.ComputeMaskedBits(Op
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
931 // If this is the root being simplified, allow it to have multiple uses,
932 // just set the NewMask to all bits.
933 NewMask
= APInt::getAllOnesValue(BitWidth
);
934 } else if (DemandedMask
== 0) {
935 // Not demanding any bits from Op.
936 if (Op
.getOpcode() != ISD::UNDEF
)
937 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(Op
.getValueType()));
939 } else if (Depth
== 6) { // Limit search depth.
943 APInt KnownZero2
, KnownOne2
, KnownZeroOut
, KnownOneOut
;
944 switch (Op
.getOpcode()) {
946 // We know all of the bits for a constant!
947 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & NewMask
;
948 KnownZero
= ~KnownOne
& NewMask
;
949 return false; // Don't fall through, will infinitely loop.
951 // If the RHS is a constant, check to see if the LHS would be zero without
952 // using the bits from the RHS. Below, we use knowledge about the RHS to
953 // simplify the LHS, here we're using information from the LHS to simplify
955 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
956 APInt LHSZero
, LHSOne
;
957 TLO
.DAG
.ComputeMaskedBits(Op
.getOperand(0), NewMask
,
958 LHSZero
, LHSOne
, Depth
+1);
959 // If the LHS already has zeros where RHSC does, this and is dead.
960 if ((LHSZero
& NewMask
) == (~RHSC
->getAPIntValue() & NewMask
))
961 return TLO
.CombineTo(Op
, Op
.getOperand(0));
962 // If any of the set bits in the RHS are known zero on the LHS, shrink
964 if (TLO
.ShrinkDemandedConstant(Op
, ~LHSZero
& NewMask
))
968 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
969 KnownOne
, TLO
, Depth
+1))
971 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
972 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownZero
& NewMask
,
973 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
975 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
977 // If all of the demanded bits are known one on one side, return the other.
978 // These bits cannot contribute to the result of the 'and'.
979 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
980 return TLO
.CombineTo(Op
, Op
.getOperand(0));
981 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
982 return TLO
.CombineTo(Op
, Op
.getOperand(1));
983 // If all of the demanded bits in the inputs are known zeros, return zero.
984 if ((NewMask
& (KnownZero
|KnownZero2
)) == NewMask
)
985 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, Op
.getValueType()));
986 // If the RHS is a constant, see if we can simplify it.
987 if (TLO
.ShrinkDemandedConstant(Op
, ~KnownZero2
& NewMask
))
989 // If the operation can be done in a smaller type, do so.
990 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
993 // Output known-1 bits are only known if set in both the LHS & RHS.
994 KnownOne
&= KnownOne2
;
995 // Output known-0 are known to be clear if zero in either the LHS | RHS.
996 KnownZero
|= KnownZero2
;
999 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1000 KnownOne
, TLO
, Depth
+1))
1002 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1003 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownOne
& NewMask
,
1004 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1006 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1008 // If all of the demanded bits are known zero on one side, return the other.
1009 // These bits cannot contribute to the result of the 'or'.
1010 if ((NewMask
& ~KnownOne2
& KnownZero
) == (~KnownOne2
& NewMask
))
1011 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1012 if ((NewMask
& ~KnownOne
& KnownZero2
) == (~KnownOne
& NewMask
))
1013 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1014 // If all of the potentially set bits on one side are known to be set on
1015 // the other side, just use the 'other' side.
1016 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1017 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1018 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1019 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1020 // If the RHS is a constant, see if we can simplify it.
1021 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1023 // If the operation can be done in a smaller type, do so.
1024 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1027 // Output known-0 bits are only known if clear in both the LHS & RHS.
1028 KnownZero
&= KnownZero2
;
1029 // Output known-1 are known to be set if set in either the LHS | RHS.
1030 KnownOne
|= KnownOne2
;
1033 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1034 KnownOne
, TLO
, Depth
+1))
1036 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1037 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
, KnownZero2
,
1038 KnownOne2
, TLO
, Depth
+1))
1040 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1042 // If all of the demanded bits are known zero on one side, return the other.
1043 // These bits cannot contribute to the result of the 'xor'.
1044 if ((KnownZero
& NewMask
) == NewMask
)
1045 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1046 if ((KnownZero2
& NewMask
) == NewMask
)
1047 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1048 // If the operation can be done in a smaller type, do so.
1049 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1052 // If all of the unknown bits are known to be zero on one side or the other
1053 // (but not both) turn this into an *inclusive* or.
1054 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1055 if ((NewMask
& ~KnownZero
& ~KnownZero2
) == 0)
1056 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, Op
.getValueType(),
1060 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1061 KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1062 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1063 KnownOneOut
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1065 // If all of the demanded bits on one side are known, and all of the set
1066 // bits on that side are also known to be set on the other side, turn this
1067 // into an AND, as we know the bits will be cleared.
1068 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1069 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
) { // all known
1070 if ((KnownOne
& KnownOne2
) == KnownOne
) {
1071 EVT VT
= Op
.getValueType();
1072 SDValue ANDC
= TLO
.DAG
.getConstant(~KnownOne
& NewMask
, VT
);
1073 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
,
1074 Op
.getOperand(0), ANDC
));
1078 // If the RHS is a constant, see if we can simplify it.
1079 // for XOR, we prefer to force bits to 1 if they will make a -1.
1080 // if we can't force bits, try to shrink constant
1081 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1082 APInt Expanded
= C
->getAPIntValue() | (~NewMask
);
1083 // if we can expand it to have all bits set, do it
1084 if (Expanded
.isAllOnesValue()) {
1085 if (Expanded
!= C
->getAPIntValue()) {
1086 EVT VT
= Op
.getValueType();
1087 SDValue New
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
,VT
, Op
.getOperand(0),
1088 TLO
.DAG
.getConstant(Expanded
, VT
));
1089 return TLO
.CombineTo(Op
, New
);
1091 // if it already has all the bits set, nothing to change
1092 // but don't shrink either!
1093 } else if (TLO
.ShrinkDemandedConstant(Op
, NewMask
)) {
1098 KnownZero
= KnownZeroOut
;
1099 KnownOne
= KnownOneOut
;
1102 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero
,
1103 KnownOne
, TLO
, Depth
+1))
1105 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero2
,
1106 KnownOne2
, TLO
, Depth
+1))
1108 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1109 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1111 // If the operands are constants, see if we can simplify them.
1112 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1115 // Only known if known in both the LHS and RHS.
1116 KnownOne
&= KnownOne2
;
1117 KnownZero
&= KnownZero2
;
1119 case ISD::SELECT_CC
:
1120 if (SimplifyDemandedBits(Op
.getOperand(3), NewMask
, KnownZero
,
1121 KnownOne
, TLO
, Depth
+1))
1123 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero2
,
1124 KnownOne2
, TLO
, Depth
+1))
1126 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1127 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1129 // If the operands are constants, see if we can simplify them.
1130 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1133 // Only known if known in both the LHS and RHS.
1134 KnownOne
&= KnownOne2
;
1135 KnownZero
&= KnownZero2
;
1138 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1139 unsigned ShAmt
= SA
->getZExtValue();
1140 SDValue InOp
= Op
.getOperand(0);
1142 // If the shift count is an invalid immediate, don't do anything.
1143 if (ShAmt
>= BitWidth
)
1146 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1147 // single shift. We can do this if the bottom bits (which are shifted
1148 // out) are never demanded.
1149 if (InOp
.getOpcode() == ISD::SRL
&&
1150 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1151 if (ShAmt
&& (NewMask
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1152 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1153 unsigned Opc
= ISD::SHL
;
1154 int Diff
= ShAmt
-C1
;
1161 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1162 EVT VT
= Op
.getValueType();
1163 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1164 InOp
.getOperand(0), NewSA
));
1168 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
.lshr(ShAmt
),
1169 KnownZero
, KnownOne
, TLO
, Depth
+1))
1171 KnownZero
<<= SA
->getZExtValue();
1172 KnownOne
<<= SA
->getZExtValue();
1173 // low bits known zero.
1174 KnownZero
|= APInt::getLowBitsSet(BitWidth
, SA
->getZExtValue());
1178 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1179 EVT VT
= Op
.getValueType();
1180 unsigned ShAmt
= SA
->getZExtValue();
1181 unsigned VTSize
= VT
.getSizeInBits();
1182 SDValue InOp
= Op
.getOperand(0);
1184 // If the shift count is an invalid immediate, don't do anything.
1185 if (ShAmt
>= BitWidth
)
1188 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1189 // single shift. We can do this if the top bits (which are shifted out)
1190 // are never demanded.
1191 if (InOp
.getOpcode() == ISD::SHL
&&
1192 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1193 if (ShAmt
&& (NewMask
& APInt::getHighBitsSet(VTSize
, ShAmt
)) == 0) {
1194 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1195 unsigned Opc
= ISD::SRL
;
1196 int Diff
= ShAmt
-C1
;
1203 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1204 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1205 InOp
.getOperand(0), NewSA
));
1209 // Compute the new bits that are at the top now.
1210 if (SimplifyDemandedBits(InOp
, (NewMask
<< ShAmt
),
1211 KnownZero
, KnownOne
, TLO
, Depth
+1))
1213 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1214 KnownZero
= KnownZero
.lshr(ShAmt
);
1215 KnownOne
= KnownOne
.lshr(ShAmt
);
1217 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1218 KnownZero
|= HighBits
; // High bits known zero.
1222 // If this is an arithmetic shift right and only the low-bit is set, we can
1223 // always convert this into a logical shr, even if the shift amount is
1224 // variable. The low bit of the shift cannot be an input sign bit unless
1225 // the shift amount is >= the size of the datatype, which is undefined.
1226 if (DemandedMask
== 1)
1227 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(),
1228 Op
.getOperand(0), Op
.getOperand(1)));
1230 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1231 EVT VT
= Op
.getValueType();
1232 unsigned ShAmt
= SA
->getZExtValue();
1234 // If the shift count is an invalid immediate, don't do anything.
1235 if (ShAmt
>= BitWidth
)
1238 APInt InDemandedMask
= (NewMask
<< ShAmt
);
1240 // If any of the demanded bits are produced by the sign extension, we also
1241 // demand the input sign bit.
1242 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1243 if (HighBits
.intersects(NewMask
))
1244 InDemandedMask
|= APInt::getSignBit(VT
.getSizeInBits());
1246 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedMask
,
1247 KnownZero
, KnownOne
, TLO
, Depth
+1))
1249 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1250 KnownZero
= KnownZero
.lshr(ShAmt
);
1251 KnownOne
= KnownOne
.lshr(ShAmt
);
1253 // Handle the sign bit, adjusted to where it is now in the mask.
1254 APInt SignBit
= APInt::getSignBit(BitWidth
).lshr(ShAmt
);
1256 // If the input sign bit is known to be zero, or if none of the top bits
1257 // are demanded, turn this into an unsigned shift right.
1258 if (KnownZero
.intersects(SignBit
) || (HighBits
& ~NewMask
) == HighBits
) {
1259 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
,
1262 } else if (KnownOne
.intersects(SignBit
)) { // New bits are known one.
1263 KnownOne
|= HighBits
;
1267 case ISD::SIGN_EXTEND_INREG
: {
1268 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1270 // Sign extension. Compute the demanded bits in the result that are not
1271 // present in the input.
1272 APInt NewBits
= APInt::getHighBitsSet(BitWidth
,
1273 BitWidth
- EVT
.getSizeInBits()) &
1276 // If none of the extended bits are demanded, eliminate the sextinreg.
1278 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1280 APInt InSignBit
= APInt::getSignBit(EVT
.getSizeInBits());
1281 InSignBit
.zext(BitWidth
);
1282 APInt InputDemandedBits
= APInt::getLowBitsSet(BitWidth
,
1283 EVT
.getSizeInBits()) &
1286 // Since the sign extended bits are demanded, we know that the sign
1288 InputDemandedBits
|= InSignBit
;
1290 if (SimplifyDemandedBits(Op
.getOperand(0), InputDemandedBits
,
1291 KnownZero
, KnownOne
, TLO
, Depth
+1))
1293 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1295 // If the sign bit of the input is known set or clear, then we know the
1296 // top bits of the result.
1298 // If the input sign bit is known zero, convert this into a zero extension.
1299 if (KnownZero
.intersects(InSignBit
))
1300 return TLO
.CombineTo(Op
,
1301 TLO
.DAG
.getZeroExtendInReg(Op
.getOperand(0),dl
,EVT
));
1303 if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1304 KnownOne
|= NewBits
;
1305 KnownZero
&= ~NewBits
;
1306 } else { // Input sign bit unknown
1307 KnownZero
&= ~NewBits
;
1308 KnownOne
&= ~NewBits
;
1312 case ISD::ZERO_EXTEND
: {
1313 unsigned OperandBitWidth
= Op
.getOperand(0).getValueSizeInBits();
1314 APInt InMask
= NewMask
;
1315 InMask
.trunc(OperandBitWidth
);
1317 // If none of the top bits are demanded, convert this into an any_extend.
1319 APInt::getHighBitsSet(BitWidth
, BitWidth
- OperandBitWidth
) & NewMask
;
1320 if (!NewBits
.intersects(NewMask
))
1321 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1325 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1326 KnownZero
, KnownOne
, TLO
, Depth
+1))
1328 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1329 KnownZero
.zext(BitWidth
);
1330 KnownOne
.zext(BitWidth
);
1331 KnownZero
|= NewBits
;
1334 case ISD::SIGN_EXTEND
: {
1335 EVT InVT
= Op
.getOperand(0).getValueType();
1336 unsigned InBits
= InVT
.getSizeInBits();
1337 APInt InMask
= APInt::getLowBitsSet(BitWidth
, InBits
);
1338 APInt InSignBit
= APInt::getBitsSet(BitWidth
, InBits
- 1, InBits
);
1339 APInt NewBits
= ~InMask
& NewMask
;
1341 // If none of the top bits are demanded, convert this into an any_extend.
1343 return TLO
.CombineTo(Op
,TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1347 // Since some of the sign extended bits are demanded, we know that the sign
1349 APInt InDemandedBits
= InMask
& NewMask
;
1350 InDemandedBits
|= InSignBit
;
1351 InDemandedBits
.trunc(InBits
);
1353 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedBits
, KnownZero
,
1354 KnownOne
, TLO
, Depth
+1))
1356 KnownZero
.zext(BitWidth
);
1357 KnownOne
.zext(BitWidth
);
1359 // If the sign bit is known zero, convert this to a zero extend.
1360 if (KnownZero
.intersects(InSignBit
))
1361 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
1365 // If the sign bit is known one, the top bits match.
1366 if (KnownOne
.intersects(InSignBit
)) {
1367 KnownOne
|= NewBits
;
1368 KnownZero
&= ~NewBits
;
1369 } else { // Otherwise, top bits aren't known.
1370 KnownOne
&= ~NewBits
;
1371 KnownZero
&= ~NewBits
;
1375 case ISD::ANY_EXTEND
: {
1376 unsigned OperandBitWidth
= Op
.getOperand(0).getValueSizeInBits();
1377 APInt InMask
= NewMask
;
1378 InMask
.trunc(OperandBitWidth
);
1379 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1380 KnownZero
, KnownOne
, TLO
, Depth
+1))
1382 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1383 KnownZero
.zext(BitWidth
);
1384 KnownOne
.zext(BitWidth
);
1387 case ISD::TRUNCATE
: {
1388 // Simplify the input, using demanded bit information, and compute the known
1389 // zero/one bits live out.
1390 APInt TruncMask
= NewMask
;
1391 TruncMask
.zext(Op
.getOperand(0).getValueSizeInBits());
1392 if (SimplifyDemandedBits(Op
.getOperand(0), TruncMask
,
1393 KnownZero
, KnownOne
, TLO
, Depth
+1))
1395 KnownZero
.trunc(BitWidth
);
1396 KnownOne
.trunc(BitWidth
);
1398 // If the input is only used by this truncate, see if we can shrink it based
1399 // on the known demanded bits.
1400 if (Op
.getOperand(0).getNode()->hasOneUse()) {
1401 SDValue In
= Op
.getOperand(0);
1402 unsigned InBitWidth
= In
.getValueSizeInBits();
1403 switch (In
.getOpcode()) {
1406 // Shrink SRL by a constant if none of the high bits shifted in are
1408 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1))){
1409 APInt HighBits
= APInt::getHighBitsSet(InBitWidth
,
1410 InBitWidth
- BitWidth
);
1411 HighBits
= HighBits
.lshr(ShAmt
->getZExtValue());
1412 HighBits
.trunc(BitWidth
);
1414 if (ShAmt
->getZExtValue() < BitWidth
&& !(HighBits
& NewMask
)) {
1415 // None of the shifted in bits are needed. Add a truncate of the
1416 // shift input, then shift it.
1417 SDValue NewTrunc
= TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
,
1420 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
,
1430 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1433 case ISD::AssertZext
: {
1434 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1435 APInt InMask
= APInt::getLowBitsSet(BitWidth
,
1436 VT
.getSizeInBits());
1437 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
& NewMask
,
1438 KnownZero
, KnownOne
, TLO
, Depth
+1))
1440 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1441 KnownZero
|= ~InMask
& NewMask
;
1444 case ISD::BIT_CONVERT
:
1446 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1447 // is demanded, turn this into a FGETSIGN.
1448 if (NewMask
== EVT::getIntegerVTSignBit(Op
.getValueType()) &&
1449 MVT::isFloatingPoint(Op
.getOperand(0).getValueType()) &&
1450 !MVT::isVector(Op
.getOperand(0).getValueType())) {
1451 // Only do this xform if FGETSIGN is valid or if before legalize.
1452 if (!TLO
.AfterLegalize
||
1453 isOperationLegal(ISD::FGETSIGN
, Op
.getValueType())) {
1454 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1455 // place. We expect the SHL to be eliminated by other optimizations.
1456 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, Op
.getValueType(),
1458 unsigned ShVal
= Op
.getValueType().getSizeInBits()-1;
1459 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, getShiftAmountTy());
1460 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SHL
, Op
.getValueType(),
1469 // Add, Sub, and Mul don't demand any bits in positions beyond that
1470 // of the highest bit demanded of them.
1471 APInt LoMask
= APInt::getLowBitsSet(BitWidth
,
1472 BitWidth
- NewMask
.countLeadingZeros());
1473 if (SimplifyDemandedBits(Op
.getOperand(0), LoMask
, KnownZero2
,
1474 KnownOne2
, TLO
, Depth
+1))
1476 if (SimplifyDemandedBits(Op
.getOperand(1), LoMask
, KnownZero2
,
1477 KnownOne2
, TLO
, Depth
+1))
1479 // See if the operation should be performed at a smaller bit width.
1480 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1485 // Just use ComputeMaskedBits to compute output bits.
1486 TLO
.DAG
.ComputeMaskedBits(Op
, NewMask
, KnownZero
, KnownOne
, Depth
);
1490 // If we know the value of all of the demanded bits, return this as a
1492 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
)
1493 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(KnownOne
, Op
.getValueType()));
1498 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1499 /// in Mask are known to be either zero or one and return them in the
1500 /// KnownZero/KnownOne bitsets.
1501 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
1505 const SelectionDAG
&DAG
,
1506 unsigned Depth
) const {
1507 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1508 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1509 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1510 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1511 "Should use MaskedValueIsZero if you don't know whether Op"
1512 " is a target node!");
1513 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
1516 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1517 /// targets that want to expose additional information about sign bits to the
1519 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
1520 unsigned Depth
) const {
1521 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1522 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1523 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1524 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1525 "Should use ComputeNumSignBits if you don't know whether Op"
1526 " is a target node!");
1530 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1531 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1532 /// determine which bit is set.
1534 static bool ValueHasExactlyOneBitSet(SDValue Val
, const SelectionDAG
&DAG
) {
1535 // A left-shift of a constant one will have exactly one bit set, because
1536 // shifting the bit off the end is undefined.
1537 if (Val
.getOpcode() == ISD::SHL
)
1538 if (ConstantSDNode
*C
=
1539 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1540 if (C
->getAPIntValue() == 1)
1543 // Similarly, a right-shift of a constant sign-bit will have exactly
1545 if (Val
.getOpcode() == ISD::SRL
)
1546 if (ConstantSDNode
*C
=
1547 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1548 if (C
->getAPIntValue().isSignBit())
1551 // More could be done here, though the above checks are enough
1552 // to handle some common cases.
1554 // Fall back to ComputeMaskedBits to catch other known cases.
1555 EVT OpVT
= Val
.getValueType();
1556 unsigned BitWidth
= OpVT
.getSizeInBits();
1557 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
1558 APInt KnownZero
, KnownOne
;
1559 DAG
.ComputeMaskedBits(Val
, Mask
, KnownZero
, KnownOne
);
1560 return (KnownZero
.countPopulation() == BitWidth
- 1) &&
1561 (KnownOne
.countPopulation() == 1);
1564 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1565 /// and cc. If it is unable to simplify it, return a null SDValue.
1567 TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
1568 ISD::CondCode Cond
, bool foldBooleans
,
1569 DAGCombinerInfo
&DCI
, DebugLoc dl
) const {
1570 SelectionDAG
&DAG
= DCI
.DAG
;
1571 LLVMContext
&Context
= *DAG
.getContext();
1573 // These setcc operations always fold.
1577 case ISD::SETFALSE2
: return DAG
.getConstant(0, VT
);
1579 case ISD::SETTRUE2
: return DAG
.getConstant(1, VT
);
1582 if (isa
<ConstantSDNode
>(N0
.getNode())) {
1583 // Ensure that the constant occurs on the RHS, and fold constant
1585 return DAG
.getSetCC(dl
, VT
, N1
, N0
, ISD::getSetCCSwappedOperands(Cond
));
1588 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1589 const APInt
&C1
= N1C
->getAPIntValue();
1591 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1592 // equality comparison, then we're just comparing whether X itself is
1594 if (N0
.getOpcode() == ISD::SRL
&& (C1
== 0 || C1
== 1) &&
1595 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
1596 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1597 unsigned ShAmt
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
1598 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1599 ShAmt
== Log2_32(N0
.getValueType().getSizeInBits())) {
1600 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
1601 // (srl (ctlz x), 5) == 0 -> X != 0
1602 // (srl (ctlz x), 5) != 1 -> X != 0
1605 // (srl (ctlz x), 5) != 0 -> X == 0
1606 // (srl (ctlz x), 5) == 1 -> X == 0
1609 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1610 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
1615 // If the LHS is '(and load, const)', the RHS is 0,
1616 // the test is for equality or unsigned, and all 1 bits of the const are
1617 // in the same partial word, see if we can shorten the load.
1618 if (DCI
.isBeforeLegalize() &&
1619 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
1620 N0
.getNode()->hasOneUse() &&
1621 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
1622 N0
.getOperand(0).getNode()->hasOneUse() &&
1623 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1624 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
1625 uint64_t bestMask
= 0;
1626 unsigned bestWidth
= 0, bestOffset
= 0;
1627 if (!Lod
->isVolatile() && Lod
->isUnindexed() &&
1628 // FIXME: This uses getZExtValue() below so it only works on i64 and
1630 N0
.getValueType().getSizeInBits() <= 64) {
1631 unsigned origWidth
= N0
.getValueType().getSizeInBits();
1632 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1633 // 8 bits, but have to be careful...
1634 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
1635 origWidth
= Lod
->getMemoryVT().getSizeInBits();
1636 uint64_t Mask
=cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
1637 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
1638 uint64_t newMask
= (1ULL << width
) - 1;
1639 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
1640 if ((newMask
& Mask
) == Mask
) {
1641 if (!TD
->isLittleEndian())
1642 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
1644 bestOffset
= (uint64_t)offset
* (width
/8);
1645 bestMask
= Mask
>> (offset
* (width
/8) * 8);
1649 newMask
= newMask
<< width
;
1654 EVT newVT
= EVT::getIntegerVT(Context
, bestWidth
);
1655 if (newVT
.isRound()) {
1656 EVT PtrType
= Lod
->getOperand(1).getValueType();
1657 SDValue Ptr
= Lod
->getBasePtr();
1658 if (bestOffset
!= 0)
1659 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
1660 DAG
.getConstant(bestOffset
, PtrType
));
1661 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
1662 SDValue NewLoad
= DAG
.getLoad(newVT
, dl
, Lod
->getChain(), Ptr
,
1664 Lod
->getSrcValueOffset() + bestOffset
,
1666 return DAG
.getSetCC(dl
, VT
,
1667 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
1668 DAG
.getConstant(bestMask
, newVT
)),
1669 DAG
.getConstant(0LL, newVT
), Cond
);
1674 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1675 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
1676 unsigned InSize
= N0
.getOperand(0).getValueType().getSizeInBits();
1678 // If the comparison constant has bits in the upper part, the
1679 // zero-extended value could never match.
1680 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
1681 C1
.getBitWidth() - InSize
))) {
1685 case ISD::SETEQ
: return DAG
.getConstant(0, VT
);
1688 case ISD::SETNE
: return DAG
.getConstant(1, VT
);
1691 // True if the sign bit of C1 is set.
1692 return DAG
.getConstant(C1
.isNegative(), VT
);
1695 // True if the sign bit of C1 isn't set.
1696 return DAG
.getConstant(C1
.isNonNegative(), VT
);
1702 // Otherwise, we can perform the comparison with the low bits.
1710 EVT newVT
= N0
.getOperand(0).getValueType();
1711 if (DCI
.isBeforeLegalizeOps() ||
1712 (isOperationLegal(ISD::SETCC
, newVT
) &&
1713 getCondCodeAction(Cond
, newVT
)==Legal
))
1714 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1715 DAG
.getConstant(APInt(C1
).trunc(InSize
), newVT
),
1720 break; // todo, be more careful with signed comparisons
1722 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
1723 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1724 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
1725 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
1726 EVT ExtDstTy
= N0
.getValueType();
1727 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
1729 // If the extended part has any inconsistent bits, it cannot ever
1730 // compare equal. In other words, they have to be all ones or all
1733 APInt::getHighBitsSet(ExtDstTyBits
, ExtDstTyBits
- ExtSrcTyBits
);
1734 if ((C1
& ExtBits
) != 0 && (C1
& ExtBits
) != ExtBits
)
1735 return DAG
.getConstant(Cond
== ISD::SETNE
, VT
);
1738 EVT Op0Ty
= N0
.getOperand(0).getValueType();
1739 if (Op0Ty
== ExtSrcTy
) {
1740 ZextOp
= N0
.getOperand(0);
1742 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
1743 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
1744 DAG
.getConstant(Imm
, Op0Ty
));
1746 if (!DCI
.isCalledByLegalizer())
1747 DCI
.AddToWorklist(ZextOp
.getNode());
1748 // Otherwise, make this a use of a zext.
1749 return DAG
.getSetCC(dl
, VT
, ZextOp
,
1750 DAG
.getConstant(C1
& APInt::getLowBitsSet(
1755 } else if ((N1C
->isNullValue() || N1C
->getAPIntValue() == 1) &&
1756 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1758 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1759 if (N0
.getOpcode() == ISD::SETCC
) {
1760 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (N1C
->getZExtValue() != 1);
1764 // Invert the condition.
1765 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
1766 CC
= ISD::getSetCCInverse(CC
,
1767 N0
.getOperand(0).getValueType().isInteger());
1768 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
1771 if ((N0
.getOpcode() == ISD::XOR
||
1772 (N0
.getOpcode() == ISD::AND
&&
1773 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
1774 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
1775 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1776 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue() == 1) {
1777 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1778 // can only do this if the top bits are known zero.
1779 unsigned BitWidth
= N0
.getValueSizeInBits();
1780 if (DAG
.MaskedValueIsZero(N0
,
1781 APInt::getHighBitsSet(BitWidth
,
1783 // Okay, get the un-inverted input value.
1785 if (N0
.getOpcode() == ISD::XOR
)
1786 Val
= N0
.getOperand(0);
1788 assert(N0
.getOpcode() == ISD::AND
&&
1789 N0
.getOperand(0).getOpcode() == ISD::XOR
);
1790 // ((X^1)&1)^1 -> X & 1
1791 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
1792 N0
.getOperand(0).getOperand(0),
1795 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
1796 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
1801 APInt MinVal
, MaxVal
;
1802 unsigned OperandBitSize
= N1C
->getValueType(0).getSizeInBits();
1803 if (ISD::isSignedIntSetCC(Cond
)) {
1804 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
1805 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
1807 MinVal
= APInt::getMinValue(OperandBitSize
);
1808 MaxVal
= APInt::getMaxValue(OperandBitSize
);
1811 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1812 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
1813 if (C1
== MinVal
) return DAG
.getConstant(1, VT
); // X >= MIN --> true
1814 // X >= C0 --> X > (C0-1)
1815 return DAG
.getSetCC(dl
, VT
, N0
,
1816 DAG
.getConstant(C1
-1, N1
.getValueType()),
1817 (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
);
1820 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
1821 if (C1
== MaxVal
) return DAG
.getConstant(1, VT
); // X <= MAX --> true
1822 // X <= C0 --> X < (C0+1)
1823 return DAG
.getSetCC(dl
, VT
, N0
,
1824 DAG
.getConstant(C1
+1, N1
.getValueType()),
1825 (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
);
1828 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
)
1829 return DAG
.getConstant(0, VT
); // X < MIN --> false
1830 if ((Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) && C1
== MinVal
)
1831 return DAG
.getConstant(1, VT
); // X >= MIN --> true
1832 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
)
1833 return DAG
.getConstant(0, VT
); // X > MAX --> false
1834 if ((Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) && C1
== MaxVal
)
1835 return DAG
.getConstant(1, VT
); // X <= MAX --> true
1837 // Canonicalize setgt X, Min --> setne X, Min
1838 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MinVal
)
1839 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
1840 // Canonicalize setlt X, Max --> setne X, Max
1841 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MaxVal
)
1842 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
1844 // If we have setult X, 1, turn it into seteq X, 0
1845 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
+1)
1846 return DAG
.getSetCC(dl
, VT
, N0
,
1847 DAG
.getConstant(MinVal
, N0
.getValueType()),
1849 // If we have setugt X, Max-1, turn it into seteq X, Max
1850 else if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
-1)
1851 return DAG
.getSetCC(dl
, VT
, N0
,
1852 DAG
.getConstant(MaxVal
, N0
.getValueType()),
1855 // If we have "setcc X, C0", check to see if we can shrink the immediate
1858 // SETUGT X, SINTMAX -> SETLT X, 0
1859 if (Cond
== ISD::SETUGT
&&
1860 C1
== APInt::getSignedMaxValue(OperandBitSize
))
1861 return DAG
.getSetCC(dl
, VT
, N0
,
1862 DAG
.getConstant(0, N1
.getValueType()),
1865 // SETULT X, SINTMIN -> SETGT X, -1
1866 if (Cond
== ISD::SETULT
&&
1867 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
1868 SDValue ConstMinusOne
=
1869 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
),
1871 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
1874 // Fold bit comparisons when we can.
1875 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1876 VT
== N0
.getValueType() && N0
.getOpcode() == ISD::AND
)
1877 if (ConstantSDNode
*AndRHS
=
1878 dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1879 EVT ShiftTy
= DCI
.isBeforeLegalize() ?
1880 getPointerTy() : getShiftAmountTy();
1881 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
1882 // Perform the xform if the AND RHS is a single bit.
1883 if (isPowerOf2_64(AndRHS
->getZExtValue())) {
1884 return DAG
.getNode(ISD::SRL
, dl
, VT
, N0
,
1885 DAG
.getConstant(Log2_64(AndRHS
->getZExtValue()),
1888 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getZExtValue()) {
1889 // (X & 8) == 8 --> (X & 8) >> 3
1890 // Perform the xform if C1 is a single bit.
1891 if (C1
.isPowerOf2()) {
1892 return DAG
.getNode(ISD::SRL
, dl
, VT
, N0
,
1893 DAG
.getConstant(C1
.logBase2(), ShiftTy
));
1899 if (isa
<ConstantFPSDNode
>(N0
.getNode())) {
1900 // Constant fold or commute setcc.
1901 SDValue O
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
1902 if (O
.getNode()) return O
;
1903 } else if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1904 // If the RHS of an FP comparison is a constant, simplify it away in
1906 if (CFP
->getValueAPF().isNaN()) {
1907 // If an operand is known to be a nan, we can fold it.
1908 switch (ISD::getUnorderedFlavor(Cond
)) {
1909 default: llvm_unreachable("Unknown flavor!");
1910 case 0: // Known false.
1911 return DAG
.getConstant(0, VT
);
1912 case 1: // Known true.
1913 return DAG
.getConstant(1, VT
);
1914 case 2: // Undefined.
1915 return DAG
.getUNDEF(VT
);
1919 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1920 // constant if knowing that the operand is non-nan is enough. We prefer to
1921 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1923 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
1924 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
1928 // We can always fold X == X for integer setcc's.
1929 if (N0
.getValueType().isInteger())
1930 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
1931 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
1932 if (UOF
== 2) // FP operators that are undefined on NaNs.
1933 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
1934 if (UOF
== unsigned(ISD::isTrueWhenEqual(Cond
)))
1935 return DAG
.getConstant(UOF
, VT
);
1936 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1937 // if it is not already.
1938 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
1939 if (NewCond
!= Cond
)
1940 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
1943 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1944 N0
.getValueType().isInteger()) {
1945 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
1946 N0
.getOpcode() == ISD::XOR
) {
1947 // Simplify (X+Y) == (X+Z) --> Y == Z
1948 if (N0
.getOpcode() == N1
.getOpcode()) {
1949 if (N0
.getOperand(0) == N1
.getOperand(0))
1950 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
1951 if (N0
.getOperand(1) == N1
.getOperand(1))
1952 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
1953 if (DAG
.isCommutativeBinOp(N0
.getOpcode())) {
1954 // If X op Y == Y op X, try other combinations.
1955 if (N0
.getOperand(0) == N1
.getOperand(1))
1956 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
1958 if (N0
.getOperand(1) == N1
.getOperand(0))
1959 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
1964 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
1965 if (ConstantSDNode
*LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1966 // Turn (X+C1) == C2 --> X == C2-C1
1967 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
1968 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1969 DAG
.getConstant(RHSC
->getAPIntValue()-
1970 LHSR
->getAPIntValue(),
1971 N0
.getValueType()), Cond
);
1974 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1975 if (N0
.getOpcode() == ISD::XOR
)
1976 // If we know that all of the inverted bits are zero, don't bother
1977 // performing the inversion.
1978 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
1980 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1981 DAG
.getConstant(LHSR
->getAPIntValue() ^
1982 RHSC
->getAPIntValue(),
1987 // Turn (C1-X) == C2 --> X == C1-C2
1988 if (ConstantSDNode
*SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
1989 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
1991 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
1992 DAG
.getConstant(SUBC
->getAPIntValue() -
1993 RHSC
->getAPIntValue(),
2000 // Simplify (X+Z) == X --> Z == 0
2001 if (N0
.getOperand(0) == N1
)
2002 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2003 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2004 if (N0
.getOperand(1) == N1
) {
2005 if (DAG
.isCommutativeBinOp(N0
.getOpcode()))
2006 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2007 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2008 else if (N0
.getNode()->hasOneUse()) {
2009 assert(N0
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2010 // (Z-X) == X --> Z == X<<1
2011 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(),
2013 DAG
.getConstant(1, getShiftAmountTy()));
2014 if (!DCI
.isCalledByLegalizer())
2015 DCI
.AddToWorklist(SH
.getNode());
2016 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), SH
, Cond
);
2021 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
2022 N1
.getOpcode() == ISD::XOR
) {
2023 // Simplify X == (X+Z) --> Z == 0
2024 if (N1
.getOperand(0) == N0
) {
2025 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(1),
2026 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2027 } else if (N1
.getOperand(1) == N0
) {
2028 if (DAG
.isCommutativeBinOp(N1
.getOpcode())) {
2029 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(0),
2030 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2031 } else if (N1
.getNode()->hasOneUse()) {
2032 assert(N1
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2033 // X == (Z-X) --> X<<1 == Z
2034 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(), N0
,
2035 DAG
.getConstant(1, getShiftAmountTy()));
2036 if (!DCI
.isCalledByLegalizer())
2037 DCI
.AddToWorklist(SH
.getNode());
2038 return DAG
.getSetCC(dl
, VT
, SH
, N1
.getOperand(0), Cond
);
2043 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2044 // Note that where y is variable and is known to have at most
2045 // one bit set (for example, if it is z&1) we cannot do this;
2046 // the expressions are not equivalent when y==0.
2047 if (N0
.getOpcode() == ISD::AND
)
2048 if (N0
.getOperand(0) == N1
|| N0
.getOperand(1) == N1
) {
2049 if (ValueHasExactlyOneBitSet(N1
, DAG
)) {
2050 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2051 SDValue Zero
= DAG
.getConstant(0, N1
.getValueType());
2052 return DAG
.getSetCC(dl
, VT
, N0
, Zero
, Cond
);
2055 if (N1
.getOpcode() == ISD::AND
)
2056 if (N1
.getOperand(0) == N0
|| N1
.getOperand(1) == N0
) {
2057 if (ValueHasExactlyOneBitSet(N0
, DAG
)) {
2058 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2059 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
2060 return DAG
.getSetCC(dl
, VT
, N1
, Zero
, Cond
);
2065 // Fold away ALL boolean setcc's.
2067 if (N0
.getValueType() == MVT::i1
&& foldBooleans
) {
2069 default: llvm_unreachable("Unknown integer setcc!");
2070 case ISD::SETEQ
: // X == Y -> ~(X^Y)
2071 Temp
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2072 N0
= DAG
.getNOT(dl
, Temp
, MVT::i1
);
2073 if (!DCI
.isCalledByLegalizer())
2074 DCI
.AddToWorklist(Temp
.getNode());
2076 case ISD::SETNE
: // X != Y --> (X^Y)
2077 N0
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2079 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2080 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2081 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2082 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N1
, Temp
);
2083 if (!DCI
.isCalledByLegalizer())
2084 DCI
.AddToWorklist(Temp
.getNode());
2086 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2087 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2088 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2089 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N0
, Temp
);
2090 if (!DCI
.isCalledByLegalizer())
2091 DCI
.AddToWorklist(Temp
.getNode());
2093 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2094 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2095 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2096 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N1
, Temp
);
2097 if (!DCI
.isCalledByLegalizer())
2098 DCI
.AddToWorklist(Temp
.getNode());
2100 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2101 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2102 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2103 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N0
, Temp
);
2106 if (VT
!= MVT::i1
) {
2107 if (!DCI
.isCalledByLegalizer())
2108 DCI
.AddToWorklist(N0
.getNode());
2109 // FIXME: If running after legalize, we probably can't do this.
2110 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
);
2115 // Could not fold it.
2119 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2120 /// node is a GlobalAddress + offset.
2121 bool TargetLowering::isGAPlusOffset(SDNode
*N
, GlobalValue
* &GA
,
2122 int64_t &Offset
) const {
2123 if (isa
<GlobalAddressSDNode
>(N
)) {
2124 GlobalAddressSDNode
*GASD
= cast
<GlobalAddressSDNode
>(N
);
2125 GA
= GASD
->getGlobal();
2126 Offset
+= GASD
->getOffset();
2130 if (N
->getOpcode() == ISD::ADD
) {
2131 SDValue N1
= N
->getOperand(0);
2132 SDValue N2
= N
->getOperand(1);
2133 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
2134 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N2
);
2136 Offset
+= V
->getSExtValue();
2139 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
2140 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N1
);
2142 Offset
+= V
->getSExtValue();
2151 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2152 /// location that is 'Dist' units away from the location that the 'Base' load
2153 /// is loading from.
2154 bool TargetLowering::isConsecutiveLoad(LoadSDNode
*LD
, LoadSDNode
*Base
,
2155 unsigned Bytes
, int Dist
,
2156 const MachineFrameInfo
*MFI
) const {
2157 if (LD
->getChain() != Base
->getChain())
2159 EVT VT
= LD
->getValueType(0);
2160 if (VT
.getSizeInBits() / 8 != Bytes
)
2163 SDValue Loc
= LD
->getOperand(1);
2164 SDValue BaseLoc
= Base
->getOperand(1);
2165 if (Loc
.getOpcode() == ISD::FrameIndex
) {
2166 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
2168 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
2169 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
2170 int FS
= MFI
->getObjectSize(FI
);
2171 int BFS
= MFI
->getObjectSize(BFI
);
2172 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
2173 return MFI
->getObjectOffset(FI
) == (MFI
->getObjectOffset(BFI
) + Dist
*Bytes
);
2175 if (Loc
.getOpcode() == ISD::ADD
&& Loc
.getOperand(0) == BaseLoc
) {
2176 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Loc
.getOperand(1));
2177 if (V
&& (V
->getSExtValue() == Dist
*Bytes
))
2181 GlobalValue
*GV1
= NULL
;
2182 GlobalValue
*GV2
= NULL
;
2183 int64_t Offset1
= 0;
2184 int64_t Offset2
= 0;
2185 bool isGA1
= isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
2186 bool isGA2
= isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
2187 if (isGA1
&& isGA2
&& GV1
== GV2
)
2188 return Offset1
== (Offset2
+ Dist
*Bytes
);
2193 SDValue
TargetLowering::
2194 PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2195 // Default implementation: no optimization.
2199 //===----------------------------------------------------------------------===//
2200 // Inline Assembler Implementation Methods
2201 //===----------------------------------------------------------------------===//
2204 TargetLowering::ConstraintType
2205 TargetLowering::getConstraintType(const std::string
&Constraint
) const {
2206 // FIXME: lots more standard ones to handle.
2207 if (Constraint
.size() == 1) {
2208 switch (Constraint
[0]) {
2210 case 'r': return C_RegisterClass
;
2212 case 'o': // offsetable
2213 case 'V': // not offsetable
2215 case 'i': // Simple Integer or Relocatable Constant
2216 case 'n': // Simple Integer
2217 case 's': // Relocatable Constant
2218 case 'X': // Allow ANY value.
2219 case 'I': // Target registers.
2231 if (Constraint
.size() > 1 && Constraint
[0] == '{' &&
2232 Constraint
[Constraint
.size()-1] == '}')
2237 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2238 /// with another that has more specific requirements based on the type of the
2239 /// corresponding operand.
2240 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const{
2241 if (ConstraintVT
.isInteger())
2243 if (ConstraintVT
.isFloatingPoint())
2244 return "f"; // works for many targets
2248 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2249 /// vector. If it is invalid, don't add anything to Ops.
2250 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2251 char ConstraintLetter
,
2253 std::vector
<SDValue
> &Ops
,
2254 SelectionDAG
&DAG
) const {
2255 switch (ConstraintLetter
) {
2257 case 'X': // Allows any operand; labels (basic block) use this.
2258 if (Op
.getOpcode() == ISD::BasicBlock
) {
2263 case 'i': // Simple Integer or Relocatable Constant
2264 case 'n': // Simple Integer
2265 case 's': { // Relocatable Constant
2266 // These operands are interested in values of the form (GV+C), where C may
2267 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2268 // is possible and fine if either GV or C are missing.
2269 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2270 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2272 // If we have "(add GV, C)", pull out GV/C
2273 if (Op
.getOpcode() == ISD::ADD
) {
2274 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2275 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
2276 if (C
== 0 || GA
== 0) {
2277 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
2278 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(1));
2280 if (C
== 0 || GA
== 0)
2284 // If we find a valid operand, map to the TargetXXX version so that the
2285 // value itself doesn't get selected.
2286 if (GA
) { // Either &GV or &GV+C
2287 if (ConstraintLetter
!= 'n') {
2288 int64_t Offs
= GA
->getOffset();
2289 if (C
) Offs
+= C
->getZExtValue();
2290 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(),
2291 Op
.getValueType(), Offs
));
2295 if (C
) { // just C, no GV.
2296 // Simple constants are not allowed for 's'.
2297 if (ConstraintLetter
!= 's') {
2298 // gcc prints these as sign extended. Sign extend value to 64 bits
2299 // now; without this it would get ZExt'd later in
2300 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2301 Ops
.push_back(DAG
.getTargetConstant(C
->getAPIntValue().getSExtValue(),
2311 std::vector
<unsigned> TargetLowering::
2312 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
2314 return std::vector
<unsigned>();
2318 std::pair
<unsigned, const TargetRegisterClass
*> TargetLowering::
2319 getRegForInlineAsmConstraint(const std::string
&Constraint
,
2321 if (Constraint
[0] != '{')
2322 return std::pair
<unsigned, const TargetRegisterClass
*>(0, 0);
2323 assert(*(Constraint
.end()-1) == '}' && "Not a brace enclosed constraint?");
2325 // Remove the braces from around the name.
2326 std::string
RegName(Constraint
.begin()+1, Constraint
.end()-1);
2328 // Figure out which register class contains this reg.
2329 const TargetRegisterInfo
*RI
= TM
.getRegisterInfo();
2330 for (TargetRegisterInfo::regclass_iterator RCI
= RI
->regclass_begin(),
2331 E
= RI
->regclass_end(); RCI
!= E
; ++RCI
) {
2332 const TargetRegisterClass
*RC
= *RCI
;
2334 // If none of the the value types for this register class are valid, we
2335 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2336 bool isLegal
= false;
2337 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
2339 if (isTypeLegal(*I
)) {
2345 if (!isLegal
) continue;
2347 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
2349 if (StringsEqualNoCase(RegName
, RI
->get(*I
).AsmName
))
2350 return std::make_pair(*I
, RC
);
2354 return std::pair
<unsigned, const TargetRegisterClass
*>(0, 0);
2357 //===----------------------------------------------------------------------===//
2358 // Constraint Selection.
2360 /// isMatchingInputConstraint - Return true of this is an input operand that is
2361 /// a matching constraint like "4".
2362 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2363 assert(!ConstraintCode
.empty() && "No known constraint!");
2364 return isdigit(ConstraintCode
[0]);
2367 /// getMatchedOperand - If this is an input matching constraint, this method
2368 /// returns the output operand it matches.
2369 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2370 assert(!ConstraintCode
.empty() && "No known constraint!");
2371 return atoi(ConstraintCode
.c_str());
2375 /// getConstraintGenerality - Return an integer indicating how general CT
2377 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
2379 default: llvm_unreachable("Unknown constraint type!");
2380 case TargetLowering::C_Other
:
2381 case TargetLowering::C_Unknown
:
2383 case TargetLowering::C_Register
:
2385 case TargetLowering::C_RegisterClass
:
2387 case TargetLowering::C_Memory
:
2392 /// ChooseConstraint - If there are multiple different constraints that we
2393 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2394 /// This is somewhat tricky: constraints fall into four classes:
2395 /// Other -> immediates and magic values
2396 /// Register -> one specific register
2397 /// RegisterClass -> a group of regs
2398 /// Memory -> memory
2399 /// Ideally, we would pick the most specific constraint possible: if we have
2400 /// something that fits into a register, we would pick it. The problem here
2401 /// is that if we have something that could either be in a register or in
2402 /// memory that use of the register could cause selection of *other*
2403 /// operands to fail: they might only succeed if we pick memory. Because of
2404 /// this the heuristic we use is:
2406 /// 1) If there is an 'other' constraint, and if the operand is valid for
2407 /// that constraint, use it. This makes us take advantage of 'i'
2408 /// constraints when available.
2409 /// 2) Otherwise, pick the most general constraint present. This prefers
2410 /// 'm' over 'r', for example.
2412 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
2413 bool hasMemory
, const TargetLowering
&TLI
,
2414 SDValue Op
, SelectionDAG
*DAG
) {
2415 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
2416 unsigned BestIdx
= 0;
2417 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
2418 int BestGenerality
= -1;
2420 // Loop over the options, keeping track of the most general one.
2421 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
2422 TargetLowering::ConstraintType CType
=
2423 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
2425 // If this is an 'other' constraint, see if the operand is valid for it.
2426 // For example, on X86 we might have an 'rI' constraint. If the operand
2427 // is an integer in the range [0..31] we want to use I (saving a load
2428 // of a register), otherwise we must use 'r'.
2429 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
2430 assert(OpInfo
.Codes
[i
].size() == 1 &&
2431 "Unhandled multi-letter 'other' constraint");
2432 std::vector
<SDValue
> ResultOps
;
2433 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
][0], hasMemory
,
2435 if (!ResultOps
.empty()) {
2442 // This constraint letter is more general than the previous one, use it.
2443 int Generality
= getConstraintGenerality(CType
);
2444 if (Generality
> BestGenerality
) {
2447 BestGenerality
= Generality
;
2451 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
2452 OpInfo
.ConstraintType
= BestType
;
2455 /// ComputeConstraintToUse - Determines the constraint code and constraint
2456 /// type to use for the specific AsmOperandInfo, setting
2457 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2458 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
2461 SelectionDAG
*DAG
) const {
2462 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
2464 // Single-letter constraints ('r') are very common.
2465 if (OpInfo
.Codes
.size() == 1) {
2466 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
2467 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
2469 ChooseConstraint(OpInfo
, hasMemory
, *this, Op
, DAG
);
2472 // 'X' matches anything.
2473 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
2474 // Labels and constants are handled elsewhere ('X' is the only thing
2475 // that matches labels). For Functions, the type here is the type of
2476 // the result, which is not what we want to look at; leave them alone.
2477 Value
*v
= OpInfo
.CallOperandVal
;
2478 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
2479 OpInfo
.CallOperandVal
= v
;
2483 // Otherwise, try to resolve it to something we know about by looking at
2484 // the actual operand type.
2485 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
2486 OpInfo
.ConstraintCode
= Repl
;
2487 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
2492 //===----------------------------------------------------------------------===//
2493 // Loop Strength Reduction hooks
2494 //===----------------------------------------------------------------------===//
2496 /// isLegalAddressingMode - Return true if the addressing mode represented
2497 /// by AM is legal for this target, for a load/store of the specified type.
2498 bool TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
2499 const Type
*Ty
) const {
2500 // The default implementation of this implements a conservative RISCy, r+r and
2503 // Allows a sign-extended 16-bit immediate field.
2504 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
2507 // No global is ever allowed as a base.
2511 // Only support r+r,
2513 case 0: // "r+i" or just "i", depending on HasBaseReg.
2516 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
2518 // Otherwise we have r+r or r+i.
2521 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
2523 // Allow 2*r as r+r.
2530 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2531 /// return a DAG expression to select that will generate the same value by
2532 /// multiplying by a magic number. See:
2533 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2534 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
2535 std::vector
<SDNode
*>* Created
) const {
2536 EVT VT
= N
->getValueType(0);
2537 DebugLoc dl
= N
->getDebugLoc();
2539 // Check to see if we can do this.
2540 // FIXME: We should be more aggressive here.
2541 if (!isTypeLegal(VT
))
2544 APInt d
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
2545 APInt::ms magics
= d
.magic();
2547 // Multiply the numerator (operand 0) by the magic value
2548 // FIXME: We should support doing a MUL in a wider type
2550 if (isOperationLegalOrCustom(ISD::MULHS
, VT
))
2551 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N
->getOperand(0),
2552 DAG
.getConstant(magics
.m
, VT
));
2553 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
))
2554 Q
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
2556 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
2558 return SDValue(); // No mulhs or equvialent
2559 // If d > 0 and m < 0, add the numerator
2560 if (d
.isStrictlyPositive() && magics
.m
.isNegative()) {
2561 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, N
->getOperand(0));
2563 Created
->push_back(Q
.getNode());
2565 // If d < 0 and m > 0, subtract the numerator.
2566 if (d
.isNegative() && magics
.m
.isStrictlyPositive()) {
2567 Q
= DAG
.getNode(ISD::SUB
, dl
, VT
, Q
, N
->getOperand(0));
2569 Created
->push_back(Q
.getNode());
2571 // Shift right algebraic if shift value is nonzero
2573 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
,
2574 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
2576 Created
->push_back(Q
.getNode());
2578 // Extract the sign bit and add it to the quotient
2580 DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, DAG
.getConstant(VT
.getSizeInBits()-1,
2581 getShiftAmountTy()));
2583 Created
->push_back(T
.getNode());
2584 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
2587 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2588 /// return a DAG expression to select that will generate the same value by
2589 /// multiplying by a magic number. See:
2590 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2591 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
2592 std::vector
<SDNode
*>* Created
) const {
2593 EVT VT
= N
->getValueType(0);
2594 DebugLoc dl
= N
->getDebugLoc();
2596 // Check to see if we can do this.
2597 // FIXME: We should be more aggressive here.
2598 if (!isTypeLegal(VT
))
2601 // FIXME: We should use a narrower constant when the upper
2602 // bits are known to be zero.
2603 ConstantSDNode
*N1C
= cast
<ConstantSDNode
>(N
->getOperand(1));
2604 APInt::mu magics
= N1C
->getAPIntValue().magicu();
2606 // Multiply the numerator (operand 0) by the magic value
2607 // FIXME: We should support doing a MUL in a wider type
2609 if (isOperationLegalOrCustom(ISD::MULHU
, VT
))
2610 Q
= DAG
.getNode(ISD::MULHU
, dl
, VT
, N
->getOperand(0),
2611 DAG
.getConstant(magics
.m
, VT
));
2612 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
))
2613 Q
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
2615 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
2617 return SDValue(); // No mulhu or equvialent
2619 Created
->push_back(Q
.getNode());
2621 if (magics
.a
== 0) {
2622 assert(magics
.s
< N1C
->getAPIntValue().getBitWidth() &&
2623 "We shouldn't generate an undefined shift!");
2624 return DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
2625 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
2627 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N
->getOperand(0), Q
);
2629 Created
->push_back(NPQ
.getNode());
2630 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
2631 DAG
.getConstant(1, getShiftAmountTy()));
2633 Created
->push_back(NPQ
.getNode());
2634 NPQ
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
2636 Created
->push_back(NPQ
.getNode());
2637 return DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
2638 DAG
.getConstant(magics
.s
-1, getShiftAmountTy()));