1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
32 class MachineFunction
;
33 class MachineRegisterInfo
;
34 class TargetInstrInfo
;
35 class TargetRegisterInfo
;
38 class VirtRegMap
: public MachineFunctionPass
{
42 NO_STACK_SLOT
= (1L << 30)-1,
43 MAX_STACK_SLOT
= (1L << 18)-1
46 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
47 typedef std::multimap
<MachineInstr
*,
48 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
51 MachineRegisterInfo
*MRI
;
52 const TargetInstrInfo
*TII
;
53 const TargetRegisterInfo
*TRI
;
56 DenseMap
<const TargetRegisterClass
*, BitVector
> allocatableRCRegs
;
58 /// Virt2PhysMap - This is a virtual to physical register
59 /// mapping. Each virtual register is required to have an entry in
60 /// it; even spilled virtual registers (the register mapped to a
61 /// spilled register is the temporary used to load it from the
63 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
65 /// Virt2StackSlotMap - This is virtual register to stack slot
66 /// mapping. Each spilled virtual register has an entry in it
67 /// which corresponds to the stack slot this register is spilled
69 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
71 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
72 /// mapping. Each spilled virtual register that should be remat'd has an
73 /// entry in it which corresponds to the remat id.
74 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
76 /// Virt2SplitMap - This is virtual register to splitted virtual register
78 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
80 /// Virt2SplitKillMap - This is splitted virtual register to its last use
81 /// (kill) index mapping.
82 IndexedMap
<unsigned> Virt2SplitKillMap
;
84 /// ReMatMap - This is virtual register to re-materialized instruction
85 /// mapping. Each virtual register whose definition is going to be
86 /// re-materialized has an entry in it.
87 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
89 /// MI2VirtMap - This is MachineInstr to virtual register
90 /// mapping. In the case of memory spill code being folded into
91 /// instructions, we need to know which virtual register was
92 /// read/written by this instruction.
93 MI2VirtMapTy MI2VirtMap
;
95 /// SpillPt2VirtMap - This records the virtual registers which should
96 /// be spilled right after the MachineInstr due to live interval
98 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
101 /// RestorePt2VirtMap - This records the virtual registers which should
102 /// be restored right before the MachineInstr due to live interval
104 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
106 /// EmergencySpillMap - This records the physical registers that should
107 /// be spilled / restored around the MachineInstr since the register
108 /// allocator has run out of registers.
109 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
111 /// EmergencySpillSlots - This records emergency spill slots used to
112 /// spill physical registers when the register allocator runs out of
113 /// registers. Ideally only one stack slot is used per function per
115 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
117 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
118 /// virtual register, an unique id is being assigned. This keeps track of
119 /// the highest id used so far. Note, this starts at (1<<18) to avoid
120 /// conflicts with stack slot numbers.
123 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
124 int LowSpillSlot
, HighSpillSlot
;
126 /// SpillSlotToUsesMap - Records uses for each register spill slot.
127 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
129 /// ImplicitDefed - One bit for each virtual register. If set it indicates
130 /// the register is implicitly defined.
131 BitVector ImplicitDefed
;
133 /// UnusedRegs - A list of physical registers that have not been used.
134 BitVector UnusedRegs
;
136 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
137 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
141 VirtRegMap() : MachineFunctionPass(&ID
), Virt2PhysMap(NO_PHYS_REG
),
142 Virt2StackSlotMap(NO_STACK_SLOT
),
143 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
144 Virt2SplitKillMap(0), ReMatMap(NULL
),
145 ReMatId(MAX_STACK_SLOT
+1),
146 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
147 virtual bool runOnMachineFunction(MachineFunction
&MF
);
149 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
150 AU
.setPreservesAll();
151 MachineFunctionPass::getAnalysisUsage(AU
);
156 /// @brief returns true if the specified virtual register is
157 /// mapped to a physical register
158 bool hasPhys(unsigned virtReg
) const {
159 return getPhys(virtReg
) != NO_PHYS_REG
;
162 /// @brief returns the physical register mapped to the specified
164 unsigned getPhys(unsigned virtReg
) const {
165 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
166 return Virt2PhysMap
[virtReg
];
169 /// @brief creates a mapping for the specified virtual register to
170 /// the specified physical register
171 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
172 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
173 TargetRegisterInfo::isPhysicalRegister(physReg
));
174 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
175 "attempt to assign physical register to already mapped "
177 Virt2PhysMap
[virtReg
] = physReg
;
180 /// @brief clears the specified virtual register's, physical
182 void clearVirt(unsigned virtReg
) {
183 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
184 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
185 "attempt to clear a not assigned virtual register");
186 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
189 /// @brief clears all virtual to physical register mappings
190 void clearAllVirt() {
191 Virt2PhysMap
.clear();
195 /// @brief returns the register allocation preference.
196 unsigned getRegAllocPref(unsigned virtReg
);
198 /// @brief records virtReg is a split live interval from SReg.
199 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
200 Virt2SplitMap
[virtReg
] = SReg
;
203 /// @brief returns the live interval virtReg is split from.
204 unsigned getPreSplitReg(unsigned virtReg
) {
205 return Virt2SplitMap
[virtReg
];
208 /// @brief returns true if the specified virtual register is not
209 /// mapped to a stack slot or rematerialized.
210 bool isAssignedReg(unsigned virtReg
) const {
211 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
212 getReMatId(virtReg
) == NO_STACK_SLOT
)
214 // Split register can be assigned a physical register as well as a
215 // stack slot or remat id.
216 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
219 /// @brief returns the stack slot mapped to the specified virtual
221 int getStackSlot(unsigned virtReg
) const {
222 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
223 return Virt2StackSlotMap
[virtReg
];
226 /// @brief returns the rematerialization id mapped to the specified virtual
228 int getReMatId(unsigned virtReg
) const {
229 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
230 return Virt2ReMatIdMap
[virtReg
];
233 /// @brief create a mapping for the specifed virtual register to
234 /// the next available stack slot
235 int assignVirt2StackSlot(unsigned virtReg
);
236 /// @brief create a mapping for the specified virtual register to
237 /// the specified stack slot
238 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
240 /// @brief assign an unique re-materialization id to the specified
241 /// virtual register.
242 int assignVirtReMatId(unsigned virtReg
);
243 /// @brief assign an unique re-materialization id to the specified
244 /// virtual register.
245 void assignVirtReMatId(unsigned virtReg
, int id
);
247 /// @brief returns true if the specified virtual register is being
249 bool isReMaterialized(unsigned virtReg
) const {
250 return ReMatMap
[virtReg
] != NULL
;
253 /// @brief returns the original machine instruction being re-issued
254 /// to re-materialize the specified virtual register.
255 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
256 return ReMatMap
[virtReg
];
259 /// @brief records the specified virtual register will be
260 /// re-materialized and the original instruction which will be re-issed
261 /// for this purpose. If parameter all is true, then all uses of the
262 /// registers are rematerialized and it's safe to delete the definition.
263 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
264 ReMatMap
[virtReg
] = def
;
267 /// @brief record the last use (kill) of a split virtual register.
268 void addKillPoint(unsigned virtReg
, unsigned index
) {
269 Virt2SplitKillMap
[virtReg
] = index
;
272 unsigned getKillPoint(unsigned virtReg
) const {
273 return Virt2SplitKillMap
[virtReg
];
276 /// @brief remove the last use (kill) of a split virtual register.
277 void removeKillPoint(unsigned virtReg
) {
278 Virt2SplitKillMap
[virtReg
] = 0;
281 /// @brief returns true if the specified MachineInstr is a spill point.
282 bool isSpillPt(MachineInstr
*Pt
) const {
283 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
286 /// @brief returns the virtual registers that should be spilled due to
287 /// splitting right after the specified MachineInstr.
288 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
289 return SpillPt2VirtMap
[Pt
];
292 /// @brief records the specified MachineInstr as a spill point for virtReg.
293 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
294 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
295 I
= SpillPt2VirtMap
.find(Pt
);
296 if (I
!= SpillPt2VirtMap
.end())
297 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
299 std::vector
<std::pair
<unsigned,bool> > Virts
;
300 Virts
.push_back(std::make_pair(virtReg
, isKill
));
301 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
305 /// @brief - transfer spill point information from one instruction to
307 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
308 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
309 I
= SpillPt2VirtMap
.find(Old
);
310 if (I
== SpillPt2VirtMap
.end())
312 while (!I
->second
.empty()) {
313 unsigned virtReg
= I
->second
.back().first
;
314 bool isKill
= I
->second
.back().second
;
315 I
->second
.pop_back();
316 addSpillPoint(virtReg
, isKill
, New
);
318 SpillPt2VirtMap
.erase(I
);
321 /// @brief returns true if the specified MachineInstr is a restore point.
322 bool isRestorePt(MachineInstr
*Pt
) const {
323 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
326 /// @brief returns the virtual registers that should be restoreed due to
327 /// splitting right after the specified MachineInstr.
328 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
329 return RestorePt2VirtMap
[Pt
];
332 /// @brief records the specified MachineInstr as a restore point for virtReg.
333 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
334 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
335 RestorePt2VirtMap
.find(Pt
);
336 if (I
!= RestorePt2VirtMap
.end())
337 I
->second
.push_back(virtReg
);
339 std::vector
<unsigned> Virts
;
340 Virts
.push_back(virtReg
);
341 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
345 /// @brief - transfer restore point information from one instruction to
347 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
348 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
349 RestorePt2VirtMap
.find(Old
);
350 if (I
== RestorePt2VirtMap
.end())
352 while (!I
->second
.empty()) {
353 unsigned virtReg
= I
->second
.back();
354 I
->second
.pop_back();
355 addRestorePoint(virtReg
, New
);
357 RestorePt2VirtMap
.erase(I
);
360 /// @brief records that the specified physical register must be spilled
361 /// around the specified machine instr.
362 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
363 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
364 EmergencySpillMap
[MI
].push_back(PhysReg
);
366 std::vector
<unsigned> PhysRegs
;
367 PhysRegs
.push_back(PhysReg
);
368 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
372 /// @brief returns true if one or more physical registers must be spilled
373 /// around the specified instruction.
374 bool hasEmergencySpills(MachineInstr
*MI
) const {
375 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
378 /// @brief returns the physical registers to be spilled and restored around
380 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
381 return EmergencySpillMap
[MI
];
384 /// @brief - transfer emergency spill information from one instruction to
386 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
387 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
388 EmergencySpillMap
.find(Old
);
389 if (I
== EmergencySpillMap
.end())
391 while (!I
->second
.empty()) {
392 unsigned virtReg
= I
->second
.back();
393 I
->second
.pop_back();
394 addEmergencySpill(virtReg
, New
);
396 EmergencySpillMap
.erase(I
);
399 /// @brief return or get a emergency spill slot for the register class.
400 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
402 /// @brief Return lowest spill slot index.
403 int getLowSpillSlot() const {
407 /// @brief Return highest spill slot index.
408 int getHighSpillSlot() const {
409 return HighSpillSlot
;
412 /// @brief Records a spill slot use.
413 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
415 /// @brief Returns true if spill slot has been used.
416 bool isSpillSlotUsed(int FrameIndex
) const {
417 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
418 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
421 /// @brief Mark the specified register as being implicitly defined.
422 void setIsImplicitlyDefined(unsigned VirtReg
) {
423 ImplicitDefed
.set(VirtReg
-TargetRegisterInfo::FirstVirtualRegister
);
426 /// @brief Returns true if the virtual register is implicitly defined.
427 bool isImplicitlyDefined(unsigned VirtReg
) const {
428 return ImplicitDefed
[VirtReg
-TargetRegisterInfo::FirstVirtualRegister
];
431 /// @brief Updates information about the specified virtual register's value
432 /// folded into newMI machine instruction.
433 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
436 /// @brief Updates information about the specified virtual register's value
437 /// folded into the specified machine instruction.
438 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
440 /// @brief returns the virtual registers' values folded in memory
441 /// operands of this instruction
442 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
443 getFoldedVirts(MachineInstr
* MI
) const {
444 return MI2VirtMap
.equal_range(MI
);
447 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
448 /// the folded instruction map and spill point map.
449 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
451 /// FindUnusedRegisters - Gather a list of allocatable registers that
452 /// have not been allocated to any virtual register.
453 bool FindUnusedRegisters(LiveIntervals
* LIs
);
455 /// HasUnusedRegisters - Return true if there are any allocatable registers
456 /// that have not been allocated to any virtual register.
457 bool HasUnusedRegisters() const {
458 return !UnusedRegs
.none();
461 /// setRegisterUsed - Remember the physical register is now used.
462 void setRegisterUsed(unsigned Reg
) {
463 UnusedRegs
.reset(Reg
);
466 /// isRegisterUnused - Return true if the physical register has not been
468 bool isRegisterUnused(unsigned Reg
) const {
469 return UnusedRegs
[Reg
];
472 /// getFirstUnusedRegister - Return the first physical register that has not
474 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
475 int Reg
= UnusedRegs
.find_first();
477 if (allocatableRCRegs
[RC
][Reg
])
478 return (unsigned)Reg
;
479 Reg
= UnusedRegs
.find_next(Reg
);
484 void print(raw_ostream
&OS
, const Module
* M
= 0) const;
488 inline raw_ostream
&operator<<(raw_ostream
&OS
, const VirtRegMap
&VRM
) {
492 } // End llvm namespace