Fix comment for consistency sake.
[llvm/avr.git] / lib / CodeGen / VirtRegRewriter.cpp
blob79b366ca8d0dec9a9207d694be9a96cb6a9e536c
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Function.h"
13 #include "llvm/CodeGen/MachineFrameInfo.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/Support/Compiler.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetLowering.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
24 #include "llvm/ADT/Statistic.h"
25 #include <algorithm>
26 using namespace llvm;
28 STATISTIC(NumDSE , "Number of dead stores elided");
29 STATISTIC(NumDSS , "Number of dead spill slots removed");
30 STATISTIC(NumCommutes, "Number of instructions commuted");
31 STATISTIC(NumDRM , "Number of re-materializable defs elided");
32 STATISTIC(NumStores , "Number of stores added");
33 STATISTIC(NumPSpills , "Number of physical register spills");
34 STATISTIC(NumOmitted , "Number of reloads omited");
35 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
36 STATISTIC(NumCopified, "Number of available reloads turned into copies");
37 STATISTIC(NumReMats , "Number of re-materialization");
38 STATISTIC(NumLoads , "Number of loads added");
39 STATISTIC(NumReused , "Number of values reused");
40 STATISTIC(NumDCE , "Number of copies elided");
41 STATISTIC(NumSUnfold , "Number of stores unfolded");
42 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
44 namespace {
45 enum RewriterName { local, trivial };
48 static cl::opt<RewriterName>
49 RewriterOpt("rewriter",
50 cl::desc("Rewriter to use: (default: local)"),
51 cl::Prefix,
52 cl::values(clEnumVal(local, "local rewriter"),
53 clEnumVal(trivial, "trivial rewriter"),
54 clEnumValEnd),
55 cl::init(local));
57 static cl::opt<bool>
58 ScheduleSpills("schedule-spills",
59 cl::desc("Schedule spill code"),
60 cl::init(false));
62 VirtRegRewriter::~VirtRegRewriter() {}
64 namespace {
66 /// This class is intended for use with the new spilling framework only. It
67 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
68 /// spill code.
69 struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
71 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
72 LiveIntervals* LIs) {
73 DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n");
74 DEBUG(errs() << "********** Function: "
75 << MF.getFunction()->getName() << '\n');
76 DEBUG(errs() << "**** Machine Instrs"
77 << "(NOTE! Does not include spills and reloads!) ****\n");
78 DEBUG(MF.dump());
80 MachineRegisterInfo *mri = &MF.getRegInfo();
82 bool changed = false;
84 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
85 liItr != liEnd; ++liItr) {
87 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
88 if (VRM.hasPhys(liItr->first)) {
89 unsigned preg = VRM.getPhys(liItr->first);
90 mri->replaceRegWith(liItr->first, preg);
91 mri->setPhysRegUsed(preg);
92 changed = true;
95 else {
96 if (!liItr->second->empty()) {
97 mri->setPhysRegUsed(liItr->first);
103 DEBUG(errs() << "**** Post Machine Instrs ****\n");
104 DEBUG(MF.dump());
106 return changed;
113 // ************************************************************************ //
115 namespace {
117 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
118 /// from top down, keep track of which spill slots or remat are available in
119 /// each register.
121 /// Note that not all physregs are created equal here. In particular, some
122 /// physregs are reloads that we are allowed to clobber or ignore at any time.
123 /// Other physregs are values that the register allocated program is using
124 /// that we cannot CHANGE, but we can read if we like. We keep track of this
125 /// on a per-stack-slot / remat id basis as the low bit in the value of the
126 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
127 /// this bit and addAvailable sets it if.
128 class VISIBILITY_HIDDEN AvailableSpills {
129 const TargetRegisterInfo *TRI;
130 const TargetInstrInfo *TII;
132 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
133 // or remat'ed virtual register values that are still available, due to
134 // being loaded or stored to, but not invalidated yet.
135 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
137 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
138 // indicating which stack slot values are currently held by a physreg. This
139 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
140 // physreg is modified.
141 std::multimap<unsigned, int> PhysRegsAvailable;
143 void disallowClobberPhysRegOnly(unsigned PhysReg);
145 void ClobberPhysRegOnly(unsigned PhysReg);
146 public:
147 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
148 : TRI(tri), TII(tii) {
151 /// clear - Reset the state.
152 void clear() {
153 SpillSlotsOrReMatsAvailable.clear();
154 PhysRegsAvailable.clear();
157 const TargetRegisterInfo *getRegInfo() const { return TRI; }
159 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
160 /// available in a physical register, return that PhysReg, otherwise
161 /// return 0.
162 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
163 std::map<int, unsigned>::const_iterator I =
164 SpillSlotsOrReMatsAvailable.find(Slot);
165 if (I != SpillSlotsOrReMatsAvailable.end()) {
166 return I->second >> 1; // Remove the CanClobber bit.
168 return 0;
171 /// addAvailable - Mark that the specified stack slot / remat is available
172 /// in the specified physreg. If CanClobber is true, the physreg can be
173 /// modified at any time without changing the semantics of the program.
174 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
175 // If this stack slot is thought to be available in some other physreg,
176 // remove its record.
177 ModifyStackSlotOrReMat(SlotOrReMat);
179 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
180 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
181 (unsigned)CanClobber;
183 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
184 DEBUG(errs() << "Remembering RM#"
185 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
186 else
187 DEBUG(errs() << "Remembering SS#" << SlotOrReMat);
188 DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n");
191 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
192 /// the value of the specified stackslot register if it desires. The
193 /// specified stack slot must be available in a physreg for this query to
194 /// make sense.
195 bool canClobberPhysRegForSS(int SlotOrReMat) const {
196 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
197 "Value not available!");
198 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
201 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
202 /// physical register where values for some stack slot(s) might be
203 /// available.
204 bool canClobberPhysReg(unsigned PhysReg) const {
205 std::multimap<unsigned, int>::const_iterator I =
206 PhysRegsAvailable.lower_bound(PhysReg);
207 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
208 int SlotOrReMat = I->second;
209 I++;
210 if (!canClobberPhysRegForSS(SlotOrReMat))
211 return false;
213 return true;
216 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
217 /// stackslot register. The register is still available but is no longer
218 /// allowed to be modifed.
219 void disallowClobberPhysReg(unsigned PhysReg);
221 /// ClobberPhysReg - This is called when the specified physreg changes
222 /// value. We use this to invalidate any info about stuff that lives in
223 /// it and any of its aliases.
224 void ClobberPhysReg(unsigned PhysReg);
226 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
227 /// slot changes. This removes information about which register the
228 /// previous value for this slot lives in (as the previous value is dead
229 /// now).
230 void ModifyStackSlotOrReMat(int SlotOrReMat);
232 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
233 /// into the specified MBB. Add available physical registers as potential
234 /// live-in's. If they are reused in the MBB, they will be added to the
235 /// live-in set to make register scavenger and post-allocation scheduler.
236 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
237 std::vector<MachineOperand*> &KillOps);
242 // ************************************************************************ //
244 // Given a location where a reload of a spilled register or a remat of
245 // a constant is to be inserted, attempt to find a safe location to
246 // insert the load at an earlier point in the basic-block, to hide
247 // latency of the load and to avoid address-generation interlock
248 // issues.
249 static MachineBasicBlock::iterator
250 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
251 MachineBasicBlock::iterator const Begin,
252 unsigned PhysReg,
253 const TargetRegisterInfo *TRI,
254 bool DoReMat,
255 int SSorRMId,
256 const TargetInstrInfo *TII,
257 const MachineFunction &MF)
259 if (!ScheduleSpills)
260 return InsertLoc;
262 // Spill backscheduling is of primary interest to addresses, so
263 // don't do anything if the register isn't in the register class
264 // used for pointers.
266 const TargetLowering *TL = MF.getTarget().getTargetLowering();
268 if (!TL->isTypeLegal(TL->getPointerTy()))
269 // Believe it or not, this is true on PIC16.
270 return InsertLoc;
272 const TargetRegisterClass *ptrRegClass =
273 TL->getRegClassFor(TL->getPointerTy());
274 if (!ptrRegClass->contains(PhysReg))
275 return InsertLoc;
277 // Scan upwards through the preceding instructions. If an instruction doesn't
278 // reference the stack slot or the register we're loading, we can
279 // backschedule the reload up past it.
280 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
281 while (NewInsertLoc != Begin) {
282 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
283 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
284 MachineOperand &Op = Prev->getOperand(i);
285 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
286 goto stop;
288 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
289 Prev->findRegisterDefOperand(PhysReg))
290 goto stop;
291 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
292 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
293 Prev->findRegisterDefOperand(*Alias))
294 goto stop;
295 NewInsertLoc = Prev;
297 stop:;
299 // If we made it to the beginning of the block, turn around and move back
300 // down just past any existing reloads. They're likely to be reloads/remats
301 // for instructions earlier than what our current reload/remat is for, so
302 // they should be scheduled earlier.
303 if (NewInsertLoc == Begin) {
304 int FrameIdx;
305 while (InsertLoc != NewInsertLoc &&
306 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
307 TII->isTriviallyReMaterializable(NewInsertLoc)))
308 ++NewInsertLoc;
311 return NewInsertLoc;
314 namespace {
316 // ReusedOp - For each reused operand, we keep track of a bit of information,
317 // in case we need to rollback upon processing a new operand. See comments
318 // below.
319 struct ReusedOp {
320 // The MachineInstr operand that reused an available value.
321 unsigned Operand;
323 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
324 unsigned StackSlotOrReMat;
326 // PhysRegReused - The physical register the value was available in.
327 unsigned PhysRegReused;
329 // AssignedPhysReg - The physreg that was assigned for use by the reload.
330 unsigned AssignedPhysReg;
332 // VirtReg - The virtual register itself.
333 unsigned VirtReg;
335 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
336 unsigned vreg)
337 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
338 AssignedPhysReg(apr), VirtReg(vreg) {}
341 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
342 /// is reused instead of reloaded.
343 class VISIBILITY_HIDDEN ReuseInfo {
344 MachineInstr &MI;
345 std::vector<ReusedOp> Reuses;
346 BitVector PhysRegsClobbered;
347 public:
348 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
349 PhysRegsClobbered.resize(tri->getNumRegs());
352 bool hasReuses() const {
353 return !Reuses.empty();
356 /// addReuse - If we choose to reuse a virtual register that is already
357 /// available instead of reloading it, remember that we did so.
358 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
359 unsigned PhysRegReused, unsigned AssignedPhysReg,
360 unsigned VirtReg) {
361 // If the reload is to the assigned register anyway, no undo will be
362 // required.
363 if (PhysRegReused == AssignedPhysReg) return;
365 // Otherwise, remember this.
366 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
367 AssignedPhysReg, VirtReg));
370 void markClobbered(unsigned PhysReg) {
371 PhysRegsClobbered.set(PhysReg);
374 bool isClobbered(unsigned PhysReg) const {
375 return PhysRegsClobbered.test(PhysReg);
378 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
379 /// is some other operand that is using the specified register, either pick
380 /// a new register to use, or evict the previous reload and use this reg.
381 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
382 MachineFunction &MF, MachineInstr *MI,
383 AvailableSpills &Spills,
384 std::vector<MachineInstr*> &MaybeDeadStores,
385 SmallSet<unsigned, 8> &Rejected,
386 BitVector &RegKills,
387 std::vector<MachineOperand*> &KillOps,
388 VirtRegMap &VRM);
390 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
391 /// 'Rejected' set to remember which registers have been considered and
392 /// rejected for the reload. This avoids infinite looping in case like
393 /// this:
394 /// t1 := op t2, t3
395 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
396 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
397 /// t1 <- desires r1
398 /// sees r1 is taken by t2, tries t2's reload register r0
399 /// sees r0 is taken by t3, tries t3's reload register r1
400 /// sees r1 is taken by t2, tries t2's reload register r0 ...
401 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
402 AvailableSpills &Spills,
403 std::vector<MachineInstr*> &MaybeDeadStores,
404 BitVector &RegKills,
405 std::vector<MachineOperand*> &KillOps,
406 VirtRegMap &VRM) {
407 SmallSet<unsigned, 8> Rejected;
408 MachineFunction &MF = *MI->getParent()->getParent();
409 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
410 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
411 Rejected, RegKills, KillOps, VRM);
417 // ****************** //
418 // Utility Functions //
419 // ****************** //
421 /// findSinglePredSuccessor - Return via reference a vector of machine basic
422 /// blocks each of which is a successor of the specified BB and has no other
423 /// predecessor.
424 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
425 SmallVectorImpl<MachineBasicBlock *> &Succs) {
426 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
427 SE = MBB->succ_end(); SI != SE; ++SI) {
428 MachineBasicBlock *SuccMBB = *SI;
429 if (SuccMBB->pred_size() == 1)
430 Succs.push_back(SuccMBB);
434 /// InvalidateKill - Invalidate register kill information for a specific
435 /// register. This also unsets the kills marker on the last kill operand.
436 static void InvalidateKill(unsigned Reg,
437 const TargetRegisterInfo* TRI,
438 BitVector &RegKills,
439 std::vector<MachineOperand*> &KillOps) {
440 if (RegKills[Reg]) {
441 KillOps[Reg]->setIsKill(false);
442 // KillOps[Reg] might be a def of a super-register.
443 unsigned KReg = KillOps[Reg]->getReg();
444 KillOps[KReg] = NULL;
445 RegKills.reset(KReg);
446 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
447 if (RegKills[*SR]) {
448 KillOps[*SR]->setIsKill(false);
449 KillOps[*SR] = NULL;
450 RegKills.reset(*SR);
456 /// InvalidateKills - MI is going to be deleted. If any of its operands are
457 /// marked kill, then invalidate the information.
458 static void InvalidateKills(MachineInstr &MI,
459 const TargetRegisterInfo* TRI,
460 BitVector &RegKills,
461 std::vector<MachineOperand*> &KillOps,
462 SmallVector<unsigned, 2> *KillRegs = NULL) {
463 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464 MachineOperand &MO = MI.getOperand(i);
465 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
466 continue;
467 unsigned Reg = MO.getReg();
468 if (TargetRegisterInfo::isVirtualRegister(Reg))
469 continue;
470 if (KillRegs)
471 KillRegs->push_back(Reg);
472 assert(Reg < KillOps.size());
473 if (KillOps[Reg] == &MO) {
474 KillOps[Reg] = NULL;
475 RegKills.reset(Reg);
476 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
477 if (RegKills[*SR]) {
478 KillOps[*SR] = NULL;
479 RegKills.reset(*SR);
486 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
487 /// (since it's spill instruction is removed), mark it isDead. Also checks if
488 /// the def MI has other definition operands that are not dead. Returns it by
489 /// reference.
490 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
491 MachineInstr &NewDef, unsigned Reg,
492 bool &HasLiveDef) {
493 // Due to remat, it's possible this reg isn't being reused. That is,
494 // the def of this reg (by prev MI) is now dead.
495 MachineInstr *DefMI = I;
496 MachineOperand *DefOp = NULL;
497 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
498 MachineOperand &MO = DefMI->getOperand(i);
499 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
500 continue;
501 if (MO.getReg() == Reg)
502 DefOp = &MO;
503 else if (!MO.isDead())
504 HasLiveDef = true;
506 if (!DefOp)
507 return false;
509 bool FoundUse = false, Done = false;
510 MachineBasicBlock::iterator E = &NewDef;
511 ++I; ++E;
512 for (; !Done && I != E; ++I) {
513 MachineInstr *NMI = I;
514 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
515 MachineOperand &MO = NMI->getOperand(j);
516 if (!MO.isReg() || MO.getReg() != Reg)
517 continue;
518 if (MO.isUse())
519 FoundUse = true;
520 Done = true; // Stop after scanning all the operands of this MI.
523 if (!FoundUse) {
524 // Def is dead!
525 DefOp->setIsDead();
526 return true;
528 return false;
531 /// UpdateKills - Track and update kill info. If a MI reads a register that is
532 /// marked kill, then it must be due to register reuse. Transfer the kill info
533 /// over.
534 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
535 BitVector &RegKills,
536 std::vector<MachineOperand*> &KillOps) {
537 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
538 MachineOperand &MO = MI.getOperand(i);
539 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
540 continue;
541 unsigned Reg = MO.getReg();
542 if (Reg == 0)
543 continue;
545 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
546 // That can't be right. Register is killed but not re-defined and it's
547 // being reused. Let's fix that.
548 KillOps[Reg]->setIsKill(false);
549 // KillOps[Reg] might be a def of a super-register.
550 unsigned KReg = KillOps[Reg]->getReg();
551 KillOps[KReg] = NULL;
552 RegKills.reset(KReg);
554 // Must be a def of a super-register. Its other sub-regsters are no
555 // longer killed as well.
556 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
557 KillOps[*SR] = NULL;
558 RegKills.reset(*SR);
561 if (!MI.isRegTiedToDefOperand(i))
562 // Unless it's a two-address operand, this is the new kill.
563 MO.setIsKill();
565 if (MO.isKill()) {
566 RegKills.set(Reg);
567 KillOps[Reg] = &MO;
568 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
569 RegKills.set(*SR);
570 KillOps[*SR] = &MO;
575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
576 const MachineOperand &MO = MI.getOperand(i);
577 if (!MO.isReg() || !MO.isDef())
578 continue;
579 unsigned Reg = MO.getReg();
580 RegKills.reset(Reg);
581 KillOps[Reg] = NULL;
582 // It also defines (or partially define) aliases.
583 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
584 RegKills.reset(*SR);
585 KillOps[*SR] = NULL;
590 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
592 static void ReMaterialize(MachineBasicBlock &MBB,
593 MachineBasicBlock::iterator &MII,
594 unsigned DestReg, unsigned Reg,
595 const TargetInstrInfo *TII,
596 const TargetRegisterInfo *TRI,
597 VirtRegMap &VRM) {
598 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
599 #ifndef NDEBUG
600 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
601 assert(TID.getNumDefs() == 1 &&
602 "Don't know how to remat instructions that define > 1 values!");
603 #endif
604 TII->reMaterialize(MBB, MII, DestReg,
605 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
606 MachineInstr *NewMI = prior(MII);
607 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
608 MachineOperand &MO = NewMI->getOperand(i);
609 if (!MO.isReg() || MO.getReg() == 0)
610 continue;
611 unsigned VirtReg = MO.getReg();
612 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
613 continue;
614 assert(MO.isUse());
615 unsigned SubIdx = MO.getSubReg();
616 unsigned Phys = VRM.getPhys(VirtReg);
617 assert(Phys);
618 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
619 MO.setReg(RReg);
620 MO.setSubReg(0);
622 ++NumReMats;
625 /// findSuperReg - Find the SubReg's super-register of given register class
626 /// where its SubIdx sub-register is SubReg.
627 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
628 unsigned SubIdx, const TargetRegisterInfo *TRI) {
629 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
630 I != E; ++I) {
631 unsigned Reg = *I;
632 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
633 return Reg;
635 return 0;
638 // ******************************** //
639 // Available Spills Implementation //
640 // ******************************** //
642 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
643 /// stackslot register. The register is still available but is no longer
644 /// allowed to be modifed.
645 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
646 std::multimap<unsigned, int>::iterator I =
647 PhysRegsAvailable.lower_bound(PhysReg);
648 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
649 int SlotOrReMat = I->second;
650 I++;
651 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
652 "Bidirectional map mismatch!");
653 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
654 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
655 << " copied, it is available for use but can no longer be modified\n");
659 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
660 /// stackslot register and its aliases. The register and its aliases may
661 /// still available but is no longer allowed to be modifed.
662 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
663 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
664 disallowClobberPhysRegOnly(*AS);
665 disallowClobberPhysRegOnly(PhysReg);
668 /// ClobberPhysRegOnly - This is called when the specified physreg changes
669 /// value. We use this to invalidate any info about stuff we thing lives in it.
670 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
671 std::multimap<unsigned, int>::iterator I =
672 PhysRegsAvailable.lower_bound(PhysReg);
673 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
674 int SlotOrReMat = I->second;
675 PhysRegsAvailable.erase(I++);
676 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
677 "Bidirectional map mismatch!");
678 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
679 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
680 << " clobbered, invalidating ");
681 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
682 DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
683 else
684 DEBUG(errs() << "SS#" << SlotOrReMat << "\n");
688 /// ClobberPhysReg - This is called when the specified physreg changes
689 /// value. We use this to invalidate any info about stuff we thing lives in
690 /// it and any of its aliases.
691 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
692 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
693 ClobberPhysRegOnly(*AS);
694 ClobberPhysRegOnly(PhysReg);
697 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
698 /// into the specified MBB. Add available physical registers as potential
699 /// live-in's. If they are reused in the MBB, they will be added to the
700 /// live-in set to make register scavenger and post-allocation scheduler.
701 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
702 BitVector &RegKills,
703 std::vector<MachineOperand*> &KillOps) {
704 std::set<unsigned> NotAvailable;
705 for (std::multimap<unsigned, int>::iterator
706 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
707 I != E; ++I) {
708 unsigned Reg = I->first;
709 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
710 // FIXME: A temporary workaround. We can't reuse available value if it's
711 // not safe to move the def of the virtual register's class. e.g.
712 // X86::RFP* register classes. Do not add it as a live-in.
713 if (!TII->isSafeToMoveRegClassDefs(RC))
714 // This is no longer available.
715 NotAvailable.insert(Reg);
716 else {
717 MBB.addLiveIn(Reg);
718 InvalidateKill(Reg, TRI, RegKills, KillOps);
721 // Skip over the same register.
722 std::multimap<unsigned, int>::iterator NI = next(I);
723 while (NI != E && NI->first == Reg) {
724 ++I;
725 ++NI;
729 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
730 E = NotAvailable.end(); I != E; ++I) {
731 ClobberPhysReg(*I);
732 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
733 *SubRegs; ++SubRegs)
734 ClobberPhysReg(*SubRegs);
738 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
739 /// slot changes. This removes information about which register the previous
740 /// value for this slot lives in (as the previous value is dead now).
741 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
742 std::map<int, unsigned>::iterator It =
743 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
744 if (It == SpillSlotsOrReMatsAvailable.end()) return;
745 unsigned Reg = It->second >> 1;
746 SpillSlotsOrReMatsAvailable.erase(It);
748 // This register may hold the value of multiple stack slots, only remove this
749 // stack slot from the set of values the register contains.
750 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
751 for (; ; ++I) {
752 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
753 "Map inverse broken!");
754 if (I->second == SlotOrReMat) break;
756 PhysRegsAvailable.erase(I);
759 // ************************** //
760 // Reuse Info Implementation //
761 // ************************** //
763 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
764 /// is some other operand that is using the specified register, either pick
765 /// a new register to use, or evict the previous reload and use this reg.
766 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
767 unsigned PhysReg,
768 MachineFunction &MF,
769 MachineInstr *MI, AvailableSpills &Spills,
770 std::vector<MachineInstr*> &MaybeDeadStores,
771 SmallSet<unsigned, 8> &Rejected,
772 BitVector &RegKills,
773 std::vector<MachineOperand*> &KillOps,
774 VirtRegMap &VRM) {
775 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
776 const TargetRegisterInfo *TRI = Spills.getRegInfo();
778 if (Reuses.empty()) return PhysReg; // This is most often empty.
780 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
781 ReusedOp &Op = Reuses[ro];
782 // If we find some other reuse that was supposed to use this register
783 // exactly for its reload, we can change this reload to use ITS reload
784 // register. That is, unless its reload register has already been
785 // considered and subsequently rejected because it has also been reused
786 // by another operand.
787 if (Op.PhysRegReused == PhysReg &&
788 Rejected.count(Op.AssignedPhysReg) == 0 &&
789 RC->contains(Op.AssignedPhysReg)) {
790 // Yup, use the reload register that we didn't use before.
791 unsigned NewReg = Op.AssignedPhysReg;
792 Rejected.insert(PhysReg);
793 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
794 RegKills, KillOps, VRM);
795 } else {
796 // Otherwise, we might also have a problem if a previously reused
797 // value aliases the new register. If so, codegen the previous reload
798 // and use this one.
799 unsigned PRRU = Op.PhysRegReused;
800 if (TRI->regsOverlap(PRRU, PhysReg)) {
801 // Okay, we found out that an alias of a reused register
802 // was used. This isn't good because it means we have
803 // to undo a previous reuse.
804 MachineBasicBlock *MBB = MI->getParent();
805 const TargetRegisterClass *AliasRC =
806 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
808 // Copy Op out of the vector and remove it, we're going to insert an
809 // explicit load for it.
810 ReusedOp NewOp = Op;
811 Reuses.erase(Reuses.begin()+ro);
813 // MI may be using only a sub-register of PhysRegUsed.
814 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
815 unsigned SubIdx = 0;
816 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
817 "A reuse cannot be a virtual register");
818 if (PRRU != RealPhysRegUsed) {
819 // What was the sub-register index?
820 unsigned SubReg;
821 for (SubIdx = 1; (SubReg = TRI->getSubReg(PRRU, SubIdx)); SubIdx++)
822 if (SubReg == RealPhysRegUsed)
823 break;
824 assert(SubReg == RealPhysRegUsed &&
825 "Operand physreg is not a sub-register of PhysRegUsed");
828 // Ok, we're going to try to reload the assigned physreg into the
829 // slot that we were supposed to in the first place. However, that
830 // register could hold a reuse. Check to see if it conflicts or
831 // would prefer us to use a different register.
832 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
833 MF, MI, Spills, MaybeDeadStores,
834 Rejected, RegKills, KillOps, VRM);
836 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
837 int SSorRMId = DoReMat
838 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
840 // Back-schedule reloads and remats.
841 MachineBasicBlock::iterator InsertLoc =
842 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
843 DoReMat, SSorRMId, TII, MF);
845 if (DoReMat) {
846 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
847 TRI, VRM);
848 } else {
849 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
850 NewOp.StackSlotOrReMat, AliasRC);
851 MachineInstr *LoadMI = prior(InsertLoc);
852 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
853 // Any stores to this stack slot are not dead anymore.
854 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
855 ++NumLoads;
857 Spills.ClobberPhysReg(NewPhysReg);
858 Spills.ClobberPhysReg(NewOp.PhysRegReused);
860 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
861 MI->getOperand(NewOp.Operand).setReg(RReg);
862 MI->getOperand(NewOp.Operand).setSubReg(0);
864 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
865 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
866 DEBUG(errs() << '\t' << *prior(InsertLoc));
868 DEBUG(errs() << "Reuse undone!\n");
869 --NumReused;
871 // Finally, PhysReg is now available, go ahead and use it.
872 return PhysReg;
876 return PhysReg;
879 // ************************************************************************ //
881 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
882 /// stack slot mod/ref. It also checks if it's possible to unfold the
883 /// instruction by having it define a specified physical register instead.
884 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
885 const TargetInstrInfo *TII,
886 const TargetRegisterInfo *TRI,
887 VirtRegMap &VRM) {
888 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
889 return false;
891 bool Found = false;
892 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
893 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
894 unsigned VirtReg = I->second.first;
895 VirtRegMap::ModRef MR = I->second.second;
896 if (MR & VirtRegMap::isModRef)
897 if (VRM.getStackSlot(VirtReg) == SS) {
898 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
899 break;
902 if (!Found)
903 return false;
905 // Does the instruction uses a register that overlaps the scratch register?
906 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
907 MachineOperand &MO = MI.getOperand(i);
908 if (!MO.isReg() || MO.getReg() == 0)
909 continue;
910 unsigned Reg = MO.getReg();
911 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
912 if (!VRM.hasPhys(Reg))
913 continue;
914 Reg = VRM.getPhys(Reg);
916 if (TRI->regsOverlap(PhysReg, Reg))
917 return false;
919 return true;
922 /// FindFreeRegister - Find a free register of a given register class by looking
923 /// at (at most) the last two machine instructions.
924 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
925 MachineBasicBlock &MBB,
926 const TargetRegisterClass *RC,
927 const TargetRegisterInfo *TRI,
928 BitVector &AllocatableRegs) {
929 BitVector Defs(TRI->getNumRegs());
930 BitVector Uses(TRI->getNumRegs());
931 SmallVector<unsigned, 4> LocalUses;
932 SmallVector<unsigned, 4> Kills;
934 // Take a look at 2 instructions at most.
935 for (unsigned Count = 0; Count < 2; ++Count) {
936 if (MII == MBB.begin())
937 break;
938 MachineInstr *PrevMI = prior(MII);
939 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
940 MachineOperand &MO = PrevMI->getOperand(i);
941 if (!MO.isReg() || MO.getReg() == 0)
942 continue;
943 unsigned Reg = MO.getReg();
944 if (MO.isDef()) {
945 Defs.set(Reg);
946 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
947 Defs.set(*AS);
948 } else {
949 LocalUses.push_back(Reg);
950 if (MO.isKill() && AllocatableRegs[Reg])
951 Kills.push_back(Reg);
955 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
956 unsigned Kill = Kills[i];
957 if (!Defs[Kill] && !Uses[Kill] &&
958 TRI->getPhysicalRegisterRegClass(Kill) == RC)
959 return Kill;
961 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
962 unsigned Reg = LocalUses[i];
963 Uses.set(Reg);
964 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
965 Uses.set(*AS);
968 MII = PrevMI;
971 return 0;
974 static
975 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
976 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
977 MachineOperand &MO = MI->getOperand(i);
978 if (MO.isReg() && MO.getReg() == VirtReg)
979 MO.setReg(PhysReg);
983 namespace {
984 struct RefSorter {
985 bool operator()(const std::pair<MachineInstr*, int> &A,
986 const std::pair<MachineInstr*, int> &B) {
987 return A.second < B.second;
992 // ***************************** //
993 // Local Spiller Implementation //
994 // ***************************** //
996 namespace {
998 class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
999 MachineRegisterInfo *RegInfo;
1000 const TargetRegisterInfo *TRI;
1001 const TargetInstrInfo *TII;
1002 BitVector AllocatableRegs;
1003 DenseMap<MachineInstr*, unsigned> DistanceMap;
1004 public:
1006 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
1007 LiveIntervals* LIs) {
1008 RegInfo = &MF.getRegInfo();
1009 TRI = MF.getTarget().getRegisterInfo();
1010 TII = MF.getTarget().getInstrInfo();
1011 AllocatableRegs = TRI->getAllocatableSet(MF);
1012 DEBUG(errs() << "\n**** Local spiller rewriting function '"
1013 << MF.getFunction()->getName() << "':\n");
1014 DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and"
1015 " reloads!) ****\n");
1016 DEBUG(MF.dump());
1018 // Spills - Keep track of which spilled values are available in physregs
1019 // so that we can choose to reuse the physregs instead of emitting
1020 // reloads. This is usually refreshed per basic block.
1021 AvailableSpills Spills(TRI, TII);
1023 // Keep track of kill information.
1024 BitVector RegKills(TRI->getNumRegs());
1025 std::vector<MachineOperand*> KillOps;
1026 KillOps.resize(TRI->getNumRegs(), NULL);
1028 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1029 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1030 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1032 // Traverse the basic blocks depth first.
1033 MachineBasicBlock *Entry = MF.begin();
1034 SmallPtrSet<MachineBasicBlock*,16> Visited;
1035 for (df_ext_iterator<MachineBasicBlock*,
1036 SmallPtrSet<MachineBasicBlock*,16> >
1037 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1038 DFI != E; ++DFI) {
1039 MachineBasicBlock *MBB = *DFI;
1040 if (!EarlyVisited.count(MBB))
1041 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1043 // If this MBB is the only predecessor of a successor. Keep the
1044 // availability information and visit it next.
1045 do {
1046 // Keep visiting single predecessor successor as long as possible.
1047 SinglePredSuccs.clear();
1048 findSinglePredSuccessor(MBB, SinglePredSuccs);
1049 if (SinglePredSuccs.empty())
1050 MBB = 0;
1051 else {
1052 // FIXME: More than one successors, each of which has MBB has
1053 // the only predecessor.
1054 MBB = SinglePredSuccs[0];
1055 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1056 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1057 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1060 } while (MBB);
1062 // Clear the availability info.
1063 Spills.clear();
1066 DEBUG(errs() << "**** Post Machine Instrs ****\n");
1067 DEBUG(MF.dump());
1069 // Mark unused spill slots.
1070 MachineFrameInfo *MFI = MF.getFrameInfo();
1071 int SS = VRM.getLowSpillSlot();
1072 if (SS != VirtRegMap::NO_STACK_SLOT)
1073 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1074 if (!VRM.isSpillSlotUsed(SS)) {
1075 MFI->RemoveStackObject(SS);
1076 ++NumDSS;
1079 return true;
1082 private:
1084 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1085 /// a scratch register is available.
1086 /// xorq %r12<kill>, %r13
1087 /// addq %rax, -184(%rbp)
1088 /// addq %r13, -184(%rbp)
1089 /// ==>
1090 /// xorq %r12<kill>, %r13
1091 /// movq -184(%rbp), %r12
1092 /// addq %rax, %r12
1093 /// addq %r13, %r12
1094 /// movq %r12, -184(%rbp)
1095 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1096 MachineBasicBlock &MBB,
1097 MachineBasicBlock::iterator &MII,
1098 std::vector<MachineInstr*> &MaybeDeadStores,
1099 AvailableSpills &Spills,
1100 BitVector &RegKills,
1101 std::vector<MachineOperand*> &KillOps,
1102 VirtRegMap &VRM) {
1104 MachineBasicBlock::iterator NextMII = next(MII);
1105 if (NextMII == MBB.end())
1106 return false;
1108 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1109 return false;
1111 // Now let's see if the last couple of instructions happens to have freed up
1112 // a register.
1113 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1114 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1115 if (!PhysReg)
1116 return false;
1118 MachineFunction &MF = *MBB.getParent();
1119 TRI = MF.getTarget().getRegisterInfo();
1120 MachineInstr &MI = *MII;
1121 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1122 return false;
1124 // If the next instruction also folds the same SS modref and can be unfoled,
1125 // then it's worthwhile to issue a load from SS into the free register and
1126 // then unfold these instructions.
1127 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1128 return false;
1130 // Back-schedule reloads and remats.
1131 MachineBasicBlock::iterator InsertLoc =
1132 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
1134 // Load from SS to the spare physical register.
1135 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1136 // This invalidates Phys.
1137 Spills.ClobberPhysReg(PhysReg);
1138 // Remember it's available.
1139 Spills.addAvailable(SS, PhysReg);
1140 MaybeDeadStores[SS] = NULL;
1142 // Unfold current MI.
1143 SmallVector<MachineInstr*, 4> NewMIs;
1144 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1145 llvm_unreachable("Unable unfold the load / store folding instruction!");
1146 assert(NewMIs.size() == 1);
1147 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1148 VRM.transferRestorePts(&MI, NewMIs[0]);
1149 MII = MBB.insert(MII, NewMIs[0]);
1150 InvalidateKills(MI, TRI, RegKills, KillOps);
1151 VRM.RemoveMachineInstrFromMaps(&MI);
1152 MBB.erase(&MI);
1153 ++NumModRefUnfold;
1155 // Unfold next instructions that fold the same SS.
1156 do {
1157 MachineInstr &NextMI = *NextMII;
1158 NextMII = next(NextMII);
1159 NewMIs.clear();
1160 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1161 llvm_unreachable("Unable unfold the load / store folding instruction!");
1162 assert(NewMIs.size() == 1);
1163 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1164 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1165 MBB.insert(NextMII, NewMIs[0]);
1166 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1167 VRM.RemoveMachineInstrFromMaps(&NextMI);
1168 MBB.erase(&NextMI);
1169 ++NumModRefUnfold;
1170 if (NextMII == MBB.end())
1171 break;
1172 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1174 // Store the value back into SS.
1175 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1176 MachineInstr *StoreMI = prior(NextMII);
1177 VRM.addSpillSlotUse(SS, StoreMI);
1178 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1180 return true;
1183 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1184 /// instruction. e.g.
1185 /// xorl %edi, %eax
1186 /// movl %eax, -32(%ebp)
1187 /// movl -36(%ebp), %eax
1188 /// orl %eax, -32(%ebp)
1189 /// ==>
1190 /// xorl %edi, %eax
1191 /// orl -36(%ebp), %eax
1192 /// mov %eax, -32(%ebp)
1193 /// This enables unfolding optimization for a subsequent instruction which will
1194 /// also eliminate the newly introduced store instruction.
1195 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1196 MachineBasicBlock::iterator &MII,
1197 std::vector<MachineInstr*> &MaybeDeadStores,
1198 AvailableSpills &Spills,
1199 BitVector &RegKills,
1200 std::vector<MachineOperand*> &KillOps,
1201 VirtRegMap &VRM) {
1202 MachineFunction &MF = *MBB.getParent();
1203 MachineInstr &MI = *MII;
1204 unsigned UnfoldedOpc = 0;
1205 unsigned UnfoldPR = 0;
1206 unsigned UnfoldVR = 0;
1207 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1208 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1209 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1210 // Only transform a MI that folds a single register.
1211 if (UnfoldedOpc)
1212 return false;
1213 UnfoldVR = I->second.first;
1214 VirtRegMap::ModRef MR = I->second.second;
1215 // MI2VirtMap be can updated which invalidate the iterator.
1216 // Increment the iterator first.
1217 ++I;
1218 if (VRM.isAssignedReg(UnfoldVR))
1219 continue;
1220 // If this reference is not a use, any previous store is now dead.
1221 // Otherwise, the store to this stack slot is not dead anymore.
1222 FoldedSS = VRM.getStackSlot(UnfoldVR);
1223 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1224 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1225 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1226 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1227 continue;
1228 UnfoldPR = PhysReg;
1229 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1230 false, true);
1234 if (!UnfoldedOpc) {
1235 if (!UnfoldVR)
1236 return false;
1238 // Look for other unfolding opportunities.
1239 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1240 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1243 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1244 MachineOperand &MO = MI.getOperand(i);
1245 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1246 continue;
1247 unsigned VirtReg = MO.getReg();
1248 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1249 continue;
1250 if (VRM.isAssignedReg(VirtReg)) {
1251 unsigned PhysReg = VRM.getPhys(VirtReg);
1252 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1253 return false;
1254 } else if (VRM.isReMaterialized(VirtReg))
1255 continue;
1256 int SS = VRM.getStackSlot(VirtReg);
1257 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1258 if (PhysReg) {
1259 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1260 return false;
1261 continue;
1263 if (VRM.hasPhys(VirtReg)) {
1264 PhysReg = VRM.getPhys(VirtReg);
1265 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1266 continue;
1269 // Ok, we'll need to reload the value into a register which makes
1270 // it impossible to perform the store unfolding optimization later.
1271 // Let's see if it is possible to fold the load if the store is
1272 // unfolded. This allows us to perform the store unfolding
1273 // optimization.
1274 SmallVector<MachineInstr*, 4> NewMIs;
1275 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1276 assert(NewMIs.size() == 1);
1277 MachineInstr *NewMI = NewMIs.back();
1278 NewMIs.clear();
1279 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1280 assert(Idx != -1);
1281 SmallVector<unsigned, 1> Ops;
1282 Ops.push_back(Idx);
1283 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1284 if (FoldedMI) {
1285 VRM.addSpillSlotUse(SS, FoldedMI);
1286 if (!VRM.hasPhys(UnfoldVR))
1287 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1288 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1289 MII = MBB.insert(MII, FoldedMI);
1290 InvalidateKills(MI, TRI, RegKills, KillOps);
1291 VRM.RemoveMachineInstrFromMaps(&MI);
1292 MBB.erase(&MI);
1293 MF.DeleteMachineInstr(NewMI);
1294 return true;
1296 MF.DeleteMachineInstr(NewMI);
1300 return false;
1303 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1304 /// where SrcReg is r1 and it is tied to r0. Return true if after
1305 /// commuting this instruction it will be r0 = op r2, r1.
1306 static bool CommuteChangesDestination(MachineInstr *DefMI,
1307 const TargetInstrDesc &TID,
1308 unsigned SrcReg,
1309 const TargetInstrInfo *TII,
1310 unsigned &DstIdx) {
1311 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1312 return false;
1313 if (!DefMI->getOperand(1).isReg() ||
1314 DefMI->getOperand(1).getReg() != SrcReg)
1315 return false;
1316 unsigned DefIdx;
1317 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1318 return false;
1319 unsigned SrcIdx1, SrcIdx2;
1320 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1321 return false;
1322 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1323 DstIdx = 2;
1324 return true;
1326 return false;
1329 /// CommuteToFoldReload -
1330 /// Look for
1331 /// r1 = load fi#1
1332 /// r1 = op r1, r2<kill>
1333 /// store r1, fi#1
1335 /// If op is commutable and r2 is killed, then we can xform these to
1336 /// r2 = op r2, fi#1
1337 /// store r2, fi#1
1338 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1339 MachineBasicBlock::iterator &MII,
1340 unsigned VirtReg, unsigned SrcReg, int SS,
1341 AvailableSpills &Spills,
1342 BitVector &RegKills,
1343 std::vector<MachineOperand*> &KillOps,
1344 const TargetRegisterInfo *TRI,
1345 VirtRegMap &VRM) {
1346 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1347 return false;
1349 MachineFunction &MF = *MBB.getParent();
1350 MachineInstr &MI = *MII;
1351 MachineBasicBlock::iterator DefMII = prior(MII);
1352 MachineInstr *DefMI = DefMII;
1353 const TargetInstrDesc &TID = DefMI->getDesc();
1354 unsigned NewDstIdx;
1355 if (DefMII != MBB.begin() &&
1356 TID.isCommutable() &&
1357 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1358 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1359 unsigned NewReg = NewDstMO.getReg();
1360 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1361 return false;
1362 MachineInstr *ReloadMI = prior(DefMII);
1363 int FrameIdx;
1364 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1365 if (DestReg != SrcReg || FrameIdx != SS)
1366 return false;
1367 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1368 if (UseIdx == -1)
1369 return false;
1370 unsigned DefIdx;
1371 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1372 return false;
1373 assert(DefMI->getOperand(DefIdx).isReg() &&
1374 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1376 // Now commute def instruction.
1377 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1378 if (!CommutedMI)
1379 return false;
1380 SmallVector<unsigned, 1> Ops;
1381 Ops.push_back(NewDstIdx);
1382 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1383 // Not needed since foldMemoryOperand returns new MI.
1384 MF.DeleteMachineInstr(CommutedMI);
1385 if (!FoldedMI)
1386 return false;
1388 VRM.addSpillSlotUse(SS, FoldedMI);
1389 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1390 // Insert new def MI and spill MI.
1391 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1392 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1393 MII = prior(MII);
1394 MachineInstr *StoreMI = MII;
1395 VRM.addSpillSlotUse(SS, StoreMI);
1396 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1397 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1399 // Delete all 3 old instructions.
1400 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1401 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1402 MBB.erase(ReloadMI);
1403 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1404 VRM.RemoveMachineInstrFromMaps(DefMI);
1405 MBB.erase(DefMI);
1406 InvalidateKills(MI, TRI, RegKills, KillOps);
1407 VRM.RemoveMachineInstrFromMaps(&MI);
1408 MBB.erase(&MI);
1410 // If NewReg was previously holding value of some SS, it's now clobbered.
1411 // This has to be done now because it's a physical register. When this
1412 // instruction is re-visited, it's ignored.
1413 Spills.ClobberPhysReg(NewReg);
1415 ++NumCommutes;
1416 return true;
1419 return false;
1422 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1423 /// the last store to the same slot is now dead. If so, remove the last store.
1424 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1425 MachineBasicBlock::iterator &MII,
1426 int Idx, unsigned PhysReg, int StackSlot,
1427 const TargetRegisterClass *RC,
1428 bool isAvailable, MachineInstr *&LastStore,
1429 AvailableSpills &Spills,
1430 SmallSet<MachineInstr*, 4> &ReMatDefs,
1431 BitVector &RegKills,
1432 std::vector<MachineOperand*> &KillOps,
1433 VirtRegMap &VRM) {
1435 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1436 MachineInstr *StoreMI = next(MII);
1437 VRM.addSpillSlotUse(StackSlot, StoreMI);
1438 DEBUG(errs() << "Store:\t" << *StoreMI);
1440 // If there is a dead store to this stack slot, nuke it now.
1441 if (LastStore) {
1442 DEBUG(errs() << "Removed dead store:\t" << *LastStore);
1443 ++NumDSE;
1444 SmallVector<unsigned, 2> KillRegs;
1445 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1446 MachineBasicBlock::iterator PrevMII = LastStore;
1447 bool CheckDef = PrevMII != MBB.begin();
1448 if (CheckDef)
1449 --PrevMII;
1450 VRM.RemoveMachineInstrFromMaps(LastStore);
1451 MBB.erase(LastStore);
1452 if (CheckDef) {
1453 // Look at defs of killed registers on the store. Mark the defs
1454 // as dead since the store has been deleted and they aren't
1455 // being reused.
1456 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1457 bool HasOtherDef = false;
1458 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1459 MachineInstr *DeadDef = PrevMII;
1460 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1461 // FIXME: This assumes a remat def does not have side effects.
1462 VRM.RemoveMachineInstrFromMaps(DeadDef);
1463 MBB.erase(DeadDef);
1464 ++NumDRM;
1471 LastStore = next(MII);
1473 // If the stack slot value was previously available in some other
1474 // register, change it now. Otherwise, make the register available,
1475 // in PhysReg.
1476 Spills.ModifyStackSlotOrReMat(StackSlot);
1477 Spills.ClobberPhysReg(PhysReg);
1478 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1479 ++NumStores;
1482 /// TransferDeadness - A identity copy definition is dead and it's being
1483 /// removed. Find the last def or use and mark it as dead / kill.
1484 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1485 unsigned Reg, BitVector &RegKills,
1486 std::vector<MachineOperand*> &KillOps,
1487 VirtRegMap &VRM) {
1488 SmallPtrSet<MachineInstr*, 4> Seens;
1489 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1490 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1491 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1492 MachineInstr *UDMI = &*RI;
1493 if (UDMI->getParent() != MBB)
1494 continue;
1495 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1496 if (DI == DistanceMap.end() || DI->second > CurDist)
1497 continue;
1498 if (Seens.insert(UDMI))
1499 Refs.push_back(std::make_pair(UDMI, DI->second));
1502 if (Refs.empty())
1503 return;
1504 std::sort(Refs.begin(), Refs.end(), RefSorter());
1506 while (!Refs.empty()) {
1507 MachineInstr *LastUDMI = Refs.back().first;
1508 Refs.pop_back();
1510 MachineOperand *LastUD = NULL;
1511 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1512 MachineOperand &MO = LastUDMI->getOperand(i);
1513 if (!MO.isReg() || MO.getReg() != Reg)
1514 continue;
1515 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1516 LastUD = &MO;
1517 if (LastUDMI->isRegTiedToDefOperand(i))
1518 break;
1520 if (LastUD->isDef()) {
1521 // If the instruction has no side effect, delete it and propagate
1522 // backward further. Otherwise, mark is dead and we are done.
1523 if (!TII->isDeadInstruction(LastUDMI)) {
1524 LastUD->setIsDead();
1525 break;
1527 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1528 MBB->erase(LastUDMI);
1529 } else {
1530 LastUD->setIsKill();
1531 RegKills.set(Reg);
1532 KillOps[Reg] = LastUD;
1533 break;
1538 /// rewriteMBB - Keep track of which spills are available even after the
1539 /// register allocator is done with them. If possible, avid reloading vregs.
1540 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1541 LiveIntervals *LIs,
1542 AvailableSpills &Spills, BitVector &RegKills,
1543 std::vector<MachineOperand*> &KillOps) {
1545 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1546 << MBB.getBasicBlock()->getName() << "':\n");
1548 MachineFunction &MF = *MBB.getParent();
1550 // MaybeDeadStores - When we need to write a value back into a stack slot,
1551 // keep track of the inserted store. If the stack slot value is never read
1552 // (because the value was used from some available register, for example), and
1553 // subsequently stored to, the original store is dead. This map keeps track
1554 // of inserted stores that are not used. If we see a subsequent store to the
1555 // same stack slot, the original store is deleted.
1556 std::vector<MachineInstr*> MaybeDeadStores;
1557 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1559 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1560 SmallSet<MachineInstr*, 4> ReMatDefs;
1562 // Clear kill info.
1563 SmallSet<unsigned, 2> KilledMIRegs;
1564 RegKills.reset();
1565 KillOps.clear();
1566 KillOps.resize(TRI->getNumRegs(), NULL);
1568 unsigned Dist = 0;
1569 DistanceMap.clear();
1570 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1571 MII != E; ) {
1572 MachineBasicBlock::iterator NextMII = next(MII);
1574 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1575 bool Erased = false;
1576 bool BackTracked = false;
1577 if (OptimizeByUnfold(MBB, MII,
1578 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1579 NextMII = next(MII);
1581 MachineInstr &MI = *MII;
1583 if (VRM.hasEmergencySpills(&MI)) {
1584 // Spill physical register(s) in the rare case the allocator has run out
1585 // of registers to allocate.
1586 SmallSet<int, 4> UsedSS;
1587 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1588 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1589 unsigned PhysReg = EmSpills[i];
1590 const TargetRegisterClass *RC =
1591 TRI->getPhysicalRegisterRegClass(PhysReg);
1592 assert(RC && "Unable to determine register class!");
1593 int SS = VRM.getEmergencySpillSlot(RC);
1594 if (UsedSS.count(SS))
1595 llvm_unreachable("Need to spill more than one physical registers!");
1596 UsedSS.insert(SS);
1597 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1598 MachineInstr *StoreMI = prior(MII);
1599 VRM.addSpillSlotUse(SS, StoreMI);
1601 // Back-schedule reloads and remats.
1602 MachineBasicBlock::iterator InsertLoc =
1603 ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
1604 SS, TII, MF);
1606 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1608 MachineInstr *LoadMI = prior(InsertLoc);
1609 VRM.addSpillSlotUse(SS, LoadMI);
1610 ++NumPSpills;
1611 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1613 NextMII = next(MII);
1616 // Insert restores here if asked to.
1617 if (VRM.isRestorePt(&MI)) {
1618 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1619 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1620 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1621 if (!VRM.getPreSplitReg(VirtReg))
1622 continue; // Split interval spilled again.
1623 unsigned Phys = VRM.getPhys(VirtReg);
1624 RegInfo->setPhysRegUsed(Phys);
1626 // Check if the value being restored if available. If so, it must be
1627 // from a predecessor BB that fallthrough into this BB. We do not
1628 // expect:
1629 // BB1:
1630 // r1 = load fi#1
1631 // ...
1632 // = r1<kill>
1633 // ... # r1 not clobbered
1634 // ...
1635 // = load fi#1
1636 bool DoReMat = VRM.isReMaterialized(VirtReg);
1637 int SSorRMId = DoReMat
1638 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1639 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1640 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1641 if (InReg == Phys) {
1642 // If the value is already available in the expected register, save
1643 // a reload / remat.
1644 if (SSorRMId)
1645 DEBUG(errs() << "Reusing RM#"
1646 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1647 else
1648 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1649 DEBUG(errs() << " from physreg "
1650 << TRI->getName(InReg) << " for vreg"
1651 << VirtReg <<" instead of reloading into physreg "
1652 << TRI->getName(Phys) << '\n');
1653 ++NumOmitted;
1654 continue;
1655 } else if (InReg && InReg != Phys) {
1656 if (SSorRMId)
1657 DEBUG(errs() << "Reusing RM#"
1658 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1659 else
1660 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1661 DEBUG(errs() << " from physreg "
1662 << TRI->getName(InReg) << " for vreg"
1663 << VirtReg <<" by copying it into physreg "
1664 << TRI->getName(Phys) << '\n');
1666 // If the reloaded / remat value is available in another register,
1667 // copy it to the desired register.
1669 // Back-schedule reloads and remats.
1670 MachineBasicBlock::iterator InsertLoc =
1671 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1672 SSorRMId, TII, MF);
1674 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
1676 // This invalidates Phys.
1677 Spills.ClobberPhysReg(Phys);
1678 // Remember it's available.
1679 Spills.addAvailable(SSorRMId, Phys);
1681 // Mark is killed.
1682 MachineInstr *CopyMI = prior(InsertLoc);
1683 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1684 KillOpnd->setIsKill();
1685 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1687 DEBUG(errs() << '\t' << *CopyMI);
1688 ++NumCopified;
1689 continue;
1692 // Back-schedule reloads and remats.
1693 MachineBasicBlock::iterator InsertLoc =
1694 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1695 SSorRMId, TII, MF);
1697 if (VRM.isReMaterialized(VirtReg)) {
1698 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
1699 } else {
1700 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1701 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1702 MachineInstr *LoadMI = prior(InsertLoc);
1703 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1704 ++NumLoads;
1705 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1708 // This invalidates Phys.
1709 Spills.ClobberPhysReg(Phys);
1710 // Remember it's available.
1711 Spills.addAvailable(SSorRMId, Phys);
1713 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1714 DEBUG(errs() << '\t' << *prior(MII));
1718 // Insert spills here if asked to.
1719 if (VRM.isSpillPt(&MI)) {
1720 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1721 VRM.getSpillPtSpills(&MI);
1722 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1723 unsigned VirtReg = SpillRegs[i].first;
1724 bool isKill = SpillRegs[i].second;
1725 if (!VRM.getPreSplitReg(VirtReg))
1726 continue; // Split interval spilled again.
1727 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1728 unsigned Phys = VRM.getPhys(VirtReg);
1729 int StackSlot = VRM.getStackSlot(VirtReg);
1730 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1731 MachineInstr *StoreMI = next(MII);
1732 VRM.addSpillSlotUse(StackSlot, StoreMI);
1733 DEBUG(errs() << "Store:\t" << *StoreMI);
1734 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1736 NextMII = next(MII);
1739 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1740 /// reuse.
1741 ReuseInfo ReusedOperands(MI, TRI);
1742 SmallVector<unsigned, 4> VirtUseOps;
1743 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1744 MachineOperand &MO = MI.getOperand(i);
1745 if (!MO.isReg() || MO.getReg() == 0)
1746 continue; // Ignore non-register operands.
1748 unsigned VirtReg = MO.getReg();
1749 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1750 // Ignore physregs for spilling, but remember that it is used by this
1751 // function.
1752 RegInfo->setPhysRegUsed(VirtReg);
1753 continue;
1756 // We want to process implicit virtual register uses first.
1757 if (MO.isImplicit())
1758 // If the virtual register is implicitly defined, emit a implicit_def
1759 // before so scavenger knows it's "defined".
1760 // FIXME: This is a horrible hack done the by register allocator to
1761 // remat a definition with virtual register operand.
1762 VirtUseOps.insert(VirtUseOps.begin(), i);
1763 else
1764 VirtUseOps.push_back(i);
1767 // Process all of the spilled uses and all non spilled reg references.
1768 SmallVector<int, 2> PotentialDeadStoreSlots;
1769 KilledMIRegs.clear();
1770 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1771 unsigned i = VirtUseOps[j];
1772 MachineOperand &MO = MI.getOperand(i);
1773 unsigned VirtReg = MO.getReg();
1774 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1775 "Not a virtual register?");
1777 unsigned SubIdx = MO.getSubReg();
1778 if (VRM.isAssignedReg(VirtReg)) {
1779 // This virtual register was assigned a physreg!
1780 unsigned Phys = VRM.getPhys(VirtReg);
1781 RegInfo->setPhysRegUsed(Phys);
1782 if (MO.isDef())
1783 ReusedOperands.markClobbered(Phys);
1784 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1785 MI.getOperand(i).setReg(RReg);
1786 MI.getOperand(i).setSubReg(0);
1787 if (VRM.isImplicitlyDefined(VirtReg))
1788 // FIXME: Is this needed?
1789 BuildMI(MBB, &MI, MI.getDebugLoc(),
1790 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1791 continue;
1794 // This virtual register is now known to be a spilled value.
1795 if (!MO.isUse())
1796 continue; // Handle defs in the loop below (handle use&def here though)
1798 bool AvoidReload = MO.isUndef();
1799 // Check if it is defined by an implicit def. It should not be spilled.
1800 // Note, this is for correctness reason. e.g.
1801 // 8 %reg1024<def> = IMPLICIT_DEF
1802 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1803 // The live range [12, 14) are not part of the r1024 live interval since
1804 // it's defined by an implicit def. It will not conflicts with live
1805 // interval of r1025. Now suppose both registers are spilled, you can
1806 // easily see a situation where both registers are reloaded before
1807 // the INSERT_SUBREG and both target registers that would overlap.
1808 bool DoReMat = VRM.isReMaterialized(VirtReg);
1809 int SSorRMId = DoReMat
1810 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1811 int ReuseSlot = SSorRMId;
1813 // Check to see if this stack slot is available.
1814 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1816 // If this is a sub-register use, make sure the reuse register is in the
1817 // right register class. For example, for x86 not all of the 32-bit
1818 // registers have accessible sub-registers.
1819 // Similarly so for EXTRACT_SUBREG. Consider this:
1820 // EDI = op
1821 // MOV32_mr fi#1, EDI
1822 // ...
1823 // = EXTRACT_SUBREG fi#1
1824 // fi#1 is available in EDI, but it cannot be reused because it's not in
1825 // the right register file.
1826 if (PhysReg && !AvoidReload &&
1827 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1828 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1829 if (!RC->contains(PhysReg))
1830 PhysReg = 0;
1833 if (PhysReg && !AvoidReload) {
1834 // This spilled operand might be part of a two-address operand. If this
1835 // is the case, then changing it will necessarily require changing the
1836 // def part of the instruction as well. However, in some cases, we
1837 // aren't allowed to modify the reused register. If none of these cases
1838 // apply, reuse it.
1839 bool CanReuse = true;
1840 bool isTied = MI.isRegTiedToDefOperand(i);
1841 if (isTied) {
1842 // Okay, we have a two address operand. We can reuse this physreg as
1843 // long as we are allowed to clobber the value and there isn't an
1844 // earlier def that has already clobbered the physreg.
1845 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1846 Spills.canClobberPhysReg(PhysReg);
1849 if (CanReuse) {
1850 // If this stack slot value is already available, reuse it!
1851 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1852 DEBUG(errs() << "Reusing RM#"
1853 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
1854 else
1855 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1856 DEBUG(errs() << " from physreg "
1857 << TRI->getName(PhysReg) << " for vreg"
1858 << VirtReg <<" instead of reloading into physreg "
1859 << TRI->getName(VRM.getPhys(VirtReg)) << '\n');
1860 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1861 MI.getOperand(i).setReg(RReg);
1862 MI.getOperand(i).setSubReg(0);
1864 // The only technical detail we have is that we don't know that
1865 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1866 // later in the instruction. In particular, consider 'op V1, V2'.
1867 // If V1 is available in physreg R0, we would choose to reuse it
1868 // here, instead of reloading it into the register the allocator
1869 // indicated (say R1). However, V2 might have to be reloaded
1870 // later, and it might indicate that it needs to live in R0. When
1871 // this occurs, we need to have information available that
1872 // indicates it is safe to use R1 for the reload instead of R0.
1874 // To further complicate matters, we might conflict with an alias,
1875 // or R0 and R1 might not be compatible with each other. In this
1876 // case, we actually insert a reload for V1 in R1, ensuring that
1877 // we can get at R0 or its alias.
1878 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1879 VRM.getPhys(VirtReg), VirtReg);
1880 if (isTied)
1881 // Only mark it clobbered if this is a use&def operand.
1882 ReusedOperands.markClobbered(PhysReg);
1883 ++NumReused;
1885 if (MI.getOperand(i).isKill() &&
1886 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1888 // The store of this spilled value is potentially dead, but we
1889 // won't know for certain until we've confirmed that the re-use
1890 // above is valid, which means waiting until the other operands
1891 // are processed. For now we just track the spill slot, we'll
1892 // remove it after the other operands are processed if valid.
1894 PotentialDeadStoreSlots.push_back(ReuseSlot);
1897 // Mark is isKill if it's there no other uses of the same virtual
1898 // register and it's not a two-address operand. IsKill will be
1899 // unset if reg is reused.
1900 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1901 MI.getOperand(i).setIsKill();
1902 KilledMIRegs.insert(VirtReg);
1905 continue;
1906 } // CanReuse
1908 // Otherwise we have a situation where we have a two-address instruction
1909 // whose mod/ref operand needs to be reloaded. This reload is already
1910 // available in some register "PhysReg", but if we used PhysReg as the
1911 // operand to our 2-addr instruction, the instruction would modify
1912 // PhysReg. This isn't cool if something later uses PhysReg and expects
1913 // to get its initial value.
1915 // To avoid this problem, and to avoid doing a load right after a store,
1916 // we emit a copy from PhysReg into the designated register for this
1917 // operand.
1918 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1919 assert(DesignatedReg && "Must map virtreg to physreg!");
1921 // Note that, if we reused a register for a previous operand, the
1922 // register we want to reload into might not actually be
1923 // available. If this occurs, use the register indicated by the
1924 // reuser.
1925 if (ReusedOperands.hasReuses())
1926 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1927 DesignatedReg, &MI,
1928 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1930 // If the mapped designated register is actually the physreg we have
1931 // incoming, we don't need to inserted a dead copy.
1932 if (DesignatedReg == PhysReg) {
1933 // If this stack slot value is already available, reuse it!
1934 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1935 DEBUG(errs() << "Reusing RM#"
1936 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
1937 else
1938 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1939 DEBUG(errs() << " from physreg " << TRI->getName(PhysReg)
1940 << " for vreg" << VirtReg
1941 << " instead of reloading into same physreg.\n");
1942 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1943 MI.getOperand(i).setReg(RReg);
1944 MI.getOperand(i).setSubReg(0);
1945 ReusedOperands.markClobbered(RReg);
1946 ++NumReused;
1947 continue;
1950 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1951 RegInfo->setPhysRegUsed(DesignatedReg);
1952 ReusedOperands.markClobbered(DesignatedReg);
1954 // Back-schedule reloads and remats.
1955 MachineBasicBlock::iterator InsertLoc =
1956 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
1957 SSorRMId, TII, MF);
1959 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
1961 MachineInstr *CopyMI = prior(InsertLoc);
1962 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1964 // This invalidates DesignatedReg.
1965 Spills.ClobberPhysReg(DesignatedReg);
1967 Spills.addAvailable(ReuseSlot, DesignatedReg);
1968 unsigned RReg =
1969 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1970 MI.getOperand(i).setReg(RReg);
1971 MI.getOperand(i).setSubReg(0);
1972 DEBUG(errs() << '\t' << *prior(MII));
1973 ++NumReused;
1974 continue;
1975 } // if (PhysReg)
1977 // Otherwise, reload it and remember that we have it.
1978 PhysReg = VRM.getPhys(VirtReg);
1979 assert(PhysReg && "Must map virtreg to physreg!");
1981 // Note that, if we reused a register for a previous operand, the
1982 // register we want to reload into might not actually be
1983 // available. If this occurs, use the register indicated by the
1984 // reuser.
1985 if (ReusedOperands.hasReuses())
1986 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1987 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1989 RegInfo->setPhysRegUsed(PhysReg);
1990 ReusedOperands.markClobbered(PhysReg);
1991 if (AvoidReload)
1992 ++NumAvoided;
1993 else {
1994 // Back-schedule reloads and remats.
1995 MachineBasicBlock::iterator InsertLoc =
1996 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
1997 SSorRMId, TII, MF);
1999 if (DoReMat) {
2000 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
2001 } else {
2002 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
2003 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
2004 MachineInstr *LoadMI = prior(InsertLoc);
2005 VRM.addSpillSlotUse(SSorRMId, LoadMI);
2006 ++NumLoads;
2007 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
2009 // This invalidates PhysReg.
2010 Spills.ClobberPhysReg(PhysReg);
2012 // Any stores to this stack slot are not dead anymore.
2013 if (!DoReMat)
2014 MaybeDeadStores[SSorRMId] = NULL;
2015 Spills.addAvailable(SSorRMId, PhysReg);
2016 // Assumes this is the last use. IsKill will be unset if reg is reused
2017 // unless it's a two-address operand.
2018 if (!MI.isRegTiedToDefOperand(i) &&
2019 KilledMIRegs.count(VirtReg) == 0) {
2020 MI.getOperand(i).setIsKill();
2021 KilledMIRegs.insert(VirtReg);
2024 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2025 DEBUG(errs() << '\t' << *prior(InsertLoc));
2027 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2028 MI.getOperand(i).setReg(RReg);
2029 MI.getOperand(i).setSubReg(0);
2032 // Ok - now we can remove stores that have been confirmed dead.
2033 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2034 // This was the last use and the spilled value is still available
2035 // for reuse. That means the spill was unnecessary!
2036 int PDSSlot = PotentialDeadStoreSlots[j];
2037 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2038 if (DeadStore) {
2039 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
2040 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2041 VRM.RemoveMachineInstrFromMaps(DeadStore);
2042 MBB.erase(DeadStore);
2043 MaybeDeadStores[PDSSlot] = NULL;
2044 ++NumDSE;
2049 DEBUG(errs() << '\t' << MI);
2052 // If we have folded references to memory operands, make sure we clear all
2053 // physical registers that may contain the value of the spilled virtual
2054 // register
2055 SmallSet<int, 2> FoldedSS;
2056 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2057 unsigned VirtReg = I->second.first;
2058 VirtRegMap::ModRef MR = I->second.second;
2059 DEBUG(errs() << "Folded vreg: " << VirtReg << " MR: " << MR);
2061 // MI2VirtMap be can updated which invalidate the iterator.
2062 // Increment the iterator first.
2063 ++I;
2064 int SS = VRM.getStackSlot(VirtReg);
2065 if (SS == VirtRegMap::NO_STACK_SLOT)
2066 continue;
2067 FoldedSS.insert(SS);
2068 DEBUG(errs() << " - StackSlot: " << SS << "\n");
2070 // If this folded instruction is just a use, check to see if it's a
2071 // straight load from the virt reg slot.
2072 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2073 int FrameIdx;
2074 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2075 if (DestReg && FrameIdx == SS) {
2076 // If this spill slot is available, turn it into a copy (or nothing)
2077 // instead of leaving it as a load!
2078 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2079 DEBUG(errs() << "Promoted Load To Copy: " << MI);
2080 if (DestReg != InReg) {
2081 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2082 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2083 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2084 unsigned SubIdx = DefMO->getSubReg();
2085 // Revisit the copy so we make sure to notice the effects of the
2086 // operation on the destreg (either needing to RA it if it's
2087 // virtual or needing to clobber any values if it's physical).
2088 NextMII = &MI;
2089 --NextMII; // backtrack to the copy.
2090 // Propagate the sub-register index over.
2091 if (SubIdx) {
2092 DefMO = NextMII->findRegisterDefOperand(DestReg);
2093 DefMO->setSubReg(SubIdx);
2096 // Mark is killed.
2097 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2098 KillOpnd->setIsKill();
2100 BackTracked = true;
2101 } else {
2102 DEBUG(errs() << "Removing now-noop copy: " << MI);
2103 // Unset last kill since it's being reused.
2104 InvalidateKill(InReg, TRI, RegKills, KillOps);
2105 Spills.disallowClobberPhysReg(InReg);
2108 InvalidateKills(MI, TRI, RegKills, KillOps);
2109 VRM.RemoveMachineInstrFromMaps(&MI);
2110 MBB.erase(&MI);
2111 Erased = true;
2112 goto ProcessNextInst;
2114 } else {
2115 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2116 SmallVector<MachineInstr*, 4> NewMIs;
2117 if (PhysReg &&
2118 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2119 MBB.insert(MII, NewMIs[0]);
2120 InvalidateKills(MI, TRI, RegKills, KillOps);
2121 VRM.RemoveMachineInstrFromMaps(&MI);
2122 MBB.erase(&MI);
2123 Erased = true;
2124 --NextMII; // backtrack to the unfolded instruction.
2125 BackTracked = true;
2126 goto ProcessNextInst;
2131 // If this reference is not a use, any previous store is now dead.
2132 // Otherwise, the store to this stack slot is not dead anymore.
2133 MachineInstr* DeadStore = MaybeDeadStores[SS];
2134 if (DeadStore) {
2135 bool isDead = !(MR & VirtRegMap::isRef);
2136 MachineInstr *NewStore = NULL;
2137 if (MR & VirtRegMap::isModRef) {
2138 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2139 SmallVector<MachineInstr*, 4> NewMIs;
2140 // We can reuse this physreg as long as we are allowed to clobber
2141 // the value and there isn't an earlier def that has already clobbered
2142 // the physreg.
2143 if (PhysReg &&
2144 !ReusedOperands.isClobbered(PhysReg) &&
2145 Spills.canClobberPhysReg(PhysReg) &&
2146 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2147 MachineOperand *KillOpnd =
2148 DeadStore->findRegisterUseOperand(PhysReg, true);
2149 // Note, if the store is storing a sub-register, it's possible the
2150 // super-register is needed below.
2151 if (KillOpnd && !KillOpnd->getSubReg() &&
2152 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2153 MBB.insert(MII, NewMIs[0]);
2154 NewStore = NewMIs[1];
2155 MBB.insert(MII, NewStore);
2156 VRM.addSpillSlotUse(SS, NewStore);
2157 InvalidateKills(MI, TRI, RegKills, KillOps);
2158 VRM.RemoveMachineInstrFromMaps(&MI);
2159 MBB.erase(&MI);
2160 Erased = true;
2161 --NextMII;
2162 --NextMII; // backtrack to the unfolded instruction.
2163 BackTracked = true;
2164 isDead = true;
2165 ++NumSUnfold;
2170 if (isDead) { // Previous store is dead.
2171 // If we get here, the store is dead, nuke it now.
2172 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
2173 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2174 VRM.RemoveMachineInstrFromMaps(DeadStore);
2175 MBB.erase(DeadStore);
2176 if (!NewStore)
2177 ++NumDSE;
2180 MaybeDeadStores[SS] = NULL;
2181 if (NewStore) {
2182 // Treat this store as a spill merged into a copy. That makes the
2183 // stack slot value available.
2184 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2185 goto ProcessNextInst;
2189 // If the spill slot value is available, and this is a new definition of
2190 // the value, the value is not available anymore.
2191 if (MR & VirtRegMap::isMod) {
2192 // Notice that the value in this stack slot has been modified.
2193 Spills.ModifyStackSlotOrReMat(SS);
2195 // If this is *just* a mod of the value, check to see if this is just a
2196 // store to the spill slot (i.e. the spill got merged into the copy). If
2197 // so, realize that the vreg is available now, and add the store to the
2198 // MaybeDeadStore info.
2199 int StackSlot;
2200 if (!(MR & VirtRegMap::isRef)) {
2201 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2202 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2203 "Src hasn't been allocated yet?");
2205 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2206 Spills, RegKills, KillOps, TRI, VRM)) {
2207 NextMII = next(MII);
2208 BackTracked = true;
2209 goto ProcessNextInst;
2212 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2213 // this as a potentially dead store in case there is a subsequent
2214 // store into the stack slot without a read from it.
2215 MaybeDeadStores[StackSlot] = &MI;
2217 // If the stack slot value was previously available in some other
2218 // register, change it now. Otherwise, make the register
2219 // available in PhysReg.
2220 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2226 // Process all of the spilled defs.
2227 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2228 MachineOperand &MO = MI.getOperand(i);
2229 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2230 continue;
2232 unsigned VirtReg = MO.getReg();
2233 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2234 // Check to see if this is a noop copy. If so, eliminate the
2235 // instruction before considering the dest reg to be changed.
2236 // Also check if it's copying from an "undef", if so, we can't
2237 // eliminate this or else the undef marker is lost and it will
2238 // confuses the scavenger. This is extremely rare.
2239 unsigned Src, Dst, SrcSR, DstSR;
2240 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2241 !MI.findRegisterUseOperand(Src)->isUndef()) {
2242 ++NumDCE;
2243 DEBUG(errs() << "Removing now-noop copy: " << MI);
2244 SmallVector<unsigned, 2> KillRegs;
2245 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2246 if (MO.isDead() && !KillRegs.empty()) {
2247 // Source register or an implicit super/sub-register use is killed.
2248 assert(KillRegs[0] == Dst ||
2249 TRI->isSubRegister(KillRegs[0], Dst) ||
2250 TRI->isSuperRegister(KillRegs[0], Dst));
2251 // Last def is now dead.
2252 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
2254 VRM.RemoveMachineInstrFromMaps(&MI);
2255 MBB.erase(&MI);
2256 Erased = true;
2257 Spills.disallowClobberPhysReg(VirtReg);
2258 goto ProcessNextInst;
2261 // If it's not a no-op copy, it clobbers the value in the destreg.
2262 Spills.ClobberPhysReg(VirtReg);
2263 ReusedOperands.markClobbered(VirtReg);
2265 // Check to see if this instruction is a load from a stack slot into
2266 // a register. If so, this provides the stack slot value in the reg.
2267 int FrameIdx;
2268 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2269 assert(DestReg == VirtReg && "Unknown load situation!");
2271 // If it is a folded reference, then it's not safe to clobber.
2272 bool Folded = FoldedSS.count(FrameIdx);
2273 // Otherwise, if it wasn't available, remember that it is now!
2274 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2275 goto ProcessNextInst;
2278 continue;
2281 unsigned SubIdx = MO.getSubReg();
2282 bool DoReMat = VRM.isReMaterialized(VirtReg);
2283 if (DoReMat)
2284 ReMatDefs.insert(&MI);
2286 // The only vregs left are stack slot definitions.
2287 int StackSlot = VRM.getStackSlot(VirtReg);
2288 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2290 // If this def is part of a two-address operand, make sure to execute
2291 // the store from the correct physical register.
2292 unsigned PhysReg;
2293 unsigned TiedOp;
2294 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2295 PhysReg = MI.getOperand(TiedOp).getReg();
2296 if (SubIdx) {
2297 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2298 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2299 "Can't find corresponding super-register!");
2300 PhysReg = SuperReg;
2302 } else {
2303 PhysReg = VRM.getPhys(VirtReg);
2304 if (ReusedOperands.isClobbered(PhysReg)) {
2305 // Another def has taken the assigned physreg. It must have been a
2306 // use&def which got it due to reuse. Undo the reuse!
2307 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2308 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2312 assert(PhysReg && "VR not assigned a physical register?");
2313 RegInfo->setPhysRegUsed(PhysReg);
2314 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2315 ReusedOperands.markClobbered(RReg);
2316 MI.getOperand(i).setReg(RReg);
2317 MI.getOperand(i).setSubReg(0);
2319 if (!MO.isDead()) {
2320 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2321 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2322 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2323 NextMII = next(MII);
2325 // Check to see if this is a noop copy. If so, eliminate the
2326 // instruction before considering the dest reg to be changed.
2328 unsigned Src, Dst, SrcSR, DstSR;
2329 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2330 ++NumDCE;
2331 DEBUG(errs() << "Removing now-noop copy: " << MI);
2332 InvalidateKills(MI, TRI, RegKills, KillOps);
2333 VRM.RemoveMachineInstrFromMaps(&MI);
2334 MBB.erase(&MI);
2335 Erased = true;
2336 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2337 goto ProcessNextInst;
2342 ProcessNextInst:
2343 // Delete dead instructions without side effects.
2344 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
2345 InvalidateKills(MI, TRI, RegKills, KillOps);
2346 VRM.RemoveMachineInstrFromMaps(&MI);
2347 MBB.erase(&MI);
2348 Erased = true;
2350 if (!Erased)
2351 DistanceMap.insert(std::make_pair(&MI, Dist++));
2352 if (!Erased && !BackTracked) {
2353 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2354 UpdateKills(*II, TRI, RegKills, KillOps);
2356 MII = NextMII;
2365 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2366 switch (RewriterOpt) {
2367 default: llvm_unreachable("Unreachable!");
2368 case local:
2369 return new LocalRewriter();
2370 case trivial:
2371 return new TrivialRewriter();