Fix comment for consistency sake.
[llvm/avr.git] / lib / ExecutionEngine / JIT / JITDwarfEmitter.cpp
blobf7fb983e1acb1c68708b71b6d73b4e8fd5df432e
1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a JITDwarfEmitter object that is used by the JIT to
11 // write dwarf tables to memory.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "JITDwarfEmitter.h"
17 #include "llvm/Function.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/JITCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLocation.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/ExecutionEngine/JITMemoryManager.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
34 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {}
37 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
38 JITCodeEmitter& jce,
39 unsigned char* StartFunction,
40 unsigned char* EndFunction) {
41 const TargetMachine& TM = F.getTarget();
42 TD = TM.getTargetData();
43 needsIndirectEncoding = TM.getMCAsmInfo()->getNeedsIndirectEncoding();
44 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
45 RI = TM.getRegisterInfo();
46 JCE = &jce;
48 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
49 EndFunction);
51 unsigned char* Result = 0;
52 unsigned char* EHFramePtr = 0;
54 const std::vector<Function *> Personalities = MMI->getPersonalities();
55 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
57 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
58 StartFunction, EndFunction, ExceptionTable);
60 return Result;
64 void
65 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
66 const std::vector<MachineMove> &Moves) const {
67 unsigned PointerSize = TD->getPointerSize();
68 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
69 PointerSize : -PointerSize;
70 bool IsLocal = false;
71 unsigned BaseLabelID = 0;
73 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
74 const MachineMove &Move = Moves[i];
75 unsigned LabelID = Move.getLabelID();
77 if (LabelID) {
78 LabelID = MMI->MappedLabel(LabelID);
80 // Throw out move if the label is invalid.
81 if (!LabelID) continue;
84 intptr_t LabelPtr = 0;
85 if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID);
87 const MachineLocation &Dst = Move.getDestination();
88 const MachineLocation &Src = Move.getSource();
90 // Advance row if new location.
91 if (BaseLabelPtr && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
92 JCE->emitByte(dwarf::DW_CFA_advance_loc4);
93 JCE->emitInt32(LabelPtr - BaseLabelPtr);
95 BaseLabelID = LabelID;
96 BaseLabelPtr = LabelPtr;
97 IsLocal = true;
100 // If advancing cfa.
101 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
102 if (!Src.isReg()) {
103 if (Src.getReg() == MachineLocation::VirtualFP) {
104 JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
105 } else {
106 JCE->emitByte(dwarf::DW_CFA_def_cfa);
107 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
110 int Offset = -Src.getOffset();
112 JCE->emitULEB128Bytes(Offset);
113 } else {
114 llvm_unreachable("Machine move no supported yet.");
116 } else if (Src.isReg() &&
117 Src.getReg() == MachineLocation::VirtualFP) {
118 if (Dst.isReg()) {
119 JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
120 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
121 } else {
122 llvm_unreachable("Machine move no supported yet.");
124 } else {
125 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
126 int Offset = Dst.getOffset() / stackGrowth;
128 if (Offset < 0) {
129 JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
130 JCE->emitULEB128Bytes(Reg);
131 JCE->emitSLEB128Bytes(Offset);
132 } else if (Reg < 64) {
133 JCE->emitByte(dwarf::DW_CFA_offset + Reg);
134 JCE->emitULEB128Bytes(Offset);
135 } else {
136 JCE->emitByte(dwarf::DW_CFA_offset_extended);
137 JCE->emitULEB128Bytes(Reg);
138 JCE->emitULEB128Bytes(Offset);
144 /// SharedTypeIds - How many leading type ids two landing pads have in common.
145 static unsigned SharedTypeIds(const LandingPadInfo *L,
146 const LandingPadInfo *R) {
147 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
148 unsigned LSize = LIds.size(), RSize = RIds.size();
149 unsigned MinSize = LSize < RSize ? LSize : RSize;
150 unsigned Count = 0;
152 for (; Count != MinSize; ++Count)
153 if (LIds[Count] != RIds[Count])
154 return Count;
156 return Count;
160 /// PadLT - Order landing pads lexicographically by type id.
161 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
162 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
163 unsigned LSize = LIds.size(), RSize = RIds.size();
164 unsigned MinSize = LSize < RSize ? LSize : RSize;
166 for (unsigned i = 0; i != MinSize; ++i)
167 if (LIds[i] != RIds[i])
168 return LIds[i] < RIds[i];
170 return LSize < RSize;
173 namespace {
175 struct KeyInfo {
176 static inline unsigned getEmptyKey() { return -1U; }
177 static inline unsigned getTombstoneKey() { return -2U; }
178 static unsigned getHashValue(const unsigned &Key) { return Key; }
179 static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
180 static bool isPod() { return true; }
183 /// ActionEntry - Structure describing an entry in the actions table.
184 struct ActionEntry {
185 int ValueForTypeID; // The value to write - may not be equal to the type id.
186 int NextAction;
187 struct ActionEntry *Previous;
190 /// PadRange - Structure holding a try-range and the associated landing pad.
191 struct PadRange {
192 // The index of the landing pad.
193 unsigned PadIndex;
194 // The index of the begin and end labels in the landing pad's label lists.
195 unsigned RangeIndex;
198 typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
200 /// CallSiteEntry - Structure describing an entry in the call-site table.
201 struct CallSiteEntry {
202 unsigned BeginLabel; // zero indicates the start of the function.
203 unsigned EndLabel; // zero indicates the end of the function.
204 unsigned PadLabel; // zero indicates that there is no landing pad.
205 unsigned Action;
210 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
211 unsigned char* StartFunction,
212 unsigned char* EndFunction) const {
213 // Map all labels and get rid of any dead landing pads.
214 MMI->TidyLandingPads();
216 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
217 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
218 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
219 if (PadInfos.empty()) return 0;
221 // Sort the landing pads in order of their type ids. This is used to fold
222 // duplicate actions.
223 SmallVector<const LandingPadInfo *, 64> LandingPads;
224 LandingPads.reserve(PadInfos.size());
225 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
226 LandingPads.push_back(&PadInfos[i]);
227 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
229 // Negative type ids index into FilterIds, positive type ids index into
230 // TypeInfos. The value written for a positive type id is just the type
231 // id itself. For a negative type id, however, the value written is the
232 // (negative) byte offset of the corresponding FilterIds entry. The byte
233 // offset is usually equal to the type id, because the FilterIds entries
234 // are written using a variable width encoding which outputs one byte per
235 // entry as long as the value written is not too large, but can differ.
236 // This kind of complication does not occur for positive type ids because
237 // type infos are output using a fixed width encoding.
238 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
239 SmallVector<int, 16> FilterOffsets;
240 FilterOffsets.reserve(FilterIds.size());
241 int Offset = -1;
242 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
243 E = FilterIds.end(); I != E; ++I) {
244 FilterOffsets.push_back(Offset);
245 Offset -= MCAsmInfo::getULEB128Size(*I);
248 // Compute the actions table and gather the first action index for each
249 // landing pad site.
250 SmallVector<ActionEntry, 32> Actions;
251 SmallVector<unsigned, 64> FirstActions;
252 FirstActions.reserve(LandingPads.size());
254 int FirstAction = 0;
255 unsigned SizeActions = 0;
256 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
257 const LandingPadInfo *LP = LandingPads[i];
258 const std::vector<int> &TypeIds = LP->TypeIds;
259 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
260 unsigned SizeSiteActions = 0;
262 if (NumShared < TypeIds.size()) {
263 unsigned SizeAction = 0;
264 ActionEntry *PrevAction = 0;
266 if (NumShared) {
267 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
268 assert(Actions.size());
269 PrevAction = &Actions.back();
270 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
271 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
272 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
273 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
274 SizeAction += -PrevAction->NextAction;
275 PrevAction = PrevAction->Previous;
279 // Compute the actions.
280 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
281 int TypeID = TypeIds[I];
282 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
283 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
284 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
286 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
287 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
288 SizeSiteActions += SizeAction;
290 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
291 Actions.push_back(Action);
293 PrevAction = &Actions.back();
296 // Record the first action of the landing pad site.
297 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
298 } // else identical - re-use previous FirstAction
300 FirstActions.push_back(FirstAction);
302 // Compute this sites contribution to size.
303 SizeActions += SizeSiteActions;
306 // Compute the call-site table. Entries must be ordered by address.
307 SmallVector<CallSiteEntry, 64> CallSites;
309 RangeMapType PadMap;
310 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
311 const LandingPadInfo *LandingPad = LandingPads[i];
312 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
313 unsigned BeginLabel = LandingPad->BeginLabels[j];
314 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
315 PadRange P = { i, j };
316 PadMap[BeginLabel] = P;
320 bool MayThrow = false;
321 unsigned LastLabel = 0;
322 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
323 I != E; ++I) {
324 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
325 MI != E; ++MI) {
326 if (!MI->isLabel()) {
327 MayThrow |= MI->getDesc().isCall();
328 continue;
331 unsigned BeginLabel = MI->getOperand(0).getImm();
332 assert(BeginLabel && "Invalid label!");
334 if (BeginLabel == LastLabel)
335 MayThrow = false;
337 RangeMapType::iterator L = PadMap.find(BeginLabel);
339 if (L == PadMap.end())
340 continue;
342 PadRange P = L->second;
343 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
345 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
346 "Inconsistent landing pad map!");
348 // If some instruction between the previous try-range and this one may
349 // throw, create a call-site entry with no landing pad for the region
350 // between the try-ranges.
351 if (MayThrow) {
352 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
353 CallSites.push_back(Site);
356 LastLabel = LandingPad->EndLabels[P.RangeIndex];
357 CallSiteEntry Site = {BeginLabel, LastLabel,
358 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
360 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
361 "Invalid landing pad!");
363 // Try to merge with the previous call-site.
364 if (CallSites.size()) {
365 CallSiteEntry &Prev = CallSites.back();
366 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
367 // Extend the range of the previous entry.
368 Prev.EndLabel = Site.EndLabel;
369 continue;
373 // Otherwise, create a new call-site.
374 CallSites.push_back(Site);
377 // If some instruction between the previous try-range and the end of the
378 // function may throw, create a call-site entry with no landing pad for the
379 // region following the try-range.
380 if (MayThrow) {
381 CallSiteEntry Site = {LastLabel, 0, 0, 0};
382 CallSites.push_back(Site);
385 // Final tallies.
386 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
387 sizeof(int32_t) + // Site length.
388 sizeof(int32_t)); // Landing pad.
389 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
390 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
392 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
394 unsigned TypeOffset = sizeof(int8_t) + // Call site format
395 // Call-site table length
396 MCAsmInfo::getULEB128Size(SizeSites) +
397 SizeSites + SizeActions + SizeTypes;
399 // Begin the exception table.
400 JCE->emitAlignmentWithFill(4, 0);
401 // Asm->EOL("Padding");
403 unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
405 // Emit the header.
406 JCE->emitByte(dwarf::DW_EH_PE_omit);
407 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
408 JCE->emitByte(dwarf::DW_EH_PE_absptr);
409 // Asm->EOL("TType format (DW_EH_PE_absptr)");
410 JCE->emitULEB128Bytes(TypeOffset);
411 // Asm->EOL("TType base offset");
412 JCE->emitByte(dwarf::DW_EH_PE_udata4);
413 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
414 JCE->emitULEB128Bytes(SizeSites);
415 // Asm->EOL("Call-site table length");
417 // Emit the landing pad site information.
418 for (unsigned i = 0; i < CallSites.size(); ++i) {
419 CallSiteEntry &S = CallSites[i];
420 intptr_t BeginLabelPtr = 0;
421 intptr_t EndLabelPtr = 0;
423 if (!S.BeginLabel) {
424 BeginLabelPtr = (intptr_t)StartFunction;
425 JCE->emitInt32(0);
426 } else {
427 BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
428 JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
431 // Asm->EOL("Region start");
433 if (!S.EndLabel) {
434 EndLabelPtr = (intptr_t)EndFunction;
435 JCE->emitInt32((intptr_t)EndFunction - BeginLabelPtr);
436 } else {
437 EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
438 JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
440 //Asm->EOL("Region length");
442 if (!S.PadLabel) {
443 JCE->emitInt32(0);
444 } else {
445 unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
446 JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
448 // Asm->EOL("Landing pad");
450 JCE->emitULEB128Bytes(S.Action);
451 // Asm->EOL("Action");
454 // Emit the actions.
455 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
456 ActionEntry &Action = Actions[I];
458 JCE->emitSLEB128Bytes(Action.ValueForTypeID);
459 //Asm->EOL("TypeInfo index");
460 JCE->emitSLEB128Bytes(Action.NextAction);
461 //Asm->EOL("Next action");
464 // Emit the type ids.
465 for (unsigned M = TypeInfos.size(); M; --M) {
466 GlobalVariable *GV = TypeInfos[M - 1];
468 if (GV) {
469 if (TD->getPointerSize() == sizeof(int32_t)) {
470 JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
471 } else {
472 JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
474 } else {
475 if (TD->getPointerSize() == sizeof(int32_t))
476 JCE->emitInt32(0);
477 else
478 JCE->emitInt64(0);
480 // Asm->EOL("TypeInfo");
483 // Emit the filter typeids.
484 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
485 unsigned TypeID = FilterIds[j];
486 JCE->emitULEB128Bytes(TypeID);
487 //Asm->EOL("Filter TypeInfo index");
490 JCE->emitAlignmentWithFill(4, 0);
492 return DwarfExceptionTable;
495 unsigned char*
496 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
497 unsigned PointerSize = TD->getPointerSize();
498 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
499 PointerSize : -PointerSize;
501 unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
502 // EH Common Frame header
503 JCE->allocateSpace(4, 0);
504 unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
505 JCE->emitInt32((int)0);
506 JCE->emitByte(dwarf::DW_CIE_VERSION);
507 JCE->emitString(Personality ? "zPLR" : "zR");
508 JCE->emitULEB128Bytes(1);
509 JCE->emitSLEB128Bytes(stackGrowth);
510 JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
512 if (Personality) {
513 // Augmentation Size: 3 small ULEBs of one byte each, and the personality
514 // function which size is PointerSize.
515 JCE->emitULEB128Bytes(3 + PointerSize);
517 // We set the encoding of the personality as direct encoding because we use
518 // the function pointer. The encoding is not relative because the current
519 // PC value may be bigger than the personality function pointer.
520 if (PointerSize == 4) {
521 JCE->emitByte(dwarf::DW_EH_PE_sdata4);
522 JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
523 } else {
524 JCE->emitByte(dwarf::DW_EH_PE_sdata8);
525 JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
528 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
529 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
531 } else {
532 JCE->emitULEB128Bytes(1);
533 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
536 std::vector<MachineMove> Moves;
537 RI->getInitialFrameState(Moves);
538 EmitFrameMoves(0, Moves);
540 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
542 JCE->emitInt32At((uintptr_t*)StartCommonPtr,
543 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
544 FrameCommonBeginPtr));
546 return StartCommonPtr;
550 unsigned char*
551 JITDwarfEmitter::EmitEHFrame(const Function* Personality,
552 unsigned char* StartCommonPtr,
553 unsigned char* StartFunction,
554 unsigned char* EndFunction,
555 unsigned char* ExceptionTable) const {
556 unsigned PointerSize = TD->getPointerSize();
558 // EH frame header.
559 unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
560 JCE->allocateSpace(4, 0);
561 unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
562 // FDE CIE Offset
563 JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
564 JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
565 JCE->emitInt32(EndFunction - StartFunction);
567 // If there is a personality and landing pads then point to the language
568 // specific data area in the exception table.
569 if (MMI->getPersonalityIndex()) {
570 JCE->emitULEB128Bytes(4);
572 if (!MMI->getLandingPads().empty()) {
573 JCE->emitInt32(ExceptionTable - (unsigned char*)JCE->getCurrentPCValue());
574 } else {
575 JCE->emitInt32((int)0);
577 } else {
578 JCE->emitULEB128Bytes(0);
581 // Indicate locations of function specific callee saved registers in
582 // frame.
583 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
585 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
587 // Indicate the size of the table
588 JCE->emitInt32At((uintptr_t*)StartEHPtr,
589 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
590 StartEHPtr));
592 // Double zeroes for the unwind runtime
593 if (PointerSize == 8) {
594 JCE->emitInt64(0);
595 JCE->emitInt64(0);
596 } else {
597 JCE->emitInt32(0);
598 JCE->emitInt32(0);
601 return StartEHPtr;
604 unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
605 JITCodeEmitter& jce,
606 unsigned char* StartFunction,
607 unsigned char* EndFunction) {
608 const TargetMachine& TM = F.getTarget();
609 TD = TM.getTargetData();
610 needsIndirectEncoding = TM.getMCAsmInfo()->getNeedsIndirectEncoding();
611 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
612 RI = TM.getRegisterInfo();
613 JCE = &jce;
614 unsigned FinalSize = 0;
616 FinalSize += GetExceptionTableSizeInBytes(&F);
618 const std::vector<Function *> Personalities = MMI->getPersonalities();
619 FinalSize +=
620 GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]);
622 FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()],
623 StartFunction);
625 return FinalSize;
628 /// RoundUpToAlign - Add the specified alignment to FinalSize and returns
629 /// the new value.
630 static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) {
631 if (Alignment == 0) Alignment = 1;
632 // Since we do not know where the buffer will be allocated, be pessimistic.
633 return FinalSize + Alignment;
636 unsigned
637 JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality,
638 unsigned char* StartFunction) const {
639 unsigned PointerSize = TD->getPointerSize();
640 unsigned FinalSize = 0;
641 // EH frame header.
642 FinalSize += PointerSize;
643 // FDE CIE Offset
644 FinalSize += 3 * PointerSize;
645 // If there is a personality and landing pads then point to the language
646 // specific data area in the exception table.
647 if (MMI->getPersonalityIndex()) {
648 FinalSize += MCAsmInfo::getULEB128Size(4);
649 FinalSize += PointerSize;
650 } else {
651 FinalSize += MCAsmInfo::getULEB128Size(0);
654 // Indicate locations of function specific callee saved registers in
655 // frame.
656 FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction,
657 MMI->getFrameMoves());
659 FinalSize = RoundUpToAlign(FinalSize, 4);
661 // Double zeroes for the unwind runtime
662 FinalSize += 2 * PointerSize;
664 return FinalSize;
667 unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality)
668 const {
670 unsigned PointerSize = TD->getPointerSize();
671 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
672 PointerSize : -PointerSize;
673 unsigned FinalSize = 0;
674 // EH Common Frame header
675 FinalSize += PointerSize;
676 FinalSize += 4;
677 FinalSize += 1;
678 FinalSize += Personality ? 5 : 3; // "zPLR" or "zR"
679 FinalSize += MCAsmInfo::getULEB128Size(1);
680 FinalSize += MCAsmInfo::getSLEB128Size(stackGrowth);
681 FinalSize += 1;
683 if (Personality) {
684 FinalSize += MCAsmInfo::getULEB128Size(7);
686 // Encoding
687 FinalSize+= 1;
688 //Personality
689 FinalSize += PointerSize;
691 FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
692 FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
694 } else {
695 FinalSize += MCAsmInfo::getULEB128Size(1);
696 FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
699 std::vector<MachineMove> Moves;
700 RI->getInitialFrameState(Moves);
701 FinalSize += GetFrameMovesSizeInBytes(0, Moves);
702 FinalSize = RoundUpToAlign(FinalSize, 4);
703 return FinalSize;
706 unsigned
707 JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
708 const std::vector<MachineMove> &Moves) const {
709 unsigned PointerSize = TD->getPointerSize();
710 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
711 PointerSize : -PointerSize;
712 bool IsLocal = BaseLabelPtr;
713 unsigned FinalSize = 0;
715 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
716 const MachineMove &Move = Moves[i];
717 unsigned LabelID = Move.getLabelID();
719 if (LabelID) {
720 LabelID = MMI->MappedLabel(LabelID);
722 // Throw out move if the label is invalid.
723 if (!LabelID) continue;
726 intptr_t LabelPtr = 0;
727 if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID);
729 const MachineLocation &Dst = Move.getDestination();
730 const MachineLocation &Src = Move.getSource();
732 // Advance row if new location.
733 if (BaseLabelPtr && LabelID && (BaseLabelPtr != LabelPtr || !IsLocal)) {
734 FinalSize++;
735 FinalSize += PointerSize;
736 BaseLabelPtr = LabelPtr;
737 IsLocal = true;
740 // If advancing cfa.
741 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
742 if (!Src.isReg()) {
743 if (Src.getReg() == MachineLocation::VirtualFP) {
744 ++FinalSize;
745 } else {
746 ++FinalSize;
747 unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true);
748 FinalSize += MCAsmInfo::getULEB128Size(RegNum);
751 int Offset = -Src.getOffset();
753 FinalSize += MCAsmInfo::getULEB128Size(Offset);
754 } else {
755 llvm_unreachable("Machine move no supported yet.");
757 } else if (Src.isReg() &&
758 Src.getReg() == MachineLocation::VirtualFP) {
759 if (Dst.isReg()) {
760 ++FinalSize;
761 unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true);
762 FinalSize += MCAsmInfo::getULEB128Size(RegNum);
763 } else {
764 llvm_unreachable("Machine move no supported yet.");
766 } else {
767 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
768 int Offset = Dst.getOffset() / stackGrowth;
770 if (Offset < 0) {
771 ++FinalSize;
772 FinalSize += MCAsmInfo::getULEB128Size(Reg);
773 FinalSize += MCAsmInfo::getSLEB128Size(Offset);
774 } else if (Reg < 64) {
775 ++FinalSize;
776 FinalSize += MCAsmInfo::getULEB128Size(Offset);
777 } else {
778 ++FinalSize;
779 FinalSize += MCAsmInfo::getULEB128Size(Reg);
780 FinalSize += MCAsmInfo::getULEB128Size(Offset);
784 return FinalSize;
787 unsigned
788 JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
789 unsigned FinalSize = 0;
791 // Map all labels and get rid of any dead landing pads.
792 MMI->TidyLandingPads();
794 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
795 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
796 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
797 if (PadInfos.empty()) return 0;
799 // Sort the landing pads in order of their type ids. This is used to fold
800 // duplicate actions.
801 SmallVector<const LandingPadInfo *, 64> LandingPads;
802 LandingPads.reserve(PadInfos.size());
803 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
804 LandingPads.push_back(&PadInfos[i]);
805 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
807 // Negative type ids index into FilterIds, positive type ids index into
808 // TypeInfos. The value written for a positive type id is just the type
809 // id itself. For a negative type id, however, the value written is the
810 // (negative) byte offset of the corresponding FilterIds entry. The byte
811 // offset is usually equal to the type id, because the FilterIds entries
812 // are written using a variable width encoding which outputs one byte per
813 // entry as long as the value written is not too large, but can differ.
814 // This kind of complication does not occur for positive type ids because
815 // type infos are output using a fixed width encoding.
816 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
817 SmallVector<int, 16> FilterOffsets;
818 FilterOffsets.reserve(FilterIds.size());
819 int Offset = -1;
820 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
821 E = FilterIds.end(); I != E; ++I) {
822 FilterOffsets.push_back(Offset);
823 Offset -= MCAsmInfo::getULEB128Size(*I);
826 // Compute the actions table and gather the first action index for each
827 // landing pad site.
828 SmallVector<ActionEntry, 32> Actions;
829 SmallVector<unsigned, 64> FirstActions;
830 FirstActions.reserve(LandingPads.size());
832 int FirstAction = 0;
833 unsigned SizeActions = 0;
834 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
835 const LandingPadInfo *LP = LandingPads[i];
836 const std::vector<int> &TypeIds = LP->TypeIds;
837 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
838 unsigned SizeSiteActions = 0;
840 if (NumShared < TypeIds.size()) {
841 unsigned SizeAction = 0;
842 ActionEntry *PrevAction = 0;
844 if (NumShared) {
845 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
846 assert(Actions.size());
847 PrevAction = &Actions.back();
848 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
849 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
850 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
851 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
852 SizeAction += -PrevAction->NextAction;
853 PrevAction = PrevAction->Previous;
857 // Compute the actions.
858 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
859 int TypeID = TypeIds[I];
860 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
861 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
862 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
864 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
865 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
866 SizeSiteActions += SizeAction;
868 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
869 Actions.push_back(Action);
871 PrevAction = &Actions.back();
874 // Record the first action of the landing pad site.
875 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
876 } // else identical - re-use previous FirstAction
878 FirstActions.push_back(FirstAction);
880 // Compute this sites contribution to size.
881 SizeActions += SizeSiteActions;
884 // Compute the call-site table. Entries must be ordered by address.
885 SmallVector<CallSiteEntry, 64> CallSites;
887 RangeMapType PadMap;
888 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
889 const LandingPadInfo *LandingPad = LandingPads[i];
890 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
891 unsigned BeginLabel = LandingPad->BeginLabels[j];
892 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
893 PadRange P = { i, j };
894 PadMap[BeginLabel] = P;
898 bool MayThrow = false;
899 unsigned LastLabel = 0;
900 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
901 I != E; ++I) {
902 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
903 MI != E; ++MI) {
904 if (!MI->isLabel()) {
905 MayThrow |= MI->getDesc().isCall();
906 continue;
909 unsigned BeginLabel = MI->getOperand(0).getImm();
910 assert(BeginLabel && "Invalid label!");
912 if (BeginLabel == LastLabel)
913 MayThrow = false;
915 RangeMapType::iterator L = PadMap.find(BeginLabel);
917 if (L == PadMap.end())
918 continue;
920 PadRange P = L->second;
921 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
923 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
924 "Inconsistent landing pad map!");
926 // If some instruction between the previous try-range and this one may
927 // throw, create a call-site entry with no landing pad for the region
928 // between the try-ranges.
929 if (MayThrow) {
930 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
931 CallSites.push_back(Site);
934 LastLabel = LandingPad->EndLabels[P.RangeIndex];
935 CallSiteEntry Site = {BeginLabel, LastLabel,
936 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
938 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
939 "Invalid landing pad!");
941 // Try to merge with the previous call-site.
942 if (CallSites.size()) {
943 CallSiteEntry &Prev = CallSites.back();
944 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
945 // Extend the range of the previous entry.
946 Prev.EndLabel = Site.EndLabel;
947 continue;
951 // Otherwise, create a new call-site.
952 CallSites.push_back(Site);
955 // If some instruction between the previous try-range and the end of the
956 // function may throw, create a call-site entry with no landing pad for the
957 // region following the try-range.
958 if (MayThrow) {
959 CallSiteEntry Site = {LastLabel, 0, 0, 0};
960 CallSites.push_back(Site);
963 // Final tallies.
964 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
965 sizeof(int32_t) + // Site length.
966 sizeof(int32_t)); // Landing pad.
967 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
968 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
970 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
972 unsigned TypeOffset = sizeof(int8_t) + // Call site format
973 // Call-site table length
974 MCAsmInfo::getULEB128Size(SizeSites) +
975 SizeSites + SizeActions + SizeTypes;
977 unsigned TotalSize = sizeof(int8_t) + // LPStart format
978 sizeof(int8_t) + // TType format
979 MCAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
980 TypeOffset;
982 unsigned SizeAlign = (4 - TotalSize) & 3;
984 // Begin the exception table.
985 FinalSize = RoundUpToAlign(FinalSize, 4);
986 for (unsigned i = 0; i != SizeAlign; ++i) {
987 ++FinalSize;
990 unsigned PointerSize = TD->getPointerSize();
992 // Emit the header.
993 ++FinalSize;
994 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
995 ++FinalSize;
996 // Asm->EOL("TType format (DW_EH_PE_absptr)");
997 ++FinalSize;
998 // Asm->EOL("TType base offset");
999 ++FinalSize;
1000 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
1001 ++FinalSize;
1002 // Asm->EOL("Call-site table length");
1004 // Emit the landing pad site information.
1005 for (unsigned i = 0; i < CallSites.size(); ++i) {
1006 CallSiteEntry &S = CallSites[i];
1008 // Asm->EOL("Region start");
1009 FinalSize += PointerSize;
1011 //Asm->EOL("Region length");
1012 FinalSize += PointerSize;
1014 // Asm->EOL("Landing pad");
1015 FinalSize += PointerSize;
1017 FinalSize += MCAsmInfo::getULEB128Size(S.Action);
1018 // Asm->EOL("Action");
1021 // Emit the actions.
1022 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
1023 ActionEntry &Action = Actions[I];
1025 //Asm->EOL("TypeInfo index");
1026 FinalSize += MCAsmInfo::getSLEB128Size(Action.ValueForTypeID);
1027 //Asm->EOL("Next action");
1028 FinalSize += MCAsmInfo::getSLEB128Size(Action.NextAction);
1031 // Emit the type ids.
1032 for (unsigned M = TypeInfos.size(); M; --M) {
1033 // Asm->EOL("TypeInfo");
1034 FinalSize += PointerSize;
1037 // Emit the filter typeids.
1038 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
1039 unsigned TypeID = FilterIds[j];
1040 FinalSize += MCAsmInfo::getULEB128Size(TypeID);
1041 //Asm->EOL("Filter TypeInfo index");
1044 FinalSize = RoundUpToAlign(FinalSize, 4);
1046 return FinalSize;