Fix comment for consistency sake.
[llvm/avr.git] / lib / ExecutionEngine / JIT / JITEmitter.cpp
blobe1799600e537d15074d6b0acabd0f788d6d13cce
1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "JIT.h"
17 #include "JITDwarfEmitter.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Module.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/CodeGen/JITCodeEmitter.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRelocation.h"
27 #include "llvm/ExecutionEngine/GenericValue.h"
28 #include "llvm/ExecutionEngine/JITEventListener.h"
29 #include "llvm/ExecutionEngine/JITMemoryManager.h"
30 #include "llvm/CodeGen/MachineCodeInfo.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetJITInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MutexGuard.h"
38 #include "llvm/Support/ValueHandle.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/System/Disassembler.h"
41 #include "llvm/System/Memory.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include <algorithm>
47 #ifndef NDEBUG
48 #include <iomanip>
49 #endif
50 using namespace llvm;
52 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
53 STATISTIC(NumRelos, "Number of relocations applied");
54 STATISTIC(NumRetries, "Number of retries with more memory");
55 static JIT *TheJIT = 0;
58 //===----------------------------------------------------------------------===//
59 // JIT lazy compilation code.
61 namespace {
62 class JITResolverState {
63 public:
64 typedef std::map<AssertingVH<Function>, void*> FunctionToStubMapTy;
65 typedef std::map<void*, Function*> StubToFunctionMapTy;
66 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
67 private:
68 /// FunctionToStubMap - Keep track of the stub created for a particular
69 /// function so that we can reuse them if necessary.
70 FunctionToStubMapTy FunctionToStubMap;
72 /// StubToFunctionMap - Keep track of the function that each stub
73 /// corresponds to.
74 StubToFunctionMapTy StubToFunctionMap;
76 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
77 /// particular GlobalVariable so that we can reuse them if necessary.
78 GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
80 public:
81 FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) {
82 assert(locked.holds(TheJIT->lock));
83 return FunctionToStubMap;
86 StubToFunctionMapTy& getStubToFunctionMap(const MutexGuard& locked) {
87 assert(locked.holds(TheJIT->lock));
88 return StubToFunctionMap;
91 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
92 assert(locked.holds(TheJIT->lock));
93 return GlobalToIndirectSymMap;
97 /// JITResolver - Keep track of, and resolve, call sites for functions that
98 /// have not yet been compiled.
99 class JITResolver {
100 typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy;
101 typedef JITResolverState::StubToFunctionMapTy StubToFunctionMapTy;
102 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
104 /// LazyResolverFn - The target lazy resolver function that we actually
105 /// rewrite instructions to use.
106 TargetJITInfo::LazyResolverFn LazyResolverFn;
108 JITResolverState state;
110 /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
111 /// external functions.
112 std::map<void*, void*> ExternalFnToStubMap;
114 /// revGOTMap - map addresses to indexes in the GOT
115 std::map<void*, unsigned> revGOTMap;
116 unsigned nextGOTIndex;
118 static JITResolver *TheJITResolver;
119 public:
120 explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
121 TheJIT = &jit;
123 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
124 assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
125 TheJITResolver = this;
128 ~JITResolver() {
129 TheJITResolver = 0;
132 /// getFunctionStubIfAvailable - This returns a pointer to a function stub
133 /// if it has already been created.
134 void *getFunctionStubIfAvailable(Function *F);
136 /// getFunctionStub - This returns a pointer to a function stub, creating
137 /// one on demand as needed. If empty is true, create a function stub
138 /// pointing at address 0, to be filled in later.
139 void *getFunctionStub(Function *F);
141 /// getExternalFunctionStub - Return a stub for the function at the
142 /// specified address, created lazily on demand.
143 void *getExternalFunctionStub(void *FnAddr);
145 /// getGlobalValueIndirectSym - Return an indirect symbol containing the
146 /// specified GV address.
147 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
149 /// AddCallbackAtLocation - If the target is capable of rewriting an
150 /// instruction without the use of a stub, record the location of the use so
151 /// we know which function is being used at the location.
152 void *AddCallbackAtLocation(Function *F, void *Location) {
153 MutexGuard locked(TheJIT->lock);
154 /// Get the target-specific JIT resolver function.
155 state.getStubToFunctionMap(locked)[Location] = F;
156 return (void*)(intptr_t)LazyResolverFn;
159 void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
160 SmallVectorImpl<void*> &Ptrs);
162 GlobalValue *invalidateStub(void *Stub);
164 /// getGOTIndexForAddress - Return a new or existing index in the GOT for
165 /// an address. This function only manages slots, it does not manage the
166 /// contents of the slots or the memory associated with the GOT.
167 unsigned getGOTIndexForAddr(void *addr);
169 /// JITCompilerFn - This function is called to resolve a stub to a compiled
170 /// address. If the LLVM Function corresponding to the stub has not yet
171 /// been compiled, this function compiles it first.
172 static void *JITCompilerFn(void *Stub);
176 JITResolver *JITResolver::TheJITResolver = 0;
178 /// getFunctionStubIfAvailable - This returns a pointer to a function stub
179 /// if it has already been created.
180 void *JITResolver::getFunctionStubIfAvailable(Function *F) {
181 MutexGuard locked(TheJIT->lock);
183 // If we already have a stub for this function, recycle it.
184 void *&Stub = state.getFunctionToStubMap(locked)[F];
185 return Stub;
188 /// getFunctionStub - This returns a pointer to a function stub, creating
189 /// one on demand as needed.
190 void *JITResolver::getFunctionStub(Function *F) {
191 MutexGuard locked(TheJIT->lock);
193 // If we already have a stub for this function, recycle it.
194 void *&Stub = state.getFunctionToStubMap(locked)[F];
195 if (Stub) return Stub;
197 // Call the lazy resolver function unless we are JIT'ing non-lazily, in which
198 // case we must resolve the symbol now.
199 void *Actual = TheJIT->isLazyCompilationDisabled()
200 ? (void *)0 : (void *)(intptr_t)LazyResolverFn;
202 // If this is an external declaration, attempt to resolve the address now
203 // to place in the stub.
204 if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
205 Actual = TheJIT->getPointerToFunction(F);
207 // If we resolved the symbol to a null address (eg. a weak external)
208 // don't emit a stub. Return a null pointer to the application. If dlsym
209 // stubs are enabled, not being able to resolve the address is not
210 // meaningful.
211 if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0;
214 // Codegen a new stub, calling the lazy resolver or the actual address of the
215 // external function, if it was resolved.
216 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
217 *TheJIT->getCodeEmitter());
219 if (Actual != (void*)(intptr_t)LazyResolverFn) {
220 // If we are getting the stub for an external function, we really want the
221 // address of the stub in the GlobalAddressMap for the JIT, not the address
222 // of the external function.
223 TheJIT->updateGlobalMapping(F, Stub);
226 DEBUG(errs() << "JIT: Stub emitted at [" << Stub << "] for function '"
227 << F->getName() << "'\n");
229 // Finally, keep track of the stub-to-Function mapping so that the
230 // JITCompilerFn knows which function to compile!
231 state.getStubToFunctionMap(locked)[Stub] = F;
233 // If we are JIT'ing non-lazily but need to call a function that does not
234 // exist yet, add it to the JIT's work list so that we can fill in the stub
235 // address later.
236 if (!Actual && TheJIT->isLazyCompilationDisabled())
237 if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
238 TheJIT->addPendingFunction(F);
240 return Stub;
243 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
244 /// GV address.
245 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
246 MutexGuard locked(TheJIT->lock);
248 // If we already have a stub for this global variable, recycle it.
249 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
250 if (IndirectSym) return IndirectSym;
252 // Otherwise, codegen a new indirect symbol.
253 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
254 *TheJIT->getCodeEmitter());
256 DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
257 << "] for GV '" << GV->getName() << "'\n");
259 return IndirectSym;
262 /// getExternalFunctionStub - Return a stub for the function at the
263 /// specified address, created lazily on demand.
264 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
265 // If we already have a stub for this function, recycle it.
266 void *&Stub = ExternalFnToStubMap[FnAddr];
267 if (Stub) return Stub;
269 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
270 *TheJIT->getCodeEmitter());
272 DEBUG(errs() << "JIT: Stub emitted at [" << Stub
273 << "] for external function at '" << FnAddr << "'\n");
274 return Stub;
277 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
278 unsigned idx = revGOTMap[addr];
279 if (!idx) {
280 idx = ++nextGOTIndex;
281 revGOTMap[addr] = idx;
282 DEBUG(errs() << "JIT: Adding GOT entry " << idx << " for addr ["
283 << addr << "]\n");
285 return idx;
288 void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
289 SmallVectorImpl<void*> &Ptrs) {
290 MutexGuard locked(TheJIT->lock);
292 FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
293 GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
295 for (FunctionToStubMapTy::iterator i = FM.begin(), e = FM.end(); i != e; ++i){
296 Function *F = i->first;
297 if (F->isDeclaration() && F->hasExternalLinkage()) {
298 GVs.push_back(i->first);
299 Ptrs.push_back(i->second);
302 for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
303 i != e; ++i) {
304 GVs.push_back(i->first);
305 Ptrs.push_back(i->second);
309 GlobalValue *JITResolver::invalidateStub(void *Stub) {
310 MutexGuard locked(TheJIT->lock);
312 FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
313 StubToFunctionMapTy &SM = state.getStubToFunctionMap(locked);
314 GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
316 // Look up the cheap way first, to see if it's a function stub we are
317 // invalidating. If so, remove it from both the forward and reverse maps.
318 if (SM.find(Stub) != SM.end()) {
319 Function *F = SM[Stub];
320 SM.erase(Stub);
321 FM.erase(F);
322 return F;
325 // Otherwise, it might be an indirect symbol stub. Find it and remove it.
326 for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
327 i != e; ++i) {
328 if (i->second != Stub)
329 continue;
330 GlobalValue *GV = i->first;
331 GM.erase(i);
332 return GV;
335 // Lastly, check to see if it's in the ExternalFnToStubMap.
336 for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
337 e = ExternalFnToStubMap.end(); i != e; ++i) {
338 if (i->second != Stub)
339 continue;
340 ExternalFnToStubMap.erase(i);
341 break;
344 return 0;
347 /// JITCompilerFn - This function is called when a lazy compilation stub has
348 /// been entered. It looks up which function this stub corresponds to, compiles
349 /// it if necessary, then returns the resultant function pointer.
350 void *JITResolver::JITCompilerFn(void *Stub) {
351 JITResolver &JR = *TheJITResolver;
353 Function* F = 0;
354 void* ActualPtr = 0;
357 // Only lock for getting the Function. The call getPointerToFunction made
358 // in this function might trigger function materializing, which requires
359 // JIT lock to be unlocked.
360 MutexGuard locked(TheJIT->lock);
362 // The address given to us for the stub may not be exactly right, it might be
363 // a little bit after the stub. As such, use upper_bound to find it.
364 StubToFunctionMapTy::iterator I =
365 JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
366 assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
367 "This is not a known stub!");
368 F = (--I)->second;
369 ActualPtr = I->first;
372 // If we have already code generated the function, just return the address.
373 void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
375 if (!Result) {
376 // Otherwise we don't have it, do lazy compilation now.
378 // If lazy compilation is disabled, emit a useful error message and abort.
379 if (TheJIT->isLazyCompilationDisabled()) {
380 llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
381 + F->getName() + "' when lazy compiles are disabled!");
384 // We might like to remove the stub from the StubToFunction map.
385 // We can't do that! Multiple threads could be stuck, waiting to acquire the
386 // lock above. As soon as the 1st function finishes compiling the function,
387 // the next one will be released, and needs to be able to find the function
388 // it needs to call.
389 //JR.state.getStubToFunctionMap(locked).erase(I);
391 DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
392 << "' In stub ptr = " << Stub << " actual ptr = "
393 << ActualPtr << "\n");
395 Result = TheJIT->getPointerToFunction(F);
398 // Reacquire the lock to erase the stub in the map.
399 MutexGuard locked(TheJIT->lock);
401 // We don't need to reuse this stub in the future, as F is now compiled.
402 JR.state.getFunctionToStubMap(locked).erase(F);
404 // FIXME: We could rewrite all references to this stub if we knew them.
406 // What we will do is set the compiled function address to map to the
407 // same GOT entry as the stub so that later clients may update the GOT
408 // if they see it still using the stub address.
409 // Note: this is done so the Resolver doesn't have to manage GOT memory
410 // Do this without allocating map space if the target isn't using a GOT
411 if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
412 JR.revGOTMap[Result] = JR.revGOTMap[Stub];
414 return Result;
417 //===----------------------------------------------------------------------===//
418 // JITEmitter code.
420 namespace {
421 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
422 /// used to output functions to memory for execution.
423 class JITEmitter : public JITCodeEmitter {
424 JITMemoryManager *MemMgr;
426 // When outputting a function stub in the context of some other function, we
427 // save BufferBegin/BufferEnd/CurBufferPtr here.
428 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
430 // When reattempting to JIT a function after running out of space, we store
431 // the estimated size of the function we're trying to JIT here, so we can
432 // ask the memory manager for at least this much space. When we
433 // successfully emit the function, we reset this back to zero.
434 uintptr_t SizeEstimate;
436 /// Relocations - These are the relocations that the function needs, as
437 /// emitted.
438 std::vector<MachineRelocation> Relocations;
440 /// MBBLocations - This vector is a mapping from MBB ID's to their address.
441 /// It is filled in by the StartMachineBasicBlock callback and queried by
442 /// the getMachineBasicBlockAddress callback.
443 std::vector<uintptr_t> MBBLocations;
445 /// ConstantPool - The constant pool for the current function.
447 MachineConstantPool *ConstantPool;
449 /// ConstantPoolBase - A pointer to the first entry in the constant pool.
451 void *ConstantPoolBase;
453 /// ConstPoolAddresses - Addresses of individual constant pool entries.
455 SmallVector<uintptr_t, 8> ConstPoolAddresses;
457 /// JumpTable - The jump tables for the current function.
459 MachineJumpTableInfo *JumpTable;
461 /// JumpTableBase - A pointer to the first entry in the jump table.
463 void *JumpTableBase;
465 /// Resolver - This contains info about the currently resolved functions.
466 JITResolver Resolver;
468 /// DE - The dwarf emitter for the jit.
469 JITDwarfEmitter *DE;
471 /// LabelLocations - This vector is a mapping from Label ID's to their
472 /// address.
473 std::vector<uintptr_t> LabelLocations;
475 /// MMI - Machine module info for exception informations
476 MachineModuleInfo* MMI;
478 // GVSet - a set to keep track of which globals have been seen
479 SmallPtrSet<const GlobalVariable*, 8> GVSet;
481 // CurFn - The llvm function being emitted. Only valid during
482 // finishFunction().
483 const Function *CurFn;
485 /// Information about emitted code, which is passed to the
486 /// JITEventListeners. This is reset in startFunction and used in
487 /// finishFunction.
488 JITEvent_EmittedFunctionDetails EmissionDetails;
490 // CurFnStubUses - For a given Function, a vector of stubs that it
491 // references. This facilitates the JIT detecting that a stub is no
492 // longer used, so that it may be deallocated.
493 DenseMap<const Function *, SmallVector<void*, 1> > CurFnStubUses;
495 // StubFnRefs - For a given pointer to a stub, a set of Functions which
496 // reference the stub. When the count of a stub's references drops to zero,
497 // the stub is unused.
498 DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
500 // ExtFnStubs - A map of external function names to stubs which have entries
501 // in the JITResolver's ExternalFnToStubMap.
502 StringMap<void *> ExtFnStubs;
504 DebugLocTuple PrevDLT;
506 public:
507 JITEmitter(JIT &jit, JITMemoryManager *JMM)
508 : SizeEstimate(0), Resolver(jit), MMI(0), CurFn(0) {
509 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
510 if (jit.getJITInfo().needsGOT()) {
511 MemMgr->AllocateGOT();
512 DEBUG(errs() << "JIT is managing a GOT\n");
515 if (DwarfExceptionHandling) DE = new JITDwarfEmitter(jit);
517 ~JITEmitter() {
518 delete MemMgr;
519 if (DwarfExceptionHandling) delete DE;
522 /// classof - Methods for support type inquiry through isa, cast, and
523 /// dyn_cast:
525 static inline bool classof(const JITEmitter*) { return true; }
526 static inline bool classof(const MachineCodeEmitter*) { return true; }
528 JITResolver &getJITResolver() { return Resolver; }
530 virtual void startFunction(MachineFunction &F);
531 virtual bool finishFunction(MachineFunction &F);
533 void emitConstantPool(MachineConstantPool *MCP);
534 void initJumpTableInfo(MachineJumpTableInfo *MJTI);
535 void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
537 virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
538 unsigned Alignment = 1);
539 virtual void startGVStub(const GlobalValue* GV, void *Buffer,
540 unsigned StubSize);
541 virtual void* finishGVStub(const GlobalValue *GV);
543 /// allocateSpace - Reserves space in the current block if any, or
544 /// allocate a new one of the given size.
545 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
547 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
548 /// this method does not allocate memory in the current output buffer,
549 /// because a global may live longer than the current function.
550 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
552 virtual void addRelocation(const MachineRelocation &MR) {
553 Relocations.push_back(MR);
556 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
557 if (MBBLocations.size() <= (unsigned)MBB->getNumber())
558 MBBLocations.resize((MBB->getNumber()+1)*2);
559 MBBLocations[MBB->getNumber()] = getCurrentPCValue();
560 DEBUG(errs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
561 << (void*) getCurrentPCValue() << "]\n");
564 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
565 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
567 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
568 assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
569 MBBLocations[MBB->getNumber()] && "MBB not emitted!");
570 return MBBLocations[MBB->getNumber()];
573 /// retryWithMoreMemory - Log a retry and deallocate all memory for the
574 /// given function. Increase the minimum allocation size so that we get
575 /// more memory next time.
576 void retryWithMoreMemory(MachineFunction &F);
578 /// deallocateMemForFunction - Deallocate all memory for the specified
579 /// function body.
580 void deallocateMemForFunction(const Function *F);
582 /// AddStubToCurrentFunction - Mark the current function being JIT'd as
583 /// using the stub at the specified address. Allows
584 /// deallocateMemForFunction to also remove stubs no longer referenced.
585 void AddStubToCurrentFunction(void *Stub);
587 /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for
588 /// MachineRelocations that reference external functions by name.
589 const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
591 virtual void processDebugLoc(DebugLoc DL);
593 virtual void emitLabel(uint64_t LabelID) {
594 if (LabelLocations.size() <= LabelID)
595 LabelLocations.resize((LabelID+1)*2);
596 LabelLocations[LabelID] = getCurrentPCValue();
599 virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
600 assert(LabelLocations.size() > (unsigned)LabelID &&
601 LabelLocations[LabelID] && "Label not emitted!");
602 return LabelLocations[LabelID];
605 virtual void setModuleInfo(MachineModuleInfo* Info) {
606 MMI = Info;
607 if (DwarfExceptionHandling) DE->setModuleInfo(Info);
610 void setMemoryExecutable() {
611 MemMgr->setMemoryExecutable();
614 JITMemoryManager *getMemMgr() const { return MemMgr; }
616 private:
617 void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
618 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
619 bool NoNeedStub);
620 unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
621 unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
622 unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
623 unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
627 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
628 bool DoesntNeedStub) {
629 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
630 return TheJIT->getOrEmitGlobalVariable(GV);
632 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
633 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
635 // If we have already compiled the function, return a pointer to its body.
636 Function *F = cast<Function>(V);
637 void *ResultPtr;
638 if (!DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) {
639 // Return the function stub if it's already created.
640 ResultPtr = Resolver.getFunctionStubIfAvailable(F);
641 if (ResultPtr)
642 AddStubToCurrentFunction(ResultPtr);
643 } else {
644 ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
646 if (ResultPtr) return ResultPtr;
648 // If this is an external function pointer, we can force the JIT to
649 // 'compile' it, which really just adds it to the map. In dlsym mode,
650 // external functions are forced through a stub, regardless of reloc type.
651 if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() &&
652 DoesntNeedStub && !TheJIT->areDlsymStubsEnabled())
653 return TheJIT->getPointerToFunction(F);
655 // Okay, the function has not been compiled yet, if the target callback
656 // mechanism is capable of rewriting the instruction directly, prefer to do
657 // that instead of emitting a stub. This uses the lazy resolver, so is not
658 // legal if lazy compilation is disabled.
659 if (DoesntNeedStub && !TheJIT->isLazyCompilationDisabled())
660 return Resolver.AddCallbackAtLocation(F, Reference);
662 // Otherwise, we have to emit a stub.
663 void *StubAddr = Resolver.getFunctionStub(F);
665 // Add the stub to the current function's list of referenced stubs, so we can
666 // deallocate them if the current function is ever freed. It's possible to
667 // return null from getFunctionStub in the case of a weak extern that fails
668 // to resolve.
669 if (StubAddr)
670 AddStubToCurrentFunction(StubAddr);
672 return StubAddr;
675 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
676 bool NoNeedStub) {
677 // Make sure GV is emitted first, and create a stub containing the fully
678 // resolved address.
679 void *GVAddress = getPointerToGlobal(V, Reference, true);
680 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
682 // Add the stub to the current function's list of referenced stubs, so we can
683 // deallocate them if the current function is ever freed.
684 AddStubToCurrentFunction(StubAddr);
686 return StubAddr;
689 void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
690 if (!TheJIT->areDlsymStubsEnabled())
691 return;
693 assert(CurFn && "Stub added to current function, but current function is 0!");
695 SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
696 StubsUsed.push_back(StubAddr);
698 SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
699 FnRefs.insert(CurFn);
702 void JITEmitter::processDebugLoc(DebugLoc DL) {
703 if (!DL.isUnknown()) {
704 DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL);
706 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) {
707 JITEvent_EmittedFunctionDetails::LineStart NextLine;
708 NextLine.Address = getCurrentPCValue();
709 NextLine.Loc = DL;
710 EmissionDetails.LineStarts.push_back(NextLine);
713 PrevDLT = CurDLT;
717 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
718 const TargetData *TD) {
719 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
720 if (Constants.empty()) return 0;
722 unsigned Size = 0;
723 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
724 MachineConstantPoolEntry CPE = Constants[i];
725 unsigned AlignMask = CPE.getAlignment() - 1;
726 Size = (Size + AlignMask) & ~AlignMask;
727 const Type *Ty = CPE.getType();
728 Size += TD->getTypeAllocSize(Ty);
730 return Size;
733 static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
734 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
735 if (JT.empty()) return 0;
737 unsigned NumEntries = 0;
738 for (unsigned i = 0, e = JT.size(); i != e; ++i)
739 NumEntries += JT[i].MBBs.size();
741 unsigned EntrySize = MJTI->getEntrySize();
743 return NumEntries * EntrySize;
746 static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
747 if (Alignment == 0) Alignment = 1;
748 // Since we do not know where the buffer will be allocated, be pessimistic.
749 return Size + Alignment;
752 /// addSizeOfGlobal - add the size of the global (plus any alignment padding)
753 /// into the running total Size.
755 unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
756 const Type *ElTy = GV->getType()->getElementType();
757 size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
758 size_t GVAlign =
759 (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
760 DEBUG(errs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
761 DEBUG(GV->dump());
762 // Assume code section ends with worst possible alignment, so first
763 // variable needs maximal padding.
764 if (Size==0)
765 Size = 1;
766 Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
767 Size += GVSize;
768 return Size;
771 /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
772 /// but are referenced from the constant; put them in GVSet and add their
773 /// size into the running total Size.
775 unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
776 unsigned Size) {
777 // If its undefined, return the garbage.
778 if (isa<UndefValue>(C))
779 return Size;
781 // If the value is a ConstantExpr
782 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
783 Constant *Op0 = CE->getOperand(0);
784 switch (CE->getOpcode()) {
785 case Instruction::GetElementPtr:
786 case Instruction::Trunc:
787 case Instruction::ZExt:
788 case Instruction::SExt:
789 case Instruction::FPTrunc:
790 case Instruction::FPExt:
791 case Instruction::UIToFP:
792 case Instruction::SIToFP:
793 case Instruction::FPToUI:
794 case Instruction::FPToSI:
795 case Instruction::PtrToInt:
796 case Instruction::IntToPtr:
797 case Instruction::BitCast: {
798 Size = addSizeOfGlobalsInConstantVal(Op0, Size);
799 break;
801 case Instruction::Add:
802 case Instruction::FAdd:
803 case Instruction::Sub:
804 case Instruction::FSub:
805 case Instruction::Mul:
806 case Instruction::FMul:
807 case Instruction::UDiv:
808 case Instruction::SDiv:
809 case Instruction::URem:
810 case Instruction::SRem:
811 case Instruction::And:
812 case Instruction::Or:
813 case Instruction::Xor: {
814 Size = addSizeOfGlobalsInConstantVal(Op0, Size);
815 Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
816 break;
818 default: {
819 std::string msg;
820 raw_string_ostream Msg(msg);
821 Msg << "ConstantExpr not handled: " << *CE;
822 llvm_report_error(Msg.str());
827 if (C->getType()->getTypeID() == Type::PointerTyID)
828 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
829 if (GVSet.insert(GV))
830 Size = addSizeOfGlobal(GV, Size);
832 return Size;
835 /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
836 /// but are referenced from the given initializer.
838 unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
839 unsigned Size) {
840 if (!isa<UndefValue>(Init) &&
841 !isa<ConstantVector>(Init) &&
842 !isa<ConstantAggregateZero>(Init) &&
843 !isa<ConstantArray>(Init) &&
844 !isa<ConstantStruct>(Init) &&
845 Init->getType()->isFirstClassType())
846 Size = addSizeOfGlobalsInConstantVal(Init, Size);
847 return Size;
850 /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
851 /// globals; then walk the initializers of those globals looking for more.
852 /// If their size has not been considered yet, add it into the running total
853 /// Size.
855 unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
856 unsigned Size = 0;
857 GVSet.clear();
859 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
860 MBB != E; ++MBB) {
861 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
862 I != E; ++I) {
863 const TargetInstrDesc &Desc = I->getDesc();
864 const MachineInstr &MI = *I;
865 unsigned NumOps = Desc.getNumOperands();
866 for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
867 const MachineOperand &MO = MI.getOperand(CurOp);
868 if (MO.isGlobal()) {
869 GlobalValue* V = MO.getGlobal();
870 const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
871 if (!GV)
872 continue;
873 // If seen in previous function, it will have an entry here.
874 if (TheJIT->getPointerToGlobalIfAvailable(GV))
875 continue;
876 // If seen earlier in this function, it will have an entry here.
877 // FIXME: it should be possible to combine these tables, by
878 // assuming the addresses of the new globals in this module
879 // start at 0 (or something) and adjusting them after codegen
880 // complete. Another possibility is to grab a marker bit in GV.
881 if (GVSet.insert(GV))
882 // A variable as yet unseen. Add in its size.
883 Size = addSizeOfGlobal(GV, Size);
888 DEBUG(errs() << "JIT: About to look through initializers\n");
889 // Look for more globals that are referenced only from initializers.
890 // GVSet.end is computed each time because the set can grow as we go.
891 for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
892 I != GVSet.end(); I++) {
893 const GlobalVariable* GV = *I;
894 if (GV->hasInitializer())
895 Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
898 return Size;
901 void JITEmitter::startFunction(MachineFunction &F) {
902 DEBUG(errs() << "JIT: Starting CodeGen of Function "
903 << F.getFunction()->getName() << "\n");
905 uintptr_t ActualSize = 0;
906 // Set the memory writable, if it's not already
907 MemMgr->setMemoryWritable();
908 if (MemMgr->NeedsExactSize()) {
909 DEBUG(errs() << "JIT: ExactSize\n");
910 const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
911 MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
912 MachineConstantPool *MCP = F.getConstantPool();
914 // Ensure the constant pool/jump table info is at least 4-byte aligned.
915 ActualSize = RoundUpToAlign(ActualSize, 16);
917 // Add the alignment of the constant pool
918 ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
920 // Add the constant pool size
921 ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
923 // Add the aligment of the jump table info
924 ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
926 // Add the jump table size
927 ActualSize += GetJumpTableSizeInBytes(MJTI);
929 // Add the alignment for the function
930 ActualSize = RoundUpToAlign(ActualSize,
931 std::max(F.getFunction()->getAlignment(), 8U));
933 // Add the function size
934 ActualSize += TII->GetFunctionSizeInBytes(F);
936 DEBUG(errs() << "JIT: ActualSize before globals " << ActualSize << "\n");
937 // Add the size of the globals that will be allocated after this function.
938 // These are all the ones referenced from this function that were not
939 // previously allocated.
940 ActualSize += GetSizeOfGlobalsInBytes(F);
941 DEBUG(errs() << "JIT: ActualSize after globals " << ActualSize << "\n");
942 } else if (SizeEstimate > 0) {
943 // SizeEstimate will be non-zero on reallocation attempts.
944 ActualSize = SizeEstimate;
947 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
948 ActualSize);
949 BufferEnd = BufferBegin+ActualSize;
951 // Ensure the constant pool/jump table info is at least 4-byte aligned.
952 emitAlignment(16);
954 emitConstantPool(F.getConstantPool());
955 initJumpTableInfo(F.getJumpTableInfo());
957 // About to start emitting the machine code for the function.
958 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
959 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
961 MBBLocations.clear();
963 EmissionDetails.MF = &F;
964 EmissionDetails.LineStarts.clear();
967 bool JITEmitter::finishFunction(MachineFunction &F) {
968 if (CurBufferPtr == BufferEnd) {
969 // We must call endFunctionBody before retrying, because
970 // deallocateMemForFunction requires it.
971 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
972 retryWithMoreMemory(F);
973 return true;
976 emitJumpTableInfo(F.getJumpTableInfo());
978 // FnStart is the start of the text, not the start of the constant pool and
979 // other per-function data.
980 uint8_t *FnStart =
981 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
983 // FnEnd is the end of the function's machine code.
984 uint8_t *FnEnd = CurBufferPtr;
986 if (!Relocations.empty()) {
987 CurFn = F.getFunction();
988 NumRelos += Relocations.size();
990 // Resolve the relocations to concrete pointers.
991 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
992 MachineRelocation &MR = Relocations[i];
993 void *ResultPtr = 0;
994 if (!MR.letTargetResolve()) {
995 if (MR.isExternalSymbol()) {
996 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
997 false);
998 DEBUG(errs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
999 << ResultPtr << "]\n");
1001 // If the target REALLY wants a stub for this function, emit it now.
1002 if (!MR.doesntNeedStub()) {
1003 if (!TheJIT->areDlsymStubsEnabled()) {
1004 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1005 } else {
1006 void *&Stub = ExtFnStubs[MR.getExternalSymbol()];
1007 if (!Stub) {
1008 Stub = Resolver.getExternalFunctionStub((void *)&Stub);
1009 AddStubToCurrentFunction(Stub);
1011 ResultPtr = Stub;
1014 } else if (MR.isGlobalValue()) {
1015 ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1016 BufferBegin+MR.getMachineCodeOffset(),
1017 MR.doesntNeedStub());
1018 } else if (MR.isIndirectSymbol()) {
1019 ResultPtr = getPointerToGVIndirectSym(MR.getGlobalValue(),
1020 BufferBegin+MR.getMachineCodeOffset(),
1021 MR.doesntNeedStub());
1022 } else if (MR.isBasicBlock()) {
1023 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1024 } else if (MR.isConstantPoolIndex()) {
1025 ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1026 } else {
1027 assert(MR.isJumpTableIndex());
1028 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1031 MR.setResultPointer(ResultPtr);
1034 // if we are managing the GOT and the relocation wants an index,
1035 // give it one
1036 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1037 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1038 MR.setGOTIndex(idx);
1039 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1040 DEBUG(errs() << "JIT: GOT was out of date for " << ResultPtr
1041 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1042 << "\n");
1043 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1048 CurFn = 0;
1049 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1050 Relocations.size(), MemMgr->getGOTBase());
1053 // Update the GOT entry for F to point to the new code.
1054 if (MemMgr->isManagingGOT()) {
1055 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1056 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1057 DEBUG(errs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1058 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1059 << "\n");
1060 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1064 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1065 // global variables that were referenced in the relocations.
1066 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1068 if (CurBufferPtr == BufferEnd) {
1069 retryWithMoreMemory(F);
1070 return true;
1071 } else {
1072 // Now that we've succeeded in emitting the function, reset the
1073 // SizeEstimate back down to zero.
1074 SizeEstimate = 0;
1077 BufferBegin = CurBufferPtr = 0;
1078 NumBytes += FnEnd-FnStart;
1080 // Invalidate the icache if necessary.
1081 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1083 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1084 EmissionDetails);
1086 DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1087 << "] Function: " << F.getFunction()->getName()
1088 << ": " << (FnEnd-FnStart) << " bytes of text, "
1089 << Relocations.size() << " relocations\n");
1091 Relocations.clear();
1092 ConstPoolAddresses.clear();
1094 // Mark code region readable and executable if it's not so already.
1095 MemMgr->setMemoryExecutable();
1097 DEBUG(
1098 if (sys::hasDisassembler()) {
1099 errs() << "JIT: Disassembled code:\n";
1100 errs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1101 (uintptr_t)FnStart);
1102 } else {
1103 errs() << "JIT: Binary code:\n";
1104 uint8_t* q = FnStart;
1105 for (int i = 0; q < FnEnd; q += 4, ++i) {
1106 if (i == 4)
1107 i = 0;
1108 if (i == 0)
1109 errs() << "JIT: " << (long)(q - FnStart) << ": ";
1110 bool Done = false;
1111 for (int j = 3; j >= 0; --j) {
1112 if (q + j >= FnEnd)
1113 Done = true;
1114 else
1115 errs() << (unsigned short)q[j];
1117 if (Done)
1118 break;
1119 errs() << ' ';
1120 if (i == 3)
1121 errs() << '\n';
1123 errs()<< '\n';
1127 if (DwarfExceptionHandling) {
1128 uintptr_t ActualSize = 0;
1129 SavedBufferBegin = BufferBegin;
1130 SavedBufferEnd = BufferEnd;
1131 SavedCurBufferPtr = CurBufferPtr;
1133 if (MemMgr->NeedsExactSize()) {
1134 ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1137 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1138 ActualSize);
1139 BufferEnd = BufferBegin+ActualSize;
1140 uint8_t* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
1141 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1142 FrameRegister);
1143 BufferBegin = SavedBufferBegin;
1144 BufferEnd = SavedBufferEnd;
1145 CurBufferPtr = SavedCurBufferPtr;
1147 TheJIT->RegisterTable(FrameRegister);
1150 if (MMI)
1151 MMI->EndFunction();
1153 return false;
1156 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1157 DEBUG(errs() << "JIT: Ran out of space for native code. Reattempting.\n");
1158 Relocations.clear(); // Clear the old relocations or we'll reapply them.
1159 ConstPoolAddresses.clear();
1160 ++NumRetries;
1161 deallocateMemForFunction(F.getFunction());
1162 // Try again with at least twice as much free space.
1163 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1166 /// deallocateMemForFunction - Deallocate all memory for the specified
1167 /// function body. Also drop any references the function has to stubs.
1168 void JITEmitter::deallocateMemForFunction(const Function *F) {
1169 MemMgr->deallocateMemForFunction(F);
1171 // If the function did not reference any stubs, return.
1172 if (CurFnStubUses.find(F) == CurFnStubUses.end())
1173 return;
1175 // For each referenced stub, erase the reference to this function, and then
1176 // erase the list of referenced stubs.
1177 SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
1178 for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
1179 void *Stub = StubList[i];
1181 // If we already invalidated this stub for this function, continue.
1182 if (StubFnRefs.count(Stub) == 0)
1183 continue;
1185 SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
1186 FnRefs.erase(F);
1188 // If this function was the last reference to the stub, invalidate the stub
1189 // in the JITResolver. Were there a memory manager deallocateStub routine,
1190 // we could call that at this point too.
1191 if (FnRefs.empty()) {
1192 DEBUG(errs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
1193 StubFnRefs.erase(Stub);
1195 // Invalidate the stub. If it is a GV stub, update the JIT's global
1196 // mapping for that GV to zero, otherwise, search the string map of
1197 // external function names to stubs and remove the entry for this stub.
1198 GlobalValue *GV = Resolver.invalidateStub(Stub);
1199 if (GV) {
1200 TheJIT->updateGlobalMapping(GV, 0);
1201 } else {
1202 for (StringMapIterator<void*> i = ExtFnStubs.begin(),
1203 e = ExtFnStubs.end(); i != e; ++i) {
1204 if (i->second == Stub) {
1205 ExtFnStubs.erase(i);
1206 break;
1212 CurFnStubUses.erase(F);
1216 void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1217 if (BufferBegin)
1218 return JITCodeEmitter::allocateSpace(Size, Alignment);
1220 // create a new memory block if there is no active one.
1221 // care must be taken so that BufferBegin is invalidated when a
1222 // block is trimmed
1223 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1224 BufferEnd = BufferBegin+Size;
1225 return CurBufferPtr;
1228 void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1229 // Delegate this call through the memory manager.
1230 return MemMgr->allocateGlobal(Size, Alignment);
1233 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1234 if (TheJIT->getJITInfo().hasCustomConstantPool())
1235 return;
1237 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1238 if (Constants.empty()) return;
1240 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1241 unsigned Align = MCP->getConstantPoolAlignment();
1242 ConstantPoolBase = allocateSpace(Size, Align);
1243 ConstantPool = MCP;
1245 if (ConstantPoolBase == 0) return; // Buffer overflow.
1247 DEBUG(errs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1248 << "] (size: " << Size << ", alignment: " << Align << ")\n");
1250 // Initialize the memory for all of the constant pool entries.
1251 unsigned Offset = 0;
1252 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1253 MachineConstantPoolEntry CPE = Constants[i];
1254 unsigned AlignMask = CPE.getAlignment() - 1;
1255 Offset = (Offset + AlignMask) & ~AlignMask;
1257 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1258 ConstPoolAddresses.push_back(CAddr);
1259 if (CPE.isMachineConstantPoolEntry()) {
1260 // FIXME: add support to lower machine constant pool values into bytes!
1261 llvm_report_error("Initialize memory with machine specific constant pool"
1262 "entry has not been implemented!");
1264 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1265 DEBUG(errs() << "JIT: CP" << i << " at [0x";
1266 errs().write_hex(CAddr) << "]\n");
1268 const Type *Ty = CPE.Val.ConstVal->getType();
1269 Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1273 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1274 if (TheJIT->getJITInfo().hasCustomJumpTables())
1275 return;
1277 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1278 if (JT.empty()) return;
1280 unsigned NumEntries = 0;
1281 for (unsigned i = 0, e = JT.size(); i != e; ++i)
1282 NumEntries += JT[i].MBBs.size();
1284 unsigned EntrySize = MJTI->getEntrySize();
1286 // Just allocate space for all the jump tables now. We will fix up the actual
1287 // MBB entries in the tables after we emit the code for each block, since then
1288 // we will know the final locations of the MBBs in memory.
1289 JumpTable = MJTI;
1290 JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
1293 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1294 if (TheJIT->getJITInfo().hasCustomJumpTables())
1295 return;
1297 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1298 if (JT.empty() || JumpTableBase == 0) return;
1300 if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
1301 assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
1302 // For each jump table, place the offset from the beginning of the table
1303 // to the target address.
1304 int *SlotPtr = (int*)JumpTableBase;
1306 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1307 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1308 // Store the offset of the basic block for this jump table slot in the
1309 // memory we allocated for the jump table in 'initJumpTableInfo'
1310 uintptr_t Base = (uintptr_t)SlotPtr;
1311 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1312 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1313 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1316 } else {
1317 assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
1319 // For each jump table, map each target in the jump table to the address of
1320 // an emitted MachineBasicBlock.
1321 intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1323 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1324 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1325 // Store the address of the basic block for this jump table slot in the
1326 // memory we allocated for the jump table in 'initJumpTableInfo'
1327 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1328 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1333 void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize,
1334 unsigned Alignment) {
1335 SavedBufferBegin = BufferBegin;
1336 SavedBufferEnd = BufferEnd;
1337 SavedCurBufferPtr = CurBufferPtr;
1339 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1340 BufferEnd = BufferBegin+StubSize+1;
1343 void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer,
1344 unsigned StubSize) {
1345 SavedBufferBegin = BufferBegin;
1346 SavedBufferEnd = BufferEnd;
1347 SavedCurBufferPtr = CurBufferPtr;
1349 BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1350 BufferEnd = BufferBegin+StubSize+1;
1353 void *JITEmitter::finishGVStub(const GlobalValue* GV) {
1354 NumBytes += getCurrentPCOffset();
1355 std::swap(SavedBufferBegin, BufferBegin);
1356 BufferEnd = SavedBufferEnd;
1357 CurBufferPtr = SavedCurBufferPtr;
1358 return SavedBufferBegin;
1361 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1362 // in the constant pool that was last emitted with the 'emitConstantPool'
1363 // method.
1365 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1366 assert(ConstantNum < ConstantPool->getConstants().size() &&
1367 "Invalid ConstantPoolIndex!");
1368 return ConstPoolAddresses[ConstantNum];
1371 // getJumpTableEntryAddress - Return the address of the JumpTable with index
1372 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1374 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1375 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1376 assert(Index < JT.size() && "Invalid jump table index!");
1378 unsigned Offset = 0;
1379 unsigned EntrySize = JumpTable->getEntrySize();
1381 for (unsigned i = 0; i < Index; ++i)
1382 Offset += JT[i].MBBs.size();
1384 Offset *= EntrySize;
1386 return (uintptr_t)((char *)JumpTableBase + Offset);
1389 //===----------------------------------------------------------------------===//
1390 // Public interface to this file
1391 //===----------------------------------------------------------------------===//
1393 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
1394 return new JITEmitter(jit, JMM);
1397 // getPointerToNamedFunction - This function is used as a global wrapper to
1398 // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1399 // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1400 // need to resolve function(s) that are being mis-codegenerated, so we need to
1401 // resolve their addresses at runtime, and this is the way to do it.
1402 extern "C" {
1403 void *getPointerToNamedFunction(const char *Name) {
1404 if (Function *F = TheJIT->FindFunctionNamed(Name))
1405 return TheJIT->getPointerToFunction(F);
1406 return TheJIT->getPointerToNamedFunction(Name);
1410 // getPointerToFunctionOrStub - If the specified function has been
1411 // code-gen'd, return a pointer to the function. If not, compile it, or use
1412 // a stub to implement lazy compilation if available.
1414 void *JIT::getPointerToFunctionOrStub(Function *F) {
1415 // If we have already code generated the function, just return the address.
1416 if (void *Addr = getPointerToGlobalIfAvailable(F))
1417 return Addr;
1419 // Get a stub if the target supports it.
1420 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1421 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1422 return JE->getJITResolver().getFunctionStub(F);
1425 void JIT::updateFunctionStub(Function *F) {
1426 // Get the empty stub we generated earlier.
1427 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1428 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1429 void *Stub = JE->getJITResolver().getFunctionStub(F);
1431 // Tell the target jit info to rewrite the stub at the specified address,
1432 // rather than creating a new one.
1433 void *Addr = getPointerToGlobalIfAvailable(F);
1434 getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter());
1437 /// updateDlsymStubTable - Emit the data necessary to relocate the stubs
1438 /// that were emitted during code generation.
1440 void JIT::updateDlsymStubTable() {
1441 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1442 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1444 SmallVector<GlobalValue*, 8> GVs;
1445 SmallVector<void*, 8> Ptrs;
1446 const StringMap<void *> &ExtFns = JE->getExternalFnStubs();
1448 JE->getJITResolver().getRelocatableGVs(GVs, Ptrs);
1450 unsigned nStubs = GVs.size() + ExtFns.size();
1452 // If there are no relocatable stubs, return.
1453 if (nStubs == 0)
1454 return;
1456 // If there are no new relocatable stubs, return.
1457 void *CurTable = JE->getMemMgr()->getDlsymTable();
1458 if (CurTable && (*(unsigned *)CurTable == nStubs))
1459 return;
1461 // Calculate the size of the stub info
1462 unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs;
1464 SmallVector<unsigned, 8> Offsets;
1465 for (unsigned i = 0; i != GVs.size(); ++i) {
1466 Offsets.push_back(offset);
1467 offset += GVs[i]->getName().size() + 1;
1469 for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1470 i != e; ++i) {
1471 Offsets.push_back(offset);
1472 offset += strlen(i->first()) + 1;
1475 // Allocate space for the new "stub", which contains the dlsym table.
1476 JE->startGVStub(0, offset, 4);
1478 // Emit the number of records
1479 JE->emitInt32(nStubs);
1481 // Emit the string offsets
1482 for (unsigned i = 0; i != nStubs; ++i)
1483 JE->emitInt32(Offsets[i]);
1485 // Emit the pointers. Verify that they are at least 2-byte aligned, and set
1486 // the low bit to 0 == GV, 1 == Function, so that the client code doing the
1487 // relocation can write the relocated pointer at the appropriate place in
1488 // the stub.
1489 for (unsigned i = 0; i != GVs.size(); ++i) {
1490 intptr_t Ptr = (intptr_t)Ptrs[i];
1491 assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!");
1493 if (isa<Function>(GVs[i]))
1494 Ptr |= (intptr_t)1;
1496 if (sizeof(Ptr) == 8)
1497 JE->emitInt64(Ptr);
1498 else
1499 JE->emitInt32(Ptr);
1501 for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1502 i != e; ++i) {
1503 intptr_t Ptr = (intptr_t)i->second | 1;
1505 if (sizeof(Ptr) == 8)
1506 JE->emitInt64(Ptr);
1507 else
1508 JE->emitInt32(Ptr);
1511 // Emit the strings.
1512 for (unsigned i = 0; i != GVs.size(); ++i)
1513 JE->emitString(GVs[i]->getName());
1514 for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1515 i != e; ++i)
1516 JE->emitString(i->first());
1518 // Tell the JIT memory manager where it is. The JIT Memory Manager will
1519 // deallocate space for the old one, if one existed.
1520 JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0));
1523 /// freeMachineCodeForFunction - release machine code memory for given Function.
1525 void JIT::freeMachineCodeForFunction(Function *F) {
1527 // Delete translation for this from the ExecutionEngine, so it will get
1528 // retranslated next time it is used.
1529 void *OldPtr = updateGlobalMapping(F, 0);
1531 if (OldPtr)
1532 TheJIT->NotifyFreeingMachineCode(*F, OldPtr);
1534 // Free the actual memory for the function body and related stuff.
1535 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1536 cast<JITEmitter>(JCE)->deallocateMemForFunction(F);