Fix comment for consistency sake.
[llvm/avr.git] / lib / Linker / LinkModules.cpp
blob00bb55e95310f9eed8534dbcbb1602b64ad67a17
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Path.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include <sstream>
33 using namespace llvm;
35 // Error - Simple wrapper function to conditionally assign to E and return true.
36 // This just makes error return conditions a little bit simpler...
37 static inline bool Error(std::string *E, const Twine &Message) {
38 if (E) *E = Message.str();
39 return true;
42 // Function: ResolveTypes()
44 // Description:
45 // Attempt to link the two specified types together.
47 // Inputs:
48 // DestTy - The type to which we wish to resolve.
49 // SrcTy - The original type which we want to resolve.
51 // Outputs:
52 // DestST - The symbol table in which the new type should be placed.
54 // Return value:
55 // true - There is an error and the types cannot yet be linked.
56 // false - No errors.
58 static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
59 if (DestTy == SrcTy) return false; // If already equal, noop
60 assert(DestTy && SrcTy && "Can't handle null types");
62 if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
63 // Type _is_ in module, just opaque...
64 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
65 } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
66 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
67 } else {
68 return true; // Cannot link types... not-equal and neither is opaque.
70 return false;
73 /// LinkerTypeMap - This implements a map of types that is stable
74 /// even if types are resolved/refined to other types. This is not a general
75 /// purpose map, it is specific to the linker's use.
76 namespace {
77 class LinkerTypeMap : public AbstractTypeUser {
78 typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
79 TheMapTy TheMap;
81 LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
82 void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
83 public:
84 LinkerTypeMap() {}
85 ~LinkerTypeMap() {
86 for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
87 E = TheMap.end(); I != E; ++I)
88 I->first->removeAbstractTypeUser(this);
91 /// lookup - Return the value for the specified type or null if it doesn't
92 /// exist.
93 const Type *lookup(const Type *Ty) const {
94 TheMapTy::const_iterator I = TheMap.find(Ty);
95 if (I != TheMap.end()) return I->second;
96 return 0;
99 /// erase - Remove the specified type, returning true if it was in the set.
100 bool erase(const Type *Ty) {
101 if (!TheMap.erase(Ty))
102 return false;
103 if (Ty->isAbstract())
104 Ty->removeAbstractTypeUser(this);
105 return true;
108 /// insert - This returns true if the pointer was new to the set, false if it
109 /// was already in the set.
110 bool insert(const Type *Src, const Type *Dst) {
111 if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
112 return false; // Already in map.
113 if (Src->isAbstract())
114 Src->addAbstractTypeUser(this);
115 return true;
118 protected:
119 /// refineAbstractType - The callback method invoked when an abstract type is
120 /// resolved to another type. An object must override this method to update
121 /// its internal state to reference NewType instead of OldType.
123 virtual void refineAbstractType(const DerivedType *OldTy,
124 const Type *NewTy) {
125 TheMapTy::iterator I = TheMap.find(OldTy);
126 const Type *DstTy = I->second;
128 TheMap.erase(I);
129 if (OldTy->isAbstract())
130 OldTy->removeAbstractTypeUser(this);
132 // Don't reinsert into the map if the key is concrete now.
133 if (NewTy->isAbstract())
134 insert(NewTy, DstTy);
137 /// The other case which AbstractTypeUsers must be aware of is when a type
138 /// makes the transition from being abstract (where it has clients on it's
139 /// AbstractTypeUsers list) to concrete (where it does not). This method
140 /// notifies ATU's when this occurs for a type.
141 virtual void typeBecameConcrete(const DerivedType *AbsTy) {
142 TheMap.erase(AbsTy);
143 AbsTy->removeAbstractTypeUser(this);
146 // for debugging...
147 virtual void dump() const {
148 errs() << "AbstractTypeSet!\n";
154 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
155 // recurses down into derived types, merging the used types if the parent types
156 // are compatible.
157 static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
158 LinkerTypeMap &Pointers) {
159 if (DstTy == SrcTy) return false; // If already equal, noop
161 // If we found our opaque type, resolve it now!
162 if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
163 return ResolveTypes(DstTy, SrcTy);
165 // Two types cannot be resolved together if they are of different primitive
166 // type. For example, we cannot resolve an int to a float.
167 if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
169 // If neither type is abstract, then they really are just different types.
170 if (!DstTy->isAbstract() && !SrcTy->isAbstract())
171 return true;
173 // Otherwise, resolve the used type used by this derived type...
174 switch (DstTy->getTypeID()) {
175 default:
176 return true;
177 case Type::FunctionTyID: {
178 const FunctionType *DstFT = cast<FunctionType>(DstTy);
179 const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
180 if (DstFT->isVarArg() != SrcFT->isVarArg() ||
181 DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
182 return true;
184 // Use TypeHolder's so recursive resolution won't break us.
185 PATypeHolder ST(SrcFT), DT(DstFT);
186 for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
187 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
188 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
189 return true;
191 return false;
193 case Type::StructTyID: {
194 const StructType *DstST = cast<StructType>(DstTy);
195 const StructType *SrcST = cast<StructType>(SrcTy);
196 if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
197 return true;
199 PATypeHolder ST(SrcST), DT(DstST);
200 for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
201 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
202 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
203 return true;
205 return false;
207 case Type::ArrayTyID: {
208 const ArrayType *DAT = cast<ArrayType>(DstTy);
209 const ArrayType *SAT = cast<ArrayType>(SrcTy);
210 if (DAT->getNumElements() != SAT->getNumElements()) return true;
211 return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
212 Pointers);
214 case Type::VectorTyID: {
215 const VectorType *DVT = cast<VectorType>(DstTy);
216 const VectorType *SVT = cast<VectorType>(SrcTy);
217 if (DVT->getNumElements() != SVT->getNumElements()) return true;
218 return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
219 Pointers);
221 case Type::PointerTyID: {
222 const PointerType *DstPT = cast<PointerType>(DstTy);
223 const PointerType *SrcPT = cast<PointerType>(SrcTy);
225 if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
226 return true;
228 // If this is a pointer type, check to see if we have already seen it. If
229 // so, we are in a recursive branch. Cut off the search now. We cannot use
230 // an associative container for this search, because the type pointers (keys
231 // in the container) change whenever types get resolved.
232 if (SrcPT->isAbstract())
233 if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
234 return ExistingDestTy != DstPT;
236 if (DstPT->isAbstract())
237 if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
238 return ExistingSrcTy != SrcPT;
239 // Otherwise, add the current pointers to the vector to stop recursion on
240 // this pair.
241 if (DstPT->isAbstract())
242 Pointers.insert(DstPT, SrcPT);
243 if (SrcPT->isAbstract())
244 Pointers.insert(SrcPT, DstPT);
246 return RecursiveResolveTypesI(DstPT->getElementType(),
247 SrcPT->getElementType(), Pointers);
252 static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
253 LinkerTypeMap PointerTypes;
254 return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
258 // LinkTypes - Go through the symbol table of the Src module and see if any
259 // types are named in the src module that are not named in the Dst module.
260 // Make sure there are no type name conflicts.
261 static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
262 TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
263 const TypeSymbolTable *SrcST = &Src->getTypeSymbolTable();
265 // Look for a type plane for Type's...
266 TypeSymbolTable::const_iterator TI = SrcST->begin();
267 TypeSymbolTable::const_iterator TE = SrcST->end();
268 if (TI == TE) return false; // No named types, do nothing.
270 // Some types cannot be resolved immediately because they depend on other
271 // types being resolved to each other first. This contains a list of types we
272 // are waiting to recheck.
273 std::vector<std::string> DelayedTypesToResolve;
275 for ( ; TI != TE; ++TI ) {
276 const std::string &Name = TI->first;
277 const Type *RHS = TI->second;
279 // Check to see if this type name is already in the dest module.
280 Type *Entry = DestST->lookup(Name);
282 // If the name is just in the source module, bring it over to the dest.
283 if (Entry == 0) {
284 if (!Name.empty())
285 DestST->insert(Name, const_cast<Type*>(RHS));
286 } else if (ResolveTypes(Entry, RHS)) {
287 // They look different, save the types 'till later to resolve.
288 DelayedTypesToResolve.push_back(Name);
292 // Iteratively resolve types while we can...
293 while (!DelayedTypesToResolve.empty()) {
294 // Loop over all of the types, attempting to resolve them if possible...
295 unsigned OldSize = DelayedTypesToResolve.size();
297 // Try direct resolution by name...
298 for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
299 const std::string &Name = DelayedTypesToResolve[i];
300 Type *T1 = SrcST->lookup(Name);
301 Type *T2 = DestST->lookup(Name);
302 if (!ResolveTypes(T2, T1)) {
303 // We are making progress!
304 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
305 --i;
309 // Did we not eliminate any types?
310 if (DelayedTypesToResolve.size() == OldSize) {
311 // Attempt to resolve subelements of types. This allows us to merge these
312 // two types: { int* } and { opaque* }
313 for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
314 const std::string &Name = DelayedTypesToResolve[i];
315 if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
316 // We are making progress!
317 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
319 // Go back to the main loop, perhaps we can resolve directly by name
320 // now...
321 break;
325 // If we STILL cannot resolve the types, then there is something wrong.
326 if (DelayedTypesToResolve.size() == OldSize) {
327 // Remove the symbol name from the destination.
328 DelayedTypesToResolve.pop_back();
334 return false;
337 #ifndef NDEBUG
338 static void PrintMap(const std::map<const Value*, Value*> &M) {
339 for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
340 I != E; ++I) {
341 errs() << " Fr: " << (void*)I->first << " ";
342 I->first->dump();
343 errs() << " To: " << (void*)I->second << " ";
344 I->second->dump();
345 errs() << "\n";
348 #endif
351 // RemapOperand - Use ValueMap to convert constants from one module to another.
352 static Value *RemapOperand(const Value *In,
353 std::map<const Value*, Value*> &ValueMap,
354 LLVMContext &Context) {
355 std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
356 if (I != ValueMap.end())
357 return I->second;
359 // Check to see if it's a constant that we are interested in transforming.
360 Value *Result = 0;
361 if (const Constant *CPV = dyn_cast<Constant>(In)) {
362 if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
363 isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
364 return const_cast<Constant*>(CPV); // Simple constants stay identical.
366 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
367 std::vector<Constant*> Operands(CPA->getNumOperands());
368 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
369 Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap,
370 Context));
371 Result =
372 ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
373 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
374 std::vector<Constant*> Operands(CPS->getNumOperands());
375 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
376 Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap,
377 Context));
378 Result =
379 ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
380 } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
381 Result = const_cast<Constant*>(CPV);
382 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
383 std::vector<Constant*> Operands(CP->getNumOperands());
384 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
385 Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap,
386 Context));
387 Result = ConstantVector::get(Operands);
388 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
389 std::vector<Constant*> Ops;
390 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
391 Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap,
392 Context)));
393 Result = CE->getWithOperands(Ops);
394 } else {
395 assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
396 llvm_unreachable("Unknown type of derived type constant value!");
398 } else if (isa<MetadataBase>(In)) {
399 Result = const_cast<Value*>(In);
400 } else if (isa<InlineAsm>(In)) {
401 Result = const_cast<Value*>(In);
404 // Cache the mapping in our local map structure
405 if (Result) {
406 ValueMap[In] = Result;
407 return Result;
410 #ifndef NDEBUG
411 errs() << "LinkModules ValueMap: \n";
412 PrintMap(ValueMap);
414 errs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
415 llvm_unreachable("Couldn't remap value!");
416 #endif
417 return 0;
420 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
421 /// in the symbol table. This is good for all clients except for us. Go
422 /// through the trouble to force this back.
423 static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
424 assert(GV->getName() != Name && "Can't force rename to self");
425 ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
427 // If there is a conflict, rename the conflict.
428 if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
429 assert(ConflictGV->hasLocalLinkage() &&
430 "Not conflicting with a static global, should link instead!");
431 GV->takeName(ConflictGV);
432 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
433 assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
434 } else {
435 GV->setName(Name); // Force the name back
439 /// CopyGVAttributes - copy additional attributes (those not needed to construct
440 /// a GlobalValue) from the SrcGV to the DestGV.
441 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
442 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
443 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
444 DestGV->copyAttributesFrom(SrcGV);
445 DestGV->setAlignment(Alignment);
448 /// GetLinkageResult - This analyzes the two global values and determines what
449 /// the result will look like in the destination module. In particular, it
450 /// computes the resultant linkage type, computes whether the global in the
451 /// source should be copied over to the destination (replacing the existing
452 /// one), and computes whether this linkage is an error or not. It also performs
453 /// visibility checks: we cannot link together two symbols with different
454 /// visibilities.
455 static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
456 GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
457 std::string *Err) {
458 assert((!Dest || !Src->hasLocalLinkage()) &&
459 "If Src has internal linkage, Dest shouldn't be set!");
460 if (!Dest) {
461 // Linking something to nothing.
462 LinkFromSrc = true;
463 LT = Src->getLinkage();
464 } else if (Src->isDeclaration()) {
465 // If Src is external or if both Src & Dest are external.. Just link the
466 // external globals, we aren't adding anything.
467 if (Src->hasDLLImportLinkage()) {
468 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
469 if (Dest->isDeclaration()) {
470 LinkFromSrc = true;
471 LT = Src->getLinkage();
473 } else if (Dest->hasExternalWeakLinkage()) {
474 // If the Dest is weak, use the source linkage.
475 LinkFromSrc = true;
476 LT = Src->getLinkage();
477 } else {
478 LinkFromSrc = false;
479 LT = Dest->getLinkage();
481 } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
482 // If Dest is external but Src is not:
483 LinkFromSrc = true;
484 LT = Src->getLinkage();
485 } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
486 if (Src->getLinkage() != Dest->getLinkage())
487 return Error(Err, "Linking globals named '" + Src->getName() +
488 "': can only link appending global with another appending global!");
489 LinkFromSrc = true; // Special cased.
490 LT = Src->getLinkage();
491 } else if (Src->isWeakForLinker()) {
492 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
493 // or DLL* linkage.
494 if (Dest->hasExternalWeakLinkage() ||
495 Dest->hasAvailableExternallyLinkage() ||
496 (Dest->hasLinkOnceLinkage() &&
497 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
498 LinkFromSrc = true;
499 LT = Src->getLinkage();
500 } else {
501 LinkFromSrc = false;
502 LT = Dest->getLinkage();
504 } else if (Dest->isWeakForLinker()) {
505 // At this point we know that Src has External* or DLL* linkage.
506 if (Src->hasExternalWeakLinkage()) {
507 LinkFromSrc = false;
508 LT = Dest->getLinkage();
509 } else {
510 LinkFromSrc = true;
511 LT = GlobalValue::ExternalLinkage;
513 } else {
514 assert((Dest->hasExternalLinkage() ||
515 Dest->hasDLLImportLinkage() ||
516 Dest->hasDLLExportLinkage() ||
517 Dest->hasExternalWeakLinkage()) &&
518 (Src->hasExternalLinkage() ||
519 Src->hasDLLImportLinkage() ||
520 Src->hasDLLExportLinkage() ||
521 Src->hasExternalWeakLinkage()) &&
522 "Unexpected linkage type!");
523 return Error(Err, "Linking globals named '" + Src->getName() +
524 "': symbol multiply defined!");
527 // Check visibility
528 if (Dest && Src->getVisibility() != Dest->getVisibility())
529 if (!Src->isDeclaration() && !Dest->isDeclaration())
530 return Error(Err, "Linking globals named '" + Src->getName() +
531 "': symbols have different visibilities!");
532 return false;
535 // Insert all of the named mdnoes in Src into the Dest module.
536 static void LinkNamedMDNodes(Module *Dest, Module *Src) {
537 for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
538 E = Src->named_metadata_end(); I != E; ++I) {
539 const NamedMDNode *SrcNMD = I;
540 NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
541 if (!DestNMD)
542 NamedMDNode::Create(SrcNMD, Dest);
543 else {
544 // Add Src elements into Dest node.
545 for (unsigned i = 0, e = SrcNMD->getNumElements(); i != e; ++i)
546 DestNMD->addElement(SrcNMD->getElement(i));
551 // LinkGlobals - Loop through the global variables in the src module and merge
552 // them into the dest module.
553 static bool LinkGlobals(Module *Dest, const Module *Src,
554 std::map<const Value*, Value*> &ValueMap,
555 std::multimap<std::string, GlobalVariable *> &AppendingVars,
556 std::string *Err) {
557 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
559 // Loop over all of the globals in the src module, mapping them over as we go
560 for (Module::const_global_iterator I = Src->global_begin(),
561 E = Src->global_end(); I != E; ++I) {
562 const GlobalVariable *SGV = I;
563 GlobalValue *DGV = 0;
565 // Check to see if may have to link the global with the global, alias or
566 // function.
567 if (SGV->hasName() && !SGV->hasLocalLinkage())
568 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
570 // If we found a global with the same name in the dest module, but it has
571 // internal linkage, we are really not doing any linkage here.
572 if (DGV && DGV->hasLocalLinkage())
573 DGV = 0;
575 // If types don't agree due to opaque types, try to resolve them.
576 if (DGV && DGV->getType() != SGV->getType())
577 RecursiveResolveTypes(SGV->getType(), DGV->getType());
579 assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
580 SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
581 "Global must either be external or have an initializer!");
583 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
584 bool LinkFromSrc = false;
585 if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
586 return true;
588 if (DGV == 0) {
589 // No linking to be performed, simply create an identical version of the
590 // symbol over in the dest module... the initializer will be filled in
591 // later by LinkGlobalInits.
592 GlobalVariable *NewDGV =
593 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
594 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
595 SGV->getName(), 0, false,
596 SGV->getType()->getAddressSpace());
597 // Propagate alignment, visibility and section info.
598 CopyGVAttributes(NewDGV, SGV);
600 // If the LLVM runtime renamed the global, but it is an externally visible
601 // symbol, DGV must be an existing global with internal linkage. Rename
602 // it.
603 if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
604 ForceRenaming(NewDGV, SGV->getName());
606 // Make sure to remember this mapping.
607 ValueMap[SGV] = NewDGV;
609 // Keep track that this is an appending variable.
610 if (SGV->hasAppendingLinkage())
611 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
612 continue;
615 // If the visibilities of the symbols disagree and the destination is a
616 // prototype, take the visibility of its input.
617 if (DGV->isDeclaration())
618 DGV->setVisibility(SGV->getVisibility());
620 if (DGV->hasAppendingLinkage()) {
621 // No linking is performed yet. Just insert a new copy of the global, and
622 // keep track of the fact that it is an appending variable in the
623 // AppendingVars map. The name is cleared out so that no linkage is
624 // performed.
625 GlobalVariable *NewDGV =
626 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
627 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
628 "", 0, false,
629 SGV->getType()->getAddressSpace());
631 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
632 NewDGV->setAlignment(DGV->getAlignment());
633 // Propagate alignment, section and visibility info.
634 CopyGVAttributes(NewDGV, SGV);
636 // Make sure to remember this mapping...
637 ValueMap[SGV] = NewDGV;
639 // Keep track that this is an appending variable...
640 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
641 continue;
644 if (LinkFromSrc) {
645 if (isa<GlobalAlias>(DGV))
646 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
647 "': symbol multiple defined");
649 // If the types don't match, and if we are to link from the source, nuke
650 // DGV and create a new one of the appropriate type. Note that the thing
651 // we are replacing may be a function (if a prototype, weak, etc) or a
652 // global variable.
653 GlobalVariable *NewDGV =
654 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
655 SGV->isConstant(), NewLinkage, /*init*/0,
656 DGV->getName(), 0, false,
657 SGV->getType()->getAddressSpace());
659 // Propagate alignment, section, and visibility info.
660 CopyGVAttributes(NewDGV, SGV);
661 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
662 DGV->getType()));
664 // DGV will conflict with NewDGV because they both had the same
665 // name. We must erase this now so ForceRenaming doesn't assert
666 // because DGV might not have internal linkage.
667 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
668 Var->eraseFromParent();
669 else
670 cast<Function>(DGV)->eraseFromParent();
671 DGV = NewDGV;
673 // If the symbol table renamed the global, but it is an externally visible
674 // symbol, DGV must be an existing global with internal linkage. Rename.
675 if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
676 ForceRenaming(NewDGV, SGV->getName());
678 // Inherit const as appropriate.
679 NewDGV->setConstant(SGV->isConstant());
681 // Make sure to remember this mapping.
682 ValueMap[SGV] = NewDGV;
683 continue;
686 // Not "link from source", keep the one in the DestModule and remap the
687 // input onto it.
689 // Special case for const propagation.
690 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
691 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
692 DGVar->setConstant(true);
694 // SGV is global, but DGV is alias.
695 if (isa<GlobalAlias>(DGV)) {
696 // The only valid mappings are:
697 // - SGV is external declaration, which is effectively a no-op.
698 // - SGV is weak, when we just need to throw SGV out.
699 if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
700 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
701 "': symbol multiple defined");
704 // Set calculated linkage
705 DGV->setLinkage(NewLinkage);
707 // Make sure to remember this mapping...
708 ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
710 return false;
713 static GlobalValue::LinkageTypes
714 CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
715 GlobalValue::LinkageTypes SL = SGV->getLinkage();
716 GlobalValue::LinkageTypes DL = DGV->getLinkage();
717 if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
718 return GlobalValue::ExternalLinkage;
719 else if (SL == GlobalValue::WeakAnyLinkage ||
720 DL == GlobalValue::WeakAnyLinkage)
721 return GlobalValue::WeakAnyLinkage;
722 else if (SL == GlobalValue::WeakODRLinkage ||
723 DL == GlobalValue::WeakODRLinkage)
724 return GlobalValue::WeakODRLinkage;
725 else if (SL == GlobalValue::InternalLinkage &&
726 DL == GlobalValue::InternalLinkage)
727 return GlobalValue::InternalLinkage;
728 else if (SL == GlobalValue::LinkerPrivateLinkage &&
729 DL == GlobalValue::LinkerPrivateLinkage)
730 return GlobalValue::LinkerPrivateLinkage;
731 else {
732 assert (SL == GlobalValue::PrivateLinkage &&
733 DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
734 return GlobalValue::PrivateLinkage;
738 // LinkAlias - Loop through the alias in the src module and link them into the
739 // dest module. We're assuming, that all functions/global variables were already
740 // linked in.
741 static bool LinkAlias(Module *Dest, const Module *Src,
742 std::map<const Value*, Value*> &ValueMap,
743 std::string *Err) {
744 // Loop over all alias in the src module
745 for (Module::const_alias_iterator I = Src->alias_begin(),
746 E = Src->alias_end(); I != E; ++I) {
747 const GlobalAlias *SGA = I;
748 const GlobalValue *SAliasee = SGA->getAliasedGlobal();
749 GlobalAlias *NewGA = NULL;
751 // Globals were already linked, thus we can just query ValueMap for variant
752 // of SAliasee in Dest.
753 std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
754 assert(VMI != ValueMap.end() && "Aliasee not linked");
755 GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
756 GlobalValue* DGV = NULL;
758 // Try to find something 'similar' to SGA in destination module.
759 if (!DGV && !SGA->hasLocalLinkage()) {
760 DGV = Dest->getNamedAlias(SGA->getName());
762 // If types don't agree due to opaque types, try to resolve them.
763 if (DGV && DGV->getType() != SGA->getType())
764 RecursiveResolveTypes(SGA->getType(), DGV->getType());
767 if (!DGV && !SGA->hasLocalLinkage()) {
768 DGV = Dest->getGlobalVariable(SGA->getName());
770 // If types don't agree due to opaque types, try to resolve them.
771 if (DGV && DGV->getType() != SGA->getType())
772 RecursiveResolveTypes(SGA->getType(), DGV->getType());
775 if (!DGV && !SGA->hasLocalLinkage()) {
776 DGV = Dest->getFunction(SGA->getName());
778 // If types don't agree due to opaque types, try to resolve them.
779 if (DGV && DGV->getType() != SGA->getType())
780 RecursiveResolveTypes(SGA->getType(), DGV->getType());
783 // No linking to be performed on internal stuff.
784 if (DGV && DGV->hasLocalLinkage())
785 DGV = NULL;
787 if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
788 // Types are known to be the same, check whether aliasees equal. As
789 // globals are already linked we just need query ValueMap to find the
790 // mapping.
791 if (DAliasee == DGA->getAliasedGlobal()) {
792 // This is just two copies of the same alias. Propagate linkage, if
793 // necessary.
794 DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
796 NewGA = DGA;
797 // Proceed to 'common' steps
798 } else
799 return Error(Err, "Alias Collision on '" + SGA->getName()+
800 "': aliases have different aliasees");
801 } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
802 // The only allowed way is to link alias with external declaration or weak
803 // symbol..
804 if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
805 // But only if aliasee is global too...
806 if (!isa<GlobalVariable>(DAliasee))
807 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
808 "': aliasee is not global variable");
810 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
811 SGA->getName(), DAliasee, Dest);
812 CopyGVAttributes(NewGA, SGA);
814 // Any uses of DGV need to change to NewGA, with cast, if needed.
815 if (SGA->getType() != DGVar->getType())
816 DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
817 DGVar->getType()));
818 else
819 DGVar->replaceAllUsesWith(NewGA);
821 // DGVar will conflict with NewGA because they both had the same
822 // name. We must erase this now so ForceRenaming doesn't assert
823 // because DGV might not have internal linkage.
824 DGVar->eraseFromParent();
826 // Proceed to 'common' steps
827 } else
828 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
829 "': symbol multiple defined");
830 } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
831 // The only allowed way is to link alias with external declaration or weak
832 // symbol...
833 if (DF->isDeclaration() || DF->isWeakForLinker()) {
834 // But only if aliasee is function too...
835 if (!isa<Function>(DAliasee))
836 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
837 "': aliasee is not function");
839 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
840 SGA->getName(), DAliasee, Dest);
841 CopyGVAttributes(NewGA, SGA);
843 // Any uses of DF need to change to NewGA, with cast, if needed.
844 if (SGA->getType() != DF->getType())
845 DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
846 DF->getType()));
847 else
848 DF->replaceAllUsesWith(NewGA);
850 // DF will conflict with NewGA because they both had the same
851 // name. We must erase this now so ForceRenaming doesn't assert
852 // because DF might not have internal linkage.
853 DF->eraseFromParent();
855 // Proceed to 'common' steps
856 } else
857 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
858 "': symbol multiple defined");
859 } else {
860 // No linking to be performed, simply create an identical version of the
861 // alias over in the dest module...
863 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
864 SGA->getName(), DAliasee, Dest);
865 CopyGVAttributes(NewGA, SGA);
867 // Proceed to 'common' steps
870 assert(NewGA && "No alias was created in destination module!");
872 // If the symbol table renamed the alias, but it is an externally visible
873 // symbol, DGA must be an global value with internal linkage. Rename it.
874 if (NewGA->getName() != SGA->getName() &&
875 !NewGA->hasLocalLinkage())
876 ForceRenaming(NewGA, SGA->getName());
878 // Remember this mapping so uses in the source module get remapped
879 // later by RemapOperand.
880 ValueMap[SGA] = NewGA;
883 return false;
887 // LinkGlobalInits - Update the initializers in the Dest module now that all
888 // globals that may be referenced are in Dest.
889 static bool LinkGlobalInits(Module *Dest, const Module *Src,
890 std::map<const Value*, Value*> &ValueMap,
891 std::string *Err) {
892 // Loop over all of the globals in the src module, mapping them over as we go
893 for (Module::const_global_iterator I = Src->global_begin(),
894 E = Src->global_end(); I != E; ++I) {
895 const GlobalVariable *SGV = I;
897 if (SGV->hasInitializer()) { // Only process initialized GV's
898 // Figure out what the initializer looks like in the dest module...
899 Constant *SInit =
900 cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap,
901 Dest->getContext()));
902 // Grab destination global variable or alias.
903 GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
905 // If dest if global variable, check that initializers match.
906 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
907 if (DGVar->hasInitializer()) {
908 if (SGV->hasExternalLinkage()) {
909 if (DGVar->getInitializer() != SInit)
910 return Error(Err, "Global Variable Collision on '" +
911 SGV->getName() +
912 "': global variables have different initializers");
913 } else if (DGVar->isWeakForLinker()) {
914 // Nothing is required, mapped values will take the new global
915 // automatically.
916 } else if (SGV->isWeakForLinker()) {
917 // Nothing is required, mapped values will take the new global
918 // automatically.
919 } else if (DGVar->hasAppendingLinkage()) {
920 llvm_unreachable("Appending linkage unimplemented!");
921 } else {
922 llvm_unreachable("Unknown linkage!");
924 } else {
925 // Copy the initializer over now...
926 DGVar->setInitializer(SInit);
928 } else {
929 // Destination is alias, the only valid situation is when source is
930 // weak. Also, note, that we already checked linkage in LinkGlobals(),
931 // thus we assert here.
932 // FIXME: Should we weaken this assumption, 'dereference' alias and
933 // check for initializer of aliasee?
934 assert(SGV->isWeakForLinker());
938 return false;
941 // LinkFunctionProtos - Link the functions together between the two modules,
942 // without doing function bodies... this just adds external function prototypes
943 // to the Dest function...
945 static bool LinkFunctionProtos(Module *Dest, const Module *Src,
946 std::map<const Value*, Value*> &ValueMap,
947 std::string *Err) {
948 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
950 // Loop over all of the functions in the src module, mapping them over
951 for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
952 const Function *SF = I; // SrcFunction
953 GlobalValue *DGV = 0;
955 // Check to see if may have to link the function with the global, alias or
956 // function.
957 if (SF->hasName() && !SF->hasLocalLinkage())
958 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
960 // If we found a global with the same name in the dest module, but it has
961 // internal linkage, we are really not doing any linkage here.
962 if (DGV && DGV->hasLocalLinkage())
963 DGV = 0;
965 // If types don't agree due to opaque types, try to resolve them.
966 if (DGV && DGV->getType() != SF->getType())
967 RecursiveResolveTypes(SF->getType(), DGV->getType());
969 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
970 bool LinkFromSrc = false;
971 if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
972 return true;
974 // If there is no linkage to be performed, just bring over SF without
975 // modifying it.
976 if (DGV == 0) {
977 // Function does not already exist, simply insert an function signature
978 // identical to SF into the dest module.
979 Function *NewDF = Function::Create(SF->getFunctionType(),
980 SF->getLinkage(),
981 SF->getName(), Dest);
982 CopyGVAttributes(NewDF, SF);
984 // If the LLVM runtime renamed the function, but it is an externally
985 // visible symbol, DF must be an existing function with internal linkage.
986 // Rename it.
987 if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
988 ForceRenaming(NewDF, SF->getName());
990 // ... and remember this mapping...
991 ValueMap[SF] = NewDF;
992 continue;
995 // If the visibilities of the symbols disagree and the destination is a
996 // prototype, take the visibility of its input.
997 if (DGV->isDeclaration())
998 DGV->setVisibility(SF->getVisibility());
1000 if (LinkFromSrc) {
1001 if (isa<GlobalAlias>(DGV))
1002 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1003 "': symbol multiple defined");
1005 // We have a definition of the same name but different type in the
1006 // source module. Copy the prototype to the destination and replace
1007 // uses of the destination's prototype with the new prototype.
1008 Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
1009 SF->getName(), Dest);
1010 CopyGVAttributes(NewDF, SF);
1012 // Any uses of DF need to change to NewDF, with cast
1013 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
1014 DGV->getType()));
1016 // DF will conflict with NewDF because they both had the same. We must
1017 // erase this now so ForceRenaming doesn't assert because DF might
1018 // not have internal linkage.
1019 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
1020 Var->eraseFromParent();
1021 else
1022 cast<Function>(DGV)->eraseFromParent();
1024 // If the symbol table renamed the function, but it is an externally
1025 // visible symbol, DF must be an existing function with internal
1026 // linkage. Rename it.
1027 if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
1028 ForceRenaming(NewDF, SF->getName());
1030 // Remember this mapping so uses in the source module get remapped
1031 // later by RemapOperand.
1032 ValueMap[SF] = NewDF;
1033 continue;
1036 // Not "link from source", keep the one in the DestModule and remap the
1037 // input onto it.
1039 if (isa<GlobalAlias>(DGV)) {
1040 // The only valid mappings are:
1041 // - SF is external declaration, which is effectively a no-op.
1042 // - SF is weak, when we just need to throw SF out.
1043 if (!SF->isDeclaration() && !SF->isWeakForLinker())
1044 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1045 "': symbol multiple defined");
1048 // Set calculated linkage
1049 DGV->setLinkage(NewLinkage);
1051 // Make sure to remember this mapping.
1052 ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
1054 return false;
1057 // LinkFunctionBody - Copy the source function over into the dest function and
1058 // fix up references to values. At this point we know that Dest is an external
1059 // function, and that Src is not.
1060 static bool LinkFunctionBody(Function *Dest, Function *Src,
1061 std::map<const Value*, Value*> &ValueMap,
1062 std::string *Err) {
1063 assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1065 // Go through and convert function arguments over, remembering the mapping.
1066 Function::arg_iterator DI = Dest->arg_begin();
1067 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1068 I != E; ++I, ++DI) {
1069 DI->setName(I->getName()); // Copy the name information over...
1071 // Add a mapping to our local map
1072 ValueMap[I] = DI;
1075 // Splice the body of the source function into the dest function.
1076 Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1078 // At this point, all of the instructions and values of the function are now
1079 // copied over. The only problem is that they are still referencing values in
1080 // the Source function as operands. Loop through all of the operands of the
1081 // functions and patch them up to point to the local versions...
1083 for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1084 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1085 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1086 OI != OE; ++OI)
1087 if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1088 *OI = RemapOperand(*OI, ValueMap, Dest->getContext());
1090 // There is no need to map the arguments anymore.
1091 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1092 I != E; ++I)
1093 ValueMap.erase(I);
1095 return false;
1099 // LinkFunctionBodies - Link in the function bodies that are defined in the
1100 // source module into the DestModule. This consists basically of copying the
1101 // function over and fixing up references to values.
1102 static bool LinkFunctionBodies(Module *Dest, Module *Src,
1103 std::map<const Value*, Value*> &ValueMap,
1104 std::string *Err) {
1106 // Loop over all of the functions in the src module, mapping them over as we
1107 // go
1108 for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1109 if (!SF->isDeclaration()) { // No body if function is external
1110 Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1112 // DF not external SF external?
1113 if (DF && DF->isDeclaration())
1114 // Only provide the function body if there isn't one already.
1115 if (LinkFunctionBody(DF, SF, ValueMap, Err))
1116 return true;
1119 return false;
1122 // LinkAppendingVars - If there were any appending global variables, link them
1123 // together now. Return true on error.
1124 static bool LinkAppendingVars(Module *M,
1125 std::multimap<std::string, GlobalVariable *> &AppendingVars,
1126 std::string *ErrorMsg) {
1127 if (AppendingVars.empty()) return false; // Nothing to do.
1129 // Loop over the multimap of appending vars, processing any variables with the
1130 // same name, forming a new appending global variable with both of the
1131 // initializers merged together, then rewrite references to the old variables
1132 // and delete them.
1133 std::vector<Constant*> Inits;
1134 while (AppendingVars.size() > 1) {
1135 // Get the first two elements in the map...
1136 std::multimap<std::string,
1137 GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1139 // If the first two elements are for different names, there is no pair...
1140 // Otherwise there is a pair, so link them together...
1141 if (First->first == Second->first) {
1142 GlobalVariable *G1 = First->second, *G2 = Second->second;
1143 const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1144 const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1146 // Check to see that they two arrays agree on type...
1147 if (T1->getElementType() != T2->getElementType())
1148 return Error(ErrorMsg,
1149 "Appending variables with different element types need to be linked!");
1150 if (G1->isConstant() != G2->isConstant())
1151 return Error(ErrorMsg,
1152 "Appending variables linked with different const'ness!");
1154 if (G1->getAlignment() != G2->getAlignment())
1155 return Error(ErrorMsg,
1156 "Appending variables with different alignment need to be linked!");
1158 if (G1->getVisibility() != G2->getVisibility())
1159 return Error(ErrorMsg,
1160 "Appending variables with different visibility need to be linked!");
1162 if (G1->getSection() != G2->getSection())
1163 return Error(ErrorMsg,
1164 "Appending variables with different section name need to be linked!");
1166 unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1167 ArrayType *NewType = ArrayType::get(T1->getElementType(),
1168 NewSize);
1170 G1->setName(""); // Clear G1's name in case of a conflict!
1172 // Create the new global variable...
1173 GlobalVariable *NG =
1174 new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1175 /*init*/0, First->first, 0, G1->isThreadLocal(),
1176 G1->getType()->getAddressSpace());
1178 // Propagate alignment, visibility and section info.
1179 CopyGVAttributes(NG, G1);
1181 // Merge the initializer...
1182 Inits.reserve(NewSize);
1183 if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1184 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1185 Inits.push_back(I->getOperand(i));
1186 } else {
1187 assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1188 Constant *CV = Constant::getNullValue(T1->getElementType());
1189 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1190 Inits.push_back(CV);
1192 if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1193 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1194 Inits.push_back(I->getOperand(i));
1195 } else {
1196 assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1197 Constant *CV = Constant::getNullValue(T2->getElementType());
1198 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1199 Inits.push_back(CV);
1201 NG->setInitializer(ConstantArray::get(NewType, Inits));
1202 Inits.clear();
1204 // Replace any uses of the two global variables with uses of the new
1205 // global...
1207 // FIXME: This should rewrite simple/straight-forward uses such as
1208 // getelementptr instructions to not use the Cast!
1209 G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1210 G1->getType()));
1211 G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1212 G2->getType()));
1214 // Remove the two globals from the module now...
1215 M->getGlobalList().erase(G1);
1216 M->getGlobalList().erase(G2);
1218 // Put the new global into the AppendingVars map so that we can handle
1219 // linking of more than two vars...
1220 Second->second = NG;
1222 AppendingVars.erase(First);
1225 return false;
1228 static bool ResolveAliases(Module *Dest) {
1229 for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1230 I != E; ++I)
1231 if (const GlobalValue *GV = I->resolveAliasedGlobal())
1232 if (GV != I && !GV->isDeclaration())
1233 I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1235 return false;
1238 // LinkModules - This function links two modules together, with the resulting
1239 // left module modified to be the composite of the two input modules. If an
1240 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1241 // the problem. Upon failure, the Dest module could be in a modified state, and
1242 // shouldn't be relied on to be consistent.
1243 bool
1244 Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1245 assert(Dest != 0 && "Invalid Destination module");
1246 assert(Src != 0 && "Invalid Source Module");
1248 if (Dest->getDataLayout().empty()) {
1249 if (!Src->getDataLayout().empty()) {
1250 Dest->setDataLayout(Src->getDataLayout());
1251 } else {
1252 std::string DataLayout;
1254 if (Dest->getEndianness() == Module::AnyEndianness) {
1255 if (Src->getEndianness() == Module::BigEndian)
1256 DataLayout.append("E");
1257 else if (Src->getEndianness() == Module::LittleEndian)
1258 DataLayout.append("e");
1261 if (Dest->getPointerSize() == Module::AnyPointerSize) {
1262 if (Src->getPointerSize() == Module::Pointer64)
1263 DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1264 else if (Src->getPointerSize() == Module::Pointer32)
1265 DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1267 Dest->setDataLayout(DataLayout);
1271 // Copy the target triple from the source to dest if the dest's is empty.
1272 if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1273 Dest->setTargetTriple(Src->getTargetTriple());
1275 if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1276 Src->getDataLayout() != Dest->getDataLayout())
1277 errs() << "WARNING: Linking two modules of different data layouts!\n";
1278 if (!Src->getTargetTriple().empty() &&
1279 Dest->getTargetTriple() != Src->getTargetTriple())
1280 errs() << "WARNING: Linking two modules of different target triples!\n";
1282 // Append the module inline asm string.
1283 if (!Src->getModuleInlineAsm().empty()) {
1284 if (Dest->getModuleInlineAsm().empty())
1285 Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1286 else
1287 Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1288 Src->getModuleInlineAsm());
1291 // Update the destination module's dependent libraries list with the libraries
1292 // from the source module. There's no opportunity for duplicates here as the
1293 // Module ensures that duplicate insertions are discarded.
1294 for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1295 SI != SE; ++SI)
1296 Dest->addLibrary(*SI);
1298 // LinkTypes - Go through the symbol table of the Src module and see if any
1299 // types are named in the src module that are not named in the Dst module.
1300 // Make sure there are no type name conflicts.
1301 if (LinkTypes(Dest, Src, ErrorMsg))
1302 return true;
1304 // ValueMap - Mapping of values from what they used to be in Src, to what they
1305 // are now in Dest.
1306 std::map<const Value*, Value*> ValueMap;
1308 // AppendingVars - Keep track of global variables in the destination module
1309 // with appending linkage. After the module is linked together, they are
1310 // appended and the module is rewritten.
1311 std::multimap<std::string, GlobalVariable *> AppendingVars;
1312 for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1313 I != E; ++I) {
1314 // Add all of the appending globals already in the Dest module to
1315 // AppendingVars.
1316 if (I->hasAppendingLinkage())
1317 AppendingVars.insert(std::make_pair(I->getName(), I));
1320 // Insert all of the named mdnoes in Src into the Dest module.
1321 LinkNamedMDNodes(Dest, Src);
1323 // Insert all of the globals in src into the Dest module... without linking
1324 // initializers (which could refer to functions not yet mapped over).
1325 if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1326 return true;
1328 // Link the functions together between the two modules, without doing function
1329 // bodies... this just adds external function prototypes to the Dest
1330 // function... We do this so that when we begin processing function bodies,
1331 // all of the global values that may be referenced are available in our
1332 // ValueMap.
1333 if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1334 return true;
1336 // If there were any alias, link them now. We really need to do this now,
1337 // because all of the aliases that may be referenced need to be available in
1338 // ValueMap
1339 if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1341 // Update the initializers in the Dest module now that all globals that may
1342 // be referenced are in Dest.
1343 if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1345 // Link in the function bodies that are defined in the source module into the
1346 // DestModule. This consists basically of copying the function over and
1347 // fixing up references to values.
1348 if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1350 // If there were any appending global variables, link them together now.
1351 if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1353 // Resolve all uses of aliases with aliasees
1354 if (ResolveAliases(Dest)) return true;
1356 // If the source library's module id is in the dependent library list of the
1357 // destination library, remove it since that module is now linked in.
1358 sys::Path modId;
1359 modId.set(Src->getModuleIdentifier());
1360 if (!modId.isEmpty())
1361 Dest->removeLibrary(modId.getBasename());
1363 return false;
1366 // vim: sw=2