1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass promotes "by reference" arguments to be "by value" arguments. In
11 // practice, this means looking for internal functions that have pointer
12 // arguments. If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value. This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded. Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently. This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "argpromotion"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Constants.h"
35 #include "llvm/DerivedTypes.h"
36 #include "llvm/Module.h"
37 #include "llvm/CallGraphSCCPass.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CallGraph.h"
42 #include "llvm/Target/TargetData.h"
43 #include "llvm/Support/CallSite.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/CFG.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/ADT/DepthFirstIterator.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/StringExtras.h"
54 STATISTIC(NumArgumentsPromoted
, "Number of pointer arguments promoted");
55 STATISTIC(NumAggregatesPromoted
, "Number of aggregate arguments promoted");
56 STATISTIC(NumByValArgsPromoted
, "Number of byval arguments promoted");
57 STATISTIC(NumArgumentsDead
, "Number of dead pointer args eliminated");
60 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
62 struct VISIBILITY_HIDDEN ArgPromotion
: public CallGraphSCCPass
{
63 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
64 AU
.addRequired
<AliasAnalysis
>();
65 CallGraphSCCPass::getAnalysisUsage(AU
);
68 virtual bool runOnSCC(std::vector
<CallGraphNode
*> &SCC
);
69 static char ID
; // Pass identification, replacement for typeid
70 explicit ArgPromotion(unsigned maxElements
= 3)
71 : CallGraphSCCPass(&ID
), maxElements(maxElements
) {}
73 /// A vector used to hold the indices of a single GEP instruction
74 typedef std::vector
<uint64_t> IndicesVector
;
77 CallGraphNode
*PromoteArguments(CallGraphNode
*CGN
);
78 bool isSafeToPromoteArgument(Argument
*Arg
, bool isByVal
) const;
79 CallGraphNode
*DoPromotion(Function
*F
,
80 SmallPtrSet
<Argument
*, 8> &ArgsToPromote
,
81 SmallPtrSet
<Argument
*, 8> &ByValArgsToTransform
);
82 /// The maximum number of elements to expand, or 0 for unlimited.
87 char ArgPromotion::ID
= 0;
88 static RegisterPass
<ArgPromotion
>
89 X("argpromotion", "Promote 'by reference' arguments to scalars");
91 Pass
*llvm::createArgumentPromotionPass(unsigned maxElements
) {
92 return new ArgPromotion(maxElements
);
95 bool ArgPromotion::runOnSCC(std::vector
<CallGraphNode
*> &SCC
) {
96 bool Changed
= false, LocalChange
;
98 do { // Iterate until we stop promoting from this SCC.
100 // Attempt to promote arguments from all functions in this SCC.
101 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
; ++i
)
102 if (CallGraphNode
*CGN
= PromoteArguments(SCC
[i
])) {
106 Changed
|= LocalChange
; // Remember that we changed something.
107 } while (LocalChange
);
112 /// PromoteArguments - This method checks the specified function to see if there
113 /// are any promotable arguments and if it is safe to promote the function (for
114 /// example, all callers are direct). If safe to promote some arguments, it
115 /// calls the DoPromotion method.
117 CallGraphNode
*ArgPromotion::PromoteArguments(CallGraphNode
*CGN
) {
118 Function
*F
= CGN
->getFunction();
120 // Make sure that it is local to this module.
121 if (!F
|| !F
->hasLocalLinkage()) return 0;
123 // First check: see if there are any pointer arguments! If not, quick exit.
124 SmallVector
<std::pair
<Argument
*, unsigned>, 16> PointerArgs
;
126 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
127 I
!= E
; ++I
, ++ArgNo
)
128 if (isa
<PointerType
>(I
->getType()))
129 PointerArgs
.push_back(std::pair
<Argument
*, unsigned>(I
, ArgNo
));
130 if (PointerArgs
.empty()) return 0;
132 // Second check: make sure that all callers are direct callers. We can't
133 // transform functions that have indirect callers.
134 if (F
->hasAddressTaken())
137 // Check to see which arguments are promotable. If an argument is promotable,
138 // add it to ArgsToPromote.
139 SmallPtrSet
<Argument
*, 8> ArgsToPromote
;
140 SmallPtrSet
<Argument
*, 8> ByValArgsToTransform
;
141 for (unsigned i
= 0; i
!= PointerArgs
.size(); ++i
) {
142 bool isByVal
= F
->paramHasAttr(PointerArgs
[i
].second
+1, Attribute::ByVal
);
144 // If this is a byval argument, and if the aggregate type is small, just
145 // pass the elements, which is always safe.
146 Argument
*PtrArg
= PointerArgs
[i
].first
;
148 const Type
*AgTy
= cast
<PointerType
>(PtrArg
->getType())->getElementType();
149 if (const StructType
*STy
= dyn_cast
<StructType
>(AgTy
)) {
150 if (maxElements
> 0 && STy
->getNumElements() > maxElements
) {
151 DEBUG(errs() << "argpromotion disable promoting argument '"
152 << PtrArg
->getName() << "' because it would require adding more"
153 << " than " << maxElements
<< " arguments to the function.\n");
155 // If all the elements are single-value types, we can promote it.
156 bool AllSimple
= true;
157 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
158 if (!STy
->getElementType(i
)->isSingleValueType()) {
163 // Safe to transform, don't even bother trying to "promote" it.
164 // Passing the elements as a scalar will allow scalarrepl to hack on
165 // the new alloca we introduce.
167 ByValArgsToTransform
.insert(PtrArg
);
174 // Otherwise, see if we can promote the pointer to its value.
175 if (isSafeToPromoteArgument(PtrArg
, isByVal
))
176 ArgsToPromote
.insert(PtrArg
);
179 // No promotable pointer arguments.
180 if (ArgsToPromote
.empty() && ByValArgsToTransform
.empty())
183 return DoPromotion(F
, ArgsToPromote
, ByValArgsToTransform
);
186 /// IsAlwaysValidPointer - Return true if the specified pointer is always legal
188 static bool IsAlwaysValidPointer(Value
*V
) {
189 if (isa
<AllocaInst
>(V
) || isa
<GlobalVariable
>(V
)) return true;
190 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
))
191 return IsAlwaysValidPointer(GEP
->getOperand(0));
192 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
193 if (CE
->getOpcode() == Instruction::GetElementPtr
)
194 return IsAlwaysValidPointer(CE
->getOperand(0));
199 /// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
200 /// all callees pass in a valid pointer for the specified function argument.
201 static bool AllCalleesPassInValidPointerForArgument(Argument
*Arg
) {
202 Function
*Callee
= Arg
->getParent();
204 unsigned ArgNo
= std::distance(Callee
->arg_begin(),
205 Function::arg_iterator(Arg
));
207 // Look at all call sites of the function. At this pointer we know we only
208 // have direct callees.
209 for (Value::use_iterator UI
= Callee
->use_begin(), E
= Callee
->use_end();
211 CallSite CS
= CallSite::get(*UI
);
212 assert(CS
.getInstruction() && "Should only have direct calls!");
214 if (!IsAlwaysValidPointer(CS
.getArgument(ArgNo
)))
220 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
221 /// that is greater than or equal to the size of prefix, and each of the
222 /// elements in Prefix is the same as the corresponding elements in Longer.
224 /// This means it also returns true when Prefix and Longer are equal!
225 static bool IsPrefix(const ArgPromotion::IndicesVector
&Prefix
,
226 const ArgPromotion::IndicesVector
&Longer
) {
227 if (Prefix
.size() > Longer
.size())
229 for (unsigned i
= 0, e
= Prefix
.size(); i
!= e
; ++i
)
230 if (Prefix
[i
] != Longer
[i
])
236 /// Checks if Indices, or a prefix of Indices, is in Set.
237 static bool PrefixIn(const ArgPromotion::IndicesVector
&Indices
,
238 std::set
<ArgPromotion::IndicesVector
> &Set
) {
239 std::set
<ArgPromotion::IndicesVector
>::iterator Low
;
240 Low
= Set
.upper_bound(Indices
);
241 if (Low
!= Set
.begin())
243 // Low is now the last element smaller than or equal to Indices. This means
244 // it points to a prefix of Indices (possibly Indices itself), if such
247 // This load is safe if any prefix of its operands is safe to load.
248 return Low
!= Set
.end() && IsPrefix(*Low
, Indices
);
251 /// Mark the given indices (ToMark) as safe in the the given set of indices
252 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
253 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
254 /// already. Furthermore, any indices that Indices is itself a prefix of, are
255 /// removed from Safe (since they are implicitely safe because of Indices now).
256 static void MarkIndicesSafe(const ArgPromotion::IndicesVector
&ToMark
,
257 std::set
<ArgPromotion::IndicesVector
> &Safe
) {
258 std::set
<ArgPromotion::IndicesVector
>::iterator Low
;
259 Low
= Safe
.upper_bound(ToMark
);
260 // Guard against the case where Safe is empty
261 if (Low
!= Safe
.begin())
263 // Low is now the last element smaller than or equal to Indices. This
264 // means it points to a prefix of Indices (possibly Indices itself), if
265 // such prefix exists.
266 if (Low
!= Safe
.end()) {
267 if (IsPrefix(*Low
, ToMark
))
268 // If there is already a prefix of these indices (or exactly these
269 // indices) marked a safe, don't bother adding these indices
272 // Increment Low, so we can use it as a "insert before" hint
276 Low
= Safe
.insert(Low
, ToMark
);
278 // If there we're a prefix of longer index list(s), remove those
279 std::set
<ArgPromotion::IndicesVector
>::iterator End
= Safe
.end();
280 while (Low
!= End
&& IsPrefix(ToMark
, *Low
)) {
281 std::set
<ArgPromotion::IndicesVector
>::iterator Remove
= Low
;
287 /// isSafeToPromoteArgument - As you might guess from the name of this method,
288 /// it checks to see if it is both safe and useful to promote the argument.
289 /// This method limits promotion of aggregates to only promote up to three
290 /// elements of the aggregate in order to avoid exploding the number of
291 /// arguments passed in.
292 bool ArgPromotion::isSafeToPromoteArgument(Argument
*Arg
, bool isByVal
) const {
293 typedef std::set
<IndicesVector
> GEPIndicesSet
;
295 // Quick exit for unused arguments
296 if (Arg
->use_empty())
299 // We can only promote this argument if all of the uses are loads, or are GEP
300 // instructions (with constant indices) that are subsequently loaded.
302 // Promoting the argument causes it to be loaded in the caller
303 // unconditionally. This is only safe if we can prove that either the load
304 // would have happened in the callee anyway (ie, there is a load in the entry
305 // block) or the pointer passed in at every call site is guaranteed to be
307 // In the former case, invalid loads can happen, but would have happened
308 // anyway, in the latter case, invalid loads won't happen. This prevents us
309 // from introducing an invalid load that wouldn't have happened in the
312 // This set will contain all sets of indices that are loaded in the entry
313 // block, and thus are safe to unconditionally load in the caller.
314 GEPIndicesSet SafeToUnconditionallyLoad
;
316 // This set contains all the sets of indices that we are planning to promote.
317 // This makes it possible to limit the number of arguments added.
318 GEPIndicesSet ToPromote
;
320 // If the pointer is always valid, any load with first index 0 is valid.
321 if(isByVal
|| AllCalleesPassInValidPointerForArgument(Arg
))
322 SafeToUnconditionallyLoad
.insert(IndicesVector(1, 0));
324 // First, iterate the entry block and mark loads of (geps of) arguments as
326 BasicBlock
*EntryBlock
= Arg
->getParent()->begin();
327 // Declare this here so we can reuse it
328 IndicesVector Indices
;
329 for (BasicBlock::iterator I
= EntryBlock
->begin(), E
= EntryBlock
->end();
331 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
332 Value
*V
= LI
->getPointerOperand();
333 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
334 V
= GEP
->getPointerOperand();
336 // This load actually loads (part of) Arg? Check the indices then.
337 Indices
.reserve(GEP
->getNumIndices());
338 for (User::op_iterator II
= GEP
->idx_begin(), IE
= GEP
->idx_end();
340 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*II
))
341 Indices
.push_back(CI
->getSExtValue());
343 // We found a non-constant GEP index for this argument? Bail out
344 // right away, can't promote this argument at all.
347 // Indices checked out, mark them as safe
348 MarkIndicesSafe(Indices
, SafeToUnconditionallyLoad
);
351 } else if (V
== Arg
) {
352 // Direct loads are equivalent to a GEP with a single 0 index.
353 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad
);
357 // Now, iterate all uses of the argument to see if there are any uses that are
358 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
359 SmallVector
<LoadInst
*, 16> Loads
;
360 IndicesVector Operands
;
361 for (Value::use_iterator UI
= Arg
->use_begin(), E
= Arg
->use_end();
364 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
365 if (LI
->isVolatile()) return false; // Don't hack volatile loads
367 // Direct loads are equivalent to a GEP with a zero index and then a load.
368 Operands
.push_back(0);
369 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(*UI
)) {
370 if (GEP
->use_empty()) {
371 // Dead GEP's cause trouble later. Just remove them if we run into
373 getAnalysis
<AliasAnalysis
>().deleteValue(GEP
);
374 GEP
->eraseFromParent();
375 // TODO: This runs the above loop over and over again for dead GEPS
376 // Couldn't we just do increment the UI iterator earlier and erase the
378 return isSafeToPromoteArgument(Arg
, isByVal
);
381 // Ensure that all of the indices are constants.
382 for (User::op_iterator i
= GEP
->idx_begin(), e
= GEP
->idx_end();
384 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(*i
))
385 Operands
.push_back(C
->getSExtValue());
387 return false; // Not a constant operand GEP!
389 // Ensure that the only users of the GEP are load instructions.
390 for (Value::use_iterator UI
= GEP
->use_begin(), E
= GEP
->use_end();
392 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
393 if (LI
->isVolatile()) return false; // Don't hack volatile loads
396 // Other uses than load?
400 return false; // Not a load or a GEP.
403 // Now, see if it is safe to promote this load / loads of this GEP. Loading
404 // is safe if Operands, or a prefix of Operands, is marked as safe.
405 if (!PrefixIn(Operands
, SafeToUnconditionallyLoad
))
408 // See if we are already promoting a load with these indices. If not, check
409 // to make sure that we aren't promoting too many elements. If so, nothing
411 if (ToPromote
.find(Operands
) == ToPromote
.end()) {
412 if (maxElements
> 0 && ToPromote
.size() == maxElements
) {
413 DEBUG(errs() << "argpromotion not promoting argument '"
414 << Arg
->getName() << "' because it would require adding more "
415 << "than " << maxElements
<< " arguments to the function.\n");
416 // We limit aggregate promotion to only promoting up to a fixed number
417 // of elements of the aggregate.
420 ToPromote
.insert(Operands
);
424 if (Loads
.empty()) return true; // No users, this is a dead argument.
426 // Okay, now we know that the argument is only used by load instructions and
427 // it is safe to unconditionally perform all of them. Use alias analysis to
428 // check to see if the pointer is guaranteed to not be modified from entry of
429 // the function to each of the load instructions.
431 // Because there could be several/many load instructions, remember which
432 // blocks we know to be transparent to the load.
433 SmallPtrSet
<BasicBlock
*, 16> TranspBlocks
;
435 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
436 TargetData
*TD
= getAnalysisIfAvailable
<TargetData
>();
437 if (!TD
) return false; // Without TargetData, assume the worst.
439 for (unsigned i
= 0, e
= Loads
.size(); i
!= e
; ++i
) {
440 // Check to see if the load is invalidated from the start of the block to
442 LoadInst
*Load
= Loads
[i
];
443 BasicBlock
*BB
= Load
->getParent();
445 const PointerType
*LoadTy
=
446 cast
<PointerType
>(Load
->getPointerOperand()->getType());
447 unsigned LoadSize
=(unsigned)TD
->getTypeStoreSize(LoadTy
->getElementType());
449 if (AA
.canInstructionRangeModify(BB
->front(), *Load
, Arg
, LoadSize
))
450 return false; // Pointer is invalidated!
452 // Now check every path from the entry block to the load for transparency.
453 // To do this, we perform a depth first search on the inverse CFG from the
455 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
456 for (idf_ext_iterator
<BasicBlock
*, SmallPtrSet
<BasicBlock
*, 16> >
457 I
= idf_ext_begin(*PI
, TranspBlocks
),
458 E
= idf_ext_end(*PI
, TranspBlocks
); I
!= E
; ++I
)
459 if (AA
.canBasicBlockModify(**I
, Arg
, LoadSize
))
463 // If the path from the entry of the function to each load is free of
464 // instructions that potentially invalidate the load, we can make the
469 /// DoPromotion - This method actually performs the promotion of the specified
470 /// arguments, and returns the new function. At this point, we know that it's
472 CallGraphNode
*ArgPromotion::DoPromotion(Function
*F
,
473 SmallPtrSet
<Argument
*, 8> &ArgsToPromote
,
474 SmallPtrSet
<Argument
*, 8> &ByValArgsToTransform
) {
476 // Start by computing a new prototype for the function, which is the same as
477 // the old function, but has modified arguments.
478 const FunctionType
*FTy
= F
->getFunctionType();
479 std::vector
<const Type
*> Params
;
481 typedef std::set
<IndicesVector
> ScalarizeTable
;
483 // ScalarizedElements - If we are promoting a pointer that has elements
484 // accessed out of it, keep track of which elements are accessed so that we
485 // can add one argument for each.
487 // Arguments that are directly loaded will have a zero element value here, to
488 // handle cases where there are both a direct load and GEP accesses.
490 std::map
<Argument
*, ScalarizeTable
> ScalarizedElements
;
492 // OriginalLoads - Keep track of a representative load instruction from the
493 // original function so that we can tell the alias analysis implementation
494 // what the new GEP/Load instructions we are inserting look like.
495 std::map
<IndicesVector
, LoadInst
*> OriginalLoads
;
497 // Attributes - Keep track of the parameter attributes for the arguments
498 // that we are *not* promoting. For the ones that we do promote, the parameter
499 // attributes are lost
500 SmallVector
<AttributeWithIndex
, 8> AttributesVec
;
501 const AttrListPtr
&PAL
= F
->getAttributes();
503 // Add any return attributes.
504 if (Attributes attrs
= PAL
.getRetAttributes())
505 AttributesVec
.push_back(AttributeWithIndex::get(0, attrs
));
507 // First, determine the new argument list
508 unsigned ArgIndex
= 1;
509 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
;
511 if (ByValArgsToTransform
.count(I
)) {
512 // Simple byval argument? Just add all the struct element types.
513 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
514 const StructType
*STy
= cast
<StructType
>(AgTy
);
515 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
516 Params
.push_back(STy
->getElementType(i
));
517 ++NumByValArgsPromoted
;
518 } else if (!ArgsToPromote
.count(I
)) {
519 // Unchanged argument
520 Params
.push_back(I
->getType());
521 if (Attributes attrs
= PAL
.getParamAttributes(ArgIndex
))
522 AttributesVec
.push_back(AttributeWithIndex::get(Params
.size(), attrs
));
523 } else if (I
->use_empty()) {
524 // Dead argument (which are always marked as promotable)
527 // Okay, this is being promoted. This means that the only uses are loads
528 // or GEPs which are only used by loads
530 // In this table, we will track which indices are loaded from the argument
531 // (where direct loads are tracked as no indices).
532 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
533 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
535 Instruction
*User
= cast
<Instruction
>(*UI
);
536 assert(isa
<LoadInst
>(User
) || isa
<GetElementPtrInst
>(User
));
537 IndicesVector Indices
;
538 Indices
.reserve(User
->getNumOperands() - 1);
539 // Since loads will only have a single operand, and GEPs only a single
540 // non-index operand, this will record direct loads without any indices,
541 // and gep+loads with the GEP indices.
542 for (User::op_iterator II
= User
->op_begin() + 1, IE
= User
->op_end();
544 Indices
.push_back(cast
<ConstantInt
>(*II
)->getSExtValue());
545 // GEPs with a single 0 index can be merged with direct loads
546 if (Indices
.size() == 1 && Indices
.front() == 0)
548 ArgIndices
.insert(Indices
);
550 if (LoadInst
*L
= dyn_cast
<LoadInst
>(User
))
553 // Take any load, we will use it only to update Alias Analysis
554 OrigLoad
= cast
<LoadInst
>(User
->use_back());
555 OriginalLoads
[Indices
] = OrigLoad
;
558 // Add a parameter to the function for each element passed in.
559 for (ScalarizeTable::iterator SI
= ArgIndices
.begin(),
560 E
= ArgIndices
.end(); SI
!= E
; ++SI
) {
561 // not allowed to dereference ->begin() if size() is 0
562 Params
.push_back(GetElementPtrInst::getIndexedType(I
->getType(),
565 assert(Params
.back());
568 if (ArgIndices
.size() == 1 && ArgIndices
.begin()->empty())
569 ++NumArgumentsPromoted
;
571 ++NumAggregatesPromoted
;
575 // Add any function attributes.
576 if (Attributes attrs
= PAL
.getFnAttributes())
577 AttributesVec
.push_back(AttributeWithIndex::get(~0, attrs
));
579 const Type
*RetTy
= FTy
->getReturnType();
581 // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
582 // have zero fixed arguments.
583 bool ExtraArgHack
= false;
584 if (Params
.empty() && FTy
->isVarArg()) {
586 Params
.push_back(Type::getInt32Ty(F
->getContext()));
589 // Construct the new function type using the new arguments.
590 FunctionType
*NFTy
= FunctionType::get(RetTy
, Params
, FTy
->isVarArg());
592 // Create the new function body and insert it into the module...
593 Function
*NF
= Function::Create(NFTy
, F
->getLinkage(), F
->getName());
594 NF
->copyAttributesFrom(F
);
597 DEBUG(errs() << "ARG PROMOTION: Promoting to:" << *NF
<< "\n"
600 // Recompute the parameter attributes list based on the new arguments for
602 NF
->setAttributes(AttrListPtr::get(AttributesVec
.begin(), AttributesVec
.end()));
603 AttributesVec
.clear();
605 F
->getParent()->getFunctionList().insert(F
, NF
);
608 // Get the alias analysis information that we need to update to reflect our
610 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
612 // Get the callgraph information that we need to update to reflect our
614 CallGraph
&CG
= getAnalysis
<CallGraph
>();
616 // Get a new callgraph node for NF.
617 CallGraphNode
*NF_CGN
= CG
.getOrInsertFunction(NF
);
620 // Loop over all of the callers of the function, transforming the call sites
621 // to pass in the loaded pointers.
623 SmallVector
<Value
*, 16> Args
;
624 while (!F
->use_empty()) {
625 CallSite CS
= CallSite::get(F
->use_back());
626 Instruction
*Call
= CS
.getInstruction();
627 const AttrListPtr
&CallPAL
= CS
.getAttributes();
629 // Add any return attributes.
630 if (Attributes attrs
= CallPAL
.getRetAttributes())
631 AttributesVec
.push_back(AttributeWithIndex::get(0, attrs
));
633 // Loop over the operands, inserting GEP and loads in the caller as
635 CallSite::arg_iterator AI
= CS
.arg_begin();
637 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
638 I
!= E
; ++I
, ++AI
, ++ArgIndex
)
639 if (!ArgsToPromote
.count(I
) && !ByValArgsToTransform
.count(I
)) {
640 Args
.push_back(*AI
); // Unmodified argument
642 if (Attributes Attrs
= CallPAL
.getParamAttributes(ArgIndex
))
643 AttributesVec
.push_back(AttributeWithIndex::get(Args
.size(), Attrs
));
645 } else if (ByValArgsToTransform
.count(I
)) {
646 // Emit a GEP and load for each element of the struct.
647 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
648 const StructType
*STy
= cast
<StructType
>(AgTy
);
650 ConstantInt::get(Type::getInt32Ty(F
->getContext()), 0), 0 };
651 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
652 Idxs
[1] = ConstantInt::get(Type::getInt32Ty(F
->getContext()), i
);
653 Value
*Idx
= GetElementPtrInst::Create(*AI
, Idxs
, Idxs
+2,
654 (*AI
)->getName()+"."+utostr(i
),
656 // TODO: Tell AA about the new values?
657 Args
.push_back(new LoadInst(Idx
, Idx
->getName()+".val", Call
));
659 } else if (!I
->use_empty()) {
660 // Non-dead argument: insert GEPs and loads as appropriate.
661 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
662 // Store the Value* version of the indices in here, but declare it now
664 std::vector
<Value
*> Ops
;
665 for (ScalarizeTable::iterator SI
= ArgIndices
.begin(),
666 E
= ArgIndices
.end(); SI
!= E
; ++SI
) {
668 LoadInst
*OrigLoad
= OriginalLoads
[*SI
];
670 Ops
.reserve(SI
->size());
671 const Type
*ElTy
= V
->getType();
672 for (IndicesVector::const_iterator II
= SI
->begin(),
673 IE
= SI
->end(); II
!= IE
; ++II
) {
674 // Use i32 to index structs, and i64 for others (pointers/arrays).
675 // This satisfies GEP constraints.
676 const Type
*IdxTy
= (isa
<StructType
>(ElTy
) ?
677 Type::getInt32Ty(F
->getContext()) :
678 Type::getInt64Ty(F
->getContext()));
679 Ops
.push_back(ConstantInt::get(IdxTy
, *II
));
680 // Keep track of the type we're currently indexing
681 ElTy
= cast
<CompositeType
>(ElTy
)->getTypeAtIndex(*II
);
683 // And create a GEP to extract those indices
684 V
= GetElementPtrInst::Create(V
, Ops
.begin(), Ops
.end(),
685 V
->getName()+".idx", Call
);
687 AA
.copyValue(OrigLoad
->getOperand(0), V
);
689 Args
.push_back(new LoadInst(V
, V
->getName()+".val", Call
));
690 AA
.copyValue(OrigLoad
, Args
.back());
695 Args
.push_back(Constant::getNullValue(Type::getInt32Ty(F
->getContext())));
697 // Push any varargs arguments on the list
698 for (; AI
!= CS
.arg_end(); ++AI
, ++ArgIndex
) {
700 if (Attributes Attrs
= CallPAL
.getParamAttributes(ArgIndex
))
701 AttributesVec
.push_back(AttributeWithIndex::get(Args
.size(), Attrs
));
704 // Add any function attributes.
705 if (Attributes attrs
= CallPAL
.getFnAttributes())
706 AttributesVec
.push_back(AttributeWithIndex::get(~0, attrs
));
709 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Call
)) {
710 New
= InvokeInst::Create(NF
, II
->getNormalDest(), II
->getUnwindDest(),
711 Args
.begin(), Args
.end(), "", Call
);
712 cast
<InvokeInst
>(New
)->setCallingConv(CS
.getCallingConv());
713 cast
<InvokeInst
>(New
)->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
714 AttributesVec
.end()));
716 New
= CallInst::Create(NF
, Args
.begin(), Args
.end(), "", Call
);
717 cast
<CallInst
>(New
)->setCallingConv(CS
.getCallingConv());
718 cast
<CallInst
>(New
)->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
719 AttributesVec
.end()));
720 if (cast
<CallInst
>(Call
)->isTailCall())
721 cast
<CallInst
>(New
)->setTailCall();
724 AttributesVec
.clear();
726 // Update the alias analysis implementation to know that we are replacing
727 // the old call with a new one.
728 AA
.replaceWithNewValue(Call
, New
);
730 // Update the callgraph to know that the callsite has been transformed.
731 CallGraphNode
*CalleeNode
= CG
[Call
->getParent()->getParent()];
732 CalleeNode
->removeCallEdgeFor(Call
);
733 CalleeNode
->addCalledFunction(New
, NF_CGN
);
735 if (!Call
->use_empty()) {
736 Call
->replaceAllUsesWith(New
);
740 // Finally, remove the old call from the program, reducing the use-count of
742 Call
->eraseFromParent();
745 // Since we have now created the new function, splice the body of the old
746 // function right into the new function, leaving the old rotting hulk of the
748 NF
->getBasicBlockList().splice(NF
->begin(), F
->getBasicBlockList());
750 // Loop over the argument list, transfering uses of the old arguments over to
751 // the new arguments, also transfering over the names as well.
753 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(),
754 I2
= NF
->arg_begin(); I
!= E
; ++I
) {
755 if (!ArgsToPromote
.count(I
) && !ByValArgsToTransform
.count(I
)) {
756 // If this is an unmodified argument, move the name and users over to the
758 I
->replaceAllUsesWith(I2
);
760 AA
.replaceWithNewValue(I
, I2
);
765 if (ByValArgsToTransform
.count(I
)) {
766 // In the callee, we create an alloca, and store each of the new incoming
767 // arguments into the alloca.
768 Instruction
*InsertPt
= NF
->begin()->begin();
770 // Just add all the struct element types.
771 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
772 Value
*TheAlloca
= new AllocaInst(AgTy
, 0, "", InsertPt
);
773 const StructType
*STy
= cast
<StructType
>(AgTy
);
775 ConstantInt::get(Type::getInt32Ty(F
->getContext()), 0), 0 };
777 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
778 Idxs
[1] = ConstantInt::get(Type::getInt32Ty(F
->getContext()), i
);
780 GetElementPtrInst::Create(TheAlloca
, Idxs
, Idxs
+2,
781 TheAlloca
->getName()+"."+Twine(i
),
783 I2
->setName(I
->getName()+"."+Twine(i
));
784 new StoreInst(I2
++, Idx
, InsertPt
);
787 // Anything that used the arg should now use the alloca.
788 I
->replaceAllUsesWith(TheAlloca
);
789 TheAlloca
->takeName(I
);
790 AA
.replaceWithNewValue(I
, TheAlloca
);
794 if (I
->use_empty()) {
799 // Otherwise, if we promoted this argument, then all users are load
800 // instructions (or GEPs with only load users), and all loads should be
801 // using the new argument that we added.
802 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
804 while (!I
->use_empty()) {
805 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->use_back())) {
806 assert(ArgIndices
.begin()->empty() &&
807 "Load element should sort to front!");
808 I2
->setName(I
->getName()+".val");
809 LI
->replaceAllUsesWith(I2
);
810 AA
.replaceWithNewValue(LI
, I2
);
811 LI
->eraseFromParent();
812 DEBUG(errs() << "*** Promoted load of argument '" << I
->getName()
813 << "' in function '" << F
->getName() << "'\n");
815 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(I
->use_back());
816 IndicesVector Operands
;
817 Operands
.reserve(GEP
->getNumIndices());
818 for (User::op_iterator II
= GEP
->idx_begin(), IE
= GEP
->idx_end();
820 Operands
.push_back(cast
<ConstantInt
>(*II
)->getSExtValue());
822 // GEPs with a single 0 index can be merged with direct loads
823 if (Operands
.size() == 1 && Operands
.front() == 0)
826 Function::arg_iterator TheArg
= I2
;
827 for (ScalarizeTable::iterator It
= ArgIndices
.begin();
828 *It
!= Operands
; ++It
, ++TheArg
) {
829 assert(It
!= ArgIndices
.end() && "GEP not handled??");
832 std::string NewName
= I
->getName();
833 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
) {
834 NewName
+= "." + utostr(Operands
[i
]);
837 TheArg
->setName(NewName
);
839 DEBUG(errs() << "*** Promoted agg argument '" << TheArg
->getName()
840 << "' of function '" << NF
->getName() << "'\n");
842 // All of the uses must be load instructions. Replace them all with
843 // the argument specified by ArgNo.
844 while (!GEP
->use_empty()) {
845 LoadInst
*L
= cast
<LoadInst
>(GEP
->use_back());
846 L
->replaceAllUsesWith(TheArg
);
847 AA
.replaceWithNewValue(L
, TheArg
);
848 L
->eraseFromParent();
851 GEP
->eraseFromParent();
855 // Increment I2 past all of the arguments added for this promoted pointer.
856 for (unsigned i
= 0, e
= ArgIndices
.size(); i
!= e
; ++i
)
860 // Notify the alias analysis implementation that we inserted a new argument.
862 AA
.copyValue(Constant::getNullValue(Type::getInt32Ty(F
->getContext())),
866 // Tell the alias analysis that the old function is about to disappear.
867 AA
.replaceWithNewValue(F
, NF
);
870 NF_CGN
->stealCalledFunctionsFrom(CG
[F
]);
872 // Now that the old function is dead, delete it.
873 delete CG
.removeFunctionFromModule(F
);