Fix comment for consistency sake.
[llvm/avr.git] / lib / Transforms / IPO / DeadArgumentElimination.cpp
blob79a32f02aace813611df9b3c7e66c1421517edbc
1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions. Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions. This
13 // pass also deletes dead return values in a similar way.
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "deadargelim"
21 #include "llvm/Transforms/IPO.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constant.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CallSite.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/Compiler.h"
37 #include <map>
38 #include <set>
39 using namespace llvm;
41 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
42 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
44 namespace {
45 /// DAE - The dead argument elimination pass.
46 ///
47 class VISIBILITY_HIDDEN DAE : public ModulePass {
48 public:
50 /// Struct that represents (part of) either a return value or a function
51 /// argument. Used so that arguments and return values can be used
52 /// interchangably.
53 struct RetOrArg {
54 RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
55 IsArg(IsArg) {}
56 const Function *F;
57 unsigned Idx;
58 bool IsArg;
60 /// Make RetOrArg comparable, so we can put it into a map.
61 bool operator<(const RetOrArg &O) const {
62 if (F != O.F)
63 return F < O.F;
64 else if (Idx != O.Idx)
65 return Idx < O.Idx;
66 else
67 return IsArg < O.IsArg;
70 /// Make RetOrArg comparable, so we can easily iterate the multimap.
71 bool operator==(const RetOrArg &O) const {
72 return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
75 std::string getDescription() const {
76 return std::string((IsArg ? "Argument #" : "Return value #"))
77 + utostr(Idx) + " of function " + F->getNameStr();
81 /// Liveness enum - During our initial pass over the program, we determine
82 /// that things are either alive or maybe alive. We don't mark anything
83 /// explicitly dead (even if we know they are), since anything not alive
84 /// with no registered uses (in Uses) will never be marked alive and will
85 /// thus become dead in the end.
86 enum Liveness { Live, MaybeLive };
88 /// Convenience wrapper
89 RetOrArg CreateRet(const Function *F, unsigned Idx) {
90 return RetOrArg(F, Idx, false);
92 /// Convenience wrapper
93 RetOrArg CreateArg(const Function *F, unsigned Idx) {
94 return RetOrArg(F, Idx, true);
97 typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98 /// This maps a return value or argument to any MaybeLive return values or
99 /// arguments it uses. This allows the MaybeLive values to be marked live
100 /// when any of its users is marked live.
101 /// For example (indices are left out for clarity):
102 /// - Uses[ret F] = ret G
103 /// This means that F calls G, and F returns the value returned by G.
104 /// - Uses[arg F] = ret G
105 /// This means that some function calls G and passes its result as an
106 /// argument to F.
107 /// - Uses[ret F] = arg F
108 /// This means that F returns one of its own arguments.
109 /// - Uses[arg F] = arg G
110 /// This means that G calls F and passes one of its own (G's) arguments
111 /// directly to F.
112 UseMap Uses;
114 typedef std::set<RetOrArg> LiveSet;
115 typedef std::set<const Function*> LiveFuncSet;
117 /// This set contains all values that have been determined to be live.
118 LiveSet LiveValues;
119 /// This set contains all values that are cannot be changed in any way.
120 LiveFuncSet LiveFunctions;
122 typedef SmallVector<RetOrArg, 5> UseVector;
124 public:
125 static char ID; // Pass identification, replacement for typeid
126 DAE() : ModulePass(&ID) {}
127 bool runOnModule(Module &M);
129 virtual bool ShouldHackArguments() const { return false; }
131 private:
132 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
133 Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
134 unsigned RetValNum = 0);
135 Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
137 void SurveyFunction(Function &F);
138 void MarkValue(const RetOrArg &RA, Liveness L,
139 const UseVector &MaybeLiveUses);
140 void MarkLive(const RetOrArg &RA);
141 void MarkLive(const Function &F);
142 void PropagateLiveness(const RetOrArg &RA);
143 bool RemoveDeadStuffFromFunction(Function *F);
144 bool DeleteDeadVarargs(Function &Fn);
149 char DAE::ID = 0;
150 static RegisterPass<DAE>
151 X("deadargelim", "Dead Argument Elimination");
153 namespace {
154 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
155 /// deletes arguments to functions which are external. This is only for use
156 /// by bugpoint.
157 struct DAH : public DAE {
158 static char ID;
159 virtual bool ShouldHackArguments() const { return true; }
163 char DAH::ID = 0;
164 static RegisterPass<DAH>
165 Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
167 /// createDeadArgEliminationPass - This pass removes arguments from functions
168 /// which are not used by the body of the function.
170 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
171 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
173 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
174 /// llvm.vastart is never called, the varargs list is dead for the function.
175 bool DAE::DeleteDeadVarargs(Function &Fn) {
176 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
177 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
179 // Ensure that the function is only directly called.
180 if (Fn.hasAddressTaken())
181 return false;
183 // Okay, we know we can transform this function if safe. Scan its body
184 // looking for calls to llvm.vastart.
185 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
186 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
187 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
188 if (II->getIntrinsicID() == Intrinsic::vastart)
189 return false;
194 // If we get here, there are no calls to llvm.vastart in the function body,
195 // remove the "..." and adjust all the calls.
197 // Start by computing a new prototype for the function, which is the same as
198 // the old function, but doesn't have isVarArg set.
199 const FunctionType *FTy = Fn.getFunctionType();
201 std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
202 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
203 Params, false);
204 unsigned NumArgs = Params.size();
206 // Create the new function body and insert it into the module...
207 Function *NF = Function::Create(NFTy, Fn.getLinkage());
208 NF->copyAttributesFrom(&Fn);
209 Fn.getParent()->getFunctionList().insert(&Fn, NF);
210 NF->takeName(&Fn);
212 // Loop over all of the callers of the function, transforming the call sites
213 // to pass in a smaller number of arguments into the new function.
215 std::vector<Value*> Args;
216 while (!Fn.use_empty()) {
217 CallSite CS = CallSite::get(Fn.use_back());
218 Instruction *Call = CS.getInstruction();
220 // Pass all the same arguments.
221 Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
223 // Drop any attributes that were on the vararg arguments.
224 AttrListPtr PAL = CS.getAttributes();
225 if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
226 SmallVector<AttributeWithIndex, 8> AttributesVec;
227 for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
228 AttributesVec.push_back(PAL.getSlot(i));
229 if (Attributes FnAttrs = PAL.getFnAttributes())
230 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
231 PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
234 Instruction *New;
235 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
236 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
237 Args.begin(), Args.end(), "", Call);
238 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
239 cast<InvokeInst>(New)->setAttributes(PAL);
240 } else {
241 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
242 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
243 cast<CallInst>(New)->setAttributes(PAL);
244 if (cast<CallInst>(Call)->isTailCall())
245 cast<CallInst>(New)->setTailCall();
247 Args.clear();
249 if (!Call->use_empty())
250 Call->replaceAllUsesWith(New);
252 New->takeName(Call);
254 // Finally, remove the old call from the program, reducing the use-count of
255 // F.
256 Call->eraseFromParent();
259 // Since we have now created the new function, splice the body of the old
260 // function right into the new function, leaving the old rotting hulk of the
261 // function empty.
262 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
264 // Loop over the argument list, transfering uses of the old arguments over to
265 // the new arguments, also transfering over the names as well. While we're at
266 // it, remove the dead arguments from the DeadArguments list.
268 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
269 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
270 // Move the name and users over to the new version.
271 I->replaceAllUsesWith(I2);
272 I2->takeName(I);
275 // Finally, nuke the old function.
276 Fn.eraseFromParent();
277 return true;
280 /// Convenience function that returns the number of return values. It returns 0
281 /// for void functions and 1 for functions not returning a struct. It returns
282 /// the number of struct elements for functions returning a struct.
283 static unsigned NumRetVals(const Function *F) {
284 if (F->getReturnType() == Type::getVoidTy(F->getContext()))
285 return 0;
286 else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
287 return STy->getNumElements();
288 else
289 return 1;
292 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
293 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
294 /// liveness of Use.
295 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
296 // We're live if our use or its Function is already marked as live.
297 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
298 return Live;
300 // We're maybe live otherwise, but remember that we must become live if
301 // Use becomes live.
302 MaybeLiveUses.push_back(Use);
303 return MaybeLive;
307 /// SurveyUse - This looks at a single use of an argument or return value
308 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
309 /// if it causes the used value to become MaybeAlive.
311 /// RetValNum is the return value number to use when this use is used in a
312 /// return instruction. This is used in the recursion, you should always leave
313 /// it at 0.
314 DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
315 unsigned RetValNum) {
316 Value *V = *U;
317 if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
318 // The value is returned from a function. It's only live when the
319 // function's return value is live. We use RetValNum here, for the case
320 // that U is really a use of an insertvalue instruction that uses the
321 // orginal Use.
322 RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
323 // We might be live, depending on the liveness of Use.
324 return MarkIfNotLive(Use, MaybeLiveUses);
326 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
327 if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
328 && IV->hasIndices())
329 // The use we are examining is inserted into an aggregate. Our liveness
330 // depends on all uses of that aggregate, but if it is used as a return
331 // value, only index at which we were inserted counts.
332 RetValNum = *IV->idx_begin();
334 // Note that if we are used as the aggregate operand to the insertvalue,
335 // we don't change RetValNum, but do survey all our uses.
337 Liveness Result = MaybeLive;
338 for (Value::use_iterator I = IV->use_begin(),
339 E = V->use_end(); I != E; ++I) {
340 Result = SurveyUse(I, MaybeLiveUses, RetValNum);
341 if (Result == Live)
342 break;
344 return Result;
346 CallSite CS = CallSite::get(V);
347 if (CS.getInstruction()) {
348 Function *F = CS.getCalledFunction();
349 if (F) {
350 // Used in a direct call.
352 // Find the argument number. We know for sure that this use is an
353 // argument, since if it was the function argument this would be an
354 // indirect call and the we know can't be looking at a value of the
355 // label type (for the invoke instruction).
356 unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
358 if (ArgNo >= F->getFunctionType()->getNumParams())
359 // The value is passed in through a vararg! Must be live.
360 return Live;
362 assert(CS.getArgument(ArgNo)
363 == CS.getInstruction()->getOperand(U.getOperandNo())
364 && "Argument is not where we expected it");
366 // Value passed to a normal call. It's only live when the corresponding
367 // argument to the called function turns out live.
368 RetOrArg Use = CreateArg(F, ArgNo);
369 return MarkIfNotLive(Use, MaybeLiveUses);
372 // Used in any other way? Value must be live.
373 return Live;
376 /// SurveyUses - This looks at all the uses of the given value
377 /// Returns the Liveness deduced from the uses of this value.
379 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
380 /// the result is Live, MaybeLiveUses might be modified but its content should
381 /// be ignored (since it might not be complete).
382 DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
383 // Assume it's dead (which will only hold if there are no uses at all..).
384 Liveness Result = MaybeLive;
385 // Check each use.
386 for (Value::use_iterator I = V->use_begin(),
387 E = V->use_end(); I != E; ++I) {
388 Result = SurveyUse(I, MaybeLiveUses);
389 if (Result == Live)
390 break;
392 return Result;
395 // SurveyFunction - This performs the initial survey of the specified function,
396 // checking out whether or not it uses any of its incoming arguments or whether
397 // any callers use the return value. This fills in the LiveValues set and Uses
398 // map.
400 // We consider arguments of non-internal functions to be intrinsically alive as
401 // well as arguments to functions which have their "address taken".
403 void DAE::SurveyFunction(Function &F) {
404 unsigned RetCount = NumRetVals(&F);
405 // Assume all return values are dead
406 typedef SmallVector<Liveness, 5> RetVals;
407 RetVals RetValLiveness(RetCount, MaybeLive);
409 typedef SmallVector<UseVector, 5> RetUses;
410 // These vectors map each return value to the uses that make it MaybeLive, so
411 // we can add those to the Uses map if the return value really turns out to be
412 // MaybeLive. Initialized to a list of RetCount empty lists.
413 RetUses MaybeLiveRetUses(RetCount);
415 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
416 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
417 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
418 != F.getFunctionType()->getReturnType()) {
419 // We don't support old style multiple return values.
420 MarkLive(F);
421 return;
424 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
425 MarkLive(F);
426 return;
429 DEBUG(errs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
430 // Keep track of the number of live retvals, so we can skip checks once all
431 // of them turn out to be live.
432 unsigned NumLiveRetVals = 0;
433 const Type *STy = dyn_cast<StructType>(F.getReturnType());
434 // Loop all uses of the function.
435 for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
436 // If the function is PASSED IN as an argument, its address has been
437 // taken.
438 CallSite CS = CallSite::get(*I);
439 if (!CS.getInstruction() || !CS.isCallee(I)) {
440 MarkLive(F);
441 return;
444 // If this use is anything other than a call site, the function is alive.
445 Instruction *TheCall = CS.getInstruction();
446 if (!TheCall) { // Not a direct call site?
447 MarkLive(F);
448 return;
451 // If we end up here, we are looking at a direct call to our function.
453 // Now, check how our return value(s) is/are used in this caller. Don't
454 // bother checking return values if all of them are live already.
455 if (NumLiveRetVals != RetCount) {
456 if (STy) {
457 // Check all uses of the return value.
458 for (Value::use_iterator I = TheCall->use_begin(),
459 E = TheCall->use_end(); I != E; ++I) {
460 ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
461 if (Ext && Ext->hasIndices()) {
462 // This use uses a part of our return value, survey the uses of
463 // that part and store the results for this index only.
464 unsigned Idx = *Ext->idx_begin();
465 if (RetValLiveness[Idx] != Live) {
466 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
467 if (RetValLiveness[Idx] == Live)
468 NumLiveRetVals++;
470 } else {
471 // Used by something else than extractvalue. Mark all return
472 // values as live.
473 for (unsigned i = 0; i != RetCount; ++i )
474 RetValLiveness[i] = Live;
475 NumLiveRetVals = RetCount;
476 break;
479 } else {
480 // Single return value
481 RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
482 if (RetValLiveness[0] == Live)
483 NumLiveRetVals = RetCount;
488 // Now we've inspected all callers, record the liveness of our return values.
489 for (unsigned i = 0; i != RetCount; ++i)
490 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
492 DEBUG(errs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
494 // Now, check all of our arguments.
495 unsigned i = 0;
496 UseVector MaybeLiveArgUses;
497 for (Function::arg_iterator AI = F.arg_begin(),
498 E = F.arg_end(); AI != E; ++AI, ++i) {
499 // See what the effect of this use is (recording any uses that cause
500 // MaybeLive in MaybeLiveArgUses).
501 Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
502 // Mark the result.
503 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
504 // Clear the vector again for the next iteration.
505 MaybeLiveArgUses.clear();
509 /// MarkValue - This function marks the liveness of RA depending on L. If L is
510 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
511 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
512 /// live later on.
513 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
514 const UseVector &MaybeLiveUses) {
515 switch (L) {
516 case Live: MarkLive(RA); break;
517 case MaybeLive:
519 // Note any uses of this value, so this return value can be
520 // marked live whenever one of the uses becomes live.
521 for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
522 UE = MaybeLiveUses.end(); UI != UE; ++UI)
523 Uses.insert(std::make_pair(*UI, RA));
524 break;
529 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
530 /// changed in any way. Additionally,
531 /// mark any values that are used as this function's parameters or by its return
532 /// values (according to Uses) live as well.
533 void DAE::MarkLive(const Function &F) {
534 DEBUG(errs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
535 // Mark the function as live.
536 LiveFunctions.insert(&F);
537 // Mark all arguments as live.
538 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
539 PropagateLiveness(CreateArg(&F, i));
540 // Mark all return values as live.
541 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
542 PropagateLiveness(CreateRet(&F, i));
545 /// MarkLive - Mark the given return value or argument as live. Additionally,
546 /// mark any values that are used by this value (according to Uses) live as
547 /// well.
548 void DAE::MarkLive(const RetOrArg &RA) {
549 if (LiveFunctions.count(RA.F))
550 return; // Function was already marked Live.
552 if (!LiveValues.insert(RA).second)
553 return; // We were already marked Live.
555 DEBUG(errs() << "DAE - Marking " << RA.getDescription() << " live\n");
556 PropagateLiveness(RA);
559 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
560 /// to any other values it uses (according to Uses).
561 void DAE::PropagateLiveness(const RetOrArg &RA) {
562 // We don't use upper_bound (or equal_range) here, because our recursive call
563 // to ourselves is likely to cause the upper_bound (which is the first value
564 // not belonging to RA) to become erased and the iterator invalidated.
565 UseMap::iterator Begin = Uses.lower_bound(RA);
566 UseMap::iterator E = Uses.end();
567 UseMap::iterator I;
568 for (I = Begin; I != E && I->first == RA; ++I)
569 MarkLive(I->second);
571 // Erase RA from the Uses map (from the lower bound to wherever we ended up
572 // after the loop).
573 Uses.erase(Begin, I);
576 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
577 // that are not in LiveValues. Transform the function and all of the callees of
578 // the function to not have these arguments and return values.
580 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
581 // Don't modify fully live functions
582 if (LiveFunctions.count(F))
583 return false;
585 // Start by computing a new prototype for the function, which is the same as
586 // the old function, but has fewer arguments and a different return type.
587 const FunctionType *FTy = F->getFunctionType();
588 std::vector<const Type*> Params;
590 // Set up to build a new list of parameter attributes.
591 SmallVector<AttributeWithIndex, 8> AttributesVec;
592 const AttrListPtr &PAL = F->getAttributes();
594 // The existing function return attributes.
595 Attributes RAttrs = PAL.getRetAttributes();
596 Attributes FnAttrs = PAL.getFnAttributes();
598 // Find out the new return value.
600 const Type *RetTy = FTy->getReturnType();
601 const Type *NRetTy = NULL;
602 unsigned RetCount = NumRetVals(F);
604 // -1 means unused, other numbers are the new index
605 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
606 std::vector<const Type*> RetTypes;
607 if (RetTy == Type::getVoidTy(F->getContext())) {
608 NRetTy = Type::getVoidTy(F->getContext());
609 } else {
610 const StructType *STy = dyn_cast<StructType>(RetTy);
611 if (STy)
612 // Look at each of the original return values individually.
613 for (unsigned i = 0; i != RetCount; ++i) {
614 RetOrArg Ret = CreateRet(F, i);
615 if (LiveValues.erase(Ret)) {
616 RetTypes.push_back(STy->getElementType(i));
617 NewRetIdxs[i] = RetTypes.size() - 1;
618 } else {
619 ++NumRetValsEliminated;
620 DEBUG(errs() << "DAE - Removing return value " << i << " from "
621 << F->getName() << "\n");
624 else
625 // We used to return a single value.
626 if (LiveValues.erase(CreateRet(F, 0))) {
627 RetTypes.push_back(RetTy);
628 NewRetIdxs[0] = 0;
629 } else {
630 DEBUG(errs() << "DAE - Removing return value from " << F->getName()
631 << "\n");
632 ++NumRetValsEliminated;
634 if (RetTypes.size() > 1)
635 // More than one return type? Return a struct with them. Also, if we used
636 // to return a struct and didn't change the number of return values,
637 // return a struct again. This prevents changing {something} into
638 // something and {} into void.
639 // Make the new struct packed if we used to return a packed struct
640 // already.
641 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
642 else if (RetTypes.size() == 1)
643 // One return type? Just a simple value then, but only if we didn't use to
644 // return a struct with that simple value before.
645 NRetTy = RetTypes.front();
646 else if (RetTypes.size() == 0)
647 // No return types? Make it void, but only if we didn't use to return {}.
648 NRetTy = Type::getVoidTy(F->getContext());
651 assert(NRetTy && "No new return type found?");
653 // Remove any incompatible attributes, but only if we removed all return
654 // values. Otherwise, ensure that we don't have any conflicting attributes
655 // here. Currently, this should not be possible, but special handling might be
656 // required when new return value attributes are added.
657 if (NRetTy == Type::getVoidTy(F->getContext()))
658 RAttrs &= ~Attribute::typeIncompatible(NRetTy);
659 else
660 assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
661 && "Return attributes no longer compatible?");
663 if (RAttrs)
664 AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
666 // Remember which arguments are still alive.
667 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
668 // Construct the new parameter list from non-dead arguments. Also construct
669 // a new set of parameter attributes to correspond. Skip the first parameter
670 // attribute, since that belongs to the return value.
671 unsigned i = 0;
672 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
673 I != E; ++I, ++i) {
674 RetOrArg Arg = CreateArg(F, i);
675 if (LiveValues.erase(Arg)) {
676 Params.push_back(I->getType());
677 ArgAlive[i] = true;
679 // Get the original parameter attributes (skipping the first one, that is
680 // for the return value.
681 if (Attributes Attrs = PAL.getParamAttributes(i + 1))
682 AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
683 } else {
684 ++NumArgumentsEliminated;
685 DEBUG(errs() << "DAE - Removing argument " << i << " (" << I->getName()
686 << ") from " << F->getName() << "\n");
690 if (FnAttrs != Attribute::None)
691 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
693 // Reconstruct the AttributesList based on the vector we constructed.
694 AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
696 // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
697 // have zero fixed arguments.
699 // Note that we apply this hack for a vararg fuction that does not have any
700 // arguments anymore, but did have them before (so don't bother fixing
701 // functions that were already broken wrt CWriter).
702 bool ExtraArgHack = false;
703 if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
704 ExtraArgHack = true;
705 Params.push_back(Type::getInt32Ty(F->getContext()));
708 // Create the new function type based on the recomputed parameters.
709 FunctionType *NFTy = FunctionType::get(NRetTy, Params,
710 FTy->isVarArg());
712 // No change?
713 if (NFTy == FTy)
714 return false;
716 // Create the new function body and insert it into the module...
717 Function *NF = Function::Create(NFTy, F->getLinkage());
718 NF->copyAttributesFrom(F);
719 NF->setAttributes(NewPAL);
720 // Insert the new function before the old function, so we won't be processing
721 // it again.
722 F->getParent()->getFunctionList().insert(F, NF);
723 NF->takeName(F);
725 // Loop over all of the callers of the function, transforming the call sites
726 // to pass in a smaller number of arguments into the new function.
728 std::vector<Value*> Args;
729 while (!F->use_empty()) {
730 CallSite CS = CallSite::get(F->use_back());
731 Instruction *Call = CS.getInstruction();
733 AttributesVec.clear();
734 const AttrListPtr &CallPAL = CS.getAttributes();
736 // The call return attributes.
737 Attributes RAttrs = CallPAL.getRetAttributes();
738 Attributes FnAttrs = CallPAL.getFnAttributes();
739 // Adjust in case the function was changed to return void.
740 RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
741 if (RAttrs)
742 AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
744 // Declare these outside of the loops, so we can reuse them for the second
745 // loop, which loops the varargs.
746 CallSite::arg_iterator I = CS.arg_begin();
747 unsigned i = 0;
748 // Loop over those operands, corresponding to the normal arguments to the
749 // original function, and add those that are still alive.
750 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
751 if (ArgAlive[i]) {
752 Args.push_back(*I);
753 // Get original parameter attributes, but skip return attributes.
754 if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
755 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
758 if (ExtraArgHack)
759 Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
761 // Push any varargs arguments on the list. Don't forget their attributes.
762 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
763 Args.push_back(*I);
764 if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
765 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
768 if (FnAttrs != Attribute::None)
769 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
771 // Reconstruct the AttributesList based on the vector we constructed.
772 AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
773 AttributesVec.end());
775 Instruction *New;
776 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
777 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
778 Args.begin(), Args.end(), "", Call);
779 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
780 cast<InvokeInst>(New)->setAttributes(NewCallPAL);
781 } else {
782 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
783 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
784 cast<CallInst>(New)->setAttributes(NewCallPAL);
785 if (cast<CallInst>(Call)->isTailCall())
786 cast<CallInst>(New)->setTailCall();
788 Args.clear();
790 if (!Call->use_empty()) {
791 if (New->getType() == Call->getType()) {
792 // Return type not changed? Just replace users then.
793 Call->replaceAllUsesWith(New);
794 New->takeName(Call);
795 } else if (New->getType() == Type::getVoidTy(F->getContext())) {
796 // Our return value has uses, but they will get removed later on.
797 // Replace by null for now.
798 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
799 } else {
800 assert(isa<StructType>(RetTy) &&
801 "Return type changed, but not into a void. The old return type"
802 " must have been a struct!");
803 Instruction *InsertPt = Call;
804 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
805 BasicBlock::iterator IP = II->getNormalDest()->begin();
806 while (isa<PHINode>(IP)) ++IP;
807 InsertPt = IP;
810 // We used to return a struct. Instead of doing smart stuff with all the
811 // uses of this struct, we will just rebuild it using
812 // extract/insertvalue chaining and let instcombine clean that up.
814 // Start out building up our return value from undef
815 Value *RetVal = UndefValue::get(RetTy);
816 for (unsigned i = 0; i != RetCount; ++i)
817 if (NewRetIdxs[i] != -1) {
818 Value *V;
819 if (RetTypes.size() > 1)
820 // We are still returning a struct, so extract the value from our
821 // return value
822 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
823 InsertPt);
824 else
825 // We are now returning a single element, so just insert that
826 V = New;
827 // Insert the value at the old position
828 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
830 // Now, replace all uses of the old call instruction with the return
831 // struct we built
832 Call->replaceAllUsesWith(RetVal);
833 New->takeName(Call);
837 // Finally, remove the old call from the program, reducing the use-count of
838 // F.
839 Call->eraseFromParent();
842 // Since we have now created the new function, splice the body of the old
843 // function right into the new function, leaving the old rotting hulk of the
844 // function empty.
845 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
847 // Loop over the argument list, transfering uses of the old arguments over to
848 // the new arguments, also transfering over the names as well.
849 i = 0;
850 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
851 I2 = NF->arg_begin(); I != E; ++I, ++i)
852 if (ArgAlive[i]) {
853 // If this is a live argument, move the name and users over to the new
854 // version.
855 I->replaceAllUsesWith(I2);
856 I2->takeName(I);
857 ++I2;
858 } else {
859 // If this argument is dead, replace any uses of it with null constants
860 // (these are guaranteed to become unused later on).
861 I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
864 // If we change the return value of the function we must rewrite any return
865 // instructions. Check this now.
866 if (F->getReturnType() != NF->getReturnType())
867 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
868 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
869 Value *RetVal;
871 if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
872 RetVal = 0;
873 } else {
874 assert (isa<StructType>(RetTy));
875 // The original return value was a struct, insert
876 // extractvalue/insertvalue chains to extract only the values we need
877 // to return and insert them into our new result.
878 // This does generate messy code, but we'll let it to instcombine to
879 // clean that up.
880 Value *OldRet = RI->getOperand(0);
881 // Start out building up our return value from undef
882 RetVal = UndefValue::get(NRetTy);
883 for (unsigned i = 0; i != RetCount; ++i)
884 if (NewRetIdxs[i] != -1) {
885 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
886 "oldret", RI);
887 if (RetTypes.size() > 1) {
888 // We're still returning a struct, so reinsert the value into
889 // our new return value at the new index
891 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
892 "newret", RI);
893 } else {
894 // We are now only returning a simple value, so just return the
895 // extracted value.
896 RetVal = EV;
900 // Replace the return instruction with one returning the new return
901 // value (possibly 0 if we became void).
902 ReturnInst::Create(F->getContext(), RetVal, RI);
903 BB->getInstList().erase(RI);
906 // Now that the old function is dead, delete it.
907 F->eraseFromParent();
909 return true;
912 bool DAE::runOnModule(Module &M) {
913 bool Changed = false;
915 // First pass: Do a simple check to see if any functions can have their "..."
916 // removed. We can do this if they never call va_start. This loop cannot be
917 // fused with the next loop, because deleting a function invalidates
918 // information computed while surveying other functions.
919 DEBUG(errs() << "DAE - Deleting dead varargs\n");
920 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
921 Function &F = *I++;
922 if (F.getFunctionType()->isVarArg())
923 Changed |= DeleteDeadVarargs(F);
926 // Second phase:loop through the module, determining which arguments are live.
927 // We assume all arguments are dead unless proven otherwise (allowing us to
928 // determine that dead arguments passed into recursive functions are dead).
930 DEBUG(errs() << "DAE - Determining liveness\n");
931 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
932 SurveyFunction(*I);
934 // Now, remove all dead arguments and return values from each function in
935 // turn
936 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
937 // Increment now, because the function will probably get removed (ie
938 // replaced by a new one).
939 Function *F = I++;
940 Changed |= RemoveDeadStuffFromFunction(F);
942 return Changed;