Fix comment for consistency sake.
[llvm/avr.git] / lib / Transforms / Scalar / SCCP.cpp
blobe1f0ba535cd634c2e131feaed287d812a551a953
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
18 // Notice that:
19 // * This pass has a habit of making definitions be dead. It is a good idea
20 // to to run a DCE pass sometime after running this pass.
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "sccp"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Support/CallSite.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/InstVisitor.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/SmallSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include <algorithm>
47 #include <map>
48 using namespace llvm;
50 STATISTIC(NumInstRemoved, "Number of instructions removed");
51 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
53 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
54 STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
55 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
56 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
58 namespace {
59 /// LatticeVal class - This class represents the different lattice values that
60 /// an LLVM value may occupy. It is a simple class with value semantics.
61 ///
62 class LatticeVal {
63 enum {
64 /// undefined - This LLVM Value has no known value yet.
65 undefined,
67 /// constant - This LLVM Value has a specific constant value.
68 constant,
70 /// forcedconstant - This LLVM Value was thought to be undef until
71 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
72 /// with another (different) constant, it goes to overdefined, instead of
73 /// asserting.
74 forcedconstant,
76 /// overdefined - This instruction is not known to be constant, and we know
77 /// it has a value.
78 overdefined
79 } LatticeValue; // The current lattice position
81 Constant *ConstantVal; // If Constant value, the current value
82 public:
83 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
85 // markOverdefined - Return true if this is a new status to be in...
86 inline bool markOverdefined() {
87 if (LatticeValue != overdefined) {
88 LatticeValue = overdefined;
89 return true;
91 return false;
94 // markConstant - Return true if this is a new status for us.
95 inline bool markConstant(Constant *V) {
96 if (LatticeValue != constant) {
97 if (LatticeValue == undefined) {
98 LatticeValue = constant;
99 assert(V && "Marking constant with NULL");
100 ConstantVal = V;
101 } else {
102 assert(LatticeValue == forcedconstant &&
103 "Cannot move from overdefined to constant!");
104 // Stay at forcedconstant if the constant is the same.
105 if (V == ConstantVal) return false;
107 // Otherwise, we go to overdefined. Assumptions made based on the
108 // forced value are possibly wrong. Assuming this is another constant
109 // could expose a contradiction.
110 LatticeValue = overdefined;
112 return true;
113 } else {
114 assert(ConstantVal == V && "Marking constant with different value");
116 return false;
119 inline void markForcedConstant(Constant *V) {
120 assert(LatticeValue == undefined && "Can't force a defined value!");
121 LatticeValue = forcedconstant;
122 ConstantVal = V;
125 inline bool isUndefined() const { return LatticeValue == undefined; }
126 inline bool isConstant() const {
127 return LatticeValue == constant || LatticeValue == forcedconstant;
129 inline bool isOverdefined() const { return LatticeValue == overdefined; }
131 inline Constant *getConstant() const {
132 assert(isConstant() && "Cannot get the constant of a non-constant!");
133 return ConstantVal;
137 //===----------------------------------------------------------------------===//
139 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
140 /// Constant Propagation.
142 class SCCPSolver : public InstVisitor<SCCPSolver> {
143 LLVMContext *Context;
144 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
145 std::map<Value*, LatticeVal> ValueState; // The state each value is in.
147 /// GlobalValue - If we are tracking any values for the contents of a global
148 /// variable, we keep a mapping from the constant accessor to the element of
149 /// the global, to the currently known value. If the value becomes
150 /// overdefined, it's entry is simply removed from this map.
151 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
153 /// TrackedRetVals - If we are tracking arguments into and the return
154 /// value out of a function, it will have an entry in this map, indicating
155 /// what the known return value for the function is.
156 DenseMap<Function*, LatticeVal> TrackedRetVals;
158 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
159 /// that return multiple values.
160 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
162 // The reason for two worklists is that overdefined is the lowest state
163 // on the lattice, and moving things to overdefined as fast as possible
164 // makes SCCP converge much faster.
165 // By having a separate worklist, we accomplish this because everything
166 // possibly overdefined will become overdefined at the soonest possible
167 // point.
168 SmallVector<Value*, 64> OverdefinedInstWorkList;
169 SmallVector<Value*, 64> InstWorkList;
172 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
174 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
175 /// overdefined, despite the fact that the PHI node is overdefined.
176 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
178 /// KnownFeasibleEdges - Entries in this set are edges which have already had
179 /// PHI nodes retriggered.
180 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
181 DenseSet<Edge> KnownFeasibleEdges;
182 public:
183 void setContext(LLVMContext *C) { Context = C; }
185 /// MarkBlockExecutable - This method can be used by clients to mark all of
186 /// the blocks that are known to be intrinsically live in the processed unit.
187 void MarkBlockExecutable(BasicBlock *BB) {
188 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
189 BBExecutable.insert(BB); // Basic block is executable!
190 BBWorkList.push_back(BB); // Add the block to the work list!
193 /// TrackValueOfGlobalVariable - Clients can use this method to
194 /// inform the SCCPSolver that it should track loads and stores to the
195 /// specified global variable if it can. This is only legal to call if
196 /// performing Interprocedural SCCP.
197 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
198 const Type *ElTy = GV->getType()->getElementType();
199 if (ElTy->isFirstClassType()) {
200 LatticeVal &IV = TrackedGlobals[GV];
201 if (!isa<UndefValue>(GV->getInitializer()))
202 IV.markConstant(GV->getInitializer());
206 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
207 /// and out of the specified function (which cannot have its address taken),
208 /// this method must be called.
209 void AddTrackedFunction(Function *F) {
210 assert(F->hasLocalLinkage() && "Can only track internal functions!");
211 // Add an entry, F -> undef.
212 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
213 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
214 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
215 LatticeVal()));
216 } else
217 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
220 /// Solve - Solve for constants and executable blocks.
222 void Solve();
224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
225 /// that branches on undef values cannot reach any of their successors.
226 /// However, this is not a safe assumption. After we solve dataflow, this
227 /// method should be use to handle this. If this returns true, the solver
228 /// should be rerun.
229 bool ResolvedUndefsIn(Function &F);
231 bool isBlockExecutable(BasicBlock *BB) const {
232 return BBExecutable.count(BB);
235 /// getValueMapping - Once we have solved for constants, return the mapping of
236 /// LLVM values to LatticeVals.
237 std::map<Value*, LatticeVal> &getValueMapping() {
238 return ValueState;
241 /// getTrackedRetVals - Get the inferred return value map.
243 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
244 return TrackedRetVals;
247 /// getTrackedGlobals - Get and return the set of inferred initializers for
248 /// global variables.
249 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
250 return TrackedGlobals;
253 inline void markOverdefined(Value *V) {
254 markOverdefined(ValueState[V], V);
257 private:
258 // markConstant - Make a value be marked as "constant". If the value
259 // is not already a constant, add it to the instruction work list so that
260 // the users of the instruction are updated later.
262 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
263 if (IV.markConstant(C)) {
264 DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
265 InstWorkList.push_back(V);
269 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
270 IV.markForcedConstant(C);
271 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
272 InstWorkList.push_back(V);
275 inline void markConstant(Value *V, Constant *C) {
276 markConstant(ValueState[V], V, C);
279 // markOverdefined - Make a value be marked as "overdefined". If the
280 // value is not already overdefined, add it to the overdefined instruction
281 // work list so that the users of the instruction are updated later.
282 inline void markOverdefined(LatticeVal &IV, Value *V) {
283 if (IV.markOverdefined()) {
284 DEBUG(errs() << "markOverdefined: ";
285 if (Function *F = dyn_cast<Function>(V))
286 errs() << "Function '" << F->getName() << "'\n";
287 else
288 errs() << *V << '\n');
289 // Only instructions go on the work list
290 OverdefinedInstWorkList.push_back(V);
294 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
295 if (IV.isOverdefined() || MergeWithV.isUndefined())
296 return; // Noop.
297 if (MergeWithV.isOverdefined())
298 markOverdefined(IV, V);
299 else if (IV.isUndefined())
300 markConstant(IV, V, MergeWithV.getConstant());
301 else if (IV.getConstant() != MergeWithV.getConstant())
302 markOverdefined(IV, V);
305 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
306 return mergeInValue(ValueState[V], V, MergeWithV);
310 // getValueState - Return the LatticeVal object that corresponds to the value.
311 // This function is necessary because not all values should start out in the
312 // underdefined state... Argument's should be overdefined, and
313 // constants should be marked as constants. If a value is not known to be an
314 // Instruction object, then use this accessor to get its value from the map.
316 inline LatticeVal &getValueState(Value *V) {
317 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
318 if (I != ValueState.end()) return I->second; // Common case, in the map
320 if (Constant *C = dyn_cast<Constant>(V)) {
321 if (isa<UndefValue>(V)) {
322 // Nothing to do, remain undefined.
323 } else {
324 LatticeVal &LV = ValueState[C];
325 LV.markConstant(C); // Constants are constant
326 return LV;
329 // All others are underdefined by default...
330 return ValueState[V];
333 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
334 // work list if it is not already executable...
336 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
337 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
338 return; // This edge is already known to be executable!
340 if (BBExecutable.count(Dest)) {
341 DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
342 << " -> " << Dest->getName() << "\n");
344 // The destination is already executable, but we just made an edge
345 // feasible that wasn't before. Revisit the PHI nodes in the block
346 // because they have potentially new operands.
347 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
348 visitPHINode(*cast<PHINode>(I));
350 } else {
351 MarkBlockExecutable(Dest);
355 // getFeasibleSuccessors - Return a vector of booleans to indicate which
356 // successors are reachable from a given terminator instruction.
358 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
360 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
361 // block to the 'To' basic block is currently feasible...
363 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
365 // OperandChangedState - This method is invoked on all of the users of an
366 // instruction that was just changed state somehow.... Based on this
367 // information, we need to update the specified user of this instruction.
369 void OperandChangedState(User *U) {
370 // Only instructions use other variable values!
371 Instruction &I = cast<Instruction>(*U);
372 if (BBExecutable.count(I.getParent())) // Inst is executable?
373 visit(I);
376 private:
377 friend class InstVisitor<SCCPSolver>;
379 // visit implementations - Something changed in this instruction... Either an
380 // operand made a transition, or the instruction is newly executable. Change
381 // the value type of I to reflect these changes if appropriate.
383 void visitPHINode(PHINode &I);
385 // Terminators
386 void visitReturnInst(ReturnInst &I);
387 void visitTerminatorInst(TerminatorInst &TI);
389 void visitCastInst(CastInst &I);
390 void visitSelectInst(SelectInst &I);
391 void visitBinaryOperator(Instruction &I);
392 void visitCmpInst(CmpInst &I);
393 void visitExtractElementInst(ExtractElementInst &I);
394 void visitInsertElementInst(InsertElementInst &I);
395 void visitShuffleVectorInst(ShuffleVectorInst &I);
396 void visitExtractValueInst(ExtractValueInst &EVI);
397 void visitInsertValueInst(InsertValueInst &IVI);
399 // Instructions that cannot be folded away...
400 void visitStoreInst (Instruction &I);
401 void visitLoadInst (LoadInst &I);
402 void visitGetElementPtrInst(GetElementPtrInst &I);
403 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
404 void visitInvokeInst (InvokeInst &II) {
405 visitCallSite(CallSite::get(&II));
406 visitTerminatorInst(II);
408 void visitCallSite (CallSite CS);
409 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
410 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
411 void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
412 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
413 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
414 void visitFreeInst (Instruction &I) { /*returns void*/ }
416 void visitInstruction(Instruction &I) {
417 // If a new instruction is added to LLVM that we don't handle...
418 errs() << "SCCP: Don't know how to handle: " << I;
419 markOverdefined(&I); // Just in case
423 } // end anonymous namespace
426 // getFeasibleSuccessors - Return a vector of booleans to indicate which
427 // successors are reachable from a given terminator instruction.
429 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
430 SmallVector<bool, 16> &Succs) {
431 Succs.resize(TI.getNumSuccessors());
432 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
433 if (BI->isUnconditional()) {
434 Succs[0] = true;
435 } else {
436 LatticeVal &BCValue = getValueState(BI->getCondition());
437 if (BCValue.isOverdefined() ||
438 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
439 // Overdefined condition variables, and branches on unfoldable constant
440 // conditions, mean the branch could go either way.
441 Succs[0] = Succs[1] = true;
442 } else if (BCValue.isConstant()) {
443 // Constant condition variables mean the branch can only go a single way
444 Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
447 } else if (isa<InvokeInst>(&TI)) {
448 // Invoke instructions successors are always executable.
449 Succs[0] = Succs[1] = true;
450 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
451 LatticeVal &SCValue = getValueState(SI->getCondition());
452 if (SCValue.isOverdefined() || // Overdefined condition?
453 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
454 // All destinations are executable!
455 Succs.assign(TI.getNumSuccessors(), true);
456 } else if (SCValue.isConstant())
457 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
458 } else {
459 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
464 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
465 // block to the 'To' basic block is currently feasible...
467 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
468 assert(BBExecutable.count(To) && "Dest should always be alive!");
470 // Make sure the source basic block is executable!!
471 if (!BBExecutable.count(From)) return false;
473 // Check to make sure this edge itself is actually feasible now...
474 TerminatorInst *TI = From->getTerminator();
475 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
476 if (BI->isUnconditional())
477 return true;
478 else {
479 LatticeVal &BCValue = getValueState(BI->getCondition());
480 if (BCValue.isOverdefined()) {
481 // Overdefined condition variables mean the branch could go either way.
482 return true;
483 } else if (BCValue.isConstant()) {
484 // Not branching on an evaluatable constant?
485 if (!isa<ConstantInt>(BCValue.getConstant())) return true;
487 // Constant condition variables mean the branch can only go a single way
488 return BI->getSuccessor(BCValue.getConstant() ==
489 ConstantInt::getFalse(*Context)) == To;
491 return false;
493 } else if (isa<InvokeInst>(TI)) {
494 // Invoke instructions successors are always executable.
495 return true;
496 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
497 LatticeVal &SCValue = getValueState(SI->getCondition());
498 if (SCValue.isOverdefined()) { // Overdefined condition?
499 // All destinations are executable!
500 return true;
501 } else if (SCValue.isConstant()) {
502 Constant *CPV = SCValue.getConstant();
503 if (!isa<ConstantInt>(CPV))
504 return true; // not a foldable constant?
506 // Make sure to skip the "default value" which isn't a value
507 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
508 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
509 return SI->getSuccessor(i) == To;
511 // Constant value not equal to any of the branches... must execute
512 // default branch then...
513 return SI->getDefaultDest() == To;
515 return false;
516 } else {
517 #ifndef NDEBUG
518 errs() << "Unknown terminator instruction: " << *TI << '\n';
519 #endif
520 llvm_unreachable(0);
524 // visit Implementations - Something changed in this instruction... Either an
525 // operand made a transition, or the instruction is newly executable. Change
526 // the value type of I to reflect these changes if appropriate. This method
527 // makes sure to do the following actions:
529 // 1. If a phi node merges two constants in, and has conflicting value coming
530 // from different branches, or if the PHI node merges in an overdefined
531 // value, then the PHI node becomes overdefined.
532 // 2. If a phi node merges only constants in, and they all agree on value, the
533 // PHI node becomes a constant value equal to that.
534 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
535 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
536 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
537 // 6. If a conditional branch has a value that is constant, make the selected
538 // destination executable
539 // 7. If a conditional branch has a value that is overdefined, make all
540 // successors executable.
542 void SCCPSolver::visitPHINode(PHINode &PN) {
543 LatticeVal &PNIV = getValueState(&PN);
544 if (PNIV.isOverdefined()) {
545 // There may be instructions using this PHI node that are not overdefined
546 // themselves. If so, make sure that they know that the PHI node operand
547 // changed.
548 std::multimap<PHINode*, Instruction*>::iterator I, E;
549 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
550 if (I != E) {
551 SmallVector<Instruction*, 16> Users;
552 for (; I != E; ++I) Users.push_back(I->second);
553 while (!Users.empty()) {
554 visit(Users.back());
555 Users.pop_back();
558 return; // Quick exit
561 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
562 // and slow us down a lot. Just mark them overdefined.
563 if (PN.getNumIncomingValues() > 64) {
564 markOverdefined(PNIV, &PN);
565 return;
568 // Look at all of the executable operands of the PHI node. If any of them
569 // are overdefined, the PHI becomes overdefined as well. If they are all
570 // constant, and they agree with each other, the PHI becomes the identical
571 // constant. If they are constant and don't agree, the PHI is overdefined.
572 // If there are no executable operands, the PHI remains undefined.
574 Constant *OperandVal = 0;
575 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
576 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
577 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
579 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
580 if (IV.isOverdefined()) { // PHI node becomes overdefined!
581 markOverdefined(&PN);
582 return;
585 if (OperandVal == 0) { // Grab the first value...
586 OperandVal = IV.getConstant();
587 } else { // Another value is being merged in!
588 // There is already a reachable operand. If we conflict with it,
589 // then the PHI node becomes overdefined. If we agree with it, we
590 // can continue on.
592 // Check to see if there are two different constants merging...
593 if (IV.getConstant() != OperandVal) {
594 // Yes there is. This means the PHI node is not constant.
595 // You must be overdefined poor PHI.
597 markOverdefined(&PN); // The PHI node now becomes overdefined
598 return; // I'm done analyzing you
604 // If we exited the loop, this means that the PHI node only has constant
605 // arguments that agree with each other(and OperandVal is the constant) or
606 // OperandVal is null because there are no defined incoming arguments. If
607 // this is the case, the PHI remains undefined.
609 if (OperandVal)
610 markConstant(&PN, OperandVal); // Acquire operand value
613 void SCCPSolver::visitReturnInst(ReturnInst &I) {
614 if (I.getNumOperands() == 0) return; // Ret void
616 Function *F = I.getParent()->getParent();
617 // If we are tracking the return value of this function, merge it in.
618 if (!F->hasLocalLinkage())
619 return;
621 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
622 DenseMap<Function*, LatticeVal>::iterator TFRVI =
623 TrackedRetVals.find(F);
624 if (TFRVI != TrackedRetVals.end() &&
625 !TFRVI->second.isOverdefined()) {
626 LatticeVal &IV = getValueState(I.getOperand(0));
627 mergeInValue(TFRVI->second, F, IV);
628 return;
632 // Handle functions that return multiple values.
633 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
634 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
635 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
636 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
637 if (It == TrackedMultipleRetVals.end()) break;
638 mergeInValue(It->second, F, getValueState(I.getOperand(i)));
640 } else if (!TrackedMultipleRetVals.empty() &&
641 I.getNumOperands() == 1 &&
642 isa<StructType>(I.getOperand(0)->getType())) {
643 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
644 i != e; ++i) {
645 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
646 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
647 if (It == TrackedMultipleRetVals.end()) break;
648 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
649 mergeInValue(It->second, F, getValueState(Val));
654 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
655 SmallVector<bool, 16> SuccFeasible;
656 getFeasibleSuccessors(TI, SuccFeasible);
658 BasicBlock *BB = TI.getParent();
660 // Mark all feasible successors executable...
661 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
662 if (SuccFeasible[i])
663 markEdgeExecutable(BB, TI.getSuccessor(i));
666 void SCCPSolver::visitCastInst(CastInst &I) {
667 Value *V = I.getOperand(0);
668 LatticeVal &VState = getValueState(V);
669 if (VState.isOverdefined()) // Inherit overdefinedness of operand
670 markOverdefined(&I);
671 else if (VState.isConstant()) // Propagate constant value
672 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
673 VState.getConstant(), I.getType()));
676 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
677 Value *Aggr = EVI.getAggregateOperand();
679 // If the operand to the extractvalue is an undef, the result is undef.
680 if (isa<UndefValue>(Aggr))
681 return;
683 // Currently only handle single-index extractvalues.
684 if (EVI.getNumIndices() != 1) {
685 markOverdefined(&EVI);
686 return;
689 Function *F = 0;
690 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
691 F = CI->getCalledFunction();
692 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
693 F = II->getCalledFunction();
695 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
696 // result back!
697 if (F == 0 || TrackedMultipleRetVals.empty()) {
698 markOverdefined(&EVI);
699 return;
702 // See if we are tracking the result of the callee. If not tracking this
703 // function (for example, it is a declaration) just move to overdefined.
704 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
705 markOverdefined(&EVI);
706 return;
709 // Otherwise, the value will be merged in here as a result of CallSite
710 // handling.
713 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
714 Value *Aggr = IVI.getAggregateOperand();
715 Value *Val = IVI.getInsertedValueOperand();
717 // If the operands to the insertvalue are undef, the result is undef.
718 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
719 return;
721 // Currently only handle single-index insertvalues.
722 if (IVI.getNumIndices() != 1) {
723 markOverdefined(&IVI);
724 return;
727 // Currently only handle insertvalue instructions that are in a single-use
728 // chain that builds up a return value.
729 for (const InsertValueInst *TmpIVI = &IVI; ; ) {
730 if (!TmpIVI->hasOneUse()) {
731 markOverdefined(&IVI);
732 return;
734 const Value *V = *TmpIVI->use_begin();
735 if (isa<ReturnInst>(V))
736 break;
737 TmpIVI = dyn_cast<InsertValueInst>(V);
738 if (!TmpIVI) {
739 markOverdefined(&IVI);
740 return;
744 // See if we are tracking the result of the callee.
745 Function *F = IVI.getParent()->getParent();
746 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
747 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
749 // Merge in the inserted member value.
750 if (It != TrackedMultipleRetVals.end())
751 mergeInValue(It->second, F, getValueState(Val));
753 // Mark the aggregate result of the IVI overdefined; any tracking that we do
754 // will be done on the individual member values.
755 markOverdefined(&IVI);
758 void SCCPSolver::visitSelectInst(SelectInst &I) {
759 LatticeVal &CondValue = getValueState(I.getCondition());
760 if (CondValue.isUndefined())
761 return;
762 if (CondValue.isConstant()) {
763 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
764 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
765 : I.getFalseValue()));
766 return;
770 // Otherwise, the condition is overdefined or a constant we can't evaluate.
771 // See if we can produce something better than overdefined based on the T/F
772 // value.
773 LatticeVal &TVal = getValueState(I.getTrueValue());
774 LatticeVal &FVal = getValueState(I.getFalseValue());
776 // select ?, C, C -> C.
777 if (TVal.isConstant() && FVal.isConstant() &&
778 TVal.getConstant() == FVal.getConstant()) {
779 markConstant(&I, FVal.getConstant());
780 return;
783 if (TVal.isUndefined()) { // select ?, undef, X -> X.
784 mergeInValue(&I, FVal);
785 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
786 mergeInValue(&I, TVal);
787 } else {
788 markOverdefined(&I);
792 // Handle BinaryOperators and Shift Instructions...
793 void SCCPSolver::visitBinaryOperator(Instruction &I) {
794 LatticeVal &IV = ValueState[&I];
795 if (IV.isOverdefined()) return;
797 LatticeVal &V1State = getValueState(I.getOperand(0));
798 LatticeVal &V2State = getValueState(I.getOperand(1));
800 if (V1State.isOverdefined() || V2State.isOverdefined()) {
801 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
802 // operand is overdefined.
803 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
804 LatticeVal *NonOverdefVal = 0;
805 if (!V1State.isOverdefined()) {
806 NonOverdefVal = &V1State;
807 } else if (!V2State.isOverdefined()) {
808 NonOverdefVal = &V2State;
811 if (NonOverdefVal) {
812 if (NonOverdefVal->isUndefined()) {
813 // Could annihilate value.
814 if (I.getOpcode() == Instruction::And)
815 markConstant(IV, &I, Constant::getNullValue(I.getType()));
816 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
817 markConstant(IV, &I, Constant::getAllOnesValue(PT));
818 else
819 markConstant(IV, &I,
820 Constant::getAllOnesValue(I.getType()));
821 return;
822 } else {
823 if (I.getOpcode() == Instruction::And) {
824 if (NonOverdefVal->getConstant()->isNullValue()) {
825 markConstant(IV, &I, NonOverdefVal->getConstant());
826 return; // X and 0 = 0
828 } else {
829 if (ConstantInt *CI =
830 dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
831 if (CI->isAllOnesValue()) {
832 markConstant(IV, &I, NonOverdefVal->getConstant());
833 return; // X or -1 = -1
841 // If both operands are PHI nodes, it is possible that this instruction has
842 // a constant value, despite the fact that the PHI node doesn't. Check for
843 // this condition now.
844 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
845 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
846 if (PN1->getParent() == PN2->getParent()) {
847 // Since the two PHI nodes are in the same basic block, they must have
848 // entries for the same predecessors. Walk the predecessor list, and
849 // if all of the incoming values are constants, and the result of
850 // evaluating this expression with all incoming value pairs is the
851 // same, then this expression is a constant even though the PHI node
852 // is not a constant!
853 LatticeVal Result;
854 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
855 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
856 BasicBlock *InBlock = PN1->getIncomingBlock(i);
857 LatticeVal &In2 =
858 getValueState(PN2->getIncomingValueForBlock(InBlock));
860 if (In1.isOverdefined() || In2.isOverdefined()) {
861 Result.markOverdefined();
862 break; // Cannot fold this operation over the PHI nodes!
863 } else if (In1.isConstant() && In2.isConstant()) {
864 Constant *V =
865 ConstantExpr::get(I.getOpcode(), In1.getConstant(),
866 In2.getConstant());
867 if (Result.isUndefined())
868 Result.markConstant(V);
869 else if (Result.isConstant() && Result.getConstant() != V) {
870 Result.markOverdefined();
871 break;
876 // If we found a constant value here, then we know the instruction is
877 // constant despite the fact that the PHI nodes are overdefined.
878 if (Result.isConstant()) {
879 markConstant(IV, &I, Result.getConstant());
880 // Remember that this instruction is virtually using the PHI node
881 // operands.
882 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
883 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
884 return;
885 } else if (Result.isUndefined()) {
886 return;
889 // Okay, this really is overdefined now. Since we might have
890 // speculatively thought that this was not overdefined before, and
891 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
892 // make sure to clean out any entries that we put there, for
893 // efficiency.
894 std::multimap<PHINode*, Instruction*>::iterator It, E;
895 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
896 while (It != E) {
897 if (It->second == &I) {
898 UsersOfOverdefinedPHIs.erase(It++);
899 } else
900 ++It;
902 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
903 while (It != E) {
904 if (It->second == &I) {
905 UsersOfOverdefinedPHIs.erase(It++);
906 } else
907 ++It;
911 markOverdefined(IV, &I);
912 } else if (V1State.isConstant() && V2State.isConstant()) {
913 markConstant(IV, &I,
914 ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
915 V2State.getConstant()));
919 // Handle ICmpInst instruction...
920 void SCCPSolver::visitCmpInst(CmpInst &I) {
921 LatticeVal &IV = ValueState[&I];
922 if (IV.isOverdefined()) return;
924 LatticeVal &V1State = getValueState(I.getOperand(0));
925 LatticeVal &V2State = getValueState(I.getOperand(1));
927 if (V1State.isOverdefined() || V2State.isOverdefined()) {
928 // If both operands are PHI nodes, it is possible that this instruction has
929 // a constant value, despite the fact that the PHI node doesn't. Check for
930 // this condition now.
931 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
932 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
933 if (PN1->getParent() == PN2->getParent()) {
934 // Since the two PHI nodes are in the same basic block, they must have
935 // entries for the same predecessors. Walk the predecessor list, and
936 // if all of the incoming values are constants, and the result of
937 // evaluating this expression with all incoming value pairs is the
938 // same, then this expression is a constant even though the PHI node
939 // is not a constant!
940 LatticeVal Result;
941 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
942 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
943 BasicBlock *InBlock = PN1->getIncomingBlock(i);
944 LatticeVal &In2 =
945 getValueState(PN2->getIncomingValueForBlock(InBlock));
947 if (In1.isOverdefined() || In2.isOverdefined()) {
948 Result.markOverdefined();
949 break; // Cannot fold this operation over the PHI nodes!
950 } else if (In1.isConstant() && In2.isConstant()) {
951 Constant *V = ConstantExpr::getCompare(I.getPredicate(),
952 In1.getConstant(),
953 In2.getConstant());
954 if (Result.isUndefined())
955 Result.markConstant(V);
956 else if (Result.isConstant() && Result.getConstant() != V) {
957 Result.markOverdefined();
958 break;
963 // If we found a constant value here, then we know the instruction is
964 // constant despite the fact that the PHI nodes are overdefined.
965 if (Result.isConstant()) {
966 markConstant(IV, &I, Result.getConstant());
967 // Remember that this instruction is virtually using the PHI node
968 // operands.
969 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
970 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
971 return;
972 } else if (Result.isUndefined()) {
973 return;
976 // Okay, this really is overdefined now. Since we might have
977 // speculatively thought that this was not overdefined before, and
978 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
979 // make sure to clean out any entries that we put there, for
980 // efficiency.
981 std::multimap<PHINode*, Instruction*>::iterator It, E;
982 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
983 while (It != E) {
984 if (It->second == &I) {
985 UsersOfOverdefinedPHIs.erase(It++);
986 } else
987 ++It;
989 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
990 while (It != E) {
991 if (It->second == &I) {
992 UsersOfOverdefinedPHIs.erase(It++);
993 } else
994 ++It;
998 markOverdefined(IV, &I);
999 } else if (V1State.isConstant() && V2State.isConstant()) {
1000 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1001 V1State.getConstant(),
1002 V2State.getConstant()));
1006 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1007 // FIXME : SCCP does not handle vectors properly.
1008 markOverdefined(&I);
1009 return;
1011 #if 0
1012 LatticeVal &ValState = getValueState(I.getOperand(0));
1013 LatticeVal &IdxState = getValueState(I.getOperand(1));
1015 if (ValState.isOverdefined() || IdxState.isOverdefined())
1016 markOverdefined(&I);
1017 else if(ValState.isConstant() && IdxState.isConstant())
1018 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1019 IdxState.getConstant()));
1020 #endif
1023 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1024 // FIXME : SCCP does not handle vectors properly.
1025 markOverdefined(&I);
1026 return;
1027 #if 0
1028 LatticeVal &ValState = getValueState(I.getOperand(0));
1029 LatticeVal &EltState = getValueState(I.getOperand(1));
1030 LatticeVal &IdxState = getValueState(I.getOperand(2));
1032 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1033 IdxState.isOverdefined())
1034 markOverdefined(&I);
1035 else if(ValState.isConstant() && EltState.isConstant() &&
1036 IdxState.isConstant())
1037 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1038 EltState.getConstant(),
1039 IdxState.getConstant()));
1040 else if (ValState.isUndefined() && EltState.isConstant() &&
1041 IdxState.isConstant())
1042 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1043 EltState.getConstant(),
1044 IdxState.getConstant()));
1045 #endif
1048 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1049 // FIXME : SCCP does not handle vectors properly.
1050 markOverdefined(&I);
1051 return;
1052 #if 0
1053 LatticeVal &V1State = getValueState(I.getOperand(0));
1054 LatticeVal &V2State = getValueState(I.getOperand(1));
1055 LatticeVal &MaskState = getValueState(I.getOperand(2));
1057 if (MaskState.isUndefined() ||
1058 (V1State.isUndefined() && V2State.isUndefined()))
1059 return; // Undefined output if mask or both inputs undefined.
1061 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1062 MaskState.isOverdefined()) {
1063 markOverdefined(&I);
1064 } else {
1065 // A mix of constant/undef inputs.
1066 Constant *V1 = V1State.isConstant() ?
1067 V1State.getConstant() : UndefValue::get(I.getType());
1068 Constant *V2 = V2State.isConstant() ?
1069 V2State.getConstant() : UndefValue::get(I.getType());
1070 Constant *Mask = MaskState.isConstant() ?
1071 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1072 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1074 #endif
1077 // Handle getelementptr instructions... if all operands are constants then we
1078 // can turn this into a getelementptr ConstantExpr.
1080 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1081 LatticeVal &IV = ValueState[&I];
1082 if (IV.isOverdefined()) return;
1084 SmallVector<Constant*, 8> Operands;
1085 Operands.reserve(I.getNumOperands());
1087 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1088 LatticeVal &State = getValueState(I.getOperand(i));
1089 if (State.isUndefined())
1090 return; // Operands are not resolved yet...
1091 else if (State.isOverdefined()) {
1092 markOverdefined(IV, &I);
1093 return;
1095 assert(State.isConstant() && "Unknown state!");
1096 Operands.push_back(State.getConstant());
1099 Constant *Ptr = Operands[0];
1100 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
1102 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1103 Operands.size()));
1106 void SCCPSolver::visitStoreInst(Instruction &SI) {
1107 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1108 return;
1109 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1110 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1111 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1113 // Get the value we are storing into the global.
1114 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1116 mergeInValue(I->second, GV, PtrVal);
1117 if (I->second.isOverdefined())
1118 TrackedGlobals.erase(I); // No need to keep tracking this!
1122 // Handle load instructions. If the operand is a constant pointer to a constant
1123 // global, we can replace the load with the loaded constant value!
1124 void SCCPSolver::visitLoadInst(LoadInst &I) {
1125 LatticeVal &IV = ValueState[&I];
1126 if (IV.isOverdefined()) return;
1128 LatticeVal &PtrVal = getValueState(I.getOperand(0));
1129 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1130 if (PtrVal.isConstant() && !I.isVolatile()) {
1131 Value *Ptr = PtrVal.getConstant();
1132 // TODO: Consider a target hook for valid address spaces for this xform.
1133 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
1134 // load null -> null
1135 markConstant(IV, &I, Constant::getNullValue(I.getType()));
1136 return;
1139 // Transform load (constant global) into the value loaded.
1140 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1141 if (GV->isConstant()) {
1142 if (GV->hasDefinitiveInitializer()) {
1143 markConstant(IV, &I, GV->getInitializer());
1144 return;
1146 } else if (!TrackedGlobals.empty()) {
1147 // If we are tracking this global, merge in the known value for it.
1148 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1149 TrackedGlobals.find(GV);
1150 if (It != TrackedGlobals.end()) {
1151 mergeInValue(IV, &I, It->second);
1152 return;
1157 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1158 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1159 if (CE->getOpcode() == Instruction::GetElementPtr)
1160 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1161 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1162 if (Constant *V =
1163 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1164 *Context)) {
1165 markConstant(IV, &I, V);
1166 return;
1170 // Otherwise we cannot say for certain what value this load will produce.
1171 // Bail out.
1172 markOverdefined(IV, &I);
1175 void SCCPSolver::visitCallSite(CallSite CS) {
1176 Function *F = CS.getCalledFunction();
1177 Instruction *I = CS.getInstruction();
1179 // The common case is that we aren't tracking the callee, either because we
1180 // are not doing interprocedural analysis or the callee is indirect, or is
1181 // external. Handle these cases first.
1182 if (F == 0 || !F->hasLocalLinkage()) {
1183 CallOverdefined:
1184 // Void return and not tracking callee, just bail.
1185 if (I->getType() == Type::getVoidTy(I->getContext())) return;
1187 // Otherwise, if we have a single return value case, and if the function is
1188 // a declaration, maybe we can constant fold it.
1189 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1190 canConstantFoldCallTo(F)) {
1192 SmallVector<Constant*, 8> Operands;
1193 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1194 AI != E; ++AI) {
1195 LatticeVal &State = getValueState(*AI);
1196 if (State.isUndefined())
1197 return; // Operands are not resolved yet.
1198 else if (State.isOverdefined()) {
1199 markOverdefined(I);
1200 return;
1202 assert(State.isConstant() && "Unknown state!");
1203 Operands.push_back(State.getConstant());
1206 // If we can constant fold this, mark the result of the call as a
1207 // constant.
1208 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1209 markConstant(I, C);
1210 return;
1214 // Otherwise, we don't know anything about this call, mark it overdefined.
1215 markOverdefined(I);
1216 return;
1219 // If this is a single/zero retval case, see if we're tracking the function.
1220 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1221 if (TFRVI != TrackedRetVals.end()) {
1222 // If so, propagate the return value of the callee into this call result.
1223 mergeInValue(I, TFRVI->second);
1224 } else if (isa<StructType>(I->getType())) {
1225 // Check to see if we're tracking this callee, if not, handle it in the
1226 // common path above.
1227 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1228 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1229 if (TMRVI == TrackedMultipleRetVals.end())
1230 goto CallOverdefined;
1232 // If we are tracking this callee, propagate the return values of the call
1233 // into this call site. We do this by walking all the uses. Single-index
1234 // ExtractValueInst uses can be tracked; anything more complicated is
1235 // currently handled conservatively.
1236 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1237 UI != E; ++UI) {
1238 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1239 if (EVI->getNumIndices() == 1) {
1240 mergeInValue(EVI,
1241 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1242 continue;
1245 // The aggregate value is used in a way not handled here. Assume nothing.
1246 markOverdefined(*UI);
1248 } else {
1249 // Otherwise we're not tracking this callee, so handle it in the
1250 // common path above.
1251 goto CallOverdefined;
1254 // Finally, if this is the first call to the function hit, mark its entry
1255 // block executable.
1256 if (!BBExecutable.count(F->begin()))
1257 MarkBlockExecutable(F->begin());
1259 // Propagate information from this call site into the callee.
1260 CallSite::arg_iterator CAI = CS.arg_begin();
1261 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1262 AI != E; ++AI, ++CAI) {
1263 LatticeVal &IV = ValueState[AI];
1264 if (!IV.isOverdefined())
1265 mergeInValue(IV, AI, getValueState(*CAI));
1270 void SCCPSolver::Solve() {
1271 // Process the work lists until they are empty!
1272 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1273 !OverdefinedInstWorkList.empty()) {
1274 // Process the instruction work list...
1275 while (!OverdefinedInstWorkList.empty()) {
1276 Value *I = OverdefinedInstWorkList.back();
1277 OverdefinedInstWorkList.pop_back();
1279 DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1281 // "I" got into the work list because it either made the transition from
1282 // bottom to constant
1284 // Anything on this worklist that is overdefined need not be visited
1285 // since all of its users will have already been marked as overdefined
1286 // Update all of the users of this instruction's value...
1288 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1289 UI != E; ++UI)
1290 OperandChangedState(*UI);
1292 // Process the instruction work list...
1293 while (!InstWorkList.empty()) {
1294 Value *I = InstWorkList.back();
1295 InstWorkList.pop_back();
1297 DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1299 // "I" got into the work list because it either made the transition from
1300 // bottom to constant
1302 // Anything on this worklist that is overdefined need not be visited
1303 // since all of its users will have already been marked as overdefined.
1304 // Update all of the users of this instruction's value...
1306 if (!getValueState(I).isOverdefined())
1307 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1308 UI != E; ++UI)
1309 OperandChangedState(*UI);
1312 // Process the basic block work list...
1313 while (!BBWorkList.empty()) {
1314 BasicBlock *BB = BBWorkList.back();
1315 BBWorkList.pop_back();
1317 DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1319 // Notify all instructions in this basic block that they are newly
1320 // executable.
1321 visit(BB);
1326 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1327 /// that branches on undef values cannot reach any of their successors.
1328 /// However, this is not a safe assumption. After we solve dataflow, this
1329 /// method should be use to handle this. If this returns true, the solver
1330 /// should be rerun.
1332 /// This method handles this by finding an unresolved branch and marking it one
1333 /// of the edges from the block as being feasible, even though the condition
1334 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1335 /// CFG and only slightly pessimizes the analysis results (by marking one,
1336 /// potentially infeasible, edge feasible). This cannot usefully modify the
1337 /// constraints on the condition of the branch, as that would impact other users
1338 /// of the value.
1340 /// This scan also checks for values that use undefs, whose results are actually
1341 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1342 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1343 /// even if X isn't defined.
1344 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1345 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1346 if (!BBExecutable.count(BB))
1347 continue;
1349 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1350 // Look for instructions which produce undef values.
1351 if (I->getType() == Type::getVoidTy(F.getContext())) continue;
1353 LatticeVal &LV = getValueState(I);
1354 if (!LV.isUndefined()) continue;
1356 // Get the lattice values of the first two operands for use below.
1357 LatticeVal &Op0LV = getValueState(I->getOperand(0));
1358 LatticeVal Op1LV;
1359 if (I->getNumOperands() == 2) {
1360 // If this is a two-operand instruction, and if both operands are
1361 // undefs, the result stays undef.
1362 Op1LV = getValueState(I->getOperand(1));
1363 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1364 continue;
1367 // If this is an instructions whose result is defined even if the input is
1368 // not fully defined, propagate the information.
1369 const Type *ITy = I->getType();
1370 switch (I->getOpcode()) {
1371 default: break; // Leave the instruction as an undef.
1372 case Instruction::ZExt:
1373 // After a zero extend, we know the top part is zero. SExt doesn't have
1374 // to be handled here, because we don't know whether the top part is 1's
1375 // or 0's.
1376 assert(Op0LV.isUndefined());
1377 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1378 return true;
1379 case Instruction::Mul:
1380 case Instruction::And:
1381 // undef * X -> 0. X could be zero.
1382 // undef & X -> 0. X could be zero.
1383 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1384 return true;
1386 case Instruction::Or:
1387 // undef | X -> -1. X could be -1.
1388 if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1389 markForcedConstant(LV, I,
1390 Constant::getAllOnesValue(PTy));
1391 else
1392 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1393 return true;
1395 case Instruction::SDiv:
1396 case Instruction::UDiv:
1397 case Instruction::SRem:
1398 case Instruction::URem:
1399 // X / undef -> undef. No change.
1400 // X % undef -> undef. No change.
1401 if (Op1LV.isUndefined()) break;
1403 // undef / X -> 0. X could be maxint.
1404 // undef % X -> 0. X could be 1.
1405 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1406 return true;
1408 case Instruction::AShr:
1409 // undef >>s X -> undef. No change.
1410 if (Op0LV.isUndefined()) break;
1412 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1413 if (Op0LV.isConstant())
1414 markForcedConstant(LV, I, Op0LV.getConstant());
1415 else
1416 markOverdefined(LV, I);
1417 return true;
1418 case Instruction::LShr:
1419 case Instruction::Shl:
1420 // undef >> X -> undef. No change.
1421 // undef << X -> undef. No change.
1422 if (Op0LV.isUndefined()) break;
1424 // X >> undef -> 0. X could be 0.
1425 // X << undef -> 0. X could be 0.
1426 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1427 return true;
1428 case Instruction::Select:
1429 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1430 if (Op0LV.isUndefined()) {
1431 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1432 Op1LV = getValueState(I->getOperand(2));
1433 } else if (Op1LV.isUndefined()) {
1434 // c ? undef : undef -> undef. No change.
1435 Op1LV = getValueState(I->getOperand(2));
1436 if (Op1LV.isUndefined())
1437 break;
1438 // Otherwise, c ? undef : x -> x.
1439 } else {
1440 // Leave Op1LV as Operand(1)'s LatticeValue.
1443 if (Op1LV.isConstant())
1444 markForcedConstant(LV, I, Op1LV.getConstant());
1445 else
1446 markOverdefined(LV, I);
1447 return true;
1448 case Instruction::Call:
1449 // If a call has an undef result, it is because it is constant foldable
1450 // but one of the inputs was undef. Just force the result to
1451 // overdefined.
1452 markOverdefined(LV, I);
1453 return true;
1457 TerminatorInst *TI = BB->getTerminator();
1458 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1459 if (!BI->isConditional()) continue;
1460 if (!getValueState(BI->getCondition()).isUndefined())
1461 continue;
1462 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1463 if (SI->getNumSuccessors()<2) // no cases
1464 continue;
1465 if (!getValueState(SI->getCondition()).isUndefined())
1466 continue;
1467 } else {
1468 continue;
1471 // If the edge to the second successor isn't thought to be feasible yet,
1472 // mark it so now. We pick the second one so that this goes to some
1473 // enumerated value in a switch instead of going to the default destination.
1474 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1475 continue;
1477 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1478 // and return. This will make other blocks reachable, which will allow new
1479 // values to be discovered and existing ones to be moved in the lattice.
1480 markEdgeExecutable(BB, TI->getSuccessor(1));
1482 // This must be a conditional branch of switch on undef. At this point,
1483 // force the old terminator to branch to the first successor. This is
1484 // required because we are now influencing the dataflow of the function with
1485 // the assumption that this edge is taken. If we leave the branch condition
1486 // as undef, then further analysis could think the undef went another way
1487 // leading to an inconsistent set of conclusions.
1488 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1489 BI->setCondition(ConstantInt::getFalse(*Context));
1490 } else {
1491 SwitchInst *SI = cast<SwitchInst>(TI);
1492 SI->setCondition(SI->getCaseValue(1));
1495 return true;
1498 return false;
1502 namespace {
1503 //===--------------------------------------------------------------------===//
1505 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1506 /// Sparse Conditional Constant Propagator.
1508 struct SCCP : public FunctionPass {
1509 static char ID; // Pass identification, replacement for typeid
1510 SCCP() : FunctionPass(&ID) {}
1512 // runOnFunction - Run the Sparse Conditional Constant Propagation
1513 // algorithm, and return true if the function was modified.
1515 bool runOnFunction(Function &F);
1517 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1518 AU.setPreservesCFG();
1521 } // end anonymous namespace
1523 char SCCP::ID = 0;
1524 static RegisterPass<SCCP>
1525 X("sccp", "Sparse Conditional Constant Propagation");
1527 // createSCCPPass - This is the public interface to this file...
1528 FunctionPass *llvm::createSCCPPass() {
1529 return new SCCP();
1533 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1534 // and return true if the function was modified.
1536 bool SCCP::runOnFunction(Function &F) {
1537 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1538 SCCPSolver Solver;
1539 Solver.setContext(&F.getContext());
1541 // Mark the first block of the function as being executable.
1542 Solver.MarkBlockExecutable(F.begin());
1544 // Mark all arguments to the function as being overdefined.
1545 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1546 Solver.markOverdefined(AI);
1548 // Solve for constants.
1549 bool ResolvedUndefs = true;
1550 while (ResolvedUndefs) {
1551 Solver.Solve();
1552 DEBUG(errs() << "RESOLVING UNDEFs\n");
1553 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1556 bool MadeChanges = false;
1558 // If we decided that there are basic blocks that are dead in this function,
1559 // delete their contents now. Note that we cannot actually delete the blocks,
1560 // as we cannot modify the CFG of the function.
1562 SmallVector<Instruction*, 512> Insts;
1563 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1565 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1566 if (!Solver.isBlockExecutable(BB)) {
1567 DEBUG(errs() << " BasicBlock Dead:" << *BB);
1568 ++NumDeadBlocks;
1570 // Delete the instructions backwards, as it has a reduced likelihood of
1571 // having to update as many def-use and use-def chains.
1572 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1573 I != E; ++I)
1574 Insts.push_back(I);
1575 while (!Insts.empty()) {
1576 Instruction *I = Insts.back();
1577 Insts.pop_back();
1578 if (!I->use_empty())
1579 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1580 BB->getInstList().erase(I);
1581 MadeChanges = true;
1582 ++NumInstRemoved;
1584 } else {
1585 // Iterate over all of the instructions in a function, replacing them with
1586 // constants if we have found them to be of constant values.
1588 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1589 Instruction *Inst = BI++;
1590 if (Inst->getType() == Type::getVoidTy(F.getContext()) ||
1591 isa<TerminatorInst>(Inst))
1592 continue;
1594 LatticeVal &IV = Values[Inst];
1595 if (!IV.isConstant() && !IV.isUndefined())
1596 continue;
1598 Constant *Const = IV.isConstant()
1599 ? IV.getConstant() : UndefValue::get(Inst->getType());
1600 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
1602 // Replaces all of the uses of a variable with uses of the constant.
1603 Inst->replaceAllUsesWith(Const);
1605 // Delete the instruction.
1606 Inst->eraseFromParent();
1608 // Hey, we just changed something!
1609 MadeChanges = true;
1610 ++NumInstRemoved;
1614 return MadeChanges;
1617 namespace {
1618 //===--------------------------------------------------------------------===//
1620 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1621 /// Constant Propagation.
1623 struct IPSCCP : public ModulePass {
1624 static char ID;
1625 IPSCCP() : ModulePass(&ID) {}
1626 bool runOnModule(Module &M);
1628 } // end anonymous namespace
1630 char IPSCCP::ID = 0;
1631 static RegisterPass<IPSCCP>
1632 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1634 // createIPSCCPPass - This is the public interface to this file...
1635 ModulePass *llvm::createIPSCCPPass() {
1636 return new IPSCCP();
1640 static bool AddressIsTaken(GlobalValue *GV) {
1641 // Delete any dead constantexpr klingons.
1642 GV->removeDeadConstantUsers();
1644 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1645 UI != E; ++UI)
1646 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1647 if (SI->getOperand(0) == GV || SI->isVolatile())
1648 return true; // Storing addr of GV.
1649 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1650 // Make sure we are calling the function, not passing the address.
1651 CallSite CS = CallSite::get(cast<Instruction>(*UI));
1652 if (CS.hasArgument(GV))
1653 return true;
1654 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1655 if (LI->isVolatile())
1656 return true;
1657 } else {
1658 return true;
1660 return false;
1663 bool IPSCCP::runOnModule(Module &M) {
1664 LLVMContext *Context = &M.getContext();
1666 SCCPSolver Solver;
1667 Solver.setContext(Context);
1669 // Loop over all functions, marking arguments to those with their addresses
1670 // taken or that are external as overdefined.
1672 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1673 if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1674 if (!F->isDeclaration())
1675 Solver.MarkBlockExecutable(F->begin());
1676 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1677 AI != E; ++AI)
1678 Solver.markOverdefined(AI);
1679 } else {
1680 Solver.AddTrackedFunction(F);
1683 // Loop over global variables. We inform the solver about any internal global
1684 // variables that do not have their 'addresses taken'. If they don't have
1685 // their addresses taken, we can propagate constants through them.
1686 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1687 G != E; ++G)
1688 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1689 Solver.TrackValueOfGlobalVariable(G);
1691 // Solve for constants.
1692 bool ResolvedUndefs = true;
1693 while (ResolvedUndefs) {
1694 Solver.Solve();
1696 DEBUG(errs() << "RESOLVING UNDEFS\n");
1697 ResolvedUndefs = false;
1698 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1699 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1702 bool MadeChanges = false;
1704 // Iterate over all of the instructions in the module, replacing them with
1705 // constants if we have found them to be of constant values.
1707 SmallVector<Instruction*, 512> Insts;
1708 SmallVector<BasicBlock*, 512> BlocksToErase;
1709 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1711 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1712 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1713 AI != E; ++AI)
1714 if (!AI->use_empty()) {
1715 LatticeVal &IV = Values[AI];
1716 if (IV.isConstant() || IV.isUndefined()) {
1717 Constant *CST = IV.isConstant() ?
1718 IV.getConstant() : UndefValue::get(AI->getType());
1719 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n");
1721 // Replaces all of the uses of a variable with uses of the
1722 // constant.
1723 AI->replaceAllUsesWith(CST);
1724 ++IPNumArgsElimed;
1728 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1729 if (!Solver.isBlockExecutable(BB)) {
1730 DEBUG(errs() << " BasicBlock Dead:" << *BB);
1731 ++IPNumDeadBlocks;
1733 // Delete the instructions backwards, as it has a reduced likelihood of
1734 // having to update as many def-use and use-def chains.
1735 TerminatorInst *TI = BB->getTerminator();
1736 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1737 Insts.push_back(I);
1739 while (!Insts.empty()) {
1740 Instruction *I = Insts.back();
1741 Insts.pop_back();
1742 if (!I->use_empty())
1743 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1744 BB->getInstList().erase(I);
1745 MadeChanges = true;
1746 ++IPNumInstRemoved;
1749 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1750 BasicBlock *Succ = TI->getSuccessor(i);
1751 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1752 TI->getSuccessor(i)->removePredecessor(BB);
1754 if (!TI->use_empty())
1755 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1756 BB->getInstList().erase(TI);
1758 if (&*BB != &F->front())
1759 BlocksToErase.push_back(BB);
1760 else
1761 new UnreachableInst(M.getContext(), BB);
1763 } else {
1764 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1765 Instruction *Inst = BI++;
1766 if (Inst->getType() == Type::getVoidTy(M.getContext()))
1767 continue;
1769 LatticeVal &IV = Values[Inst];
1770 if (!IV.isConstant() && !IV.isUndefined())
1771 continue;
1773 Constant *Const = IV.isConstant()
1774 ? IV.getConstant() : UndefValue::get(Inst->getType());
1775 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
1777 // Replaces all of the uses of a variable with uses of the
1778 // constant.
1779 Inst->replaceAllUsesWith(Const);
1781 // Delete the instruction.
1782 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1783 Inst->eraseFromParent();
1785 // Hey, we just changed something!
1786 MadeChanges = true;
1787 ++IPNumInstRemoved;
1791 // Now that all instructions in the function are constant folded, erase dead
1792 // blocks, because we can now use ConstantFoldTerminator to get rid of
1793 // in-edges.
1794 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1795 // If there are any PHI nodes in this successor, drop entries for BB now.
1796 BasicBlock *DeadBB = BlocksToErase[i];
1797 while (!DeadBB->use_empty()) {
1798 Instruction *I = cast<Instruction>(DeadBB->use_back());
1799 bool Folded = ConstantFoldTerminator(I->getParent());
1800 if (!Folded) {
1801 // The constant folder may not have been able to fold the terminator
1802 // if this is a branch or switch on undef. Fold it manually as a
1803 // branch to the first successor.
1804 #ifndef NDEBUG
1805 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1806 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1807 "Branch should be foldable!");
1808 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1809 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1810 } else {
1811 llvm_unreachable("Didn't fold away reference to block!");
1813 #endif
1815 // Make this an uncond branch to the first successor.
1816 TerminatorInst *TI = I->getParent()->getTerminator();
1817 BranchInst::Create(TI->getSuccessor(0), TI);
1819 // Remove entries in successor phi nodes to remove edges.
1820 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1821 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1823 // Remove the old terminator.
1824 TI->eraseFromParent();
1828 // Finally, delete the basic block.
1829 F->getBasicBlockList().erase(DeadBB);
1831 BlocksToErase.clear();
1834 // If we inferred constant or undef return values for a function, we replaced
1835 // all call uses with the inferred value. This means we don't need to bother
1836 // actually returning anything from the function. Replace all return
1837 // instructions with return undef.
1838 // TODO: Process multiple value ret instructions also.
1839 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1840 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1841 E = RV.end(); I != E; ++I)
1842 if (!I->second.isOverdefined() &&
1843 I->first->getReturnType() != Type::getVoidTy(M.getContext())) {
1844 Function *F = I->first;
1845 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1846 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1847 if (!isa<UndefValue>(RI->getOperand(0)))
1848 RI->setOperand(0, UndefValue::get(F->getReturnType()));
1851 // If we infered constant or undef values for globals variables, we can delete
1852 // the global and any stores that remain to it.
1853 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1854 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1855 E = TG.end(); I != E; ++I) {
1856 GlobalVariable *GV = I->first;
1857 assert(!I->second.isOverdefined() &&
1858 "Overdefined values should have been taken out of the map!");
1859 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1860 while (!GV->use_empty()) {
1861 StoreInst *SI = cast<StoreInst>(GV->use_back());
1862 SI->eraseFromParent();
1864 M.getGlobalList().erase(GV);
1865 ++IPNumGlobalConst;
1868 return MadeChanges;