Fix comment for consistency sake.
[llvm/avr.git] / lib / Transforms / Utils / AddrModeMatcher.cpp
blob135a621f5d96a0a03632c42e6bbd703d3ad3e76c
1 //===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements target addressing mode matcher class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/GlobalValue.h"
17 #include "llvm/Instruction.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/Support/PatternMatch.h"
22 #include "llvm/Support/raw_ostream.h"
24 using namespace llvm;
25 using namespace llvm::PatternMatch;
27 void ExtAddrMode::print(raw_ostream &OS) const {
28 bool NeedPlus = false;
29 OS << "[";
30 if (BaseGV) {
31 OS << (NeedPlus ? " + " : "")
32 << "GV:";
33 WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
34 NeedPlus = true;
37 if (BaseOffs)
38 OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
40 if (BaseReg) {
41 OS << (NeedPlus ? " + " : "")
42 << "Base:";
43 WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
44 NeedPlus = true;
46 if (Scale) {
47 OS << (NeedPlus ? " + " : "")
48 << Scale << "*";
49 WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
50 NeedPlus = true;
53 OS << ']';
56 void ExtAddrMode::dump() const {
57 print(errs());
58 errs() << '\n';
62 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
63 /// Return true and update AddrMode if this addr mode is legal for the target,
64 /// false if not.
65 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
66 unsigned Depth) {
67 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
68 // mode. Just process that directly.
69 if (Scale == 1)
70 return MatchAddr(ScaleReg, Depth);
72 // If the scale is 0, it takes nothing to add this.
73 if (Scale == 0)
74 return true;
76 // If we already have a scale of this value, we can add to it, otherwise, we
77 // need an available scale field.
78 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
79 return false;
81 ExtAddrMode TestAddrMode = AddrMode;
83 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
84 // [A+B + A*7] -> [B+A*8].
85 TestAddrMode.Scale += Scale;
86 TestAddrMode.ScaledReg = ScaleReg;
88 // If the new address isn't legal, bail out.
89 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
90 return false;
92 // It was legal, so commit it.
93 AddrMode = TestAddrMode;
95 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
96 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
97 // X*Scale + C*Scale to addr mode.
98 ConstantInt *CI = 0; Value *AddLHS = 0;
99 if (isa<Instruction>(ScaleReg) && // not a constant expr.
100 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
101 TestAddrMode.ScaledReg = AddLHS;
102 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
104 // If this addressing mode is legal, commit it and remember that we folded
105 // this instruction.
106 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
107 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
108 AddrMode = TestAddrMode;
109 return true;
113 // Otherwise, not (x+c)*scale, just return what we have.
114 return true;
117 /// MightBeFoldableInst - This is a little filter, which returns true if an
118 /// addressing computation involving I might be folded into a load/store
119 /// accessing it. This doesn't need to be perfect, but needs to accept at least
120 /// the set of instructions that MatchOperationAddr can.
121 static bool MightBeFoldableInst(Instruction *I) {
122 switch (I->getOpcode()) {
123 case Instruction::BitCast:
124 // Don't touch identity bitcasts.
125 if (I->getType() == I->getOperand(0)->getType())
126 return false;
127 return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
128 case Instruction::PtrToInt:
129 // PtrToInt is always a noop, as we know that the int type is pointer sized.
130 return true;
131 case Instruction::IntToPtr:
132 // We know the input is intptr_t, so this is foldable.
133 return true;
134 case Instruction::Add:
135 return true;
136 case Instruction::Mul:
137 case Instruction::Shl:
138 // Can only handle X*C and X << C.
139 return isa<ConstantInt>(I->getOperand(1));
140 case Instruction::GetElementPtr:
141 return true;
142 default:
143 return false;
148 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
149 /// fold the operation into the addressing mode. If so, update the addressing
150 /// mode and return true, otherwise return false without modifying AddrMode.
151 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
152 unsigned Depth) {
153 // Avoid exponential behavior on extremely deep expression trees.
154 if (Depth >= 5) return false;
156 switch (Opcode) {
157 case Instruction::PtrToInt:
158 // PtrToInt is always a noop, as we know that the int type is pointer sized.
159 return MatchAddr(AddrInst->getOperand(0), Depth);
160 case Instruction::IntToPtr:
161 // This inttoptr is a no-op if the integer type is pointer sized.
162 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
163 TLI.getPointerTy())
164 return MatchAddr(AddrInst->getOperand(0), Depth);
165 return false;
166 case Instruction::BitCast:
167 // BitCast is always a noop, and we can handle it as long as it is
168 // int->int or pointer->pointer (we don't want int<->fp or something).
169 if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
170 isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
171 // Don't touch identity bitcasts. These were probably put here by LSR,
172 // and we don't want to mess around with them. Assume it knows what it
173 // is doing.
174 AddrInst->getOperand(0)->getType() != AddrInst->getType())
175 return MatchAddr(AddrInst->getOperand(0), Depth);
176 return false;
177 case Instruction::Add: {
178 // Check to see if we can merge in the RHS then the LHS. If so, we win.
179 ExtAddrMode BackupAddrMode = AddrMode;
180 unsigned OldSize = AddrModeInsts.size();
181 if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
182 MatchAddr(AddrInst->getOperand(0), Depth+1))
183 return true;
185 // Restore the old addr mode info.
186 AddrMode = BackupAddrMode;
187 AddrModeInsts.resize(OldSize);
189 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
190 if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
191 MatchAddr(AddrInst->getOperand(1), Depth+1))
192 return true;
194 // Otherwise we definitely can't merge the ADD in.
195 AddrMode = BackupAddrMode;
196 AddrModeInsts.resize(OldSize);
197 break;
199 //case Instruction::Or:
200 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
201 //break;
202 case Instruction::Mul:
203 case Instruction::Shl: {
204 // Can only handle X*C and X << C.
205 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
206 if (!RHS) return false;
207 int64_t Scale = RHS->getSExtValue();
208 if (Opcode == Instruction::Shl)
209 Scale = 1LL << Scale;
211 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
213 case Instruction::GetElementPtr: {
214 // Scan the GEP. We check it if it contains constant offsets and at most
215 // one variable offset.
216 int VariableOperand = -1;
217 unsigned VariableScale = 0;
219 int64_t ConstantOffset = 0;
220 const TargetData *TD = TLI.getTargetData();
221 gep_type_iterator GTI = gep_type_begin(AddrInst);
222 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
223 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
224 const StructLayout *SL = TD->getStructLayout(STy);
225 unsigned Idx =
226 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
227 ConstantOffset += SL->getElementOffset(Idx);
228 } else {
229 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
230 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
231 ConstantOffset += CI->getSExtValue()*TypeSize;
232 } else if (TypeSize) { // Scales of zero don't do anything.
233 // We only allow one variable index at the moment.
234 if (VariableOperand != -1)
235 return false;
237 // Remember the variable index.
238 VariableOperand = i;
239 VariableScale = TypeSize;
244 // A common case is for the GEP to only do a constant offset. In this case,
245 // just add it to the disp field and check validity.
246 if (VariableOperand == -1) {
247 AddrMode.BaseOffs += ConstantOffset;
248 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
249 // Check to see if we can fold the base pointer in too.
250 if (MatchAddr(AddrInst->getOperand(0), Depth+1))
251 return true;
253 AddrMode.BaseOffs -= ConstantOffset;
254 return false;
257 // Save the valid addressing mode in case we can't match.
258 ExtAddrMode BackupAddrMode = AddrMode;
259 unsigned OldSize = AddrModeInsts.size();
261 // See if the scale and offset amount is valid for this target.
262 AddrMode.BaseOffs += ConstantOffset;
264 // Match the base operand of the GEP.
265 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
266 // If it couldn't be matched, just stuff the value in a register.
267 if (AddrMode.HasBaseReg) {
268 AddrMode = BackupAddrMode;
269 AddrModeInsts.resize(OldSize);
270 return false;
272 AddrMode.HasBaseReg = true;
273 AddrMode.BaseReg = AddrInst->getOperand(0);
276 // Match the remaining variable portion of the GEP.
277 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
278 Depth)) {
279 // If it couldn't be matched, try stuffing the base into a register
280 // instead of matching it, and retrying the match of the scale.
281 AddrMode = BackupAddrMode;
282 AddrModeInsts.resize(OldSize);
283 if (AddrMode.HasBaseReg)
284 return false;
285 AddrMode.HasBaseReg = true;
286 AddrMode.BaseReg = AddrInst->getOperand(0);
287 AddrMode.BaseOffs += ConstantOffset;
288 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
289 VariableScale, Depth)) {
290 // If even that didn't work, bail.
291 AddrMode = BackupAddrMode;
292 AddrModeInsts.resize(OldSize);
293 return false;
297 return true;
300 return false;
303 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
304 /// addressing mode. If Addr can't be added to AddrMode this returns false and
305 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
306 /// or intptr_t for the target.
308 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
309 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
310 // Fold in immediates if legal for the target.
311 AddrMode.BaseOffs += CI->getSExtValue();
312 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
313 return true;
314 AddrMode.BaseOffs -= CI->getSExtValue();
315 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
316 // If this is a global variable, try to fold it into the addressing mode.
317 if (AddrMode.BaseGV == 0) {
318 AddrMode.BaseGV = GV;
319 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
320 return true;
321 AddrMode.BaseGV = 0;
323 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
324 ExtAddrMode BackupAddrMode = AddrMode;
325 unsigned OldSize = AddrModeInsts.size();
327 // Check to see if it is possible to fold this operation.
328 if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
329 // Okay, it's possible to fold this. Check to see if it is actually
330 // *profitable* to do so. We use a simple cost model to avoid increasing
331 // register pressure too much.
332 if (I->hasOneUse() ||
333 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
334 AddrModeInsts.push_back(I);
335 return true;
338 // It isn't profitable to do this, roll back.
339 //cerr << "NOT FOLDING: " << *I;
340 AddrMode = BackupAddrMode;
341 AddrModeInsts.resize(OldSize);
343 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
344 if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
345 return true;
346 } else if (isa<ConstantPointerNull>(Addr)) {
347 // Null pointer gets folded without affecting the addressing mode.
348 return true;
351 // Worse case, the target should support [reg] addressing modes. :)
352 if (!AddrMode.HasBaseReg) {
353 AddrMode.HasBaseReg = true;
354 AddrMode.BaseReg = Addr;
355 // Still check for legality in case the target supports [imm] but not [i+r].
356 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
357 return true;
358 AddrMode.HasBaseReg = false;
359 AddrMode.BaseReg = 0;
362 // If the base register is already taken, see if we can do [r+r].
363 if (AddrMode.Scale == 0) {
364 AddrMode.Scale = 1;
365 AddrMode.ScaledReg = Addr;
366 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
367 return true;
368 AddrMode.Scale = 0;
369 AddrMode.ScaledReg = 0;
371 // Couldn't match.
372 return false;
376 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
377 /// inline asm call are due to memory operands. If so, return true, otherwise
378 /// return false.
379 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
380 const TargetLowering &TLI) {
381 std::vector<InlineAsm::ConstraintInfo>
382 Constraints = IA->ParseConstraints();
384 unsigned ArgNo = 1; // ArgNo - The operand of the CallInst.
385 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
386 TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
388 // Compute the value type for each operand.
389 switch (OpInfo.Type) {
390 case InlineAsm::isOutput:
391 if (OpInfo.isIndirect)
392 OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
393 break;
394 case InlineAsm::isInput:
395 OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
396 break;
397 case InlineAsm::isClobber:
398 // Nothing to do.
399 break;
402 // Compute the constraint code and ConstraintType to use.
403 TLI.ComputeConstraintToUse(OpInfo, SDValue(),
404 OpInfo.ConstraintType == TargetLowering::C_Memory);
406 // If this asm operand is our Value*, and if it isn't an indirect memory
407 // operand, we can't fold it!
408 if (OpInfo.CallOperandVal == OpVal &&
409 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
410 !OpInfo.isIndirect))
411 return false;
414 return true;
418 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
419 /// memory use. If we find an obviously non-foldable instruction, return true.
420 /// Add the ultimately found memory instructions to MemoryUses.
421 static bool FindAllMemoryUses(Instruction *I,
422 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
423 SmallPtrSet<Instruction*, 16> &ConsideredInsts,
424 const TargetLowering &TLI) {
425 // If we already considered this instruction, we're done.
426 if (!ConsideredInsts.insert(I))
427 return false;
429 // If this is an obviously unfoldable instruction, bail out.
430 if (!MightBeFoldableInst(I))
431 return true;
433 // Loop over all the uses, recursively processing them.
434 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
435 UI != E; ++UI) {
436 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
437 MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
438 continue;
441 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
442 if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
443 MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
444 continue;
447 if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
448 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
449 if (IA == 0) return true;
451 // If this is a memory operand, we're cool, otherwise bail out.
452 if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
453 return true;
454 continue;
457 if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts,
458 TLI))
459 return true;
462 return false;
466 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
467 /// the use site that we're folding it into. If so, there is no cost to
468 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
469 /// that we know are live at the instruction already.
470 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
471 Value *KnownLive2) {
472 // If Val is either of the known-live values, we know it is live!
473 if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
474 return true;
476 // All values other than instructions and arguments (e.g. constants) are live.
477 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
479 // If Val is a constant sized alloca in the entry block, it is live, this is
480 // true because it is just a reference to the stack/frame pointer, which is
481 // live for the whole function.
482 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
483 if (AI->isStaticAlloca())
484 return true;
486 // Check to see if this value is already used in the memory instruction's
487 // block. If so, it's already live into the block at the very least, so we
488 // can reasonably fold it.
489 BasicBlock *MemBB = MemoryInst->getParent();
490 for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
491 UI != E; ++UI)
492 // We know that uses of arguments and instructions have to be instructions.
493 if (cast<Instruction>(*UI)->getParent() == MemBB)
494 return true;
496 return false;
501 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
502 /// mode of the machine to fold the specified instruction into a load or store
503 /// that ultimately uses it. However, the specified instruction has multiple
504 /// uses. Given this, it may actually increase register pressure to fold it
505 /// into the load. For example, consider this code:
507 /// X = ...
508 /// Y = X+1
509 /// use(Y) -> nonload/store
510 /// Z = Y+1
511 /// load Z
513 /// In this case, Y has multiple uses, and can be folded into the load of Z
514 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
515 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
516 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
517 /// number of computations either.
519 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
520 /// X was live across 'load Z' for other reasons, we actually *would* want to
521 /// fold the addressing mode in the Z case. This would make Y die earlier.
522 bool AddressingModeMatcher::
523 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
524 ExtAddrMode &AMAfter) {
525 if (IgnoreProfitability) return true;
527 // AMBefore is the addressing mode before this instruction was folded into it,
528 // and AMAfter is the addressing mode after the instruction was folded. Get
529 // the set of registers referenced by AMAfter and subtract out those
530 // referenced by AMBefore: this is the set of values which folding in this
531 // address extends the lifetime of.
533 // Note that there are only two potential values being referenced here,
534 // BaseReg and ScaleReg (global addresses are always available, as are any
535 // folded immediates).
536 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
538 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
539 // lifetime wasn't extended by adding this instruction.
540 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
541 BaseReg = 0;
542 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
543 ScaledReg = 0;
545 // If folding this instruction (and it's subexprs) didn't extend any live
546 // ranges, we're ok with it.
547 if (BaseReg == 0 && ScaledReg == 0)
548 return true;
550 // If all uses of this instruction are ultimately load/store/inlineasm's,
551 // check to see if their addressing modes will include this instruction. If
552 // so, we can fold it into all uses, so it doesn't matter if it has multiple
553 // uses.
554 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
555 SmallPtrSet<Instruction*, 16> ConsideredInsts;
556 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
557 return false; // Has a non-memory, non-foldable use!
559 // Now that we know that all uses of this instruction are part of a chain of
560 // computation involving only operations that could theoretically be folded
561 // into a memory use, loop over each of these uses and see if they could
562 // *actually* fold the instruction.
563 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
564 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
565 Instruction *User = MemoryUses[i].first;
566 unsigned OpNo = MemoryUses[i].second;
568 // Get the access type of this use. If the use isn't a pointer, we don't
569 // know what it accesses.
570 Value *Address = User->getOperand(OpNo);
571 if (!isa<PointerType>(Address->getType()))
572 return false;
573 const Type *AddressAccessTy =
574 cast<PointerType>(Address->getType())->getElementType();
576 // Do a match against the root of this address, ignoring profitability. This
577 // will tell us if the addressing mode for the memory operation will
578 // *actually* cover the shared instruction.
579 ExtAddrMode Result;
580 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
581 MemoryInst, Result);
582 Matcher.IgnoreProfitability = true;
583 bool Success = Matcher.MatchAddr(Address, 0);
584 Success = Success; assert(Success && "Couldn't select *anything*?");
586 // If the match didn't cover I, then it won't be shared by it.
587 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
588 I) == MatchedAddrModeInsts.end())
589 return false;
591 MatchedAddrModeInsts.clear();
594 return true;