Fix comment for consistency sake.
[llvm/avr.git] / lib / Transforms / Utils / LCSSA.cpp
blobe0251f83808abc97c299038e7f9e59494e4db27f
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Support/CFG.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/PredIteratorCache.h"
45 #include <algorithm>
46 #include <map>
47 using namespace llvm;
49 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
51 namespace {
52 struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
53 static char ID; // Pass identification, replacement for typeid
54 LCSSA() : LoopPass(&ID) {}
56 // Cached analysis information for the current function.
57 LoopInfo *LI;
58 DominatorTree *DT;
59 std::vector<BasicBlock*> LoopBlocks;
60 PredIteratorCache PredCache;
61 Loop *L;
63 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
65 void ProcessInstruction(Instruction* Instr,
66 const SmallVector<BasicBlock*, 8>& exitBlocks);
68 /// This transformation requires natural loop information & requires that
69 /// loop preheaders be inserted into the CFG. It maintains both of these,
70 /// as well as the CFG. It also requires dominator information.
71 ///
72 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73 AU.setPreservesCFG();
74 AU.addRequiredID(LoopSimplifyID);
75 AU.addPreservedID(LoopSimplifyID);
76 AU.addRequiredTransitive<LoopInfo>();
77 AU.addPreserved<LoopInfo>();
78 AU.addRequiredTransitive<DominatorTree>();
79 AU.addPreserved<ScalarEvolution>();
80 AU.addPreserved<DominatorTree>();
82 // Request DominanceFrontier now, even though LCSSA does
83 // not use it. This allows Pass Manager to schedule Dominance
84 // Frontier early enough such that one LPPassManager can handle
85 // multiple loop transformation passes.
86 AU.addRequired<DominanceFrontier>();
87 AU.addPreserved<DominanceFrontier>();
89 private:
91 /// verifyAnalysis() - Verify loop nest.
92 virtual void verifyAnalysis() const {
93 #ifndef NDEBUG
94 // Sanity check: Check basic loop invariants.
95 L->verifyLoop();
96 // Check the special guarantees that LCSSA makes.
97 assert(L->isLCSSAForm());
98 #endif
101 void getLoopValuesUsedOutsideLoop(Loop *L,
102 SetVector<Instruction*> &AffectedValues,
103 const SmallVector<BasicBlock*, 8>& exitBlocks);
105 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
106 DenseMap<DomTreeNode*, Value*> &Phis);
108 /// inLoop - returns true if the given block is within the current loop
109 bool inLoop(BasicBlock* B) {
110 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
115 char LCSSA::ID = 0;
116 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
118 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
119 const PassInfo *const llvm::LCSSAID = &X;
121 /// runOnFunction - Process all loops in the function, inner-most out.
122 bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) {
123 L = l;
124 PredCache.clear();
126 LI = &LPM.getAnalysis<LoopInfo>();
127 DT = &getAnalysis<DominatorTree>();
129 // Speed up queries by creating a sorted list of blocks
130 LoopBlocks.clear();
131 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
132 std::sort(LoopBlocks.begin(), LoopBlocks.end());
134 SmallVector<BasicBlock*, 8> exitBlocks;
135 L->getExitBlocks(exitBlocks);
137 SetVector<Instruction*> AffectedValues;
138 getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
140 // If no values are affected, we can save a lot of work, since we know that
141 // nothing will be changed.
142 if (AffectedValues.empty())
143 return false;
145 // Iterate over all affected values for this loop and insert Phi nodes
146 // for them in the appropriate exit blocks
148 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
149 E = AffectedValues.end(); I != E; ++I)
150 ProcessInstruction(*I, exitBlocks);
152 assert(L->isLCSSAForm());
154 return true;
157 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
158 /// eliminate all out-of-loop uses.
159 void LCSSA::ProcessInstruction(Instruction *Instr,
160 const SmallVector<BasicBlock*, 8>& exitBlocks) {
161 ++NumLCSSA; // We are applying the transformation
163 // Keep track of the blocks that have the value available already.
164 DenseMap<DomTreeNode*, Value*> Phis;
166 BasicBlock *DomBB = Instr->getParent();
168 // Invoke instructions are special in that their result value is not available
169 // along their unwind edge. The code below tests to see whether DomBB dominates
170 // the value, so adjust DomBB to the normal destination block, which is
171 // effectively where the value is first usable.
172 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr))
173 DomBB = Inv->getNormalDest();
175 DomTreeNode *DomNode = DT->getNode(DomBB);
177 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
178 // add them to the Phi's map.
179 for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
180 BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
181 BasicBlock *BB = *BBI;
182 DomTreeNode *ExitBBNode = DT->getNode(BB);
183 Value *&Phi = Phis[ExitBBNode];
184 if (!Phi && DT->dominates(DomNode, ExitBBNode)) {
185 PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
186 BB->begin());
187 PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
189 // Remember that this phi makes the value alive in this block.
190 Phi = PN;
192 // Add inputs from inside the loop for this PHI.
193 for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
194 PN->addIncoming(Instr, *PI);
199 // Record all uses of Instr outside the loop. We need to rewrite these. The
200 // LCSSA phis won't be included because they use the value in the loop.
201 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
202 UI != E;) {
203 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
204 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
205 UserBB = P->getIncomingBlock(UI);
208 // If the user is in the loop, don't rewrite it!
209 if (UserBB == Instr->getParent() || inLoop(UserBB)) {
210 ++UI;
211 continue;
214 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
215 // inserting PHI nodes into join points where needed.
216 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
218 // Preincrement the iterator to avoid invalidating it when we change the
219 // value.
220 Use &U = UI.getUse();
221 ++UI;
222 U.set(Val);
226 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
227 /// are used by instructions outside of it.
228 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
229 SetVector<Instruction*> &AffectedValues,
230 const SmallVector<BasicBlock*, 8>& exitBlocks) {
231 // FIXME: For large loops, we may be able to avoid a lot of use-scanning
232 // by using dominance information. In particular, if a block does not
233 // dominate any of the loop exits, then none of the values defined in the
234 // block could be used outside the loop.
235 for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
236 BB != BE; ++BB) {
237 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
238 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
239 ++UI) {
240 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
241 if (PHINode* p = dyn_cast<PHINode>(*UI)) {
242 UserBB = p->getIncomingBlock(UI);
245 if (*BB != UserBB && !inLoop(UserBB)) {
246 AffectedValues.insert(I);
247 break;
253 /// GetValueForBlock - Get the value to use within the specified basic block.
254 /// available values are in Phis.
255 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
256 DenseMap<DomTreeNode*, Value*> &Phis) {
257 // If there is no dominator info for this BB, it is unreachable.
258 if (BB == 0)
259 return UndefValue::get(OrigInst->getType());
261 // If we have already computed this value, return the previously computed val.
262 if (Phis.count(BB)) return Phis[BB];
264 DomTreeNode *IDom = BB->getIDom();
266 // Otherwise, there are two cases: we either have to insert a PHI node or we
267 // don't. We need to insert a PHI node if this block is not dominated by one
268 // of the exit nodes from the loop (the loop could have multiple exits, and
269 // though the value defined *inside* the loop dominated all its uses, each
270 // exit by itself may not dominate all the uses).
272 // The simplest way to check for this condition is by checking to see if the
273 // idom is in the loop. If so, we *know* that none of the exit blocks
274 // dominate this block. Note that we *know* that the block defining the
275 // original instruction is in the idom chain, because if it weren't, then the
276 // original value didn't dominate this use.
277 if (!inLoop(IDom->getBlock())) {
278 // Idom is not in the loop, we must still be "below" the exit block and must
279 // be fully dominated by the value live in the idom.
280 Value* val = GetValueForBlock(IDom, OrigInst, Phis);
281 Phis.insert(std::make_pair(BB, val));
282 return val;
285 BasicBlock *BBN = BB->getBlock();
287 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
288 // now, then get values to fill in the incoming values for the PHI.
289 PHINode *PN = PHINode::Create(OrigInst->getType(),
290 OrigInst->getName() + ".lcssa", BBN->begin());
291 PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
292 Phis.insert(std::make_pair(BB, PN));
294 // Fill in the incoming values for the block.
295 for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
296 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
297 return PN;