Fix comment for consistency sake.
[llvm/avr.git] / lib / Transforms / Utils / LoopSimplify.cpp
blob36709f7b435f2e8dc2e205c01dc7b4cbd941c1e9
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Note that the simplifycfg pass will clean up blocks which are split out but
27 // end up being unnecessary, so usage of this pass should not pessimize
28 // generated code.
30 // This pass obviously modifies the CFG, but updates loop information and
31 // dominator information.
33 //===----------------------------------------------------------------------===//
35 #define DEBUG_TYPE "loopsimplify"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Constants.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Function.h"
40 #include "llvm/LLVMContext.h"
41 #include "llvm/Type.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/Dominators.h"
44 #include "llvm/Analysis/LoopInfo.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Support/CFG.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/ADT/SetOperations.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/ADT/DepthFirstIterator.h"
53 using namespace llvm;
55 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
56 STATISTIC(NumNested , "Number of nested loops split out");
58 namespace {
59 struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
60 static char ID; // Pass identification, replacement for typeid
61 LoopSimplify() : FunctionPass(&ID) {}
63 // AA - If we have an alias analysis object to update, this is it, otherwise
64 // this is null.
65 AliasAnalysis *AA;
66 LoopInfo *LI;
67 DominatorTree *DT;
68 virtual bool runOnFunction(Function &F);
70 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71 // We need loop information to identify the loops...
72 AU.addRequiredTransitive<LoopInfo>();
73 AU.addRequiredTransitive<DominatorTree>();
75 AU.addPreserved<LoopInfo>();
76 AU.addPreserved<DominatorTree>();
77 AU.addPreserved<DominanceFrontier>();
78 AU.addPreserved<AliasAnalysis>();
79 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
82 /// verifyAnalysis() - Verify loop nest.
83 void verifyAnalysis() const {
84 #ifndef NDEBUG
85 LoopInfo *NLI = &getAnalysis<LoopInfo>();
86 for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I) {
87 // Sanity check: Check basic loop invariants.
88 (*I)->verifyLoop();
89 // Check the special guarantees that LoopSimplify makes.
90 assert((*I)->isLoopSimplifyForm());
92 #endif
95 private:
96 bool ProcessLoop(Loop *L);
97 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
98 BasicBlock *InsertPreheaderForLoop(Loop *L);
99 Loop *SeparateNestedLoop(Loop *L);
100 void InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
101 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
102 SmallVectorImpl<BasicBlock*> &SplitPreds,
103 Loop *L);
107 char LoopSimplify::ID = 0;
108 static RegisterPass<LoopSimplify>
109 X("loopsimplify", "Canonicalize natural loops", true);
111 // Publically exposed interface to pass...
112 const PassInfo *const llvm::LoopSimplifyID = &X;
113 FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
115 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
116 /// it in any convenient order) inserting preheaders...
118 bool LoopSimplify::runOnFunction(Function &F) {
119 bool Changed = false;
120 LI = &getAnalysis<LoopInfo>();
121 AA = getAnalysisIfAvailable<AliasAnalysis>();
122 DT = &getAnalysis<DominatorTree>();
124 // Check to see that no blocks (other than the header) in loops have
125 // predecessors that are not in loops. This is not valid for natural loops,
126 // but can occur if the blocks are unreachable. Since they are unreachable we
127 // can just shamelessly destroy their terminators to make them not branch into
128 // the loop!
129 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
130 // This case can only occur for unreachable blocks. Blocks that are
131 // unreachable can't be in loops, so filter those blocks out.
132 if (LI->getLoopFor(BB)) continue;
134 bool BlockUnreachable = false;
135 TerminatorInst *TI = BB->getTerminator();
137 // Check to see if any successors of this block are non-loop-header loops
138 // that are not the header.
139 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
140 // If this successor is not in a loop, BB is clearly ok.
141 Loop *L = LI->getLoopFor(TI->getSuccessor(i));
142 if (!L) continue;
144 // If the succ is the loop header, and if L is a top-level loop, then this
145 // is an entrance into a loop through the header, which is also ok.
146 if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
147 continue;
149 // Otherwise, this is an entrance into a loop from some place invalid.
150 // Either the loop structure is invalid and this is not a natural loop (in
151 // which case the compiler is buggy somewhere else) or BB is unreachable.
152 BlockUnreachable = true;
153 break;
156 // If this block is ok, check the next one.
157 if (!BlockUnreachable) continue;
159 // Otherwise, this block is dead. To clean up the CFG and to allow later
160 // loop transformations to ignore this case, we delete the edges into the
161 // loop by replacing the terminator.
163 // Remove PHI entries from the successors.
164 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
165 TI->getSuccessor(i)->removePredecessor(BB);
167 // Add a new unreachable instruction before the old terminator.
168 new UnreachableInst(TI->getContext(), TI);
170 // Delete the dead terminator.
171 if (AA) AA->deleteValue(TI);
172 if (!TI->use_empty())
173 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
174 TI->eraseFromParent();
175 Changed |= true;
178 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
179 Changed |= ProcessLoop(*I);
181 return Changed;
184 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
185 /// all loops have preheaders.
187 bool LoopSimplify::ProcessLoop(Loop *L) {
188 bool Changed = false;
189 ReprocessLoop:
191 // Canonicalize inner loops before outer loops. Inner loop canonicalization
192 // can provide work for the outer loop to canonicalize.
193 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
194 Changed |= ProcessLoop(*I);
196 assert(L->getBlocks()[0] == L->getHeader() &&
197 "Header isn't first block in loop?");
199 // Does the loop already have a preheader? If so, don't insert one.
200 BasicBlock *Preheader = L->getLoopPreheader();
201 if (!Preheader) {
202 Preheader = InsertPreheaderForLoop(L);
203 NumInserted++;
204 Changed = true;
207 // Next, check to make sure that all exit nodes of the loop only have
208 // predecessors that are inside of the loop. This check guarantees that the
209 // loop preheader/header will dominate the exit blocks. If the exit block has
210 // predecessors from outside of the loop, split the edge now.
211 SmallVector<BasicBlock*, 8> ExitBlocks;
212 L->getExitBlocks(ExitBlocks);
214 SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
215 for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
216 E = ExitBlockSet.end(); I != E; ++I) {
217 BasicBlock *ExitBlock = *I;
218 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
219 PI != PE; ++PI)
220 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
221 // allowed.
222 if (!L->contains(*PI)) {
223 RewriteLoopExitBlock(L, ExitBlock);
224 NumInserted++;
225 Changed = true;
226 break;
230 // If the header has more than two predecessors at this point (from the
231 // preheader and from multiple backedges), we must adjust the loop.
232 unsigned NumBackedges = L->getNumBackEdges();
233 if (NumBackedges != 1) {
234 // If this is really a nested loop, rip it out into a child loop. Don't do
235 // this for loops with a giant number of backedges, just factor them into a
236 // common backedge instead.
237 if (NumBackedges < 8) {
238 if (Loop *NL = SeparateNestedLoop(L)) {
239 ++NumNested;
240 // This is a big restructuring change, reprocess the whole loop.
241 ProcessLoop(NL);
242 Changed = true;
243 // GCC doesn't tail recursion eliminate this.
244 goto ReprocessLoop;
248 // If we either couldn't, or didn't want to, identify nesting of the loops,
249 // insert a new block that all backedges target, then make it jump to the
250 // loop header.
251 InsertUniqueBackedgeBlock(L, Preheader);
252 NumInserted++;
253 Changed = true;
256 // Scan over the PHI nodes in the loop header. Since they now have only two
257 // incoming values (the loop is canonicalized), we may have simplified the PHI
258 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
259 PHINode *PN;
260 for (BasicBlock::iterator I = L->getHeader()->begin();
261 (PN = dyn_cast<PHINode>(I++)); )
262 if (Value *V = PN->hasConstantValue(DT)) {
263 if (AA) AA->deleteValue(PN);
264 PN->replaceAllUsesWith(V);
265 PN->eraseFromParent();
268 // If this loop has muliple exits and the exits all go to the same
269 // block, attempt to merge the exits. This helps several passes, such
270 // as LoopRotation, which do not support loops with multiple exits.
271 // SimplifyCFG also does this (and this code uses the same utility
272 // function), however this code is loop-aware, where SimplifyCFG is
273 // not. That gives it the advantage of being able to hoist
274 // loop-invariant instructions out of the way to open up more
275 // opportunities, and the disadvantage of having the responsibility
276 // to preserve dominator information.
277 if (ExitBlocks.size() > 1 && L->getUniqueExitBlock()) {
278 SmallVector<BasicBlock*, 8> ExitingBlocks;
279 L->getExitingBlocks(ExitingBlocks);
280 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
281 BasicBlock *ExitingBlock = ExitingBlocks[i];
282 if (!ExitingBlock->getSinglePredecessor()) continue;
283 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
284 if (!BI || !BI->isConditional()) continue;
285 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
286 if (!CI || CI->getParent() != ExitingBlock) continue;
288 // Attempt to hoist out all instructions except for the
289 // comparison and the branch.
290 bool AllInvariant = true;
291 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
292 Instruction *Inst = I++;
293 if (Inst == CI)
294 continue;
295 if (!L->makeLoopInvariant(Inst, Changed, Preheader->getTerminator())) {
296 AllInvariant = false;
297 break;
300 if (!AllInvariant) continue;
302 // The block has now been cleared of all instructions except for
303 // a comparison and a conditional branch. SimplifyCFG may be able
304 // to fold it now.
305 if (!FoldBranchToCommonDest(BI)) continue;
307 // Success. The block is now dead, so remove it from the loop,
308 // update the dominator tree and dominance frontier, and delete it.
309 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
310 Changed = true;
311 LI->removeBlock(ExitingBlock);
313 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
314 DomTreeNode *Node = DT->getNode(ExitingBlock);
315 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
316 Node->getChildren();
317 for (unsigned k = 0, g = Children.size(); k != g; ++k) {
318 DT->changeImmediateDominator(Children[k], Node->getIDom());
319 if (DF) DF->changeImmediateDominator(Children[k]->getBlock(),
320 Node->getIDom()->getBlock(),
321 DT);
323 DT->eraseNode(ExitingBlock);
324 if (DF) DF->removeBlock(ExitingBlock);
326 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
327 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
328 ExitingBlock->eraseFromParent();
332 return Changed;
335 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
336 /// preheader, this method is called to insert one. This method has two phases:
337 /// preheader insertion and analysis updating.
339 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
340 BasicBlock *Header = L->getHeader();
342 // Compute the set of predecessors of the loop that are not in the loop.
343 SmallVector<BasicBlock*, 8> OutsideBlocks;
344 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
345 PI != PE; ++PI)
346 if (!L->contains(*PI)) // Coming in from outside the loop?
347 OutsideBlocks.push_back(*PI); // Keep track of it...
349 // Split out the loop pre-header.
350 BasicBlock *NewBB =
351 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
352 ".preheader", this);
354 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
355 // code layout too horribly.
356 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
358 return NewBB;
361 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
362 /// blocks. This method is used to split exit blocks that have predecessors
363 /// outside of the loop.
364 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
365 SmallVector<BasicBlock*, 8> LoopBlocks;
366 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
367 if (L->contains(*I))
368 LoopBlocks.push_back(*I);
370 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
371 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
372 LoopBlocks.size(), ".loopexit",
373 this);
375 return NewBB;
378 /// AddBlockAndPredsToSet - Add the specified block, and all of its
379 /// predecessors, to the specified set, if it's not already in there. Stop
380 /// predecessor traversal when we reach StopBlock.
381 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
382 std::set<BasicBlock*> &Blocks) {
383 std::vector<BasicBlock *> WorkList;
384 WorkList.push_back(InputBB);
385 do {
386 BasicBlock *BB = WorkList.back(); WorkList.pop_back();
387 if (Blocks.insert(BB).second && BB != StopBlock)
388 // If BB is not already processed and it is not a stop block then
389 // insert its predecessor in the work list
390 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
391 BasicBlock *WBB = *I;
392 WorkList.push_back(WBB);
394 } while(!WorkList.empty());
397 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
398 /// PHI node that tells us how to partition the loops.
399 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
400 AliasAnalysis *AA) {
401 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
402 PHINode *PN = cast<PHINode>(I);
403 ++I;
404 if (Value *V = PN->hasConstantValue(DT)) {
405 // This is a degenerate PHI already, don't modify it!
406 PN->replaceAllUsesWith(V);
407 if (AA) AA->deleteValue(PN);
408 PN->eraseFromParent();
409 continue;
412 // Scan this PHI node looking for a use of the PHI node by itself.
413 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
414 if (PN->getIncomingValue(i) == PN &&
415 L->contains(PN->getIncomingBlock(i)))
416 // We found something tasty to remove.
417 return PN;
419 return 0;
422 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
423 // right after some 'outside block' block. This prevents the preheader from
424 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
425 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
426 SmallVectorImpl<BasicBlock*> &SplitPreds,
427 Loop *L) {
428 // Check to see if NewBB is already well placed.
429 Function::iterator BBI = NewBB; --BBI;
430 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
431 if (&*BBI == SplitPreds[i])
432 return;
435 // If it isn't already after an outside block, move it after one. This is
436 // always good as it makes the uncond branch from the outside block into a
437 // fall-through.
439 // Figure out *which* outside block to put this after. Prefer an outside
440 // block that neighbors a BB actually in the loop.
441 BasicBlock *FoundBB = 0;
442 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
443 Function::iterator BBI = SplitPreds[i];
444 if (++BBI != NewBB->getParent()->end() &&
445 L->contains(BBI)) {
446 FoundBB = SplitPreds[i];
447 break;
451 // If our heuristic for a *good* bb to place this after doesn't find
452 // anything, just pick something. It's likely better than leaving it within
453 // the loop.
454 if (!FoundBB)
455 FoundBB = SplitPreds[0];
456 NewBB->moveAfter(FoundBB);
460 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
461 /// them out into a nested loop. This is important for code that looks like
462 /// this:
464 /// Loop:
465 /// ...
466 /// br cond, Loop, Next
467 /// ...
468 /// br cond2, Loop, Out
470 /// To identify this common case, we look at the PHI nodes in the header of the
471 /// loop. PHI nodes with unchanging values on one backedge correspond to values
472 /// that change in the "outer" loop, but not in the "inner" loop.
474 /// If we are able to separate out a loop, return the new outer loop that was
475 /// created.
477 Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
478 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
479 if (PN == 0) return 0; // No known way to partition.
481 // Pull out all predecessors that have varying values in the loop. This
482 // handles the case when a PHI node has multiple instances of itself as
483 // arguments.
484 SmallVector<BasicBlock*, 8> OuterLoopPreds;
485 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
486 if (PN->getIncomingValue(i) != PN ||
487 !L->contains(PN->getIncomingBlock(i)))
488 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
490 BasicBlock *Header = L->getHeader();
491 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
492 OuterLoopPreds.size(),
493 ".outer", this);
495 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
496 // code layout too horribly.
497 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
499 // Create the new outer loop.
500 Loop *NewOuter = new Loop();
502 // Change the parent loop to use the outer loop as its child now.
503 if (Loop *Parent = L->getParentLoop())
504 Parent->replaceChildLoopWith(L, NewOuter);
505 else
506 LI->changeTopLevelLoop(L, NewOuter);
508 // L is now a subloop of our outer loop.
509 NewOuter->addChildLoop(L);
511 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
512 I != E; ++I)
513 NewOuter->addBlockEntry(*I);
515 // Now reset the header in L, which had been moved by
516 // SplitBlockPredecessors for the outer loop.
517 L->moveToHeader(Header);
519 // Determine which blocks should stay in L and which should be moved out to
520 // the Outer loop now.
521 std::set<BasicBlock*> BlocksInL;
522 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
523 if (DT->dominates(Header, *PI))
524 AddBlockAndPredsToSet(*PI, Header, BlocksInL);
527 // Scan all of the loop children of L, moving them to OuterLoop if they are
528 // not part of the inner loop.
529 const std::vector<Loop*> &SubLoops = L->getSubLoops();
530 for (size_t I = 0; I != SubLoops.size(); )
531 if (BlocksInL.count(SubLoops[I]->getHeader()))
532 ++I; // Loop remains in L
533 else
534 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
536 // Now that we know which blocks are in L and which need to be moved to
537 // OuterLoop, move any blocks that need it.
538 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
539 BasicBlock *BB = L->getBlocks()[i];
540 if (!BlocksInL.count(BB)) {
541 // Move this block to the parent, updating the exit blocks sets
542 L->removeBlockFromLoop(BB);
543 if ((*LI)[BB] == L)
544 LI->changeLoopFor(BB, NewOuter);
545 --i;
549 return NewOuter;
554 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
555 /// has more than one backedge in it. If this occurs, revector all of these
556 /// backedges to target a new basic block and have that block branch to the loop
557 /// header. This ensures that loops have exactly one backedge.
559 void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
560 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
562 // Get information about the loop
563 BasicBlock *Header = L->getHeader();
564 Function *F = Header->getParent();
566 // Figure out which basic blocks contain back-edges to the loop header.
567 std::vector<BasicBlock*> BackedgeBlocks;
568 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
569 if (*I != Preheader) BackedgeBlocks.push_back(*I);
571 // Create and insert the new backedge block...
572 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
573 Header->getName()+".backedge", F);
574 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
576 // Move the new backedge block to right after the last backedge block.
577 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
578 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
580 // Now that the block has been inserted into the function, create PHI nodes in
581 // the backedge block which correspond to any PHI nodes in the header block.
582 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
583 PHINode *PN = cast<PHINode>(I);
584 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
585 BETerminator);
586 NewPN->reserveOperandSpace(BackedgeBlocks.size());
587 if (AA) AA->copyValue(PN, NewPN);
589 // Loop over the PHI node, moving all entries except the one for the
590 // preheader over to the new PHI node.
591 unsigned PreheaderIdx = ~0U;
592 bool HasUniqueIncomingValue = true;
593 Value *UniqueValue = 0;
594 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
595 BasicBlock *IBB = PN->getIncomingBlock(i);
596 Value *IV = PN->getIncomingValue(i);
597 if (IBB == Preheader) {
598 PreheaderIdx = i;
599 } else {
600 NewPN->addIncoming(IV, IBB);
601 if (HasUniqueIncomingValue) {
602 if (UniqueValue == 0)
603 UniqueValue = IV;
604 else if (UniqueValue != IV)
605 HasUniqueIncomingValue = false;
610 // Delete all of the incoming values from the old PN except the preheader's
611 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
612 if (PreheaderIdx != 0) {
613 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
614 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
616 // Nuke all entries except the zero'th.
617 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
618 PN->removeIncomingValue(e-i, false);
620 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
621 PN->addIncoming(NewPN, BEBlock);
623 // As an optimization, if all incoming values in the new PhiNode (which is a
624 // subset of the incoming values of the old PHI node) have the same value,
625 // eliminate the PHI Node.
626 if (HasUniqueIncomingValue) {
627 NewPN->replaceAllUsesWith(UniqueValue);
628 if (AA) AA->deleteValue(NewPN);
629 BEBlock->getInstList().erase(NewPN);
633 // Now that all of the PHI nodes have been inserted and adjusted, modify the
634 // backedge blocks to just to the BEBlock instead of the header.
635 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
636 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
637 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
638 if (TI->getSuccessor(Op) == Header)
639 TI->setSuccessor(Op, BEBlock);
642 //===--- Update all analyses which we must preserve now -----------------===//
644 // Update Loop Information - we know that this block is now in the current
645 // loop and all parent loops.
646 L->addBasicBlockToLoop(BEBlock, LI->getBase());
648 // Update dominator information
649 DT->splitBlock(BEBlock);
650 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
651 DF->splitBlock(BEBlock);