Fix comment for consistency sake.
[llvm/avr.git] / lib / VMCore / Constants.cpp
blob37efafc9b208902ba9f1624cdf26ff1c54ea3852
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Mutex.h"
32 #include "llvm/System/RWMutex.h"
33 #include "llvm/System/Threading.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include <algorithm>
37 #include <map>
38 using namespace llvm;
40 //===----------------------------------------------------------------------===//
41 // Constant Class
42 //===----------------------------------------------------------------------===//
44 // Constructor to create a '0' constant of arbitrary type...
45 static const uint64_t zero[2] = {0, 0};
46 Constant* Constant::getNullValue(const Type* Ty) {
47 switch (Ty->getTypeID()) {
48 case Type::IntegerTyID:
49 return ConstantInt::get(Ty, 0);
50 case Type::FloatTyID:
51 return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
52 case Type::DoubleTyID:
53 return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
54 case Type::X86_FP80TyID:
55 return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
56 case Type::FP128TyID:
57 return ConstantFP::get(Ty->getContext(),
58 APFloat(APInt(128, 2, zero), true));
59 case Type::PPC_FP128TyID:
60 return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
61 case Type::PointerTyID:
62 return ConstantPointerNull::get(cast<PointerType>(Ty));
63 case Type::StructTyID:
64 case Type::ArrayTyID:
65 case Type::VectorTyID:
66 return ConstantAggregateZero::get(Ty);
67 default:
68 // Function, Label, or Opaque type?
69 assert(!"Cannot create a null constant of that type!");
70 return 0;
74 Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
75 const Type *ScalarTy = Ty->getScalarType();
77 // Create the base integer constant.
78 Constant *C = ConstantInt::get(Ty->getContext(), V);
80 // Convert an integer to a pointer, if necessary.
81 if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
82 C = ConstantExpr::getIntToPtr(C, PTy);
84 // Broadcast a scalar to a vector, if necessary.
85 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
86 C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
88 return C;
91 Constant* Constant::getAllOnesValue(const Type* Ty) {
92 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
93 return ConstantInt::get(Ty->getContext(),
94 APInt::getAllOnesValue(ITy->getBitWidth()));
96 std::vector<Constant*> Elts;
97 const VectorType* VTy = cast<VectorType>(Ty);
98 Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
99 assert(Elts[0] && "Not a vector integer type!");
100 return cast<ConstantVector>(ConstantVector::get(Elts));
103 void Constant::destroyConstantImpl() {
104 // When a Constant is destroyed, there may be lingering
105 // references to the constant by other constants in the constant pool. These
106 // constants are implicitly dependent on the module that is being deleted,
107 // but they don't know that. Because we only find out when the CPV is
108 // deleted, we must now notify all of our users (that should only be
109 // Constants) that they are, in fact, invalid now and should be deleted.
111 while (!use_empty()) {
112 Value *V = use_back();
113 #ifndef NDEBUG // Only in -g mode...
114 if (!isa<Constant>(V)) {
115 errs() << "While deleting: " << *this
116 << "\n\nUse still stuck around after Def is destroyed: "
117 << *V << "\n\n";
119 #endif
120 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
121 Constant *CV = cast<Constant>(V);
122 CV->destroyConstant();
124 // The constant should remove itself from our use list...
125 assert((use_empty() || use_back() != V) && "Constant not removed!");
128 // Value has no outstanding references it is safe to delete it now...
129 delete this;
132 /// canTrap - Return true if evaluation of this constant could trap. This is
133 /// true for things like constant expressions that could divide by zero.
134 bool Constant::canTrap() const {
135 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
136 // The only thing that could possibly trap are constant exprs.
137 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
138 if (!CE) return false;
140 // ConstantExpr traps if any operands can trap.
141 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
142 if (getOperand(i)->canTrap())
143 return true;
145 // Otherwise, only specific operations can trap.
146 switch (CE->getOpcode()) {
147 default:
148 return false;
149 case Instruction::UDiv:
150 case Instruction::SDiv:
151 case Instruction::FDiv:
152 case Instruction::URem:
153 case Instruction::SRem:
154 case Instruction::FRem:
155 // Div and rem can trap if the RHS is not known to be non-zero.
156 if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
157 return true;
158 return false;
163 /// getRelocationInfo - This method classifies the entry according to
164 /// whether or not it may generate a relocation entry. This must be
165 /// conservative, so if it might codegen to a relocatable entry, it should say
166 /// so. The return values are:
167 ///
168 /// NoRelocation: This constant pool entry is guaranteed to never have a
169 /// relocation applied to it (because it holds a simple constant like
170 /// '4').
171 /// LocalRelocation: This entry has relocations, but the entries are
172 /// guaranteed to be resolvable by the static linker, so the dynamic
173 /// linker will never see them.
174 /// GlobalRelocations: This entry may have arbitrary relocations.
176 /// FIXME: This really should not be in VMCore.
177 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
178 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
179 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
180 return LocalRelocation; // Local to this file/library.
181 return GlobalRelocations; // Global reference.
184 PossibleRelocationsTy Result = NoRelocation;
185 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
186 Result = std::max(Result, getOperand(i)->getRelocationInfo());
188 return Result;
192 /// getVectorElements - This method, which is only valid on constant of vector
193 /// type, returns the elements of the vector in the specified smallvector.
194 /// This handles breaking down a vector undef into undef elements, etc. For
195 /// constant exprs and other cases we can't handle, we return an empty vector.
196 void Constant::getVectorElements(LLVMContext &Context,
197 SmallVectorImpl<Constant*> &Elts) const {
198 assert(isa<VectorType>(getType()) && "Not a vector constant!");
200 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
201 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
202 Elts.push_back(CV->getOperand(i));
203 return;
206 const VectorType *VT = cast<VectorType>(getType());
207 if (isa<ConstantAggregateZero>(this)) {
208 Elts.assign(VT->getNumElements(),
209 Constant::getNullValue(VT->getElementType()));
210 return;
213 if (isa<UndefValue>(this)) {
214 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
215 return;
218 // Unknown type, must be constant expr etc.
223 //===----------------------------------------------------------------------===//
224 // ConstantInt
225 //===----------------------------------------------------------------------===//
227 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
228 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
229 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
232 ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
233 LLVMContextImpl *pImpl = Context.pImpl;
234 sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
235 if (pImpl->TheTrueVal)
236 return pImpl->TheTrueVal;
237 else
238 return (pImpl->TheTrueVal =
239 ConstantInt::get(IntegerType::get(Context, 1), 1));
242 ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
243 LLVMContextImpl *pImpl = Context.pImpl;
244 sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
245 if (pImpl->TheFalseVal)
246 return pImpl->TheFalseVal;
247 else
248 return (pImpl->TheFalseVal =
249 ConstantInt::get(IntegerType::get(Context, 1), 0));
253 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
254 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
255 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
256 // compare APInt's of different widths, which would violate an APInt class
257 // invariant which generates an assertion.
258 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
259 // Get the corresponding integer type for the bit width of the value.
260 const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
261 // get an existing value or the insertion position
262 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
264 Context.pImpl->ConstantsLock.reader_acquire();
265 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
266 Context.pImpl->ConstantsLock.reader_release();
268 if (!Slot) {
269 sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
270 ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
271 if (!Slot) {
272 NewSlot = new ConstantInt(ITy, V);
275 return NewSlot;
276 } else {
277 return Slot;
281 Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
282 Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
283 V, isSigned);
285 // For vectors, broadcast the value.
286 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
287 return ConstantVector::get(
288 std::vector<Constant *>(VTy->getNumElements(), C));
290 return C;
293 ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
294 bool isSigned) {
295 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
298 ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
299 return get(Ty, V, true);
302 Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
303 return get(Ty, V, true);
306 Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
307 ConstantInt *C = get(Ty->getContext(), V);
308 assert(C->getType() == Ty->getScalarType() &&
309 "ConstantInt type doesn't match the type implied by its value!");
311 // For vectors, broadcast the value.
312 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
313 return ConstantVector::get(
314 std::vector<Constant *>(VTy->getNumElements(), C));
316 return C;
319 ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str,
320 uint8_t radix) {
321 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
324 //===----------------------------------------------------------------------===//
325 // ConstantFP
326 //===----------------------------------------------------------------------===//
328 static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
329 if (Ty == Type::getFloatTy(Ty->getContext()))
330 return &APFloat::IEEEsingle;
331 if (Ty == Type::getDoubleTy(Ty->getContext()))
332 return &APFloat::IEEEdouble;
333 if (Ty == Type::getX86_FP80Ty(Ty->getContext()))
334 return &APFloat::x87DoubleExtended;
335 else if (Ty == Type::getFP128Ty(Ty->getContext()))
336 return &APFloat::IEEEquad;
338 assert(Ty == Type::getPPC_FP128Ty(Ty->getContext()) && "Unknown FP format");
339 return &APFloat::PPCDoubleDouble;
342 /// get() - This returns a constant fp for the specified value in the
343 /// specified type. This should only be used for simple constant values like
344 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
345 Constant* ConstantFP::get(const Type* Ty, double V) {
346 LLVMContext &Context = Ty->getContext();
348 APFloat FV(V);
349 bool ignored;
350 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
351 APFloat::rmNearestTiesToEven, &ignored);
352 Constant *C = get(Context, FV);
354 // For vectors, broadcast the value.
355 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
356 return ConstantVector::get(
357 std::vector<Constant *>(VTy->getNumElements(), C));
359 return C;
363 Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) {
364 LLVMContext &Context = Ty->getContext();
366 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
367 Constant *C = get(Context, FV);
369 // For vectors, broadcast the value.
370 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
371 return ConstantVector::get(
372 std::vector<Constant *>(VTy->getNumElements(), C));
374 return C;
378 ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
379 LLVMContext &Context = Ty->getContext();
380 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
381 apf.changeSign();
382 return get(Context, apf);
386 Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
387 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
388 if (PTy->getElementType()->isFloatingPoint()) {
389 std::vector<Constant*> zeros(PTy->getNumElements(),
390 getNegativeZero(PTy->getElementType()));
391 return ConstantVector::get(PTy, zeros);
394 if (Ty->isFloatingPoint())
395 return getNegativeZero(Ty);
397 return Constant::getNullValue(Ty);
401 // ConstantFP accessors.
402 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
403 DenseMapAPFloatKeyInfo::KeyTy Key(V);
405 LLVMContextImpl* pImpl = Context.pImpl;
407 pImpl->ConstantsLock.reader_acquire();
408 ConstantFP *&Slot = pImpl->FPConstants[Key];
409 pImpl->ConstantsLock.reader_release();
411 if (!Slot) {
412 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
413 ConstantFP *&NewSlot = pImpl->FPConstants[Key];
414 if (!NewSlot) {
415 const Type *Ty;
416 if (&V.getSemantics() == &APFloat::IEEEsingle)
417 Ty = Type::getFloatTy(Context);
418 else if (&V.getSemantics() == &APFloat::IEEEdouble)
419 Ty = Type::getDoubleTy(Context);
420 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
421 Ty = Type::getX86_FP80Ty(Context);
422 else if (&V.getSemantics() == &APFloat::IEEEquad)
423 Ty = Type::getFP128Ty(Context);
424 else {
425 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
426 "Unknown FP format");
427 Ty = Type::getPPC_FP128Ty(Context);
429 NewSlot = new ConstantFP(Ty, V);
432 return NewSlot;
435 return Slot;
438 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
439 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
440 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
441 "FP type Mismatch");
444 bool ConstantFP::isNullValue() const {
445 return Val.isZero() && !Val.isNegative();
448 bool ConstantFP::isExactlyValue(const APFloat& V) const {
449 return Val.bitwiseIsEqual(V);
452 //===----------------------------------------------------------------------===//
453 // ConstantXXX Classes
454 //===----------------------------------------------------------------------===//
457 ConstantArray::ConstantArray(const ArrayType *T,
458 const std::vector<Constant*> &V)
459 : Constant(T, ConstantArrayVal,
460 OperandTraits<ConstantArray>::op_end(this) - V.size(),
461 V.size()) {
462 assert(V.size() == T->getNumElements() &&
463 "Invalid initializer vector for constant array");
464 Use *OL = OperandList;
465 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
466 I != E; ++I, ++OL) {
467 Constant *C = *I;
468 assert((C->getType() == T->getElementType() ||
469 (T->isAbstract() &&
470 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
471 "Initializer for array element doesn't match array element type!");
472 *OL = C;
476 Constant *ConstantArray::get(const ArrayType *Ty,
477 const std::vector<Constant*> &V) {
478 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
479 // If this is an all-zero array, return a ConstantAggregateZero object
480 if (!V.empty()) {
481 Constant *C = V[0];
482 if (!C->isNullValue()) {
483 // Implicitly locked.
484 return pImpl->ArrayConstants.getOrCreate(Ty, V);
486 for (unsigned i = 1, e = V.size(); i != e; ++i)
487 if (V[i] != C) {
488 // Implicitly locked.
489 return pImpl->ArrayConstants.getOrCreate(Ty, V);
493 return ConstantAggregateZero::get(Ty);
497 Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
498 unsigned NumVals) {
499 // FIXME: make this the primary ctor method.
500 return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
503 /// ConstantArray::get(const string&) - Return an array that is initialized to
504 /// contain the specified string. If length is zero then a null terminator is
505 /// added to the specified string so that it may be used in a natural way.
506 /// Otherwise, the length parameter specifies how much of the string to use
507 /// and it won't be null terminated.
509 Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str,
510 bool AddNull) {
511 std::vector<Constant*> ElementVals;
512 for (unsigned i = 0; i < Str.size(); ++i)
513 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
515 // Add a null terminator to the string...
516 if (AddNull) {
517 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
520 ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
521 return get(ATy, ElementVals);
526 ConstantStruct::ConstantStruct(const StructType *T,
527 const std::vector<Constant*> &V)
528 : Constant(T, ConstantStructVal,
529 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
530 V.size()) {
531 assert(V.size() == T->getNumElements() &&
532 "Invalid initializer vector for constant structure");
533 Use *OL = OperandList;
534 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
535 I != E; ++I, ++OL) {
536 Constant *C = *I;
537 assert((C->getType() == T->getElementType(I-V.begin()) ||
538 ((T->getElementType(I-V.begin())->isAbstract() ||
539 C->getType()->isAbstract()) &&
540 T->getElementType(I-V.begin())->getTypeID() ==
541 C->getType()->getTypeID())) &&
542 "Initializer for struct element doesn't match struct element type!");
543 *OL = C;
547 // ConstantStruct accessors.
548 Constant* ConstantStruct::get(const StructType* T,
549 const std::vector<Constant*>& V) {
550 LLVMContextImpl* pImpl = T->getContext().pImpl;
552 // Create a ConstantAggregateZero value if all elements are zeros...
553 for (unsigned i = 0, e = V.size(); i != e; ++i)
554 if (!V[i]->isNullValue())
555 // Implicitly locked.
556 return pImpl->StructConstants.getOrCreate(T, V);
558 return ConstantAggregateZero::get(T);
561 Constant* ConstantStruct::get(LLVMContext &Context,
562 const std::vector<Constant*>& V, bool packed) {
563 std::vector<const Type*> StructEls;
564 StructEls.reserve(V.size());
565 for (unsigned i = 0, e = V.size(); i != e; ++i)
566 StructEls.push_back(V[i]->getType());
567 return get(StructType::get(Context, StructEls, packed), V);
570 Constant* ConstantStruct::get(LLVMContext &Context,
571 Constant* const *Vals, unsigned NumVals,
572 bool Packed) {
573 // FIXME: make this the primary ctor method.
574 return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
577 ConstantVector::ConstantVector(const VectorType *T,
578 const std::vector<Constant*> &V)
579 : Constant(T, ConstantVectorVal,
580 OperandTraits<ConstantVector>::op_end(this) - V.size(),
581 V.size()) {
582 Use *OL = OperandList;
583 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
584 I != E; ++I, ++OL) {
585 Constant *C = *I;
586 assert((C->getType() == T->getElementType() ||
587 (T->isAbstract() &&
588 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
589 "Initializer for vector element doesn't match vector element type!");
590 *OL = C;
594 // ConstantVector accessors.
595 Constant* ConstantVector::get(const VectorType* T,
596 const std::vector<Constant*>& V) {
597 assert(!V.empty() && "Vectors can't be empty");
598 LLVMContext &Context = T->getContext();
599 LLVMContextImpl *pImpl = Context.pImpl;
601 // If this is an all-undef or alll-zero vector, return a
602 // ConstantAggregateZero or UndefValue.
603 Constant *C = V[0];
604 bool isZero = C->isNullValue();
605 bool isUndef = isa<UndefValue>(C);
607 if (isZero || isUndef) {
608 for (unsigned i = 1, e = V.size(); i != e; ++i)
609 if (V[i] != C) {
610 isZero = isUndef = false;
611 break;
615 if (isZero)
616 return ConstantAggregateZero::get(T);
617 if (isUndef)
618 return UndefValue::get(T);
620 // Implicitly locked.
621 return pImpl->VectorConstants.getOrCreate(T, V);
624 Constant* ConstantVector::get(const std::vector<Constant*>& V) {
625 assert(!V.empty() && "Cannot infer type if V is empty");
626 return get(VectorType::get(V.front()->getType(),V.size()), V);
629 Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
630 // FIXME: make this the primary ctor method.
631 return get(std::vector<Constant*>(Vals, Vals+NumVals));
634 Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
635 Constant *C = getAdd(C1, C2);
636 // Set nsw attribute, assuming constant folding didn't eliminate the
637 // Add.
638 if (AddOperator *Add = dyn_cast<AddOperator>(C))
639 Add->setHasNoSignedWrap(true);
640 return C;
643 Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
644 Constant *C = getSDiv(C1, C2);
645 // Set exact attribute, assuming constant folding didn't eliminate the
646 // SDiv.
647 if (SDivOperator *SDiv = dyn_cast<SDivOperator>(C))
648 SDiv->setIsExact(true);
649 return C;
652 // Utility function for determining if a ConstantExpr is a CastOp or not. This
653 // can't be inline because we don't want to #include Instruction.h into
654 // Constant.h
655 bool ConstantExpr::isCast() const {
656 return Instruction::isCast(getOpcode());
659 bool ConstantExpr::isCompare() const {
660 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
663 bool ConstantExpr::hasIndices() const {
664 return getOpcode() == Instruction::ExtractValue ||
665 getOpcode() == Instruction::InsertValue;
668 const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
669 if (const ExtractValueConstantExpr *EVCE =
670 dyn_cast<ExtractValueConstantExpr>(this))
671 return EVCE->Indices;
673 return cast<InsertValueConstantExpr>(this)->Indices;
676 unsigned ConstantExpr::getPredicate() const {
677 assert(getOpcode() == Instruction::FCmp ||
678 getOpcode() == Instruction::ICmp);
679 return ((const CompareConstantExpr*)this)->predicate;
682 /// getWithOperandReplaced - Return a constant expression identical to this
683 /// one, but with the specified operand set to the specified value.
684 Constant *
685 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
686 assert(OpNo < getNumOperands() && "Operand num is out of range!");
687 assert(Op->getType() == getOperand(OpNo)->getType() &&
688 "Replacing operand with value of different type!");
689 if (getOperand(OpNo) == Op)
690 return const_cast<ConstantExpr*>(this);
692 Constant *Op0, *Op1, *Op2;
693 switch (getOpcode()) {
694 case Instruction::Trunc:
695 case Instruction::ZExt:
696 case Instruction::SExt:
697 case Instruction::FPTrunc:
698 case Instruction::FPExt:
699 case Instruction::UIToFP:
700 case Instruction::SIToFP:
701 case Instruction::FPToUI:
702 case Instruction::FPToSI:
703 case Instruction::PtrToInt:
704 case Instruction::IntToPtr:
705 case Instruction::BitCast:
706 return ConstantExpr::getCast(getOpcode(), Op, getType());
707 case Instruction::Select:
708 Op0 = (OpNo == 0) ? Op : getOperand(0);
709 Op1 = (OpNo == 1) ? Op : getOperand(1);
710 Op2 = (OpNo == 2) ? Op : getOperand(2);
711 return ConstantExpr::getSelect(Op0, Op1, Op2);
712 case Instruction::InsertElement:
713 Op0 = (OpNo == 0) ? Op : getOperand(0);
714 Op1 = (OpNo == 1) ? Op : getOperand(1);
715 Op2 = (OpNo == 2) ? Op : getOperand(2);
716 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
717 case Instruction::ExtractElement:
718 Op0 = (OpNo == 0) ? Op : getOperand(0);
719 Op1 = (OpNo == 1) ? Op : getOperand(1);
720 return ConstantExpr::getExtractElement(Op0, Op1);
721 case Instruction::ShuffleVector:
722 Op0 = (OpNo == 0) ? Op : getOperand(0);
723 Op1 = (OpNo == 1) ? Op : getOperand(1);
724 Op2 = (OpNo == 2) ? Op : getOperand(2);
725 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
726 case Instruction::GetElementPtr: {
727 SmallVector<Constant*, 8> Ops;
728 Ops.resize(getNumOperands()-1);
729 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
730 Ops[i-1] = getOperand(i);
731 if (OpNo == 0)
732 return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
733 Ops[OpNo-1] = Op;
734 return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
736 default:
737 assert(getNumOperands() == 2 && "Must be binary operator?");
738 Op0 = (OpNo == 0) ? Op : getOperand(0);
739 Op1 = (OpNo == 1) ? Op : getOperand(1);
740 return ConstantExpr::get(getOpcode(), Op0, Op1);
744 /// getWithOperands - This returns the current constant expression with the
745 /// operands replaced with the specified values. The specified operands must
746 /// match count and type with the existing ones.
747 Constant *ConstantExpr::
748 getWithOperands(Constant* const *Ops, unsigned NumOps) const {
749 assert(NumOps == getNumOperands() && "Operand count mismatch!");
750 bool AnyChange = false;
751 for (unsigned i = 0; i != NumOps; ++i) {
752 assert(Ops[i]->getType() == getOperand(i)->getType() &&
753 "Operand type mismatch!");
754 AnyChange |= Ops[i] != getOperand(i);
756 if (!AnyChange) // No operands changed, return self.
757 return const_cast<ConstantExpr*>(this);
759 switch (getOpcode()) {
760 case Instruction::Trunc:
761 case Instruction::ZExt:
762 case Instruction::SExt:
763 case Instruction::FPTrunc:
764 case Instruction::FPExt:
765 case Instruction::UIToFP:
766 case Instruction::SIToFP:
767 case Instruction::FPToUI:
768 case Instruction::FPToSI:
769 case Instruction::PtrToInt:
770 case Instruction::IntToPtr:
771 case Instruction::BitCast:
772 return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
773 case Instruction::Select:
774 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
775 case Instruction::InsertElement:
776 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
777 case Instruction::ExtractElement:
778 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
779 case Instruction::ShuffleVector:
780 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
781 case Instruction::GetElementPtr:
782 return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
783 case Instruction::ICmp:
784 case Instruction::FCmp:
785 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
786 default:
787 assert(getNumOperands() == 2 && "Must be binary operator?");
788 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
793 //===----------------------------------------------------------------------===//
794 // isValueValidForType implementations
796 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
797 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
798 if (Ty == Type::getInt1Ty(Ty->getContext()))
799 return Val == 0 || Val == 1;
800 if (NumBits >= 64)
801 return true; // always true, has to fit in largest type
802 uint64_t Max = (1ll << NumBits) - 1;
803 return Val <= Max;
806 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
807 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
808 if (Ty == Type::getInt1Ty(Ty->getContext()))
809 return Val == 0 || Val == 1 || Val == -1;
810 if (NumBits >= 64)
811 return true; // always true, has to fit in largest type
812 int64_t Min = -(1ll << (NumBits-1));
813 int64_t Max = (1ll << (NumBits-1)) - 1;
814 return (Val >= Min && Val <= Max);
817 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
818 // convert modifies in place, so make a copy.
819 APFloat Val2 = APFloat(Val);
820 bool losesInfo;
821 switch (Ty->getTypeID()) {
822 default:
823 return false; // These can't be represented as floating point!
825 // FIXME rounding mode needs to be more flexible
826 case Type::FloatTyID: {
827 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
828 return true;
829 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
830 return !losesInfo;
832 case Type::DoubleTyID: {
833 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
834 &Val2.getSemantics() == &APFloat::IEEEdouble)
835 return true;
836 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
837 return !losesInfo;
839 case Type::X86_FP80TyID:
840 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
841 &Val2.getSemantics() == &APFloat::IEEEdouble ||
842 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
843 case Type::FP128TyID:
844 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
845 &Val2.getSemantics() == &APFloat::IEEEdouble ||
846 &Val2.getSemantics() == &APFloat::IEEEquad;
847 case Type::PPC_FP128TyID:
848 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
849 &Val2.getSemantics() == &APFloat::IEEEdouble ||
850 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
854 //===----------------------------------------------------------------------===//
855 // Factory Function Implementation
857 static char getValType(ConstantAggregateZero *CPZ) { return 0; }
859 ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
860 assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
861 "Cannot create an aggregate zero of non-aggregate type!");
863 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
864 // Implicitly locked.
865 return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
868 /// destroyConstant - Remove the constant from the constant table...
870 void ConstantAggregateZero::destroyConstant() {
871 // Implicitly locked.
872 getType()->getContext().pImpl->AggZeroConstants.remove(this);
873 destroyConstantImpl();
876 /// destroyConstant - Remove the constant from the constant table...
878 void ConstantArray::destroyConstant() {
879 // Implicitly locked.
880 getType()->getContext().pImpl->ArrayConstants.remove(this);
881 destroyConstantImpl();
884 /// isString - This method returns true if the array is an array of i8, and
885 /// if the elements of the array are all ConstantInt's.
886 bool ConstantArray::isString() const {
887 // Check the element type for i8...
888 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
889 return false;
890 // Check the elements to make sure they are all integers, not constant
891 // expressions.
892 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
893 if (!isa<ConstantInt>(getOperand(i)))
894 return false;
895 return true;
898 /// isCString - This method returns true if the array is a string (see
899 /// isString) and it ends in a null byte \\0 and does not contains any other
900 /// null bytes except its terminator.
901 bool ConstantArray::isCString() const {
902 // Check the element type for i8...
903 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
904 return false;
906 // Last element must be a null.
907 if (!getOperand(getNumOperands()-1)->isNullValue())
908 return false;
909 // Other elements must be non-null integers.
910 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
911 if (!isa<ConstantInt>(getOperand(i)))
912 return false;
913 if (getOperand(i)->isNullValue())
914 return false;
916 return true;
920 /// getAsString - If the sub-element type of this array is i8
921 /// then this method converts the array to an std::string and returns it.
922 /// Otherwise, it asserts out.
924 std::string ConstantArray::getAsString() const {
925 assert(isString() && "Not a string!");
926 std::string Result;
927 Result.reserve(getNumOperands());
928 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
929 Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
930 return Result;
934 //---- ConstantStruct::get() implementation...
937 namespace llvm {
941 // destroyConstant - Remove the constant from the constant table...
943 void ConstantStruct::destroyConstant() {
944 // Implicitly locked.
945 getType()->getContext().pImpl->StructConstants.remove(this);
946 destroyConstantImpl();
949 // destroyConstant - Remove the constant from the constant table...
951 void ConstantVector::destroyConstant() {
952 // Implicitly locked.
953 getType()->getContext().pImpl->VectorConstants.remove(this);
954 destroyConstantImpl();
957 /// This function will return true iff every element in this vector constant
958 /// is set to all ones.
959 /// @returns true iff this constant's emements are all set to all ones.
960 /// @brief Determine if the value is all ones.
961 bool ConstantVector::isAllOnesValue() const {
962 // Check out first element.
963 const Constant *Elt = getOperand(0);
964 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
965 if (!CI || !CI->isAllOnesValue()) return false;
966 // Then make sure all remaining elements point to the same value.
967 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
968 if (getOperand(I) != Elt) return false;
970 return true;
973 /// getSplatValue - If this is a splat constant, where all of the
974 /// elements have the same value, return that value. Otherwise return null.
975 Constant *ConstantVector::getSplatValue() {
976 // Check out first element.
977 Constant *Elt = getOperand(0);
978 // Then make sure all remaining elements point to the same value.
979 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
980 if (getOperand(I) != Elt) return 0;
981 return Elt;
984 //---- ConstantPointerNull::get() implementation...
987 static char getValType(ConstantPointerNull *) {
988 return 0;
992 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
993 // Implicitly locked.
994 return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
997 // destroyConstant - Remove the constant from the constant table...
999 void ConstantPointerNull::destroyConstant() {
1000 // Implicitly locked.
1001 getType()->getContext().pImpl->NullPtrConstants.remove(this);
1002 destroyConstantImpl();
1006 //---- UndefValue::get() implementation...
1009 static char getValType(UndefValue *) {
1010 return 0;
1013 UndefValue *UndefValue::get(const Type *Ty) {
1014 // Implicitly locked.
1015 return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1018 // destroyConstant - Remove the constant from the constant table.
1020 void UndefValue::destroyConstant() {
1021 // Implicitly locked.
1022 getType()->getContext().pImpl->UndefValueConstants.remove(this);
1023 destroyConstantImpl();
1026 //---- ConstantExpr::get() implementations...
1029 static ExprMapKeyType getValType(ConstantExpr *CE) {
1030 std::vector<Constant*> Operands;
1031 Operands.reserve(CE->getNumOperands());
1032 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
1033 Operands.push_back(cast<Constant>(CE->getOperand(i)));
1034 return ExprMapKeyType(CE->getOpcode(), Operands,
1035 CE->isCompare() ? CE->getPredicate() : 0,
1036 CE->hasIndices() ?
1037 CE->getIndices() : SmallVector<unsigned, 4>());
1040 /// This is a utility function to handle folding of casts and lookup of the
1041 /// cast in the ExprConstants map. It is used by the various get* methods below.
1042 static inline Constant *getFoldedCast(
1043 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1044 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1045 // Fold a few common cases
1046 if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
1047 return FC;
1049 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1051 // Look up the constant in the table first to ensure uniqueness
1052 std::vector<Constant*> argVec(1, C);
1053 ExprMapKeyType Key(opc, argVec);
1055 // Implicitly locked.
1056 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1059 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1060 Instruction::CastOps opc = Instruction::CastOps(oc);
1061 assert(Instruction::isCast(opc) && "opcode out of range");
1062 assert(C && Ty && "Null arguments to getCast");
1063 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1065 switch (opc) {
1066 default:
1067 llvm_unreachable("Invalid cast opcode");
1068 break;
1069 case Instruction::Trunc: return getTrunc(C, Ty);
1070 case Instruction::ZExt: return getZExt(C, Ty);
1071 case Instruction::SExt: return getSExt(C, Ty);
1072 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1073 case Instruction::FPExt: return getFPExtend(C, Ty);
1074 case Instruction::UIToFP: return getUIToFP(C, Ty);
1075 case Instruction::SIToFP: return getSIToFP(C, Ty);
1076 case Instruction::FPToUI: return getFPToUI(C, Ty);
1077 case Instruction::FPToSI: return getFPToSI(C, Ty);
1078 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1079 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1080 case Instruction::BitCast: return getBitCast(C, Ty);
1082 return 0;
1085 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1086 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1087 return getCast(Instruction::BitCast, C, Ty);
1088 return getCast(Instruction::ZExt, C, Ty);
1091 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1092 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1093 return getCast(Instruction::BitCast, C, Ty);
1094 return getCast(Instruction::SExt, C, Ty);
1097 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1098 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1099 return getCast(Instruction::BitCast, C, Ty);
1100 return getCast(Instruction::Trunc, C, Ty);
1103 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1104 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1105 assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
1107 if (Ty->isInteger())
1108 return getCast(Instruction::PtrToInt, S, Ty);
1109 return getCast(Instruction::BitCast, S, Ty);
1112 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1113 bool isSigned) {
1114 assert(C->getType()->isIntOrIntVector() &&
1115 Ty->isIntOrIntVector() && "Invalid cast");
1116 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1117 unsigned DstBits = Ty->getScalarSizeInBits();
1118 Instruction::CastOps opcode =
1119 (SrcBits == DstBits ? Instruction::BitCast :
1120 (SrcBits > DstBits ? Instruction::Trunc :
1121 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1122 return getCast(opcode, C, Ty);
1125 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1126 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1127 "Invalid cast");
1128 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1129 unsigned DstBits = Ty->getScalarSizeInBits();
1130 if (SrcBits == DstBits)
1131 return C; // Avoid a useless cast
1132 Instruction::CastOps opcode =
1133 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1134 return getCast(opcode, C, Ty);
1137 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1138 #ifndef NDEBUG
1139 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1140 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1141 #endif
1142 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1143 assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
1144 assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
1145 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1146 "SrcTy must be larger than DestTy for Trunc!");
1148 return getFoldedCast(Instruction::Trunc, C, Ty);
1151 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1152 #ifndef NDEBUG
1153 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1154 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1155 #endif
1156 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1157 assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
1158 assert(Ty->isIntOrIntVector() && "SExt produces only integer");
1159 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1160 "SrcTy must be smaller than DestTy for SExt!");
1162 return getFoldedCast(Instruction::SExt, C, Ty);
1165 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1166 #ifndef NDEBUG
1167 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1168 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1169 #endif
1170 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1171 assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
1172 assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
1173 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1174 "SrcTy must be smaller than DestTy for ZExt!");
1176 return getFoldedCast(Instruction::ZExt, C, Ty);
1179 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1180 #ifndef NDEBUG
1181 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1182 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1183 #endif
1184 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1185 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1186 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1187 "This is an illegal floating point truncation!");
1188 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1191 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1192 #ifndef NDEBUG
1193 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1194 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1195 #endif
1196 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1197 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1198 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1199 "This is an illegal floating point extension!");
1200 return getFoldedCast(Instruction::FPExt, C, Ty);
1203 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
1204 #ifndef NDEBUG
1205 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1206 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1207 #endif
1208 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1209 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
1210 "This is an illegal uint to floating point cast!");
1211 return getFoldedCast(Instruction::UIToFP, C, Ty);
1214 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
1215 #ifndef NDEBUG
1216 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1217 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1218 #endif
1219 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1220 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
1221 "This is an illegal sint to floating point cast!");
1222 return getFoldedCast(Instruction::SIToFP, C, Ty);
1225 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
1226 #ifndef NDEBUG
1227 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1228 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1229 #endif
1230 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1231 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
1232 "This is an illegal floating point to uint cast!");
1233 return getFoldedCast(Instruction::FPToUI, C, Ty);
1236 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
1237 #ifndef NDEBUG
1238 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1239 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1240 #endif
1241 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1242 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
1243 "This is an illegal floating point to sint cast!");
1244 return getFoldedCast(Instruction::FPToSI, C, Ty);
1247 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
1248 assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
1249 assert(DstTy->isInteger() && "PtrToInt destination must be integral");
1250 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1253 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
1254 assert(C->getType()->isInteger() && "IntToPtr source must be integral");
1255 assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
1256 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1259 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
1260 // BitCast implies a no-op cast of type only. No bits change. However, you
1261 // can't cast pointers to anything but pointers.
1262 #ifndef NDEBUG
1263 const Type *SrcTy = C->getType();
1264 assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
1265 "BitCast cannot cast pointer to non-pointer and vice versa");
1267 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1268 // or nonptr->ptr). For all the other types, the cast is okay if source and
1269 // destination bit widths are identical.
1270 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1271 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
1272 #endif
1273 assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
1275 // It is common to ask for a bitcast of a value to its own type, handle this
1276 // speedily.
1277 if (C->getType() == DstTy) return C;
1279 return getFoldedCast(Instruction::BitCast, C, DstTy);
1282 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
1283 Constant *C1, Constant *C2) {
1284 // Check the operands for consistency first
1285 assert(Opcode >= Instruction::BinaryOpsBegin &&
1286 Opcode < Instruction::BinaryOpsEnd &&
1287 "Invalid opcode in binary constant expression");
1288 assert(C1->getType() == C2->getType() &&
1289 "Operand types in binary constant expression should match");
1291 if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
1292 if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
1293 Opcode, C1, C2))
1294 return FC; // Fold a few common cases...
1296 std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
1297 ExprMapKeyType Key(Opcode, argVec);
1299 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1301 // Implicitly locked.
1302 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1305 Constant *ConstantExpr::getCompareTy(unsigned short predicate,
1306 Constant *C1, Constant *C2) {
1307 switch (predicate) {
1308 default: llvm_unreachable("Invalid CmpInst predicate");
1309 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1310 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1311 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1312 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1313 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1314 case CmpInst::FCMP_TRUE:
1315 return getFCmp(predicate, C1, C2);
1317 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1318 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1319 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1320 case CmpInst::ICMP_SLE:
1321 return getICmp(predicate, C1, C2);
1325 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
1326 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1327 if (C1->getType()->isFPOrFPVector()) {
1328 if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
1329 else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
1330 else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
1332 #ifndef NDEBUG
1333 switch (Opcode) {
1334 case Instruction::Add:
1335 case Instruction::Sub:
1336 case Instruction::Mul:
1337 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1338 assert(C1->getType()->isIntOrIntVector() &&
1339 "Tried to create an integer operation on a non-integer type!");
1340 break;
1341 case Instruction::FAdd:
1342 case Instruction::FSub:
1343 case Instruction::FMul:
1344 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1345 assert(C1->getType()->isFPOrFPVector() &&
1346 "Tried to create a floating-point operation on a "
1347 "non-floating-point type!");
1348 break;
1349 case Instruction::UDiv:
1350 case Instruction::SDiv:
1351 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1352 assert(C1->getType()->isIntOrIntVector() &&
1353 "Tried to create an arithmetic operation on a non-arithmetic type!");
1354 break;
1355 case Instruction::FDiv:
1356 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1357 assert(C1->getType()->isFPOrFPVector() &&
1358 "Tried to create an arithmetic operation on a non-arithmetic type!");
1359 break;
1360 case Instruction::URem:
1361 case Instruction::SRem:
1362 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1363 assert(C1->getType()->isIntOrIntVector() &&
1364 "Tried to create an arithmetic operation on a non-arithmetic type!");
1365 break;
1366 case Instruction::FRem:
1367 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1368 assert(C1->getType()->isFPOrFPVector() &&
1369 "Tried to create an arithmetic operation on a non-arithmetic type!");
1370 break;
1371 case Instruction::And:
1372 case Instruction::Or:
1373 case Instruction::Xor:
1374 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1375 assert(C1->getType()->isIntOrIntVector() &&
1376 "Tried to create a logical operation on a non-integral type!");
1377 break;
1378 case Instruction::Shl:
1379 case Instruction::LShr:
1380 case Instruction::AShr:
1381 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1382 assert(C1->getType()->isIntOrIntVector() &&
1383 "Tried to create a shift operation on a non-integer type!");
1384 break;
1385 default:
1386 break;
1388 #endif
1390 return getTy(C1->getType(), Opcode, C1, C2);
1393 Constant* ConstantExpr::getSizeOf(const Type* Ty) {
1394 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1395 // Note that a non-inbounds gep is used, as null isn't within any object.
1396 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1397 Constant *GEP = getGetElementPtr(
1398 Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
1399 return getCast(Instruction::PtrToInt, GEP,
1400 Type::getInt64Ty(Ty->getContext()));
1403 Constant* ConstantExpr::getAlignOf(const Type* Ty) {
1404 // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
1405 // Note that a non-inbounds gep is used, as null isn't within any object.
1406 const Type *AligningTy = StructType::get(Ty->getContext(),
1407 Type::getInt8Ty(Ty->getContext()), Ty, NULL);
1408 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1409 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0);
1410 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1411 Constant *Indices[2] = { Zero, One };
1412 Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
1413 return getCast(Instruction::PtrToInt, GEP,
1414 Type::getInt32Ty(Ty->getContext()));
1417 Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
1418 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1419 // Note that a non-inbounds gep is used, as null isn't within any object.
1420 Constant *GEPIdx[] = {
1421 ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0),
1422 ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)
1424 Constant *GEP = getGetElementPtr(
1425 Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2);
1426 return getCast(Instruction::PtrToInt, GEP,
1427 Type::getInt64Ty(STy->getContext()));
1430 Constant *ConstantExpr::getCompare(unsigned short pred,
1431 Constant *C1, Constant *C2) {
1432 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1433 return getCompareTy(pred, C1, C2);
1436 Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
1437 Constant *V1, Constant *V2) {
1438 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1440 if (ReqTy == V1->getType())
1441 if (Constant *SC = ConstantFoldSelectInstruction(
1442 ReqTy->getContext(), C, V1, V2))
1443 return SC; // Fold common cases
1445 std::vector<Constant*> argVec(3, C);
1446 argVec[1] = V1;
1447 argVec[2] = V2;
1448 ExprMapKeyType Key(Instruction::Select, argVec);
1450 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1452 // Implicitly locked.
1453 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1456 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
1457 Value* const *Idxs,
1458 unsigned NumIdx) {
1459 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
1460 Idxs+NumIdx) ==
1461 cast<PointerType>(ReqTy)->getElementType() &&
1462 "GEP indices invalid!");
1464 if (Constant *FC = ConstantFoldGetElementPtr(
1465 ReqTy->getContext(), C, (Constant**)Idxs, NumIdx))
1466 return FC; // Fold a few common cases...
1468 assert(isa<PointerType>(C->getType()) &&
1469 "Non-pointer type for constant GetElementPtr expression");
1470 // Look up the constant in the table first to ensure uniqueness
1471 std::vector<Constant*> ArgVec;
1472 ArgVec.reserve(NumIdx+1);
1473 ArgVec.push_back(C);
1474 for (unsigned i = 0; i != NumIdx; ++i)
1475 ArgVec.push_back(cast<Constant>(Idxs[i]));
1476 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
1478 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1480 // Implicitly locked.
1481 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1484 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1485 unsigned NumIdx) {
1486 // Get the result type of the getelementptr!
1487 const Type *Ty =
1488 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1489 assert(Ty && "GEP indices invalid!");
1490 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
1491 return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
1494 Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
1495 Value* const *Idxs,
1496 unsigned NumIdx) {
1497 Constant *Result = getGetElementPtr(C, Idxs, NumIdx);
1498 // Set in bounds attribute, assuming constant folding didn't eliminate the
1499 // GEP.
1500 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Result))
1501 GEP->setIsInBounds(true);
1502 return Result;
1505 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
1506 unsigned NumIdx) {
1507 return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
1510 Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
1511 Constant* const *Idxs,
1512 unsigned NumIdx) {
1513 return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
1516 Constant *
1517 ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1518 assert(LHS->getType() == RHS->getType());
1519 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1520 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1522 if (Constant *FC = ConstantFoldCompareInstruction(
1523 LHS->getContext(), pred, LHS, RHS))
1524 return FC; // Fold a few common cases...
1526 // Look up the constant in the table first to ensure uniqueness
1527 std::vector<Constant*> ArgVec;
1528 ArgVec.push_back(LHS);
1529 ArgVec.push_back(RHS);
1530 // Get the key type with both the opcode and predicate
1531 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1533 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1535 // Implicitly locked.
1536 return
1537 pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
1540 Constant *
1541 ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1542 assert(LHS->getType() == RHS->getType());
1543 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1545 if (Constant *FC = ConstantFoldCompareInstruction(
1546 LHS->getContext(), pred, LHS, RHS))
1547 return FC; // Fold a few common cases...
1549 // Look up the constant in the table first to ensure uniqueness
1550 std::vector<Constant*> ArgVec;
1551 ArgVec.push_back(LHS);
1552 ArgVec.push_back(RHS);
1553 // Get the key type with both the opcode and predicate
1554 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1556 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1558 // Implicitly locked.
1559 return
1560 pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
1563 Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
1564 Constant *Idx) {
1565 if (Constant *FC = ConstantFoldExtractElementInstruction(
1566 ReqTy->getContext(), Val, Idx))
1567 return FC; // Fold a few common cases...
1568 // Look up the constant in the table first to ensure uniqueness
1569 std::vector<Constant*> ArgVec(1, Val);
1570 ArgVec.push_back(Idx);
1571 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1573 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1575 // Implicitly locked.
1576 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1579 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1580 assert(isa<VectorType>(Val->getType()) &&
1581 "Tried to create extractelement operation on non-vector type!");
1582 assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
1583 "Extractelement index must be i32 type!");
1584 return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
1585 Val, Idx);
1588 Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
1589 Constant *Elt, Constant *Idx) {
1590 if (Constant *FC = ConstantFoldInsertElementInstruction(
1591 ReqTy->getContext(), Val, Elt, Idx))
1592 return FC; // Fold a few common cases...
1593 // Look up the constant in the table first to ensure uniqueness
1594 std::vector<Constant*> ArgVec(1, Val);
1595 ArgVec.push_back(Elt);
1596 ArgVec.push_back(Idx);
1597 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1599 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1601 // Implicitly locked.
1602 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1605 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1606 Constant *Idx) {
1607 assert(isa<VectorType>(Val->getType()) &&
1608 "Tried to create insertelement operation on non-vector type!");
1609 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1610 && "Insertelement types must match!");
1611 assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
1612 "Insertelement index must be i32 type!");
1613 return getInsertElementTy(Val->getType(), Val, Elt, Idx);
1616 Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
1617 Constant *V2, Constant *Mask) {
1618 if (Constant *FC = ConstantFoldShuffleVectorInstruction(
1619 ReqTy->getContext(), V1, V2, Mask))
1620 return FC; // Fold a few common cases...
1621 // Look up the constant in the table first to ensure uniqueness
1622 std::vector<Constant*> ArgVec(1, V1);
1623 ArgVec.push_back(V2);
1624 ArgVec.push_back(Mask);
1625 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1627 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1629 // Implicitly locked.
1630 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1633 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1634 Constant *Mask) {
1635 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1636 "Invalid shuffle vector constant expr operands!");
1638 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1639 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1640 const Type *ShufTy = VectorType::get(EltTy, NElts);
1641 return getShuffleVectorTy(ShufTy, V1, V2, Mask);
1644 Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
1645 Constant *Val,
1646 const unsigned *Idxs, unsigned NumIdx) {
1647 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1648 Idxs+NumIdx) == Val->getType() &&
1649 "insertvalue indices invalid!");
1650 assert(Agg->getType() == ReqTy &&
1651 "insertvalue type invalid!");
1652 assert(Agg->getType()->isFirstClassType() &&
1653 "Non-first-class type for constant InsertValue expression");
1654 Constant *FC = ConstantFoldInsertValueInstruction(
1655 ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
1656 assert(FC && "InsertValue constant expr couldn't be folded!");
1657 return FC;
1660 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1661 const unsigned *IdxList, unsigned NumIdx) {
1662 assert(Agg->getType()->isFirstClassType() &&
1663 "Tried to create insertelement operation on non-first-class type!");
1665 const Type *ReqTy = Agg->getType();
1666 #ifndef NDEBUG
1667 const Type *ValTy =
1668 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1669 #endif
1670 assert(ValTy == Val->getType() && "insertvalue indices invalid!");
1671 return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
1674 Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
1675 const unsigned *Idxs, unsigned NumIdx) {
1676 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1677 Idxs+NumIdx) == ReqTy &&
1678 "extractvalue indices invalid!");
1679 assert(Agg->getType()->isFirstClassType() &&
1680 "Non-first-class type for constant extractvalue expression");
1681 Constant *FC = ConstantFoldExtractValueInstruction(
1682 ReqTy->getContext(), Agg, Idxs, NumIdx);
1683 assert(FC && "ExtractValue constant expr couldn't be folded!");
1684 return FC;
1687 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1688 const unsigned *IdxList, unsigned NumIdx) {
1689 assert(Agg->getType()->isFirstClassType() &&
1690 "Tried to create extractelement operation on non-first-class type!");
1692 const Type *ReqTy =
1693 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1694 assert(ReqTy && "extractvalue indices invalid!");
1695 return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
1698 Constant* ConstantExpr::getNeg(Constant* C) {
1699 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1700 if (C->getType()->isFPOrFPVector())
1701 return getFNeg(C);
1702 assert(C->getType()->isIntOrIntVector() &&
1703 "Cannot NEG a nonintegral value!");
1704 return get(Instruction::Sub,
1705 ConstantFP::getZeroValueForNegation(C->getType()),
1709 Constant* ConstantExpr::getFNeg(Constant* C) {
1710 assert(C->getType()->isFPOrFPVector() &&
1711 "Cannot FNEG a non-floating-point value!");
1712 return get(Instruction::FSub,
1713 ConstantFP::getZeroValueForNegation(C->getType()),
1717 Constant* ConstantExpr::getNot(Constant* C) {
1718 assert(C->getType()->isIntOrIntVector() &&
1719 "Cannot NOT a nonintegral value!");
1720 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1723 Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
1724 return get(Instruction::Add, C1, C2);
1727 Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
1728 return get(Instruction::FAdd, C1, C2);
1731 Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
1732 return get(Instruction::Sub, C1, C2);
1735 Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
1736 return get(Instruction::FSub, C1, C2);
1739 Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
1740 return get(Instruction::Mul, C1, C2);
1743 Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
1744 return get(Instruction::FMul, C1, C2);
1747 Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
1748 return get(Instruction::UDiv, C1, C2);
1751 Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
1752 return get(Instruction::SDiv, C1, C2);
1755 Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
1756 return get(Instruction::FDiv, C1, C2);
1759 Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
1760 return get(Instruction::URem, C1, C2);
1763 Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
1764 return get(Instruction::SRem, C1, C2);
1767 Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
1768 return get(Instruction::FRem, C1, C2);
1771 Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
1772 return get(Instruction::And, C1, C2);
1775 Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
1776 return get(Instruction::Or, C1, C2);
1779 Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
1780 return get(Instruction::Xor, C1, C2);
1783 Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
1784 return get(Instruction::Shl, C1, C2);
1787 Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
1788 return get(Instruction::LShr, C1, C2);
1791 Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
1792 return get(Instruction::AShr, C1, C2);
1795 // destroyConstant - Remove the constant from the constant table...
1797 void ConstantExpr::destroyConstant() {
1798 // Implicitly locked.
1799 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1800 pImpl->ExprConstants.remove(this);
1801 destroyConstantImpl();
1804 const char *ConstantExpr::getOpcodeName() const {
1805 return Instruction::getOpcodeName(getOpcode());
1808 //===----------------------------------------------------------------------===//
1809 // replaceUsesOfWithOnConstant implementations
1811 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1812 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1813 /// etc.
1815 /// Note that we intentionally replace all uses of From with To here. Consider
1816 /// a large array that uses 'From' 1000 times. By handling this case all here,
1817 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1818 /// single invocation handles all 1000 uses. Handling them one at a time would
1819 /// work, but would be really slow because it would have to unique each updated
1820 /// array instance.
1822 static std::vector<Constant*> getValType(ConstantArray *CA) {
1823 std::vector<Constant*> Elements;
1824 Elements.reserve(CA->getNumOperands());
1825 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1826 Elements.push_back(cast<Constant>(CA->getOperand(i)));
1827 return Elements;
1831 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1832 Use *U) {
1833 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1834 Constant *ToC = cast<Constant>(To);
1836 LLVMContext &Context = getType()->getContext();
1837 LLVMContextImpl *pImpl = Context.pImpl;
1839 std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, Constant*> Lookup;
1840 Lookup.first.first = getType();
1841 Lookup.second = this;
1843 std::vector<Constant*> &Values = Lookup.first.second;
1844 Values.reserve(getNumOperands()); // Build replacement array.
1846 // Fill values with the modified operands of the constant array. Also,
1847 // compute whether this turns into an all-zeros array.
1848 bool isAllZeros = false;
1849 unsigned NumUpdated = 0;
1850 if (!ToC->isNullValue()) {
1851 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1852 Constant *Val = cast<Constant>(O->get());
1853 if (Val == From) {
1854 Val = ToC;
1855 ++NumUpdated;
1857 Values.push_back(Val);
1859 } else {
1860 isAllZeros = true;
1861 for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1862 Constant *Val = cast<Constant>(O->get());
1863 if (Val == From) {
1864 Val = ToC;
1865 ++NumUpdated;
1867 Values.push_back(Val);
1868 if (isAllZeros) isAllZeros = Val->isNullValue();
1872 Constant *Replacement = 0;
1873 if (isAllZeros) {
1874 Replacement = ConstantAggregateZero::get(getType());
1875 } else {
1876 // Check to see if we have this array type already.
1877 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
1878 bool Exists;
1879 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1880 pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1882 if (Exists) {
1883 Replacement = I->second;
1884 } else {
1885 // Okay, the new shape doesn't exist in the system yet. Instead of
1886 // creating a new constant array, inserting it, replaceallusesof'ing the
1887 // old with the new, then deleting the old... just update the current one
1888 // in place!
1889 pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1891 // Update to the new value. Optimize for the case when we have a single
1892 // operand that we're changing, but handle bulk updates efficiently.
1893 if (NumUpdated == 1) {
1894 unsigned OperandToUpdate = U - OperandList;
1895 assert(getOperand(OperandToUpdate) == From &&
1896 "ReplaceAllUsesWith broken!");
1897 setOperand(OperandToUpdate, ToC);
1898 } else {
1899 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1900 if (getOperand(i) == From)
1901 setOperand(i, ToC);
1903 return;
1907 // Otherwise, I do need to replace this with an existing value.
1908 assert(Replacement != this && "I didn't contain From!");
1910 // Everyone using this now uses the replacement.
1911 uncheckedReplaceAllUsesWith(Replacement);
1913 // Delete the old constant!
1914 destroyConstant();
1917 static std::vector<Constant*> getValType(ConstantStruct *CS) {
1918 std::vector<Constant*> Elements;
1919 Elements.reserve(CS->getNumOperands());
1920 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1921 Elements.push_back(cast<Constant>(CS->getOperand(i)));
1922 return Elements;
1925 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1926 Use *U) {
1927 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1928 Constant *ToC = cast<Constant>(To);
1930 unsigned OperandToUpdate = U-OperandList;
1931 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1933 std::pair<LLVMContextImpl::StructConstantsTy::MapKey, Constant*> Lookup;
1934 Lookup.first.first = getType();
1935 Lookup.second = this;
1936 std::vector<Constant*> &Values = Lookup.first.second;
1937 Values.reserve(getNumOperands()); // Build replacement struct.
1940 // Fill values with the modified operands of the constant struct. Also,
1941 // compute whether this turns into an all-zeros struct.
1942 bool isAllZeros = false;
1943 if (!ToC->isNullValue()) {
1944 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
1945 Values.push_back(cast<Constant>(O->get()));
1946 } else {
1947 isAllZeros = true;
1948 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1949 Constant *Val = cast<Constant>(O->get());
1950 Values.push_back(Val);
1951 if (isAllZeros) isAllZeros = Val->isNullValue();
1954 Values[OperandToUpdate] = ToC;
1956 LLVMContext &Context = getType()->getContext();
1957 LLVMContextImpl *pImpl = Context.pImpl;
1959 Constant *Replacement = 0;
1960 if (isAllZeros) {
1961 Replacement = ConstantAggregateZero::get(getType());
1962 } else {
1963 // Check to see if we have this array type already.
1964 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
1965 bool Exists;
1966 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
1967 pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
1969 if (Exists) {
1970 Replacement = I->second;
1971 } else {
1972 // Okay, the new shape doesn't exist in the system yet. Instead of
1973 // creating a new constant struct, inserting it, replaceallusesof'ing the
1974 // old with the new, then deleting the old... just update the current one
1975 // in place!
1976 pImpl->StructConstants.MoveConstantToNewSlot(this, I);
1978 // Update to the new value.
1979 setOperand(OperandToUpdate, ToC);
1980 return;
1984 assert(Replacement != this && "I didn't contain From!");
1986 // Everyone using this now uses the replacement.
1987 uncheckedReplaceAllUsesWith(Replacement);
1989 // Delete the old constant!
1990 destroyConstant();
1993 static std::vector<Constant*> getValType(ConstantVector *CP) {
1994 std::vector<Constant*> Elements;
1995 Elements.reserve(CP->getNumOperands());
1996 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1997 Elements.push_back(CP->getOperand(i));
1998 return Elements;
2001 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2002 Use *U) {
2003 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2005 std::vector<Constant*> Values;
2006 Values.reserve(getNumOperands()); // Build replacement array...
2007 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2008 Constant *Val = getOperand(i);
2009 if (Val == From) Val = cast<Constant>(To);
2010 Values.push_back(Val);
2013 Constant *Replacement = get(getType(), Values);
2014 assert(Replacement != this && "I didn't contain From!");
2016 // Everyone using this now uses the replacement.
2017 uncheckedReplaceAllUsesWith(Replacement);
2019 // Delete the old constant!
2020 destroyConstant();
2023 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2024 Use *U) {
2025 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2026 Constant *To = cast<Constant>(ToV);
2028 Constant *Replacement = 0;
2029 if (getOpcode() == Instruction::GetElementPtr) {
2030 SmallVector<Constant*, 8> Indices;
2031 Constant *Pointer = getOperand(0);
2032 Indices.reserve(getNumOperands()-1);
2033 if (Pointer == From) Pointer = To;
2035 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2036 Constant *Val = getOperand(i);
2037 if (Val == From) Val = To;
2038 Indices.push_back(Val);
2040 Replacement = ConstantExpr::getGetElementPtr(Pointer,
2041 &Indices[0], Indices.size());
2042 } else if (getOpcode() == Instruction::ExtractValue) {
2043 Constant *Agg = getOperand(0);
2044 if (Agg == From) Agg = To;
2046 const SmallVector<unsigned, 4> &Indices = getIndices();
2047 Replacement = ConstantExpr::getExtractValue(Agg,
2048 &Indices[0], Indices.size());
2049 } else if (getOpcode() == Instruction::InsertValue) {
2050 Constant *Agg = getOperand(0);
2051 Constant *Val = getOperand(1);
2052 if (Agg == From) Agg = To;
2053 if (Val == From) Val = To;
2055 const SmallVector<unsigned, 4> &Indices = getIndices();
2056 Replacement = ConstantExpr::getInsertValue(Agg, Val,
2057 &Indices[0], Indices.size());
2058 } else if (isCast()) {
2059 assert(getOperand(0) == From && "Cast only has one use!");
2060 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2061 } else if (getOpcode() == Instruction::Select) {
2062 Constant *C1 = getOperand(0);
2063 Constant *C2 = getOperand(1);
2064 Constant *C3 = getOperand(2);
2065 if (C1 == From) C1 = To;
2066 if (C2 == From) C2 = To;
2067 if (C3 == From) C3 = To;
2068 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2069 } else if (getOpcode() == Instruction::ExtractElement) {
2070 Constant *C1 = getOperand(0);
2071 Constant *C2 = getOperand(1);
2072 if (C1 == From) C1 = To;
2073 if (C2 == From) C2 = To;
2074 Replacement = ConstantExpr::getExtractElement(C1, C2);
2075 } else if (getOpcode() == Instruction::InsertElement) {
2076 Constant *C1 = getOperand(0);
2077 Constant *C2 = getOperand(1);
2078 Constant *C3 = getOperand(1);
2079 if (C1 == From) C1 = To;
2080 if (C2 == From) C2 = To;
2081 if (C3 == From) C3 = To;
2082 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2083 } else if (getOpcode() == Instruction::ShuffleVector) {
2084 Constant *C1 = getOperand(0);
2085 Constant *C2 = getOperand(1);
2086 Constant *C3 = getOperand(2);
2087 if (C1 == From) C1 = To;
2088 if (C2 == From) C2 = To;
2089 if (C3 == From) C3 = To;
2090 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2091 } else if (isCompare()) {
2092 Constant *C1 = getOperand(0);
2093 Constant *C2 = getOperand(1);
2094 if (C1 == From) C1 = To;
2095 if (C2 == From) C2 = To;
2096 if (getOpcode() == Instruction::ICmp)
2097 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2098 else {
2099 assert(getOpcode() == Instruction::FCmp);
2100 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2102 } else if (getNumOperands() == 2) {
2103 Constant *C1 = getOperand(0);
2104 Constant *C2 = getOperand(1);
2105 if (C1 == From) C1 = To;
2106 if (C2 == From) C2 = To;
2107 Replacement = ConstantExpr::get(getOpcode(), C1, C2);
2108 } else {
2109 llvm_unreachable("Unknown ConstantExpr type!");
2110 return;
2113 assert(Replacement != this && "I didn't contain From!");
2115 // Everyone using this now uses the replacement.
2116 uncheckedReplaceAllUsesWith(Replacement);
2118 // Delete the old constant!
2119 destroyConstant();