add a new MCInstPrinter class, move the (trivial) MCDisassmbler ctor inline.
[llvm/avr.git] / lib / CodeGen / MachineSink.cpp
blob7fb33c6e4cedf51301621c7593b88760a11a83da
1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks, when possible, so that
11 // they aren't executed on paths where their results aren't needed.
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "machine-sink"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 STATISTIC(NumSunk, "Number of machine instructions sunk");
34 namespace {
35 class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
36 const TargetMachine *TM;
37 const TargetInstrInfo *TII;
38 MachineFunction *CurMF; // Current MachineFunction
39 MachineRegisterInfo *RegInfo; // Machine register information
40 MachineDominatorTree *DT; // Machine dominator tree
42 public:
43 static char ID; // Pass identification
44 MachineSinking() : MachineFunctionPass(&ID) {}
46 virtual bool runOnMachineFunction(MachineFunction &MF);
48 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
49 AU.setPreservesCFG();
50 MachineFunctionPass::getAnalysisUsage(AU);
51 AU.addRequired<MachineDominatorTree>();
52 AU.addPreserved<MachineDominatorTree>();
54 private:
55 bool ProcessBlock(MachineBasicBlock &MBB);
56 bool SinkInstruction(MachineInstr *MI, bool &SawStore);
57 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
59 } // end anonymous namespace
61 char MachineSinking::ID = 0;
62 static RegisterPass<MachineSinking>
63 X("machine-sink", "Machine code sinking");
65 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
67 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
68 /// occur in blocks dominated by the specified block.
69 bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
70 MachineBasicBlock *MBB) const {
71 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
72 "Only makes sense for vregs");
73 for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
74 E = RegInfo->reg_end(); I != E; ++I) {
75 if (I.getOperand().isDef()) continue; // ignore def.
77 // Determine the block of the use.
78 MachineInstr *UseInst = &*I;
79 MachineBasicBlock *UseBlock = UseInst->getParent();
80 if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
81 // PHI nodes use the operand in the predecessor block, not the block with
82 // the PHI.
83 UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
85 // Check that it dominates.
86 if (!DT->dominates(MBB, UseBlock))
87 return false;
89 return true;
94 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
95 DEBUG(errs() << "******** Machine Sinking ********\n");
97 CurMF = &MF;
98 TM = &CurMF->getTarget();
99 TII = TM->getInstrInfo();
100 RegInfo = &CurMF->getRegInfo();
101 DT = &getAnalysis<MachineDominatorTree>();
103 bool EverMadeChange = false;
105 while (1) {
106 bool MadeChange = false;
108 // Process all basic blocks.
109 for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end();
110 I != E; ++I)
111 MadeChange |= ProcessBlock(*I);
113 // If this iteration over the code changed anything, keep iterating.
114 if (!MadeChange) break;
115 EverMadeChange = true;
117 return EverMadeChange;
120 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
121 // Can't sink anything out of a block that has less than two successors.
122 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
124 bool MadeChange = false;
126 // Walk the basic block bottom-up. Remember if we saw a store.
127 MachineBasicBlock::iterator I = MBB.end();
128 --I;
129 bool ProcessedBegin, SawStore = false;
130 do {
131 MachineInstr *MI = I; // The instruction to sink.
133 // Predecrement I (if it's not begin) so that it isn't invalidated by
134 // sinking.
135 ProcessedBegin = I == MBB.begin();
136 if (!ProcessedBegin)
137 --I;
139 if (SinkInstruction(MI, SawStore))
140 ++NumSunk, MadeChange = true;
142 // If we just processed the first instruction in the block, we're done.
143 } while (!ProcessedBegin);
145 return MadeChange;
148 /// SinkInstruction - Determine whether it is safe to sink the specified machine
149 /// instruction out of its current block into a successor.
150 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
151 // Check if it's safe to move the instruction.
152 if (!MI->isSafeToMove(TII, SawStore))
153 return false;
155 // FIXME: This should include support for sinking instructions within the
156 // block they are currently in to shorten the live ranges. We often get
157 // instructions sunk into the top of a large block, but it would be better to
158 // also sink them down before their first use in the block. This xform has to
159 // be careful not to *increase* register pressure though, e.g. sinking
160 // "x = y + z" down if it kills y and z would increase the live ranges of y
161 // and z and only shrink the live range of x.
163 // Loop over all the operands of the specified instruction. If there is
164 // anything we can't handle, bail out.
165 MachineBasicBlock *ParentBlock = MI->getParent();
167 // SuccToSinkTo - This is the successor to sink this instruction to, once we
168 // decide.
169 MachineBasicBlock *SuccToSinkTo = 0;
171 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
172 const MachineOperand &MO = MI->getOperand(i);
173 if (!MO.isReg()) continue; // Ignore non-register operands.
175 unsigned Reg = MO.getReg();
176 if (Reg == 0) continue;
178 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
179 // If this is a physical register use, we can't move it. If it is a def,
180 // we can move it, but only if the def is dead.
181 if (MO.isUse() || !MO.isDead())
182 return false;
183 } else {
184 // Virtual register uses are always safe to sink.
185 if (MO.isUse()) continue;
187 // If it's not safe to move defs of the register class, then abort.
188 if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
189 return false;
191 // FIXME: This picks a successor to sink into based on having one
192 // successor that dominates all the uses. However, there are cases where
193 // sinking can happen but where the sink point isn't a successor. For
194 // example:
195 // x = computation
196 // if () {} else {}
197 // use x
198 // the instruction could be sunk over the whole diamond for the
199 // if/then/else (or loop, etc), allowing it to be sunk into other blocks
200 // after that.
202 // Virtual register defs can only be sunk if all their uses are in blocks
203 // dominated by one of the successors.
204 if (SuccToSinkTo) {
205 // If a previous operand picked a block to sink to, then this operand
206 // must be sinkable to the same block.
207 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
208 return false;
209 continue;
212 // Otherwise, we should look at all the successors and decide which one
213 // we should sink to.
214 for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
215 E = ParentBlock->succ_end(); SI != E; ++SI) {
216 if (AllUsesDominatedByBlock(Reg, *SI)) {
217 SuccToSinkTo = *SI;
218 break;
222 // If we couldn't find a block to sink to, ignore this instruction.
223 if (SuccToSinkTo == 0)
224 return false;
228 // If there are no outputs, it must have side-effects.
229 if (SuccToSinkTo == 0)
230 return false;
232 // It's not safe to sink instructions to EH landing pad. Control flow into
233 // landing pad is implicitly defined.
234 if (SuccToSinkTo->isLandingPad())
235 return false;
237 // If is not possible to sink an instruction into its own block. This can
238 // happen with loops.
239 if (MI->getParent() == SuccToSinkTo)
240 return false;
242 DEBUG(errs() << "Sink instr " << *MI);
243 DEBUG(errs() << "to block " << *SuccToSinkTo);
245 // If the block has multiple predecessors, this would introduce computation on
246 // a path that it doesn't already exist. We could split the critical edge,
247 // but for now we just punt.
248 // FIXME: Split critical edges if not backedges.
249 if (SuccToSinkTo->pred_size() > 1) {
250 DEBUG(errs() << " *** PUNTING: Critical edge found\n");
251 return false;
254 // Determine where to insert into. Skip phi nodes.
255 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
256 while (InsertPos != SuccToSinkTo->end() &&
257 InsertPos->getOpcode() == TargetInstrInfo::PHI)
258 ++InsertPos;
260 // Move the instruction.
261 SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
262 ++MachineBasicBlock::iterator(MI));
263 return true;