1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Function.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/Intrinsics.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetData.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/System/Mutex.h"
40 #include "llvm/ADT/SetVector.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringExtras.h"
49 /// makeVTList - Return an instance of the SDVTList struct initialized with the
50 /// specified members.
51 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
52 SDVTList Res
= {VTs
, NumVTs
};
56 static const fltSemantics
*EVTToAPFloatSemantics(EVT VT
) {
57 switch (VT
.getSimpleVT().SimpleTy
) {
58 default: llvm_unreachable("Unknown FP format");
59 case MVT::f32
: return &APFloat::IEEEsingle
;
60 case MVT::f64
: return &APFloat::IEEEdouble
;
61 case MVT::f80
: return &APFloat::x87DoubleExtended
;
62 case MVT::f128
: return &APFloat::IEEEquad
;
63 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
67 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
69 //===----------------------------------------------------------------------===//
70 // ConstantFPSDNode Class
71 //===----------------------------------------------------------------------===//
73 /// isExactlyValue - We don't rely on operator== working on double values, as
74 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75 /// As such, this method can be used to do an exact bit-for-bit comparison of
76 /// two floating point values.
77 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
78 return getValueAPF().bitwiseIsEqual(V
);
81 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
83 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
85 // PPC long double cannot be converted to any other type.
86 if (VT
== MVT::ppcf128
||
87 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
90 // convert modifies in place, so make a copy.
91 APFloat Val2
= APFloat(Val
);
93 (void) Val2
.convert(*EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
98 //===----------------------------------------------------------------------===//
100 //===----------------------------------------------------------------------===//
102 /// isBuildVectorAllOnes - Return true if the specified node is a
103 /// BUILD_VECTOR where all of the elements are ~0 or undef.
104 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
105 // Look through a bit convert.
106 if (N
->getOpcode() == ISD::BIT_CONVERT
)
107 N
= N
->getOperand(0).getNode();
109 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
111 unsigned i
= 0, e
= N
->getNumOperands();
113 // Skip over all of the undef values.
114 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
117 // Do not accept an all-undef vector.
118 if (i
== e
) return false;
120 // Do not accept build_vectors that aren't all constants or which have non-~0
122 SDValue NotZero
= N
->getOperand(i
);
123 if (isa
<ConstantSDNode
>(NotZero
)) {
124 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
126 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
127 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
128 bitcastToAPInt().isAllOnesValue())
133 // Okay, we have at least one ~0 value, check to see if the rest match or are
135 for (++i
; i
!= e
; ++i
)
136 if (N
->getOperand(i
) != NotZero
&&
137 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
143 /// isBuildVectorAllZeros - Return true if the specified node is a
144 /// BUILD_VECTOR where all of the elements are 0 or undef.
145 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
146 // Look through a bit convert.
147 if (N
->getOpcode() == ISD::BIT_CONVERT
)
148 N
= N
->getOperand(0).getNode();
150 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
152 unsigned i
= 0, e
= N
->getNumOperands();
154 // Skip over all of the undef values.
155 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
158 // Do not accept an all-undef vector.
159 if (i
== e
) return false;
161 // Do not accept build_vectors that aren't all constants or which have non-0
163 SDValue Zero
= N
->getOperand(i
);
164 if (isa
<ConstantSDNode
>(Zero
)) {
165 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
167 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
168 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
173 // Okay, we have at least one 0 value, check to see if the rest match or are
175 for (++i
; i
!= e
; ++i
)
176 if (N
->getOperand(i
) != Zero
&&
177 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
182 /// isScalarToVector - Return true if the specified node is a
183 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184 /// element is not an undef.
185 bool ISD::isScalarToVector(const SDNode
*N
) {
186 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
189 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
191 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
193 unsigned NumElems
= N
->getNumOperands();
194 for (unsigned i
= 1; i
< NumElems
; ++i
) {
195 SDValue V
= N
->getOperand(i
);
196 if (V
.getOpcode() != ISD::UNDEF
)
203 /// isDebugLabel - Return true if the specified node represents a debug
204 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205 bool ISD::isDebugLabel(const SDNode
*N
) {
207 if (N
->getOpcode() == ISD::DBG_LABEL
)
209 if (N
->isMachineOpcode() &&
210 N
->getMachineOpcode() == TargetInstrInfo::DBG_LABEL
)
215 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216 /// when given the operation for (X op Y).
217 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
218 // To perform this operation, we just need to swap the L and G bits of the
220 unsigned OldL
= (Operation
>> 2) & 1;
221 unsigned OldG
= (Operation
>> 1) & 1;
222 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
223 (OldL
<< 1) | // New G bit
224 (OldG
<< 2)); // New L bit.
227 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228 /// 'op' is a valid SetCC operation.
229 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
230 unsigned Operation
= Op
;
232 Operation
^= 7; // Flip L, G, E bits, but not U.
234 Operation
^= 15; // Flip all of the condition bits.
236 if (Operation
> ISD::SETTRUE2
)
237 Operation
&= ~8; // Don't let N and U bits get set.
239 return ISD::CondCode(Operation
);
243 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
244 /// signed operation and 2 if the result is an unsigned comparison. Return zero
245 /// if the operation does not depend on the sign of the input (setne and seteq).
246 static int isSignedOp(ISD::CondCode Opcode
) {
248 default: llvm_unreachable("Illegal integer setcc operation!");
250 case ISD::SETNE
: return 0;
254 case ISD::SETGE
: return 1;
258 case ISD::SETUGE
: return 2;
262 /// getSetCCOrOperation - Return the result of a logical OR between different
263 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
264 /// returns SETCC_INVALID if it is not possible to represent the resultant
266 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
268 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
269 // Cannot fold a signed integer setcc with an unsigned integer setcc.
270 return ISD::SETCC_INVALID
;
272 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
274 // If the N and U bits get set then the resultant comparison DOES suddenly
275 // care about orderedness, and is true when ordered.
276 if (Op
> ISD::SETTRUE2
)
277 Op
&= ~16; // Clear the U bit if the N bit is set.
279 // Canonicalize illegal integer setcc's.
280 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
283 return ISD::CondCode(Op
);
286 /// getSetCCAndOperation - Return the result of a logical AND between different
287 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
288 /// function returns zero if it is not possible to represent the resultant
290 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
292 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
293 // Cannot fold a signed setcc with an unsigned setcc.
294 return ISD::SETCC_INVALID
;
296 // Combine all of the condition bits.
297 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
299 // Canonicalize illegal integer setcc's.
303 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
304 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
305 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
306 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
307 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
314 const TargetMachine
&SelectionDAG::getTarget() const {
315 return MF
->getTarget();
318 //===----------------------------------------------------------------------===//
319 // SDNode Profile Support
320 //===----------------------------------------------------------------------===//
322 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
324 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
328 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329 /// solely with their pointer.
330 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
331 ID
.AddPointer(VTList
.VTs
);
334 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
337 const SDValue
*Ops
, unsigned NumOps
) {
338 for (; NumOps
; --NumOps
, ++Ops
) {
339 ID
.AddPointer(Ops
->getNode());
340 ID
.AddInteger(Ops
->getResNo());
344 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
346 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
347 const SDUse
*Ops
, unsigned NumOps
) {
348 for (; NumOps
; --NumOps
, ++Ops
) {
349 ID
.AddPointer(Ops
->getNode());
350 ID
.AddInteger(Ops
->getResNo());
354 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
355 unsigned short OpC
, SDVTList VTList
,
356 const SDValue
*OpList
, unsigned N
) {
357 AddNodeIDOpcode(ID
, OpC
);
358 AddNodeIDValueTypes(ID
, VTList
);
359 AddNodeIDOperands(ID
, OpList
, N
);
362 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
364 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
365 switch (N
->getOpcode()) {
366 case ISD::TargetExternalSymbol
:
367 case ISD::ExternalSymbol
:
368 llvm_unreachable("Should only be used on nodes with operands");
369 default: break; // Normal nodes don't need extra info.
370 case ISD::TargetConstant
:
372 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
374 case ISD::TargetConstantFP
:
375 case ISD::ConstantFP
: {
376 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
379 case ISD::TargetGlobalAddress
:
380 case ISD::GlobalAddress
:
381 case ISD::TargetGlobalTLSAddress
:
382 case ISD::GlobalTLSAddress
: {
383 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
384 ID
.AddPointer(GA
->getGlobal());
385 ID
.AddInteger(GA
->getOffset());
386 ID
.AddInteger(GA
->getTargetFlags());
389 case ISD::BasicBlock
:
390 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
393 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
395 case ISD::DBG_STOPPOINT
: {
396 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(N
);
397 ID
.AddInteger(DSP
->getLine());
398 ID
.AddInteger(DSP
->getColumn());
399 ID
.AddPointer(DSP
->getCompileUnit());
403 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
405 case ISD::MEMOPERAND
: {
406 const MachineMemOperand
&MO
= cast
<MemOperandSDNode
>(N
)->MO
;
410 case ISD::FrameIndex
:
411 case ISD::TargetFrameIndex
:
412 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
415 case ISD::TargetJumpTable
:
416 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
417 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
419 case ISD::ConstantPool
:
420 case ISD::TargetConstantPool
: {
421 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
422 ID
.AddInteger(CP
->getAlignment());
423 ID
.AddInteger(CP
->getOffset());
424 if (CP
->isMachineConstantPoolEntry())
425 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
427 ID
.AddPointer(CP
->getConstVal());
428 ID
.AddInteger(CP
->getTargetFlags());
432 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
433 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
434 ID
.AddInteger(LD
->getRawSubclassData());
438 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
439 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
440 ID
.AddInteger(ST
->getRawSubclassData());
443 case ISD::ATOMIC_CMP_SWAP
:
444 case ISD::ATOMIC_SWAP
:
445 case ISD::ATOMIC_LOAD_ADD
:
446 case ISD::ATOMIC_LOAD_SUB
:
447 case ISD::ATOMIC_LOAD_AND
:
448 case ISD::ATOMIC_LOAD_OR
:
449 case ISD::ATOMIC_LOAD_XOR
:
450 case ISD::ATOMIC_LOAD_NAND
:
451 case ISD::ATOMIC_LOAD_MIN
:
452 case ISD::ATOMIC_LOAD_MAX
:
453 case ISD::ATOMIC_LOAD_UMIN
:
454 case ISD::ATOMIC_LOAD_UMAX
: {
455 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
456 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
457 ID
.AddInteger(AT
->getRawSubclassData());
460 case ISD::VECTOR_SHUFFLE
: {
461 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
462 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
464 ID
.AddInteger(SVN
->getMaskElt(i
));
467 } // end switch (N->getOpcode())
470 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
472 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
473 AddNodeIDOpcode(ID
, N
->getOpcode());
474 // Add the return value info.
475 AddNodeIDValueTypes(ID
, N
->getVTList());
476 // Add the operand info.
477 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
479 // Handle SDNode leafs with special info.
480 AddNodeIDCustom(ID
, N
);
483 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
484 /// the CSE map that carries alignment, volatility, indexing mode, and
485 /// extension/truncation information.
487 static inline unsigned
488 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
,
489 bool isVolatile
, unsigned Alignment
) {
490 assert((ConvType
& 3) == ConvType
&&
491 "ConvType may not require more than 2 bits!");
492 assert((AM
& 7) == AM
&&
493 "AM may not require more than 3 bits!");
497 ((Log2_32(Alignment
) + 1) << 6);
500 //===----------------------------------------------------------------------===//
501 // SelectionDAG Class
502 //===----------------------------------------------------------------------===//
504 /// doNotCSE - Return true if CSE should not be performed for this node.
505 static bool doNotCSE(SDNode
*N
) {
506 if (N
->getValueType(0) == MVT::Flag
)
507 return true; // Never CSE anything that produces a flag.
509 switch (N
->getOpcode()) {
511 case ISD::HANDLENODE
:
513 case ISD::DBG_STOPPOINT
:
515 return true; // Never CSE these nodes.
518 // Check that remaining values produced are not flags.
519 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
520 if (N
->getValueType(i
) == MVT::Flag
)
521 return true; // Never CSE anything that produces a flag.
526 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
528 void SelectionDAG::RemoveDeadNodes() {
529 // Create a dummy node (which is not added to allnodes), that adds a reference
530 // to the root node, preventing it from being deleted.
531 HandleSDNode
Dummy(getRoot());
533 SmallVector
<SDNode
*, 128> DeadNodes
;
535 // Add all obviously-dead nodes to the DeadNodes worklist.
536 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
538 DeadNodes
.push_back(I
);
540 RemoveDeadNodes(DeadNodes
);
542 // If the root changed (e.g. it was a dead load, update the root).
543 setRoot(Dummy
.getValue());
546 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
547 /// given list, and any nodes that become unreachable as a result.
548 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
549 DAGUpdateListener
*UpdateListener
) {
551 // Process the worklist, deleting the nodes and adding their uses to the
553 while (!DeadNodes
.empty()) {
554 SDNode
*N
= DeadNodes
.pop_back_val();
557 UpdateListener
->NodeDeleted(N
, 0);
559 // Take the node out of the appropriate CSE map.
560 RemoveNodeFromCSEMaps(N
);
562 // Next, brutally remove the operand list. This is safe to do, as there are
563 // no cycles in the graph.
564 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
566 SDNode
*Operand
= Use
.getNode();
569 // Now that we removed this operand, see if there are no uses of it left.
570 if (Operand
->use_empty())
571 DeadNodes
.push_back(Operand
);
578 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
579 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
580 RemoveDeadNodes(DeadNodes
, UpdateListener
);
583 void SelectionDAG::DeleteNode(SDNode
*N
) {
584 // First take this out of the appropriate CSE map.
585 RemoveNodeFromCSEMaps(N
);
587 // Finally, remove uses due to operands of this node, remove from the
588 // AllNodes list, and delete the node.
589 DeleteNodeNotInCSEMaps(N
);
592 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
593 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
594 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
596 // Drop all of the operands and decrement used node's use counts.
602 void SelectionDAG::DeallocateNode(SDNode
*N
) {
603 if (N
->OperandsNeedDelete
)
604 delete[] N
->OperandList
;
606 // Set the opcode to DELETED_NODE to help catch bugs when node
607 // memory is reallocated.
608 N
->NodeType
= ISD::DELETED_NODE
;
610 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
613 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614 /// correspond to it. This is useful when we're about to delete or repurpose
615 /// the node. We don't want future request for structurally identical nodes
616 /// to return N anymore.
617 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
619 switch (N
->getOpcode()) {
620 case ISD::EntryToken
:
621 llvm_unreachable("EntryToken should not be in CSEMaps!");
623 case ISD::HANDLENODE
: return false; // noop.
625 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
626 "Cond code doesn't exist!");
627 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
628 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
630 case ISD::ExternalSymbol
:
631 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
633 case ISD::TargetExternalSymbol
: {
634 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
635 Erased
= TargetExternalSymbols
.erase(
636 std::pair
<std::string
,unsigned char>(ESN
->getSymbol(),
637 ESN
->getTargetFlags()));
640 case ISD::VALUETYPE
: {
641 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
642 if (VT
.isExtended()) {
643 Erased
= ExtendedValueTypeNodes
.erase(VT
);
645 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != 0;
646 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = 0;
651 // Remove it from the CSE Map.
652 Erased
= CSEMap
.RemoveNode(N
);
656 // Verify that the node was actually in one of the CSE maps, unless it has a
657 // flag result (which cannot be CSE'd) or is one of the special cases that are
658 // not subject to CSE.
659 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
660 !N
->isMachineOpcode() && !doNotCSE(N
)) {
663 llvm_unreachable("Node is not in map!");
669 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
670 /// maps and modified in place. Add it back to the CSE maps, unless an identical
671 /// node already exists, in which case transfer all its users to the existing
672 /// node. This transfer can potentially trigger recursive merging.
675 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
676 DAGUpdateListener
*UpdateListener
) {
677 // For node types that aren't CSE'd, just act as if no identical node
680 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
682 // If there was already an existing matching node, use ReplaceAllUsesWith
683 // to replace the dead one with the existing one. This can cause
684 // recursive merging of other unrelated nodes down the line.
685 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
687 // N is now dead. Inform the listener if it exists and delete it.
689 UpdateListener
->NodeDeleted(N
, Existing
);
690 DeleteNodeNotInCSEMaps(N
);
695 // If the node doesn't already exist, we updated it. Inform a listener if
698 UpdateListener
->NodeUpdated(N
);
701 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702 /// were replaced with those specified. If this node is never memoized,
703 /// return null, otherwise return a pointer to the slot it would take. If a
704 /// node already exists with these operands, the slot will be non-null.
705 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
710 SDValue Ops
[] = { Op
};
712 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
713 AddNodeIDCustom(ID
, N
);
714 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
717 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718 /// were replaced with those specified. If this node is never memoized,
719 /// return null, otherwise return a pointer to the slot it would take. If a
720 /// node already exists with these operands, the slot will be non-null.
721 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
722 SDValue Op1
, SDValue Op2
,
727 SDValue Ops
[] = { Op1
, Op2
};
729 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
730 AddNodeIDCustom(ID
, N
);
731 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
735 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
736 /// were replaced with those specified. If this node is never memoized,
737 /// return null, otherwise return a pointer to the slot it would take. If a
738 /// node already exists with these operands, the slot will be non-null.
739 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
740 const SDValue
*Ops
,unsigned NumOps
,
746 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
747 AddNodeIDCustom(ID
, N
);
748 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
751 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
752 void SelectionDAG::VerifyNode(SDNode
*N
) {
753 switch (N
->getOpcode()) {
756 case ISD::BUILD_PAIR
: {
757 EVT VT
= N
->getValueType(0);
758 assert(N
->getNumValues() == 1 && "Too many results!");
759 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
760 "Wrong return type!");
761 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
762 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
763 "Mismatched operand types!");
764 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
765 "Wrong operand type!");
766 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
767 "Wrong return type size");
770 case ISD::BUILD_VECTOR
: {
771 assert(N
->getNumValues() == 1 && "Too many results!");
772 assert(N
->getValueType(0).isVector() && "Wrong return type!");
773 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
774 "Wrong number of operands!");
775 EVT EltVT
= N
->getValueType(0).getVectorElementType();
776 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
777 assert((I
->getValueType() == EltVT
||
778 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
779 EltVT
.bitsLE(I
->getValueType()))) &&
780 "Wrong operand type!");
786 /// getEVTAlignment - Compute the default alignment value for the
789 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
790 const Type
*Ty
= VT
== MVT::iPTR
?
791 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
792 VT
.getTypeForEVT(*getContext());
794 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
797 // EntryNode could meaningfully have debug info if we can find it...
798 SelectionDAG::SelectionDAG(TargetLowering
&tli
, FunctionLoweringInfo
&fli
)
799 : TLI(tli
), FLI(fli
), DW(0),
800 EntryNode(ISD::EntryToken
, DebugLoc::getUnknownLoc(),
801 getVTList(MVT::Other
)), Root(getEntryNode()) {
802 AllNodes
.push_back(&EntryNode
);
805 void SelectionDAG::init(MachineFunction
&mf
, MachineModuleInfo
*mmi
,
810 Context
= &mf
.getFunction()->getContext();
813 SelectionDAG::~SelectionDAG() {
817 void SelectionDAG::allnodes_clear() {
818 assert(&*AllNodes
.begin() == &EntryNode
);
819 AllNodes
.remove(AllNodes
.begin());
820 while (!AllNodes
.empty())
821 DeallocateNode(AllNodes
.begin());
824 void SelectionDAG::clear() {
826 OperandAllocator
.Reset();
829 ExtendedValueTypeNodes
.clear();
830 ExternalSymbols
.clear();
831 TargetExternalSymbols
.clear();
832 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
833 static_cast<CondCodeSDNode
*>(0));
834 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
835 static_cast<SDNode
*>(0));
837 EntryNode
.UseList
= 0;
838 AllNodes
.push_back(&EntryNode
);
839 Root
= getEntryNode();
842 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, EVT VT
) {
843 if (Op
.getValueType() == VT
) return Op
;
844 APInt Imm
= APInt::getLowBitsSet(Op
.getValueSizeInBits(),
846 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
847 getConstant(Imm
, Op
.getValueType()));
850 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
852 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, EVT VT
) {
853 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
855 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
856 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
859 SDValue
SelectionDAG::getConstant(uint64_t Val
, EVT VT
, bool isT
) {
860 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
861 assert((EltVT
.getSizeInBits() >= 64 ||
862 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
863 "getConstant with a uint64_t value that doesn't fit in the type!");
864 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
867 SDValue
SelectionDAG::getConstant(const APInt
&Val
, EVT VT
, bool isT
) {
868 return getConstant(*ConstantInt::get(*Context
, Val
), VT
, isT
);
871 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, EVT VT
, bool isT
) {
872 assert(VT
.isInteger() && "Cannot create FP integer constant!");
874 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
875 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
876 "APInt size does not match type size!");
878 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
880 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
884 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
886 return SDValue(N
, 0);
888 N
= NodeAllocator
.Allocate
<ConstantSDNode
>();
889 new (N
) ConstantSDNode(isT
, &Val
, EltVT
);
890 CSEMap
.InsertNode(N
, IP
);
891 AllNodes
.push_back(N
);
894 SDValue
Result(N
, 0);
896 SmallVector
<SDValue
, 8> Ops
;
897 Ops
.assign(VT
.getVectorNumElements(), Result
);
898 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
899 VT
, &Ops
[0], Ops
.size());
904 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
905 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
909 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, EVT VT
, bool isTarget
) {
910 return getConstantFP(*ConstantFP::get(*getContext(), V
), VT
, isTarget
);
913 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, EVT VT
, bool isTarget
){
914 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
917 VT
.isVector() ? VT
.getVectorElementType() : VT
;
919 // Do the map lookup using the actual bit pattern for the floating point
920 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
921 // we don't have issues with SNANs.
922 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
924 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
928 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
930 return SDValue(N
, 0);
932 N
= NodeAllocator
.Allocate
<ConstantFPSDNode
>();
933 new (N
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
934 CSEMap
.InsertNode(N
, IP
);
935 AllNodes
.push_back(N
);
938 SDValue
Result(N
, 0);
940 SmallVector
<SDValue
, 8> Ops
;
941 Ops
.assign(VT
.getVectorNumElements(), Result
);
942 // FIXME DebugLoc info might be appropriate here
943 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
944 VT
, &Ops
[0], Ops
.size());
949 SDValue
SelectionDAG::getConstantFP(double Val
, EVT VT
, bool isTarget
) {
951 VT
.isVector() ? VT
.getVectorElementType() : VT
;
953 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
955 return getConstantFP(APFloat(Val
), VT
, isTarget
);
958 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
,
959 EVT VT
, int64_t Offset
,
961 unsigned char TargetFlags
) {
962 assert((TargetFlags
== 0 || isTargetGA
) &&
963 "Cannot set target flags on target-independent globals");
965 // Truncate (with sign-extension) the offset value to the pointer size.
966 EVT PTy
= TLI
.getPointerTy();
967 unsigned BitWidth
= PTy
.getSizeInBits();
969 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
971 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
973 // If GV is an alias then use the aliasee for determining thread-localness.
974 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
975 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
979 if (GVar
&& GVar
->isThreadLocal())
980 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
982 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
985 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
987 ID
.AddInteger(Offset
);
988 ID
.AddInteger(TargetFlags
);
990 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
991 return SDValue(E
, 0);
992 SDNode
*N
= NodeAllocator
.Allocate
<GlobalAddressSDNode
>();
993 new (N
) GlobalAddressSDNode(Opc
, GV
, VT
, Offset
, TargetFlags
);
994 CSEMap
.InsertNode(N
, IP
);
995 AllNodes
.push_back(N
);
996 return SDValue(N
, 0);
999 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1000 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1001 FoldingSetNodeID ID
;
1002 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1005 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1006 return SDValue(E
, 0);
1007 SDNode
*N
= NodeAllocator
.Allocate
<FrameIndexSDNode
>();
1008 new (N
) FrameIndexSDNode(FI
, VT
, isTarget
);
1009 CSEMap
.InsertNode(N
, IP
);
1010 AllNodes
.push_back(N
);
1011 return SDValue(N
, 0);
1014 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1015 unsigned char TargetFlags
) {
1016 assert((TargetFlags
== 0 || isTarget
) &&
1017 "Cannot set target flags on target-independent jump tables");
1018 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1019 FoldingSetNodeID ID
;
1020 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1022 ID
.AddInteger(TargetFlags
);
1024 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1025 return SDValue(E
, 0);
1026 SDNode
*N
= NodeAllocator
.Allocate
<JumpTableSDNode
>();
1027 new (N
) JumpTableSDNode(JTI
, VT
, isTarget
, TargetFlags
);
1028 CSEMap
.InsertNode(N
, IP
);
1029 AllNodes
.push_back(N
);
1030 return SDValue(N
, 0);
1033 SDValue
SelectionDAG::getConstantPool(Constant
*C
, EVT VT
,
1034 unsigned Alignment
, int Offset
,
1036 unsigned char TargetFlags
) {
1037 assert((TargetFlags
== 0 || isTarget
) &&
1038 "Cannot set target flags on target-independent globals");
1040 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1041 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1042 FoldingSetNodeID ID
;
1043 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1044 ID
.AddInteger(Alignment
);
1045 ID
.AddInteger(Offset
);
1047 ID
.AddInteger(TargetFlags
);
1049 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1050 return SDValue(E
, 0);
1051 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1052 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
, TargetFlags
);
1053 CSEMap
.InsertNode(N
, IP
);
1054 AllNodes
.push_back(N
);
1055 return SDValue(N
, 0);
1059 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1060 unsigned Alignment
, int Offset
,
1062 unsigned char TargetFlags
) {
1063 assert((TargetFlags
== 0 || isTarget
) &&
1064 "Cannot set target flags on target-independent globals");
1066 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1067 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1068 FoldingSetNodeID ID
;
1069 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1070 ID
.AddInteger(Alignment
);
1071 ID
.AddInteger(Offset
);
1072 C
->AddSelectionDAGCSEId(ID
);
1073 ID
.AddInteger(TargetFlags
);
1075 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1076 return SDValue(E
, 0);
1077 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1078 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
, TargetFlags
);
1079 CSEMap
.InsertNode(N
, IP
);
1080 AllNodes
.push_back(N
);
1081 return SDValue(N
, 0);
1084 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1085 FoldingSetNodeID ID
;
1086 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1089 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1090 return SDValue(E
, 0);
1091 SDNode
*N
= NodeAllocator
.Allocate
<BasicBlockSDNode
>();
1092 new (N
) BasicBlockSDNode(MBB
);
1093 CSEMap
.InsertNode(N
, IP
);
1094 AllNodes
.push_back(N
);
1095 return SDValue(N
, 0);
1098 SDValue
SelectionDAG::getValueType(EVT VT
) {
1099 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1100 ValueTypeNodes
.size())
1101 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1103 SDNode
*&N
= VT
.isExtended() ?
1104 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1106 if (N
) return SDValue(N
, 0);
1107 N
= NodeAllocator
.Allocate
<VTSDNode
>();
1108 new (N
) VTSDNode(VT
);
1109 AllNodes
.push_back(N
);
1110 return SDValue(N
, 0);
1113 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1114 SDNode
*&N
= ExternalSymbols
[Sym
];
1115 if (N
) return SDValue(N
, 0);
1116 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1117 new (N
) ExternalSymbolSDNode(false, Sym
, 0, VT
);
1118 AllNodes
.push_back(N
);
1119 return SDValue(N
, 0);
1122 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1123 unsigned char TargetFlags
) {
1125 TargetExternalSymbols
[std::pair
<std::string
,unsigned char>(Sym
,
1127 if (N
) return SDValue(N
, 0);
1128 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1129 new (N
) ExternalSymbolSDNode(true, Sym
, TargetFlags
, VT
);
1130 AllNodes
.push_back(N
);
1131 return SDValue(N
, 0);
1134 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1135 if ((unsigned)Cond
>= CondCodeNodes
.size())
1136 CondCodeNodes
.resize(Cond
+1);
1138 if (CondCodeNodes
[Cond
] == 0) {
1139 CondCodeSDNode
*N
= NodeAllocator
.Allocate
<CondCodeSDNode
>();
1140 new (N
) CondCodeSDNode(Cond
);
1141 CondCodeNodes
[Cond
] = N
;
1142 AllNodes
.push_back(N
);
1144 return SDValue(CondCodeNodes
[Cond
], 0);
1147 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1148 // the shuffle mask M that point at N1 to point at N2, and indices that point
1149 // N2 to point at N1.
1150 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, SmallVectorImpl
<int> &M
) {
1152 int NElts
= M
.size();
1153 for (int i
= 0; i
!= NElts
; ++i
) {
1161 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, DebugLoc dl
, SDValue N1
,
1162 SDValue N2
, const int *Mask
) {
1163 assert(N1
.getValueType() == N2
.getValueType() && "Invalid VECTOR_SHUFFLE");
1164 assert(VT
.isVector() && N1
.getValueType().isVector() &&
1165 "Vector Shuffle VTs must be a vectors");
1166 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType()
1167 && "Vector Shuffle VTs must have same element type");
1169 // Canonicalize shuffle undef, undef -> undef
1170 if (N1
.getOpcode() == ISD::UNDEF
&& N2
.getOpcode() == ISD::UNDEF
)
1171 return getUNDEF(VT
);
1173 // Validate that all indices in Mask are within the range of the elements
1174 // input to the shuffle.
1175 unsigned NElts
= VT
.getVectorNumElements();
1176 SmallVector
<int, 8> MaskVec
;
1177 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1178 assert(Mask
[i
] < (int)(NElts
* 2) && "Index out of range");
1179 MaskVec
.push_back(Mask
[i
]);
1182 // Canonicalize shuffle v, v -> v, undef
1185 for (unsigned i
= 0; i
!= NElts
; ++i
)
1186 if (MaskVec
[i
] >= (int)NElts
) MaskVec
[i
] -= NElts
;
1189 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1190 if (N1
.getOpcode() == ISD::UNDEF
)
1191 commuteShuffle(N1
, N2
, MaskVec
);
1193 // Canonicalize all index into lhs, -> shuffle lhs, undef
1194 // Canonicalize all index into rhs, -> shuffle rhs, undef
1195 bool AllLHS
= true, AllRHS
= true;
1196 bool N2Undef
= N2
.getOpcode() == ISD::UNDEF
;
1197 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1198 if (MaskVec
[i
] >= (int)NElts
) {
1203 } else if (MaskVec
[i
] >= 0) {
1207 if (AllLHS
&& AllRHS
)
1208 return getUNDEF(VT
);
1209 if (AllLHS
&& !N2Undef
)
1213 commuteShuffle(N1
, N2
, MaskVec
);
1216 // If Identity shuffle, or all shuffle in to undef, return that node.
1217 bool AllUndef
= true;
1218 bool Identity
= true;
1219 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1220 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != (int)i
) Identity
= false;
1221 if (MaskVec
[i
] >= 0) AllUndef
= false;
1223 if (Identity
&& NElts
== N1
.getValueType().getVectorNumElements())
1226 return getUNDEF(VT
);
1228 FoldingSetNodeID ID
;
1229 SDValue Ops
[2] = { N1
, N2
};
1230 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
, 2);
1231 for (unsigned i
= 0; i
!= NElts
; ++i
)
1232 ID
.AddInteger(MaskVec
[i
]);
1235 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1236 return SDValue(E
, 0);
1238 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1239 // SDNode doesn't have access to it. This memory will be "leaked" when
1240 // the node is deallocated, but recovered when the NodeAllocator is released.
1241 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1242 memcpy(MaskAlloc
, &MaskVec
[0], NElts
* sizeof(int));
1244 ShuffleVectorSDNode
*N
= NodeAllocator
.Allocate
<ShuffleVectorSDNode
>();
1245 new (N
) ShuffleVectorSDNode(VT
, dl
, N1
, N2
, MaskAlloc
);
1246 CSEMap
.InsertNode(N
, IP
);
1247 AllNodes
.push_back(N
);
1248 return SDValue(N
, 0);
1251 SDValue
SelectionDAG::getConvertRndSat(EVT VT
, DebugLoc dl
,
1252 SDValue Val
, SDValue DTy
,
1253 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1254 ISD::CvtCode Code
) {
1255 // If the src and dest types are the same and the conversion is between
1256 // integer types of the same sign or two floats, no conversion is necessary.
1258 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1261 FoldingSetNodeID ID
;
1263 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1264 return SDValue(E
, 0);
1265 CvtRndSatSDNode
*N
= NodeAllocator
.Allocate
<CvtRndSatSDNode
>();
1266 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1267 new (N
) CvtRndSatSDNode(VT
, dl
, Ops
, 5, Code
);
1268 CSEMap
.InsertNode(N
, IP
);
1269 AllNodes
.push_back(N
);
1270 return SDValue(N
, 0);
1273 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1274 FoldingSetNodeID ID
;
1275 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1276 ID
.AddInteger(RegNo
);
1278 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1279 return SDValue(E
, 0);
1280 SDNode
*N
= NodeAllocator
.Allocate
<RegisterSDNode
>();
1281 new (N
) RegisterSDNode(RegNo
, VT
);
1282 CSEMap
.InsertNode(N
, IP
);
1283 AllNodes
.push_back(N
);
1284 return SDValue(N
, 0);
1287 SDValue
SelectionDAG::getDbgStopPoint(DebugLoc DL
, SDValue Root
,
1288 unsigned Line
, unsigned Col
,
1290 SDNode
*N
= NodeAllocator
.Allocate
<DbgStopPointSDNode
>();
1291 new (N
) DbgStopPointSDNode(Root
, Line
, Col
, CU
);
1293 AllNodes
.push_back(N
);
1294 return SDValue(N
, 0);
1297 SDValue
SelectionDAG::getLabel(unsigned Opcode
, DebugLoc dl
,
1300 FoldingSetNodeID ID
;
1301 SDValue Ops
[] = { Root
};
1302 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), &Ops
[0], 1);
1303 ID
.AddInteger(LabelID
);
1305 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1306 return SDValue(E
, 0);
1307 SDNode
*N
= NodeAllocator
.Allocate
<LabelSDNode
>();
1308 new (N
) LabelSDNode(Opcode
, dl
, Root
, LabelID
);
1309 CSEMap
.InsertNode(N
, IP
);
1310 AllNodes
.push_back(N
);
1311 return SDValue(N
, 0);
1314 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1315 assert((!V
|| isa
<PointerType
>(V
->getType())) &&
1316 "SrcValue is not a pointer?");
1318 FoldingSetNodeID ID
;
1319 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1323 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1324 return SDValue(E
, 0);
1326 SDNode
*N
= NodeAllocator
.Allocate
<SrcValueSDNode
>();
1327 new (N
) SrcValueSDNode(V
);
1328 CSEMap
.InsertNode(N
, IP
);
1329 AllNodes
.push_back(N
);
1330 return SDValue(N
, 0);
1333 SDValue
SelectionDAG::getMemOperand(const MachineMemOperand
&MO
) {
1335 const Value
*v
= MO
.getValue();
1336 assert((!v
|| isa
<PointerType
>(v
->getType())) &&
1337 "SrcValue is not a pointer?");
1340 FoldingSetNodeID ID
;
1341 AddNodeIDNode(ID
, ISD::MEMOPERAND
, getVTList(MVT::Other
), 0, 0);
1345 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1346 return SDValue(E
, 0);
1348 SDNode
*N
= NodeAllocator
.Allocate
<MemOperandSDNode
>();
1349 new (N
) MemOperandSDNode(MO
);
1350 CSEMap
.InsertNode(N
, IP
);
1351 AllNodes
.push_back(N
);
1352 return SDValue(N
, 0);
1355 /// getShiftAmountOperand - Return the specified value casted to
1356 /// the target's desired shift amount type.
1357 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1358 EVT OpTy
= Op
.getValueType();
1359 MVT ShTy
= TLI
.getShiftAmountTy();
1360 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1362 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1363 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1366 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1367 /// specified value type.
1368 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1369 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1370 unsigned ByteSize
= VT
.getStoreSizeInBits()/8;
1371 const Type
*Ty
= VT
.getTypeForEVT(*getContext());
1372 unsigned StackAlign
=
1373 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1375 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
);
1376 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1379 /// CreateStackTemporary - Create a stack temporary suitable for holding
1380 /// either of the specified value types.
1381 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1382 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1383 VT2
.getStoreSizeInBits())/8;
1384 const Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1385 const Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1386 const TargetData
*TD
= TLI
.getTargetData();
1387 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1388 TD
->getPrefTypeAlignment(Ty2
));
1390 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1391 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
);
1392 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1395 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
,
1396 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1397 // These setcc operations always fold.
1401 case ISD::SETFALSE2
: return getConstant(0, VT
);
1403 case ISD::SETTRUE2
: return getConstant(1, VT
);
1415 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1419 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1420 const APInt
&C2
= N2C
->getAPIntValue();
1421 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1422 const APInt
&C1
= N1C
->getAPIntValue();
1425 default: llvm_unreachable("Unknown integer setcc!");
1426 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1427 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1428 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1429 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1430 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1431 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1432 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1433 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1434 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1435 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1439 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1440 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1441 // No compile time operations on this type yet.
1442 if (N1C
->getValueType(0) == MVT::ppcf128
)
1445 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1448 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1449 return getUNDEF(VT
);
1451 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1452 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1453 return getUNDEF(VT
);
1455 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1456 R
==APFloat::cmpLessThan
, VT
);
1457 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1458 return getUNDEF(VT
);
1460 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1461 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1462 return getUNDEF(VT
);
1464 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1465 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1466 return getUNDEF(VT
);
1468 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1469 R
==APFloat::cmpEqual
, VT
);
1470 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1471 return getUNDEF(VT
);
1473 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1474 R
==APFloat::cmpEqual
, VT
);
1475 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1476 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1477 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1478 R
==APFloat::cmpEqual
, VT
);
1479 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1480 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1481 R
==APFloat::cmpLessThan
, VT
);
1482 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1483 R
==APFloat::cmpUnordered
, VT
);
1484 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1485 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1488 // Ensure that the constant occurs on the RHS.
1489 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1493 // Could not fold it.
1497 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1498 /// use this predicate to simplify operations downstream.
1499 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1500 // This predicate is not safe for vector operations.
1501 if (Op
.getValueType().isVector())
1504 unsigned BitWidth
= Op
.getValueSizeInBits();
1505 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1508 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1509 /// this predicate to simplify operations downstream. Mask is known to be zero
1510 /// for bits that V cannot have.
1511 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1512 unsigned Depth
) const {
1513 APInt KnownZero
, KnownOne
;
1514 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1515 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1516 return (KnownZero
& Mask
) == Mask
;
1519 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1520 /// known to be either zero or one and return them in the KnownZero/KnownOne
1521 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1523 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1524 APInt
&KnownZero
, APInt
&KnownOne
,
1525 unsigned Depth
) const {
1526 unsigned BitWidth
= Mask
.getBitWidth();
1527 assert(BitWidth
== Op
.getValueType().getSizeInBits() &&
1528 "Mask size mismatches value type size!");
1530 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1531 if (Depth
== 6 || Mask
== 0)
1532 return; // Limit search depth.
1534 APInt KnownZero2
, KnownOne2
;
1536 switch (Op
.getOpcode()) {
1538 // We know all of the bits for a constant!
1539 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1540 KnownZero
= ~KnownOne
& Mask
;
1543 // If either the LHS or the RHS are Zero, the result is zero.
1544 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1545 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1546 KnownZero2
, KnownOne2
, Depth
+1);
1547 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1548 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1550 // Output known-1 bits are only known if set in both the LHS & RHS.
1551 KnownOne
&= KnownOne2
;
1552 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1553 KnownZero
|= KnownZero2
;
1556 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1557 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1558 KnownZero2
, KnownOne2
, Depth
+1);
1559 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1560 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1562 // Output known-0 bits are only known if clear in both the LHS & RHS.
1563 KnownZero
&= KnownZero2
;
1564 // Output known-1 are known to be set if set in either the LHS | RHS.
1565 KnownOne
|= KnownOne2
;
1568 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1569 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1570 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1571 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1573 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1574 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1575 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1576 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1577 KnownZero
= KnownZeroOut
;
1581 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1582 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1583 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1584 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1585 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1587 // If low bits are zero in either operand, output low known-0 bits.
1588 // Also compute a conserative estimate for high known-0 bits.
1589 // More trickiness is possible, but this is sufficient for the
1590 // interesting case of alignment computation.
1592 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1593 KnownZero2
.countTrailingOnes();
1594 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1595 KnownZero2
.countLeadingOnes(),
1596 BitWidth
) - BitWidth
;
1598 TrailZ
= std::min(TrailZ
, BitWidth
);
1599 LeadZ
= std::min(LeadZ
, BitWidth
);
1600 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1601 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1606 // For the purposes of computing leading zeros we can conservatively
1607 // treat a udiv as a logical right shift by the power of 2 known to
1608 // be less than the denominator.
1609 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1610 ComputeMaskedBits(Op
.getOperand(0),
1611 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1612 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1616 ComputeMaskedBits(Op
.getOperand(1),
1617 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1618 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1619 if (RHSUnknownLeadingOnes
!= BitWidth
)
1620 LeadZ
= std::min(BitWidth
,
1621 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1623 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1627 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1628 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1629 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1630 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1632 // Only known if known in both the LHS and RHS.
1633 KnownOne
&= KnownOne2
;
1634 KnownZero
&= KnownZero2
;
1636 case ISD::SELECT_CC
:
1637 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1638 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1639 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1640 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1642 // Only known if known in both the LHS and RHS.
1643 KnownOne
&= KnownOne2
;
1644 KnownZero
&= KnownZero2
;
1652 if (Op
.getResNo() != 1)
1654 // The boolean result conforms to getBooleanContents. Fall through.
1656 // If we know the result of a setcc has the top bits zero, use this info.
1657 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1659 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1662 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1663 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1664 unsigned ShAmt
= SA
->getZExtValue();
1666 // If the shift count is an invalid immediate, don't do anything.
1667 if (ShAmt
>= BitWidth
)
1670 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1671 KnownZero
, KnownOne
, Depth
+1);
1672 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1673 KnownZero
<<= ShAmt
;
1675 // low bits known zero.
1676 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1680 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1681 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1682 unsigned ShAmt
= SA
->getZExtValue();
1684 // If the shift count is an invalid immediate, don't do anything.
1685 if (ShAmt
>= BitWidth
)
1688 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1689 KnownZero
, KnownOne
, Depth
+1);
1690 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1691 KnownZero
= KnownZero
.lshr(ShAmt
);
1692 KnownOne
= KnownOne
.lshr(ShAmt
);
1694 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1695 KnownZero
|= HighBits
; // High bits known zero.
1699 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1700 unsigned ShAmt
= SA
->getZExtValue();
1702 // If the shift count is an invalid immediate, don't do anything.
1703 if (ShAmt
>= BitWidth
)
1706 APInt InDemandedMask
= (Mask
<< ShAmt
);
1707 // If any of the demanded bits are produced by the sign extension, we also
1708 // demand the input sign bit.
1709 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1710 if (HighBits
.getBoolValue())
1711 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1713 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1715 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1716 KnownZero
= KnownZero
.lshr(ShAmt
);
1717 KnownOne
= KnownOne
.lshr(ShAmt
);
1719 // Handle the sign bits.
1720 APInt SignBit
= APInt::getSignBit(BitWidth
);
1721 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1723 if (KnownZero
.intersects(SignBit
)) {
1724 KnownZero
|= HighBits
; // New bits are known zero.
1725 } else if (KnownOne
.intersects(SignBit
)) {
1726 KnownOne
|= HighBits
; // New bits are known one.
1730 case ISD::SIGN_EXTEND_INREG
: {
1731 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1732 unsigned EBits
= EVT
.getSizeInBits();
1734 // Sign extension. Compute the demanded bits in the result that are not
1735 // present in the input.
1736 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1738 APInt InSignBit
= APInt::getSignBit(EBits
);
1739 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1741 // If the sign extended bits are demanded, we know that the sign
1743 InSignBit
.zext(BitWidth
);
1744 if (NewBits
.getBoolValue())
1745 InputDemandedBits
|= InSignBit
;
1747 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1748 KnownZero
, KnownOne
, Depth
+1);
1749 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1751 // If the sign bit of the input is known set or clear, then we know the
1752 // top bits of the result.
1753 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1754 KnownZero
|= NewBits
;
1755 KnownOne
&= ~NewBits
;
1756 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1757 KnownOne
|= NewBits
;
1758 KnownZero
&= ~NewBits
;
1759 } else { // Input sign bit unknown
1760 KnownZero
&= ~NewBits
;
1761 KnownOne
&= ~NewBits
;
1768 unsigned LowBits
= Log2_32(BitWidth
)+1;
1769 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1774 if (ISD::isZEXTLoad(Op
.getNode())) {
1775 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1776 EVT VT
= LD
->getMemoryVT();
1777 unsigned MemBits
= VT
.getSizeInBits();
1778 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1782 case ISD::ZERO_EXTEND
: {
1783 EVT InVT
= Op
.getOperand(0).getValueType();
1784 unsigned InBits
= InVT
.getSizeInBits();
1785 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1786 APInt InMask
= Mask
;
1787 InMask
.trunc(InBits
);
1788 KnownZero
.trunc(InBits
);
1789 KnownOne
.trunc(InBits
);
1790 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1791 KnownZero
.zext(BitWidth
);
1792 KnownOne
.zext(BitWidth
);
1793 KnownZero
|= NewBits
;
1796 case ISD::SIGN_EXTEND
: {
1797 EVT InVT
= Op
.getOperand(0).getValueType();
1798 unsigned InBits
= InVT
.getSizeInBits();
1799 APInt InSignBit
= APInt::getSignBit(InBits
);
1800 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1801 APInt InMask
= Mask
;
1802 InMask
.trunc(InBits
);
1804 // If any of the sign extended bits are demanded, we know that the sign
1805 // bit is demanded. Temporarily set this bit in the mask for our callee.
1806 if (NewBits
.getBoolValue())
1807 InMask
|= InSignBit
;
1809 KnownZero
.trunc(InBits
);
1810 KnownOne
.trunc(InBits
);
1811 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1813 // Note if the sign bit is known to be zero or one.
1814 bool SignBitKnownZero
= KnownZero
.isNegative();
1815 bool SignBitKnownOne
= KnownOne
.isNegative();
1816 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1817 "Sign bit can't be known to be both zero and one!");
1819 // If the sign bit wasn't actually demanded by our caller, we don't
1820 // want it set in the KnownZero and KnownOne result values. Reset the
1821 // mask and reapply it to the result values.
1823 InMask
.trunc(InBits
);
1824 KnownZero
&= InMask
;
1827 KnownZero
.zext(BitWidth
);
1828 KnownOne
.zext(BitWidth
);
1830 // If the sign bit is known zero or one, the top bits match.
1831 if (SignBitKnownZero
)
1832 KnownZero
|= NewBits
;
1833 else if (SignBitKnownOne
)
1834 KnownOne
|= NewBits
;
1837 case ISD::ANY_EXTEND
: {
1838 EVT InVT
= Op
.getOperand(0).getValueType();
1839 unsigned InBits
= InVT
.getSizeInBits();
1840 APInt InMask
= Mask
;
1841 InMask
.trunc(InBits
);
1842 KnownZero
.trunc(InBits
);
1843 KnownOne
.trunc(InBits
);
1844 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1845 KnownZero
.zext(BitWidth
);
1846 KnownOne
.zext(BitWidth
);
1849 case ISD::TRUNCATE
: {
1850 EVT InVT
= Op
.getOperand(0).getValueType();
1851 unsigned InBits
= InVT
.getSizeInBits();
1852 APInt InMask
= Mask
;
1853 InMask
.zext(InBits
);
1854 KnownZero
.zext(InBits
);
1855 KnownOne
.zext(InBits
);
1856 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1857 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1858 KnownZero
.trunc(BitWidth
);
1859 KnownOne
.trunc(BitWidth
);
1862 case ISD::AssertZext
: {
1863 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1864 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1865 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1867 KnownZero
|= (~InMask
) & Mask
;
1871 // All bits are zero except the low bit.
1872 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1876 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1877 // We know that the top bits of C-X are clear if X contains less bits
1878 // than C (i.e. no wrap-around can happen). For example, 20-X is
1879 // positive if we can prove that X is >= 0 and < 16.
1880 if (CLHS
->getAPIntValue().isNonNegative()) {
1881 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1882 // NLZ can't be BitWidth with no sign bit
1883 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1884 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1887 // If all of the MaskV bits are known to be zero, then we know the
1888 // output top bits are zero, because we now know that the output is
1890 if ((KnownZero2
& MaskV
) == MaskV
) {
1891 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1892 // Top bits known zero.
1893 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1900 // Output known-0 bits are known if clear or set in both the low clear bits
1901 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1902 // low 3 bits clear.
1903 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
1904 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1905 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1906 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1908 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1909 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1910 KnownZeroOut
= std::min(KnownZeroOut
,
1911 KnownZero2
.countTrailingOnes());
1913 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1917 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1918 const APInt
&RA
= Rem
->getAPIntValue();
1919 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
1920 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
1921 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1922 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1924 // If the sign bit of the first operand is zero, the sign bit of
1925 // the result is zero. If the first operand has no one bits below
1926 // the second operand's single 1 bit, its sign will be zero.
1927 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1928 KnownZero2
|= ~LowBits
;
1930 KnownZero
|= KnownZero2
& Mask
;
1932 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1937 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1938 const APInt
&RA
= Rem
->getAPIntValue();
1939 if (RA
.isPowerOf2()) {
1940 APInt LowBits
= (RA
- 1);
1941 APInt Mask2
= LowBits
& Mask
;
1942 KnownZero
|= ~LowBits
& Mask
;
1943 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1944 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1949 // Since the result is less than or equal to either operand, any leading
1950 // zero bits in either operand must also exist in the result.
1951 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1952 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1954 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1957 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1958 KnownZero2
.countLeadingOnes());
1960 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1964 // Allow the target to implement this method for its nodes.
1965 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1966 case ISD::INTRINSIC_WO_CHAIN
:
1967 case ISD::INTRINSIC_W_CHAIN
:
1968 case ISD::INTRINSIC_VOID
:
1969 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this,
1976 /// ComputeNumSignBits - Return the number of times the sign bit of the
1977 /// register is replicated into the other bits. We know that at least 1 bit
1978 /// is always equal to the sign bit (itself), but other cases can give us
1979 /// information. For example, immediately after an "SRA X, 2", we know that
1980 /// the top 3 bits are all equal to each other, so we return 3.
1981 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
1982 EVT VT
= Op
.getValueType();
1983 assert(VT
.isInteger() && "Invalid VT!");
1984 unsigned VTBits
= VT
.getSizeInBits();
1986 unsigned FirstAnswer
= 1;
1989 return 1; // Limit search depth.
1991 switch (Op
.getOpcode()) {
1993 case ISD::AssertSext
:
1994 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1995 return VTBits
-Tmp
+1;
1996 case ISD::AssertZext
:
1997 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2000 case ISD::Constant
: {
2001 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
2002 // If negative, return # leading ones.
2003 if (Val
.isNegative())
2004 return Val
.countLeadingOnes();
2006 // Return # leading zeros.
2007 return Val
.countLeadingZeros();
2010 case ISD::SIGN_EXTEND
:
2011 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getSizeInBits();
2012 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
2014 case ISD::SIGN_EXTEND_INREG
:
2015 // Max of the input and what this extends.
2016 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2019 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2020 return std::max(Tmp
, Tmp2
);
2023 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2024 // SRA X, C -> adds C sign bits.
2025 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2026 Tmp
+= C
->getZExtValue();
2027 if (Tmp
> VTBits
) Tmp
= VTBits
;
2031 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2032 // shl destroys sign bits.
2033 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2034 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
2035 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
2036 return Tmp
- C
->getZExtValue();
2041 case ISD::XOR
: // NOT is handled here.
2042 // Logical binary ops preserve the number of sign bits at the worst.
2043 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2045 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2046 FirstAnswer
= std::min(Tmp
, Tmp2
);
2047 // We computed what we know about the sign bits as our first
2048 // answer. Now proceed to the generic code that uses
2049 // ComputeMaskedBits, and pick whichever answer is better.
2054 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2055 if (Tmp
== 1) return 1; // Early out.
2056 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
2057 return std::min(Tmp
, Tmp2
);
2065 if (Op
.getResNo() != 1)
2067 // The boolean result conforms to getBooleanContents. Fall through.
2069 // If setcc returns 0/-1, all bits are sign bits.
2070 if (TLI
.getBooleanContents() ==
2071 TargetLowering::ZeroOrNegativeOneBooleanContent
)
2076 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2077 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
2079 // Handle rotate right by N like a rotate left by 32-N.
2080 if (Op
.getOpcode() == ISD::ROTR
)
2081 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
2083 // If we aren't rotating out all of the known-in sign bits, return the
2084 // number that are left. This handles rotl(sext(x), 1) for example.
2085 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2086 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
2090 // Add can have at most one carry bit. Thus we know that the output
2091 // is, at worst, one more bit than the inputs.
2092 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2093 if (Tmp
== 1) return 1; // Early out.
2095 // Special case decrementing a value (ADD X, -1):
2096 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2097 if (CRHS
->isAllOnesValue()) {
2098 APInt KnownZero
, KnownOne
;
2099 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2100 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
2102 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2104 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2107 // If we are subtracting one from a positive number, there is no carry
2108 // out of the result.
2109 if (KnownZero
.isNegative())
2113 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2114 if (Tmp2
== 1) return 1;
2115 return std::min(Tmp
, Tmp2
)-1;
2119 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2120 if (Tmp2
== 1) return 1;
2123 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2124 if (CLHS
->isNullValue()) {
2125 APInt KnownZero
, KnownOne
;
2126 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2127 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2128 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2130 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2133 // If the input is known to be positive (the sign bit is known clear),
2134 // the output of the NEG has the same number of sign bits as the input.
2135 if (KnownZero
.isNegative())
2138 // Otherwise, we treat this like a SUB.
2141 // Sub can have at most one carry bit. Thus we know that the output
2142 // is, at worst, one more bit than the inputs.
2143 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2144 if (Tmp
== 1) return 1; // Early out.
2145 return std::min(Tmp
, Tmp2
)-1;
2148 // FIXME: it's tricky to do anything useful for this, but it is an important
2149 // case for targets like X86.
2153 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2154 if (Op
.getOpcode() == ISD::LOAD
) {
2155 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2156 unsigned ExtType
= LD
->getExtensionType();
2159 case ISD::SEXTLOAD
: // '17' bits known
2160 Tmp
= LD
->getMemoryVT().getSizeInBits();
2161 return VTBits
-Tmp
+1;
2162 case ISD::ZEXTLOAD
: // '16' bits known
2163 Tmp
= LD
->getMemoryVT().getSizeInBits();
2168 // Allow the target to implement this method for its nodes.
2169 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2170 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2171 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2172 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2173 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2174 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2177 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2178 // use this information.
2179 APInt KnownZero
, KnownOne
;
2180 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2181 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2183 if (KnownZero
.isNegative()) { // sign bit is 0
2185 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2192 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2193 // the number of identical bits in the top of the input value.
2195 Mask
<<= Mask
.getBitWidth()-VTBits
;
2196 // Return # leading zeros. We use 'min' here in case Val was zero before
2197 // shifting. We don't want to return '64' as for an i32 "0".
2198 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2201 bool SelectionDAG::isKnownNeverNaN(SDValue Op
) const {
2202 // If we're told that NaNs won't happen, assume they won't.
2203 if (FiniteOnlyFPMath())
2206 // If the value is a constant, we can obviously see if it is a NaN or not.
2207 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
2208 return !C
->getValueAPF().isNaN();
2210 // TODO: Recognize more cases here.
2215 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2216 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2217 if (!GA
) return false;
2218 if (GA
->getOffset() != 0) return false;
2219 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2220 if (!GV
) return false;
2221 MachineModuleInfo
*MMI
= getMachineModuleInfo();
2222 return MMI
&& MMI
->hasDebugInfo();
2226 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2227 /// element of the result of the vector shuffle.
2228 SDValue
SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode
*N
,
2230 EVT VT
= N
->getValueType(0);
2231 DebugLoc dl
= N
->getDebugLoc();
2232 if (N
->getMaskElt(i
) < 0)
2233 return getUNDEF(VT
.getVectorElementType());
2234 unsigned Index
= N
->getMaskElt(i
);
2235 unsigned NumElems
= VT
.getVectorNumElements();
2236 SDValue V
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
2239 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
2240 V
= V
.getOperand(0);
2241 EVT VVT
= V
.getValueType();
2242 if (!VVT
.isVector() || VVT
.getVectorNumElements() != (unsigned)NumElems
)
2245 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
2246 return (Index
== 0) ? V
.getOperand(0)
2247 : getUNDEF(VT
.getVectorElementType());
2248 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
2249 return V
.getOperand(Index
);
2250 if (const ShuffleVectorSDNode
*SVN
= dyn_cast
<ShuffleVectorSDNode
>(V
))
2251 return getShuffleScalarElt(SVN
, Index
);
2256 /// getNode - Gets or creates the specified node.
2258 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
) {
2259 FoldingSetNodeID ID
;
2260 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2262 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2263 return SDValue(E
, 0);
2264 SDNode
*N
= NodeAllocator
.Allocate
<SDNode
>();
2265 new (N
) SDNode(Opcode
, DL
, getVTList(VT
));
2266 CSEMap
.InsertNode(N
, IP
);
2268 AllNodes
.push_back(N
);
2272 return SDValue(N
, 0);
2275 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2276 EVT VT
, SDValue Operand
) {
2277 // Constant fold unary operations with an integer constant operand.
2278 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2279 const APInt
&Val
= C
->getAPIntValue();
2280 unsigned BitWidth
= VT
.getSizeInBits();
2283 case ISD::SIGN_EXTEND
:
2284 return getConstant(APInt(Val
).sextOrTrunc(BitWidth
), VT
);
2285 case ISD::ANY_EXTEND
:
2286 case ISD::ZERO_EXTEND
:
2288 return getConstant(APInt(Val
).zextOrTrunc(BitWidth
), VT
);
2289 case ISD::UINT_TO_FP
:
2290 case ISD::SINT_TO_FP
: {
2291 const uint64_t zero
[] = {0, 0};
2292 // No compile time operations on this type.
2293 if (VT
==MVT::ppcf128
)
2295 APFloat apf
= APFloat(APInt(BitWidth
, 2, zero
));
2296 (void)apf
.convertFromAPInt(Val
,
2297 Opcode
==ISD::SINT_TO_FP
,
2298 APFloat::rmNearestTiesToEven
);
2299 return getConstantFP(apf
, VT
);
2301 case ISD::BIT_CONVERT
:
2302 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2303 return getConstantFP(Val
.bitsToFloat(), VT
);
2304 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2305 return getConstantFP(Val
.bitsToDouble(), VT
);
2308 return getConstant(Val
.byteSwap(), VT
);
2310 return getConstant(Val
.countPopulation(), VT
);
2312 return getConstant(Val
.countLeadingZeros(), VT
);
2314 return getConstant(Val
.countTrailingZeros(), VT
);
2318 // Constant fold unary operations with a floating point constant operand.
2319 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2320 APFloat V
= C
->getValueAPF(); // make copy
2321 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2325 return getConstantFP(V
, VT
);
2328 return getConstantFP(V
, VT
);
2330 case ISD::FP_EXTEND
: {
2332 // This can return overflow, underflow, or inexact; we don't care.
2333 // FIXME need to be more flexible about rounding mode.
2334 (void)V
.convert(*EVTToAPFloatSemantics(VT
),
2335 APFloat::rmNearestTiesToEven
, &ignored
);
2336 return getConstantFP(V
, VT
);
2338 case ISD::FP_TO_SINT
:
2339 case ISD::FP_TO_UINT
: {
2342 assert(integerPartWidth
>= 64);
2343 // FIXME need to be more flexible about rounding mode.
2344 APFloat::opStatus s
= V
.convertToInteger(x
, VT
.getSizeInBits(),
2345 Opcode
==ISD::FP_TO_SINT
,
2346 APFloat::rmTowardZero
, &ignored
);
2347 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2349 APInt
api(VT
.getSizeInBits(), 2, x
);
2350 return getConstant(api
, VT
);
2352 case ISD::BIT_CONVERT
:
2353 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2354 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2355 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2356 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2362 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2364 case ISD::TokenFactor
:
2365 case ISD::MERGE_VALUES
:
2366 case ISD::CONCAT_VECTORS
:
2367 return Operand
; // Factor, merge or concat of one node? No need.
2368 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
2369 case ISD::FP_EXTEND
:
2370 assert(VT
.isFloatingPoint() &&
2371 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2372 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2373 if (Operand
.getOpcode() == ISD::UNDEF
)
2374 return getUNDEF(VT
);
2376 case ISD::SIGN_EXTEND
:
2377 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2378 "Invalid SIGN_EXTEND!");
2379 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2380 assert(Operand
.getValueType().bitsLT(VT
)
2381 && "Invalid sext node, dst < src!");
2382 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2383 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2385 case ISD::ZERO_EXTEND
:
2386 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2387 "Invalid ZERO_EXTEND!");
2388 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2389 assert(Operand
.getValueType().bitsLT(VT
)
2390 && "Invalid zext node, dst < src!");
2391 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2392 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2393 Operand
.getNode()->getOperand(0));
2395 case ISD::ANY_EXTEND
:
2396 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2397 "Invalid ANY_EXTEND!");
2398 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2399 assert(Operand
.getValueType().bitsLT(VT
)
2400 && "Invalid anyext node, dst < src!");
2401 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
)
2402 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2403 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2406 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2407 "Invalid TRUNCATE!");
2408 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2409 assert(Operand
.getValueType().bitsGT(VT
)
2410 && "Invalid truncate node, src < dst!");
2411 if (OpOpcode
== ISD::TRUNCATE
)
2412 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2413 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2414 OpOpcode
== ISD::ANY_EXTEND
) {
2415 // If the source is smaller than the dest, we still need an extend.
2416 if (Operand
.getNode()->getOperand(0).getValueType().bitsLT(VT
))
2417 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2418 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2419 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2421 return Operand
.getNode()->getOperand(0);
2424 case ISD::BIT_CONVERT
:
2425 // Basic sanity checking.
2426 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2427 && "Cannot BIT_CONVERT between types of different sizes!");
2428 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2429 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2430 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2431 if (OpOpcode
== ISD::UNDEF
)
2432 return getUNDEF(VT
);
2434 case ISD::SCALAR_TO_VECTOR
:
2435 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2436 (VT
.getVectorElementType() == Operand
.getValueType() ||
2437 (VT
.getVectorElementType().isInteger() &&
2438 Operand
.getValueType().isInteger() &&
2439 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2440 "Illegal SCALAR_TO_VECTOR node!");
2441 if (OpOpcode
== ISD::UNDEF
)
2442 return getUNDEF(VT
);
2443 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2444 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2445 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2446 Operand
.getConstantOperandVal(1) == 0 &&
2447 Operand
.getOperand(0).getValueType() == VT
)
2448 return Operand
.getOperand(0);
2451 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2452 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2453 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2454 Operand
.getNode()->getOperand(0));
2455 if (OpOpcode
== ISD::FNEG
) // --X -> X
2456 return Operand
.getNode()->getOperand(0);
2459 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2460 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2465 SDVTList VTs
= getVTList(VT
);
2466 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2467 FoldingSetNodeID ID
;
2468 SDValue Ops
[1] = { Operand
};
2469 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2471 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2472 return SDValue(E
, 0);
2473 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2474 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2475 CSEMap
.InsertNode(N
, IP
);
2477 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2478 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2481 AllNodes
.push_back(N
);
2485 return SDValue(N
, 0);
2488 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2490 ConstantSDNode
*Cst1
,
2491 ConstantSDNode
*Cst2
) {
2492 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2495 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2496 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2497 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2499 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2502 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2505 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2508 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2510 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2511 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2512 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2513 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2514 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2515 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2516 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2517 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2524 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2525 SDValue N1
, SDValue N2
) {
2526 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2527 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2530 case ISD::TokenFactor
:
2531 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2532 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2533 // Fold trivial token factors.
2534 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2535 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2536 if (N1
== N2
) return N1
;
2538 case ISD::CONCAT_VECTORS
:
2539 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2540 // one big BUILD_VECTOR.
2541 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2542 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2543 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2544 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2545 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2549 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2550 N1
.getValueType() == VT
&& "Binary operator types must match!");
2551 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2552 // worth handling here.
2553 if (N2C
&& N2C
->isNullValue())
2555 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2562 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2563 N1
.getValueType() == VT
&& "Binary operator types must match!");
2564 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2565 // it's worth handling here.
2566 if (N2C
&& N2C
->isNullValue())
2576 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2584 if (Opcode
== ISD::FADD
) {
2586 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2587 if (CFP
->getValueAPF().isZero())
2590 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2591 if (CFP
->getValueAPF().isZero())
2593 } else if (Opcode
== ISD::FSUB
) {
2595 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2596 if (CFP
->getValueAPF().isZero())
2600 assert(N1
.getValueType() == N2
.getValueType() &&
2601 N1
.getValueType() == VT
&& "Binary operator types must match!");
2603 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2604 assert(N1
.getValueType() == VT
&&
2605 N1
.getValueType().isFloatingPoint() &&
2606 N2
.getValueType().isFloatingPoint() &&
2607 "Invalid FCOPYSIGN!");
2614 assert(VT
== N1
.getValueType() &&
2615 "Shift operators return type must be the same as their first arg");
2616 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2617 "Shifts only work on integers");
2619 // Always fold shifts of i1 values so the code generator doesn't need to
2620 // handle them. Since we know the size of the shift has to be less than the
2621 // size of the value, the shift/rotate count is guaranteed to be zero.
2625 case ISD::FP_ROUND_INREG
: {
2626 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2627 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2628 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2629 "Cannot FP_ROUND_INREG integer types");
2630 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2631 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2635 assert(VT
.isFloatingPoint() &&
2636 N1
.getValueType().isFloatingPoint() &&
2637 VT
.bitsLE(N1
.getValueType()) &&
2638 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2639 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2641 case ISD::AssertSext
:
2642 case ISD::AssertZext
: {
2643 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2644 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2645 assert(VT
.isInteger() && EVT
.isInteger() &&
2646 "Cannot *_EXTEND_INREG FP types");
2647 assert(EVT
.bitsLE(VT
) && "Not extending!");
2648 if (VT
== EVT
) return N1
; // noop assertion.
2651 case ISD::SIGN_EXTEND_INREG
: {
2652 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2653 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2654 assert(VT
.isInteger() && EVT
.isInteger() &&
2655 "Cannot *_EXTEND_INREG FP types");
2656 assert(EVT
.bitsLE(VT
) && "Not extending!");
2657 if (EVT
== VT
) return N1
; // Not actually extending
2660 APInt Val
= N1C
->getAPIntValue();
2661 unsigned FromBits
= cast
<VTSDNode
>(N2
)->getVT().getSizeInBits();
2662 Val
<<= Val
.getBitWidth()-FromBits
;
2663 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2664 return getConstant(Val
, VT
);
2668 case ISD::EXTRACT_VECTOR_ELT
:
2669 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2670 if (N1
.getOpcode() == ISD::UNDEF
)
2671 return getUNDEF(VT
);
2673 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2674 // expanding copies of large vectors from registers.
2676 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2677 N1
.getNumOperands() > 0) {
2679 N1
.getOperand(0).getValueType().getVectorNumElements();
2680 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2681 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2682 getConstant(N2C
->getZExtValue() % Factor
,
2683 N2
.getValueType()));
2686 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2687 // expanding large vector constants.
2688 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2689 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2690 EVT VEltTy
= N1
.getValueType().getVectorElementType();
2691 if (Elt
.getValueType() != VEltTy
) {
2692 // If the vector element type is not legal, the BUILD_VECTOR operands
2693 // are promoted and implicitly truncated. Make that explicit here.
2694 Elt
= getNode(ISD::TRUNCATE
, DL
, VEltTy
, Elt
);
2697 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2698 // result is implicitly extended.
2699 Elt
= getNode(ISD::ANY_EXTEND
, DL
, VT
, Elt
);
2704 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2705 // operations are lowered to scalars.
2706 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2707 // If the indices are the same, return the inserted element.
2708 if (N1
.getOperand(2) == N2
)
2709 return N1
.getOperand(1);
2710 // If the indices are known different, extract the element from
2711 // the original vector.
2712 else if (isa
<ConstantSDNode
>(N1
.getOperand(2)) &&
2713 isa
<ConstantSDNode
>(N2
))
2714 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2717 case ISD::EXTRACT_ELEMENT
:
2718 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2719 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2720 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2721 "Wrong types for EXTRACT_ELEMENT!");
2723 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2724 // 64-bit integers into 32-bit parts. Instead of building the extract of
2725 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2726 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2727 return N1
.getOperand(N2C
->getZExtValue());
2729 // EXTRACT_ELEMENT of a constant int is also very common.
2730 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2731 unsigned ElementSize
= VT
.getSizeInBits();
2732 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2733 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2734 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2737 case ISD::EXTRACT_SUBVECTOR
:
2738 if (N1
.getValueType() == VT
) // Trivial extraction.
2745 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2746 if (SV
.getNode()) return SV
;
2747 } else { // Cannonicalize constant to RHS if commutative
2748 if (isCommutativeBinOp(Opcode
)) {
2749 std::swap(N1C
, N2C
);
2755 // Constant fold FP operations.
2756 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2757 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2759 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2760 // Cannonicalize constant to RHS if commutative
2761 std::swap(N1CFP
, N2CFP
);
2763 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2764 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2765 APFloat::opStatus s
;
2768 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2769 if (s
!= APFloat::opInvalidOp
)
2770 return getConstantFP(V1
, VT
);
2773 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2774 if (s
!=APFloat::opInvalidOp
)
2775 return getConstantFP(V1
, VT
);
2778 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2779 if (s
!=APFloat::opInvalidOp
)
2780 return getConstantFP(V1
, VT
);
2783 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2784 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2785 return getConstantFP(V1
, VT
);
2788 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2789 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2790 return getConstantFP(V1
, VT
);
2792 case ISD::FCOPYSIGN
:
2794 return getConstantFP(V1
, VT
);
2800 // Canonicalize an UNDEF to the RHS, even over a constant.
2801 if (N1
.getOpcode() == ISD::UNDEF
) {
2802 if (isCommutativeBinOp(Opcode
)) {
2806 case ISD::FP_ROUND_INREG
:
2807 case ISD::SIGN_EXTEND_INREG
:
2813 return N1
; // fold op(undef, arg2) -> undef
2821 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2822 // For vectors, we can't easily build an all zero vector, just return
2829 // Fold a bunch of operators when the RHS is undef.
2830 if (N2
.getOpcode() == ISD::UNDEF
) {
2833 if (N1
.getOpcode() == ISD::UNDEF
)
2834 // Handle undef ^ undef -> 0 special case. This is a common
2836 return getConstant(0, VT
);
2846 return N2
; // fold op(arg1, undef) -> undef
2860 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2861 // For vectors, we can't easily build an all zero vector, just return
2866 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2867 // For vectors, we can't easily build an all one vector, just return
2875 // Memoize this node if possible.
2877 SDVTList VTs
= getVTList(VT
);
2878 if (VT
!= MVT::Flag
) {
2879 SDValue Ops
[] = { N1
, N2
};
2880 FoldingSetNodeID ID
;
2881 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2883 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2884 return SDValue(E
, 0);
2885 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2886 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2887 CSEMap
.InsertNode(N
, IP
);
2889 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2890 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2893 AllNodes
.push_back(N
);
2897 return SDValue(N
, 0);
2900 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2901 SDValue N1
, SDValue N2
, SDValue N3
) {
2902 // Perform various simplifications.
2903 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2904 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2906 case ISD::CONCAT_VECTORS
:
2907 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2908 // one big BUILD_VECTOR.
2909 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2910 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2911 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2912 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2913 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2914 Elts
.insert(Elts
.end(), N3
.getNode()->op_begin(), N3
.getNode()->op_end());
2915 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2919 // Use FoldSetCC to simplify SETCC's.
2920 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
2921 if (Simp
.getNode()) return Simp
;
2926 if (N1C
->getZExtValue())
2927 return N2
; // select true, X, Y -> X
2929 return N3
; // select false, X, Y -> Y
2932 if (N2
== N3
) return N2
; // select C, X, X -> X
2936 if (N2C
->getZExtValue()) // Unconditional branch
2937 return getNode(ISD::BR
, DL
, MVT::Other
, N1
, N3
);
2939 return N1
; // Never-taken branch
2942 case ISD::VECTOR_SHUFFLE
:
2943 llvm_unreachable("should use getVectorShuffle constructor!");
2945 case ISD::BIT_CONVERT
:
2946 // Fold bit_convert nodes from a type to themselves.
2947 if (N1
.getValueType() == VT
)
2952 // Memoize node if it doesn't produce a flag.
2954 SDVTList VTs
= getVTList(VT
);
2955 if (VT
!= MVT::Flag
) {
2956 SDValue Ops
[] = { N1
, N2
, N3
};
2957 FoldingSetNodeID ID
;
2958 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
2960 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2961 return SDValue(E
, 0);
2962 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2963 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2964 CSEMap
.InsertNode(N
, IP
);
2966 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2967 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2969 AllNodes
.push_back(N
);
2973 return SDValue(N
, 0);
2976 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2977 SDValue N1
, SDValue N2
, SDValue N3
,
2979 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
2980 return getNode(Opcode
, DL
, VT
, Ops
, 4);
2983 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2984 SDValue N1
, SDValue N2
, SDValue N3
,
2985 SDValue N4
, SDValue N5
) {
2986 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
2987 return getNode(Opcode
, DL
, VT
, Ops
, 5);
2990 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2991 /// the incoming stack arguments to be loaded from the stack.
2992 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
2993 SmallVector
<SDValue
, 8> ArgChains
;
2995 // Include the original chain at the beginning of the list. When this is
2996 // used by target LowerCall hooks, this helps legalize find the
2997 // CALLSEQ_BEGIN node.
2998 ArgChains
.push_back(Chain
);
3000 // Add a chain value for each stack argument.
3001 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
3002 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
3003 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3004 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3005 if (FI
->getIndex() < 0)
3006 ArgChains
.push_back(SDValue(L
, 1));
3008 // Build a tokenfactor for all the chains.
3009 return getNode(ISD::TokenFactor
, Chain
.getDebugLoc(), MVT::Other
,
3010 &ArgChains
[0], ArgChains
.size());
3013 /// getMemsetValue - Vectorized representation of the memset value
3015 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
3017 unsigned NumBits
= VT
.isVector() ?
3018 VT
.getVectorElementType().getSizeInBits() : VT
.getSizeInBits();
3019 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
3020 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
3022 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3023 Val
= (Val
<< Shift
) | Val
;
3027 return DAG
.getConstant(Val
, VT
);
3028 return DAG
.getConstantFP(APFloat(Val
), VT
);
3031 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3032 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
3034 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3035 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
3036 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
3037 DAG
.getConstant(Shift
,
3038 TLI
.getShiftAmountTy())),
3046 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3047 /// used when a memcpy is turned into a memset when the source is a constant
3049 static SDValue
getMemsetStringVal(EVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
3050 const TargetLowering
&TLI
,
3051 std::string
&Str
, unsigned Offset
) {
3052 // Handle vector with all elements zero.
3055 return DAG
.getConstant(0, VT
);
3056 unsigned NumElts
= VT
.getVectorNumElements();
3057 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
3058 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3060 EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
)));
3063 assert(!VT
.isVector() && "Can't handle vector type here!");
3064 unsigned NumBits
= VT
.getSizeInBits();
3065 unsigned MSB
= NumBits
/ 8;
3067 if (TLI
.isLittleEndian())
3068 Offset
= Offset
+ MSB
- 1;
3069 for (unsigned i
= 0; i
!= MSB
; ++i
) {
3070 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
3071 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
3073 return DAG
.getConstant(Val
, VT
);
3076 /// getMemBasePlusOffset - Returns base and offset node for the
3078 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
3079 SelectionDAG
&DAG
) {
3080 EVT VT
= Base
.getValueType();
3081 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
3082 VT
, Base
, DAG
.getConstant(Offset
, VT
));
3085 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3087 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
3088 unsigned SrcDelta
= 0;
3089 GlobalAddressSDNode
*G
= NULL
;
3090 if (Src
.getOpcode() == ISD::GlobalAddress
)
3091 G
= cast
<GlobalAddressSDNode
>(Src
);
3092 else if (Src
.getOpcode() == ISD::ADD
&&
3093 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
3094 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
3095 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
3096 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
3101 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
3102 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
3108 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3109 /// to replace the memset / memcpy is below the threshold. It also returns the
3110 /// types of the sequence of memory ops to perform memset / memcpy.
3112 bool MeetsMaxMemopRequirement(std::vector
<EVT
> &MemOps
,
3113 SDValue Dst
, SDValue Src
,
3114 unsigned Limit
, uint64_t Size
, unsigned &Align
,
3115 std::string
&Str
, bool &isSrcStr
,
3117 const TargetLowering
&TLI
) {
3118 isSrcStr
= isMemSrcFromString(Src
, Str
);
3119 bool isSrcConst
= isa
<ConstantSDNode
>(Src
);
3120 EVT VT
= TLI
.getOptimalMemOpType(Size
, Align
, isSrcConst
, isSrcStr
, DAG
);
3121 bool AllowUnalign
= TLI
.allowsUnalignedMemoryAccesses(VT
);
3122 if (VT
!= MVT::iAny
) {
3123 const Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
3124 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3125 // If source is a string constant, this will require an unaligned load.
3126 if (NewAlign
> Align
&& (isSrcConst
|| AllowUnalign
)) {
3127 if (Dst
.getOpcode() != ISD::FrameIndex
) {
3128 // Can't change destination alignment. It requires a unaligned store.
3132 int FI
= cast
<FrameIndexSDNode
>(Dst
)->getIndex();
3133 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3134 if (MFI
->isFixedObjectIndex(FI
)) {
3135 // Can't change destination alignment. It requires a unaligned store.
3139 // Give the stack frame object a larger alignment if needed.
3140 if (MFI
->getObjectAlignment(FI
) < NewAlign
)
3141 MFI
->setObjectAlignment(FI
, NewAlign
);
3148 if (VT
== MVT::iAny
) {
3149 if (TLI
.allowsUnalignedMemoryAccesses(MVT::i64
)) {
3152 switch (Align
& 7) {
3153 case 0: VT
= MVT::i64
; break;
3154 case 4: VT
= MVT::i32
; break;
3155 case 2: VT
= MVT::i16
; break;
3156 default: VT
= MVT::i8
; break;
3161 while (!TLI
.isTypeLegal(LVT
))
3162 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
3163 assert(LVT
.isInteger());
3169 unsigned NumMemOps
= 0;
3171 unsigned VTSize
= VT
.getSizeInBits() / 8;
3172 while (VTSize
> Size
) {
3173 // For now, only use non-vector load / store's for the left-over pieces.
3174 if (VT
.isVector()) {
3176 while (!TLI
.isTypeLegal(VT
))
3177 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3178 VTSize
= VT
.getSizeInBits() / 8;
3180 // This can result in a type that is not legal on the target, e.g.
3181 // 1 or 2 bytes on PPC.
3182 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3187 if (++NumMemOps
> Limit
)
3189 MemOps
.push_back(VT
);
3196 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3197 SDValue Chain
, SDValue Dst
,
3198 SDValue Src
, uint64_t Size
,
3199 unsigned Align
, bool AlwaysInline
,
3200 const Value
*DstSV
, uint64_t DstSVOff
,
3201 const Value
*SrcSV
, uint64_t SrcSVOff
){
3202 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3204 // Expand memcpy to a series of load and store ops if the size operand falls
3205 // below a certain threshold.
3206 std::vector
<EVT
> MemOps
;
3207 uint64_t Limit
= -1ULL;
3209 Limit
= TLI
.getMaxStoresPerMemcpy();
3210 unsigned DstAlign
= Align
; // Destination alignment can change.
3213 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3214 Str
, CopyFromStr
, DAG
, TLI
))
3218 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3219 SmallVector
<SDValue
, 8> OutChains
;
3220 unsigned NumMemOps
= MemOps
.size();
3221 uint64_t SrcOff
= 0, DstOff
= 0;
3222 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3224 unsigned VTSize
= VT
.getSizeInBits() / 8;
3225 SDValue Value
, Store
;
3227 if (CopyFromStr
&& (isZeroStr
|| !VT
.isVector())) {
3228 // It's unlikely a store of a vector immediate can be done in a single
3229 // instruction. It would require a load from a constantpool first.
3230 // We also handle store a vector with all zero's.
3231 // FIXME: Handle other cases where store of vector immediate is done in
3232 // a single instruction.
3233 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3234 Store
= DAG
.getStore(Chain
, dl
, Value
,
3235 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3236 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3238 // The type might not be legal for the target. This should only happen
3239 // if the type is smaller than a legal type, as on PPC, so the right
3240 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3241 // to Load/Store if NVT==VT.
3242 // FIXME does the case above also need this?
3243 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
3244 assert(NVT
.bitsGE(VT
));
3245 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Chain
,
3246 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3247 SrcSV
, SrcSVOff
+ SrcOff
, VT
, false, Align
);
3248 Store
= DAG
.getTruncStore(Chain
, dl
, Value
,
3249 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3250 DstSV
, DstSVOff
+ DstOff
, VT
, false, DstAlign
);
3252 OutChains
.push_back(Store
);
3257 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3258 &OutChains
[0], OutChains
.size());
3261 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3262 SDValue Chain
, SDValue Dst
,
3263 SDValue Src
, uint64_t Size
,
3264 unsigned Align
, bool AlwaysInline
,
3265 const Value
*DstSV
, uint64_t DstSVOff
,
3266 const Value
*SrcSV
, uint64_t SrcSVOff
){
3267 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3269 // Expand memmove to a series of load and store ops if the size operand falls
3270 // below a certain threshold.
3271 std::vector
<EVT
> MemOps
;
3272 uint64_t Limit
= -1ULL;
3274 Limit
= TLI
.getMaxStoresPerMemmove();
3275 unsigned DstAlign
= Align
; // Destination alignment can change.
3278 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3279 Str
, CopyFromStr
, DAG
, TLI
))
3282 uint64_t SrcOff
= 0, DstOff
= 0;
3284 SmallVector
<SDValue
, 8> LoadValues
;
3285 SmallVector
<SDValue
, 8> LoadChains
;
3286 SmallVector
<SDValue
, 8> OutChains
;
3287 unsigned NumMemOps
= MemOps
.size();
3288 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3290 unsigned VTSize
= VT
.getSizeInBits() / 8;
3291 SDValue Value
, Store
;
3293 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3294 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3295 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3296 LoadValues
.push_back(Value
);
3297 LoadChains
.push_back(Value
.getValue(1));
3300 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3301 &LoadChains
[0], LoadChains
.size());
3303 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3305 unsigned VTSize
= VT
.getSizeInBits() / 8;
3306 SDValue Value
, Store
;
3308 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3309 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3310 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3311 OutChains
.push_back(Store
);
3315 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3316 &OutChains
[0], OutChains
.size());
3319 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3320 SDValue Chain
, SDValue Dst
,
3321 SDValue Src
, uint64_t Size
,
3323 const Value
*DstSV
, uint64_t DstSVOff
) {
3324 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3326 // Expand memset to a series of load/store ops if the size operand
3327 // falls below a certain threshold.
3328 std::vector
<EVT
> MemOps
;
3331 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, TLI
.getMaxStoresPerMemset(),
3332 Size
, Align
, Str
, CopyFromStr
, DAG
, TLI
))
3335 SmallVector
<SDValue
, 8> OutChains
;
3336 uint64_t DstOff
= 0;
3338 unsigned NumMemOps
= MemOps
.size();
3339 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3341 unsigned VTSize
= VT
.getSizeInBits() / 8;
3342 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3343 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3344 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3345 DstSV
, DstSVOff
+ DstOff
);
3346 OutChains
.push_back(Store
);
3350 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3351 &OutChains
[0], OutChains
.size());
3354 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3355 SDValue Src
, SDValue Size
,
3356 unsigned Align
, bool AlwaysInline
,
3357 const Value
*DstSV
, uint64_t DstSVOff
,
3358 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3360 // Check to see if we should lower the memcpy to loads and stores first.
3361 // For cases within the target-specified limits, this is the best choice.
3362 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3364 // Memcpy with size zero? Just return the original chain.
3365 if (ConstantSize
->isNullValue())
3369 getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3370 ConstantSize
->getZExtValue(),
3371 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3372 if (Result
.getNode())
3376 // Then check to see if we should lower the memcpy with target-specific
3377 // code. If the target chooses to do this, this is the next best.
3379 TLI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3381 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3382 if (Result
.getNode())
3385 // If we really need inline code and the target declined to provide it,
3386 // use a (potentially long) sequence of loads and stores.
3388 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3389 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3390 ConstantSize
->getZExtValue(), Align
, true,
3391 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3394 // Emit a library call.
3395 TargetLowering::ArgListTy Args
;
3396 TargetLowering::ArgListEntry Entry
;
3397 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3398 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3399 Entry
.Node
= Src
; Args
.push_back(Entry
);
3400 Entry
.Node
= Size
; Args
.push_back(Entry
);
3401 // FIXME: pass in DebugLoc
3402 std::pair
<SDValue
,SDValue
> CallResult
=
3403 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3404 false, false, false, false, 0,
3405 TLI
.getLibcallCallingConv(RTLIB::MEMCPY
), false,
3406 /*isReturnValueUsed=*/false,
3407 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMCPY
),
3408 TLI
.getPointerTy()),
3410 return CallResult
.second
;
3413 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3414 SDValue Src
, SDValue Size
,
3416 const Value
*DstSV
, uint64_t DstSVOff
,
3417 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3419 // Check to see if we should lower the memmove to loads and stores first.
3420 // For cases within the target-specified limits, this is the best choice.
3421 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3423 // Memmove with size zero? Just return the original chain.
3424 if (ConstantSize
->isNullValue())
3428 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3429 ConstantSize
->getZExtValue(),
3430 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3431 if (Result
.getNode())
3435 // Then check to see if we should lower the memmove with target-specific
3436 // code. If the target chooses to do this, this is the next best.
3438 TLI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3439 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3440 if (Result
.getNode())
3443 // Emit a library call.
3444 TargetLowering::ArgListTy Args
;
3445 TargetLowering::ArgListEntry Entry
;
3446 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3447 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3448 Entry
.Node
= Src
; Args
.push_back(Entry
);
3449 Entry
.Node
= Size
; Args
.push_back(Entry
);
3450 // FIXME: pass in DebugLoc
3451 std::pair
<SDValue
,SDValue
> CallResult
=
3452 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3453 false, false, false, false, 0,
3454 TLI
.getLibcallCallingConv(RTLIB::MEMMOVE
), false,
3455 /*isReturnValueUsed=*/false,
3456 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMMOVE
),
3457 TLI
.getPointerTy()),
3459 return CallResult
.second
;
3462 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3463 SDValue Src
, SDValue Size
,
3465 const Value
*DstSV
, uint64_t DstSVOff
) {
3467 // Check to see if we should lower the memset to stores first.
3468 // For cases within the target-specified limits, this is the best choice.
3469 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3471 // Memset with size zero? Just return the original chain.
3472 if (ConstantSize
->isNullValue())
3476 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3477 Align
, DstSV
, DstSVOff
);
3478 if (Result
.getNode())
3482 // Then check to see if we should lower the memset with target-specific
3483 // code. If the target chooses to do this, this is the next best.
3485 TLI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3487 if (Result
.getNode())
3490 // Emit a library call.
3491 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType(*getContext());
3492 TargetLowering::ArgListTy Args
;
3493 TargetLowering::ArgListEntry Entry
;
3494 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3495 Args
.push_back(Entry
);
3496 // Extend or truncate the argument to be an i32 value for the call.
3497 if (Src
.getValueType().bitsGT(MVT::i32
))
3498 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3500 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3502 Entry
.Ty
= Type::getInt32Ty(*getContext());
3503 Entry
.isSExt
= true;
3504 Args
.push_back(Entry
);
3506 Entry
.Ty
= IntPtrTy
;
3507 Entry
.isSExt
= false;
3508 Args
.push_back(Entry
);
3509 // FIXME: pass in DebugLoc
3510 std::pair
<SDValue
,SDValue
> CallResult
=
3511 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3512 false, false, false, false, 0,
3513 TLI
.getLibcallCallingConv(RTLIB::MEMSET
), false,
3514 /*isReturnValueUsed=*/false,
3515 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMSET
),
3516 TLI
.getPointerTy()),
3518 return CallResult
.second
;
3521 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3523 SDValue Ptr
, SDValue Cmp
,
3524 SDValue Swp
, const Value
* PtrVal
,
3525 unsigned Alignment
) {
3526 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3527 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3529 EVT VT
= Cmp
.getValueType();
3531 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3532 Alignment
= getEVTAlignment(MemVT
);
3534 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3535 FoldingSetNodeID ID
;
3536 ID
.AddInteger(MemVT
.getRawBits());
3537 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3538 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3540 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3541 return SDValue(E
, 0);
3542 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3543 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3544 Chain
, Ptr
, Cmp
, Swp
, PtrVal
, Alignment
);
3545 CSEMap
.InsertNode(N
, IP
);
3546 AllNodes
.push_back(N
);
3547 return SDValue(N
, 0);
3550 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3552 SDValue Ptr
, SDValue Val
,
3553 const Value
* PtrVal
,
3554 unsigned Alignment
) {
3555 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3556 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3557 Opcode
== ISD::ATOMIC_LOAD_AND
||
3558 Opcode
== ISD::ATOMIC_LOAD_OR
||
3559 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3560 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3561 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3562 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3563 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3564 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3565 Opcode
== ISD::ATOMIC_SWAP
) &&
3566 "Invalid Atomic Op");
3568 EVT VT
= Val
.getValueType();
3570 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3571 Alignment
= getEVTAlignment(MemVT
);
3573 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3574 FoldingSetNodeID ID
;
3575 ID
.AddInteger(MemVT
.getRawBits());
3576 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3577 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3579 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3580 return SDValue(E
, 0);
3581 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3582 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3583 Chain
, Ptr
, Val
, PtrVal
, Alignment
);
3584 CSEMap
.InsertNode(N
, IP
);
3585 AllNodes
.push_back(N
);
3586 return SDValue(N
, 0);
3589 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3590 /// Allowed to return something different (and simpler) if Simplify is true.
3591 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3596 SmallVector
<EVT
, 4> VTs
;
3597 VTs
.reserve(NumOps
);
3598 for (unsigned i
= 0; i
< NumOps
; ++i
)
3599 VTs
.push_back(Ops
[i
].getValueType());
3600 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3605 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3606 const EVT
*VTs
, unsigned NumVTs
,
3607 const SDValue
*Ops
, unsigned NumOps
,
3608 EVT MemVT
, const Value
*srcValue
, int SVOff
,
3609 unsigned Align
, bool Vol
,
3610 bool ReadMem
, bool WriteMem
) {
3611 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3612 MemVT
, srcValue
, SVOff
, Align
, Vol
,
3617 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3618 const SDValue
*Ops
, unsigned NumOps
,
3619 EVT MemVT
, const Value
*srcValue
, int SVOff
,
3620 unsigned Align
, bool Vol
,
3621 bool ReadMem
, bool WriteMem
) {
3622 // Memoize the node unless it returns a flag.
3623 MemIntrinsicSDNode
*N
;
3624 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3625 FoldingSetNodeID ID
;
3626 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3628 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3629 return SDValue(E
, 0);
3631 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3632 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3633 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3634 CSEMap
.InsertNode(N
, IP
);
3636 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3637 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3638 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3640 AllNodes
.push_back(N
);
3641 return SDValue(N
, 0);
3645 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3646 ISD::LoadExtType ExtType
, EVT VT
, SDValue Chain
,
3647 SDValue Ptr
, SDValue Offset
,
3648 const Value
*SV
, int SVOffset
, EVT EVT
,
3649 bool isVolatile
, unsigned Alignment
) {
3650 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3651 Alignment
= getEVTAlignment(VT
);
3654 ExtType
= ISD::NON_EXTLOAD
;
3655 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3656 assert(VT
== EVT
&& "Non-extending load from different memory type!");
3660 assert(EVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
3661 "Invalid vector extload!");
3663 assert(EVT
.bitsLT(VT
) &&
3664 "Should only be an extending load, not truncating!");
3665 assert((ExtType
== ISD::EXTLOAD
|| VT
.isInteger()) &&
3666 "Cannot sign/zero extend a FP/Vector load!");
3667 assert(VT
.isInteger() == EVT
.isInteger() &&
3668 "Cannot convert from FP to Int or Int -> FP!");
3671 bool Indexed
= AM
!= ISD::UNINDEXED
;
3672 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3673 "Unindexed load with an offset!");
3675 SDVTList VTs
= Indexed
?
3676 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3677 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3678 FoldingSetNodeID ID
;
3679 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3680 ID
.AddInteger(EVT
.getRawBits());
3681 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, isVolatile
, Alignment
));
3683 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3684 return SDValue(E
, 0);
3685 SDNode
*N
= NodeAllocator
.Allocate
<LoadSDNode
>();
3686 new (N
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
, EVT
, SV
, SVOffset
,
3687 Alignment
, isVolatile
);
3688 CSEMap
.InsertNode(N
, IP
);
3689 AllNodes
.push_back(N
);
3690 return SDValue(N
, 0);
3693 SDValue
SelectionDAG::getLoad(EVT VT
, DebugLoc dl
,
3694 SDValue Chain
, SDValue Ptr
,
3695 const Value
*SV
, int SVOffset
,
3696 bool isVolatile
, unsigned Alignment
) {
3697 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3698 return getLoad(ISD::UNINDEXED
, dl
, ISD::NON_EXTLOAD
, VT
, Chain
, Ptr
, Undef
,
3699 SV
, SVOffset
, VT
, isVolatile
, Alignment
);
3702 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, EVT VT
,
3703 SDValue Chain
, SDValue Ptr
,
3705 int SVOffset
, EVT EVT
,
3706 bool isVolatile
, unsigned Alignment
) {
3707 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3708 return getLoad(ISD::UNINDEXED
, dl
, ExtType
, VT
, Chain
, Ptr
, Undef
,
3709 SV
, SVOffset
, EVT
, isVolatile
, Alignment
);
3713 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3714 SDValue Offset
, ISD::MemIndexedMode AM
) {
3715 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3716 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3717 "Load is already a indexed load!");
3718 return getLoad(AM
, dl
, LD
->getExtensionType(), OrigLoad
.getValueType(),
3719 LD
->getChain(), Base
, Offset
, LD
->getSrcValue(),
3720 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
3721 LD
->isVolatile(), LD
->getAlignment());
3724 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3725 SDValue Ptr
, const Value
*SV
, int SVOffset
,
3726 bool isVolatile
, unsigned Alignment
) {
3727 EVT VT
= Val
.getValueType();
3729 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3730 Alignment
= getEVTAlignment(VT
);
3732 SDVTList VTs
= getVTList(MVT::Other
);
3733 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3734 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3735 FoldingSetNodeID ID
;
3736 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3737 ID
.AddInteger(VT
.getRawBits());
3738 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
,
3739 isVolatile
, Alignment
));
3741 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3742 return SDValue(E
, 0);
3743 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3744 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, false,
3745 VT
, SV
, SVOffset
, Alignment
, isVolatile
);
3746 CSEMap
.InsertNode(N
, IP
);
3747 AllNodes
.push_back(N
);
3748 return SDValue(N
, 0);
3751 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3752 SDValue Ptr
, const Value
*SV
,
3753 int SVOffset
, EVT SVT
,
3754 bool isVolatile
, unsigned Alignment
) {
3755 EVT VT
= Val
.getValueType();
3758 return getStore(Chain
, dl
, Val
, Ptr
, SV
, SVOffset
, isVolatile
, Alignment
);
3760 assert(VT
.bitsGT(SVT
) && "Not a truncation?");
3761 assert(VT
.isInteger() == SVT
.isInteger() &&
3762 "Can't do FP-INT conversion!");
3764 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3765 Alignment
= getEVTAlignment(VT
);
3767 SDVTList VTs
= getVTList(MVT::Other
);
3768 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3769 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3770 FoldingSetNodeID ID
;
3771 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3772 ID
.AddInteger(SVT
.getRawBits());
3773 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
,
3774 isVolatile
, Alignment
));
3776 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3777 return SDValue(E
, 0);
3778 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3779 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, true,
3780 SVT
, SV
, SVOffset
, Alignment
, isVolatile
);
3781 CSEMap
.InsertNode(N
, IP
);
3782 AllNodes
.push_back(N
);
3783 return SDValue(N
, 0);
3787 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
3788 SDValue Offset
, ISD::MemIndexedMode AM
) {
3789 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
3790 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
3791 "Store is already a indexed store!");
3792 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
3793 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
3794 FoldingSetNodeID ID
;
3795 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3796 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
3797 ID
.AddInteger(ST
->getRawSubclassData());
3799 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3800 return SDValue(E
, 0);
3801 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3802 new (N
) StoreSDNode(Ops
, dl
, VTs
, AM
,
3803 ST
->isTruncatingStore(), ST
->getMemoryVT(),
3804 ST
->getSrcValue(), ST
->getSrcValueOffset(),
3805 ST
->getAlignment(), ST
->isVolatile());
3806 CSEMap
.InsertNode(N
, IP
);
3807 AllNodes
.push_back(N
);
3808 return SDValue(N
, 0);
3811 SDValue
SelectionDAG::getVAArg(EVT VT
, DebugLoc dl
,
3812 SDValue Chain
, SDValue Ptr
,
3814 SDValue Ops
[] = { Chain
, Ptr
, SV
};
3815 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 3);
3818 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3819 const SDUse
*Ops
, unsigned NumOps
) {
3821 case 0: return getNode(Opcode
, DL
, VT
);
3822 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3823 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3824 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3828 // Copy from an SDUse array into an SDValue array for use with
3829 // the regular getNode logic.
3830 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
3831 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
3834 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3835 const SDValue
*Ops
, unsigned NumOps
) {
3837 case 0: return getNode(Opcode
, DL
, VT
);
3838 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3839 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3840 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3846 case ISD::SELECT_CC
: {
3847 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
3848 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
3849 "LHS and RHS of condition must have same type!");
3850 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3851 "True and False arms of SelectCC must have same type!");
3852 assert(Ops
[2].getValueType() == VT
&&
3853 "select_cc node must be of same type as true and false value!");
3857 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
3858 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3859 "LHS/RHS of comparison should match types!");
3866 SDVTList VTs
= getVTList(VT
);
3868 if (VT
!= MVT::Flag
) {
3869 FoldingSetNodeID ID
;
3870 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
3873 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3874 return SDValue(E
, 0);
3876 N
= NodeAllocator
.Allocate
<SDNode
>();
3877 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3878 CSEMap
.InsertNode(N
, IP
);
3880 N
= NodeAllocator
.Allocate
<SDNode
>();
3881 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3884 AllNodes
.push_back(N
);
3888 return SDValue(N
, 0);
3891 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3892 const std::vector
<EVT
> &ResultTys
,
3893 const SDValue
*Ops
, unsigned NumOps
) {
3894 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
3898 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3899 const EVT
*VTs
, unsigned NumVTs
,
3900 const SDValue
*Ops
, unsigned NumOps
) {
3902 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
3903 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
3906 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3907 const SDValue
*Ops
, unsigned NumOps
) {
3908 if (VTList
.NumVTs
== 1)
3909 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
3913 // FIXME: figure out how to safely handle things like
3914 // int foo(int x) { return 1 << (x & 255); }
3915 // int bar() { return foo(256); }
3916 case ISD::SRA_PARTS
:
3917 case ISD::SRL_PARTS
:
3918 case ISD::SHL_PARTS
:
3919 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3920 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
3921 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3922 else if (N3
.getOpcode() == ISD::AND
)
3923 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
3924 // If the and is only masking out bits that cannot effect the shift,
3925 // eliminate the and.
3926 unsigned NumBits
= VT
.getSizeInBits()*2;
3927 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
3928 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3934 // Memoize the node unless it returns a flag.
3936 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3937 FoldingSetNodeID ID
;
3938 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3940 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3941 return SDValue(E
, 0);
3943 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3944 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3945 } else if (NumOps
== 2) {
3946 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3947 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3948 } else if (NumOps
== 3) {
3949 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3950 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3952 N
= NodeAllocator
.Allocate
<SDNode
>();
3953 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3955 CSEMap
.InsertNode(N
, IP
);
3958 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3959 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3960 } else if (NumOps
== 2) {
3961 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3962 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3963 } else if (NumOps
== 3) {
3964 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3965 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3967 N
= NodeAllocator
.Allocate
<SDNode
>();
3968 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3971 AllNodes
.push_back(N
);
3975 return SDValue(N
, 0);
3978 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
3979 return getNode(Opcode
, DL
, VTList
, 0, 0);
3982 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3984 SDValue Ops
[] = { N1
};
3985 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
3988 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3989 SDValue N1
, SDValue N2
) {
3990 SDValue Ops
[] = { N1
, N2
};
3991 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
3994 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3995 SDValue N1
, SDValue N2
, SDValue N3
) {
3996 SDValue Ops
[] = { N1
, N2
, N3
};
3997 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
4000 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4001 SDValue N1
, SDValue N2
, SDValue N3
,
4003 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
4004 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
4007 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4008 SDValue N1
, SDValue N2
, SDValue N3
,
4009 SDValue N4
, SDValue N5
) {
4010 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
4011 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
4014 SDVTList
SelectionDAG::getVTList(EVT VT
) {
4015 return makeVTList(SDNode::getValueTypeList(VT
), 1);
4018 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
4019 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4020 E
= VTList
.rend(); I
!= E
; ++I
)
4021 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
4024 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
4027 SDVTList Result
= makeVTList(Array
, 2);
4028 VTList
.push_back(Result
);
4032 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
4033 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4034 E
= VTList
.rend(); I
!= E
; ++I
)
4035 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4039 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4043 SDVTList Result
= makeVTList(Array
, 3);
4044 VTList
.push_back(Result
);
4048 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
4049 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4050 E
= VTList
.rend(); I
!= E
; ++I
)
4051 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4052 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
4055 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4060 SDVTList Result
= makeVTList(Array
, 4);
4061 VTList
.push_back(Result
);
4065 SDVTList
SelectionDAG::getVTList(const EVT
*VTs
, unsigned NumVTs
) {
4067 case 0: llvm_unreachable("Cannot have nodes without results!");
4068 case 1: return getVTList(VTs
[0]);
4069 case 2: return getVTList(VTs
[0], VTs
[1]);
4070 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
4074 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4075 E
= VTList
.rend(); I
!= E
; ++I
) {
4076 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
4079 bool NoMatch
= false;
4080 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
4081 if (VTs
[i
] != I
->VTs
[i
]) {
4089 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
4090 std::copy(VTs
, VTs
+NumVTs
, Array
);
4091 SDVTList Result
= makeVTList(Array
, NumVTs
);
4092 VTList
.push_back(Result
);
4097 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4098 /// specified operands. If the resultant node already exists in the DAG,
4099 /// this does not modify the specified node, instead it returns the node that
4100 /// already exists. If the resultant node does not exist in the DAG, the
4101 /// input node is returned. As a degenerate case, if you specify the same
4102 /// input operands as the node already has, the input node is returned.
4103 SDValue
SelectionDAG::UpdateNodeOperands(SDValue InN
, SDValue Op
) {
4104 SDNode
*N
= InN
.getNode();
4105 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
4107 // Check to see if there is no change.
4108 if (Op
== N
->getOperand(0)) return InN
;
4110 // See if the modified node already exists.
4111 void *InsertPos
= 0;
4112 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
4113 return SDValue(Existing
, InN
.getResNo());
4115 // Nope it doesn't. Remove the node from its current place in the maps.
4117 if (!RemoveNodeFromCSEMaps(N
))
4120 // Now we update the operands.
4121 N
->OperandList
[0].set(Op
);
4123 // If this gets put into a CSE map, add it.
4124 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4128 SDValue
SelectionDAG::
4129 UpdateNodeOperands(SDValue InN
, SDValue Op1
, SDValue Op2
) {
4130 SDNode
*N
= InN
.getNode();
4131 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
4133 // Check to see if there is no change.
4134 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
4135 return InN
; // No operands changed, just return the input node.
4137 // See if the modified node already exists.
4138 void *InsertPos
= 0;
4139 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
4140 return SDValue(Existing
, InN
.getResNo());
4142 // Nope it doesn't. Remove the node from its current place in the maps.
4144 if (!RemoveNodeFromCSEMaps(N
))
4147 // Now we update the operands.
4148 if (N
->OperandList
[0] != Op1
)
4149 N
->OperandList
[0].set(Op1
);
4150 if (N
->OperandList
[1] != Op2
)
4151 N
->OperandList
[1].set(Op2
);
4153 // If this gets put into a CSE map, add it.
4154 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4158 SDValue
SelectionDAG::
4159 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4160 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4161 return UpdateNodeOperands(N
, Ops
, 3);
4164 SDValue
SelectionDAG::
4165 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4166 SDValue Op3
, SDValue Op4
) {
4167 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4168 return UpdateNodeOperands(N
, Ops
, 4);
4171 SDValue
SelectionDAG::
4172 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4173 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4174 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4175 return UpdateNodeOperands(N
, Ops
, 5);
4178 SDValue
SelectionDAG::
4179 UpdateNodeOperands(SDValue InN
, const SDValue
*Ops
, unsigned NumOps
) {
4180 SDNode
*N
= InN
.getNode();
4181 assert(N
->getNumOperands() == NumOps
&&
4182 "Update with wrong number of operands");
4184 // Check to see if there is no change.
4185 bool AnyChange
= false;
4186 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4187 if (Ops
[i
] != N
->getOperand(i
)) {
4193 // No operands changed, just return the input node.
4194 if (!AnyChange
) return InN
;
4196 // See if the modified node already exists.
4197 void *InsertPos
= 0;
4198 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4199 return SDValue(Existing
, InN
.getResNo());
4201 // Nope it doesn't. Remove the node from its current place in the maps.
4203 if (!RemoveNodeFromCSEMaps(N
))
4206 // Now we update the operands.
4207 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4208 if (N
->OperandList
[i
] != Ops
[i
])
4209 N
->OperandList
[i
].set(Ops
[i
]);
4211 // If this gets put into a CSE map, add it.
4212 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4216 /// DropOperands - Release the operands and set this node to have
4218 void SDNode::DropOperands() {
4219 // Unlike the code in MorphNodeTo that does this, we don't need to
4220 // watch for dead nodes here.
4221 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4227 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4230 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4232 SDVTList VTs
= getVTList(VT
);
4233 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4236 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4237 EVT VT
, SDValue Op1
) {
4238 SDVTList VTs
= getVTList(VT
);
4239 SDValue Ops
[] = { Op1
};
4240 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4243 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4244 EVT VT
, SDValue Op1
,
4246 SDVTList VTs
= getVTList(VT
);
4247 SDValue Ops
[] = { Op1
, Op2
};
4248 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4251 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4252 EVT VT
, SDValue Op1
,
4253 SDValue Op2
, SDValue Op3
) {
4254 SDVTList VTs
= getVTList(VT
);
4255 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4256 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4259 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4260 EVT VT
, const SDValue
*Ops
,
4262 SDVTList VTs
= getVTList(VT
);
4263 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4266 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4267 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4269 SDVTList VTs
= getVTList(VT1
, VT2
);
4270 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4273 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4275 SDVTList VTs
= getVTList(VT1
, VT2
);
4276 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4279 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4280 EVT VT1
, EVT VT2
, EVT VT3
,
4281 const SDValue
*Ops
, unsigned NumOps
) {
4282 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4283 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4286 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4287 EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
,
4288 const SDValue
*Ops
, unsigned NumOps
) {
4289 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4290 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4293 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4296 SDVTList VTs
= getVTList(VT1
, VT2
);
4297 SDValue Ops
[] = { Op1
};
4298 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4301 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4303 SDValue Op1
, SDValue Op2
) {
4304 SDVTList VTs
= getVTList(VT1
, VT2
);
4305 SDValue Ops
[] = { Op1
, Op2
};
4306 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4309 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4311 SDValue Op1
, SDValue Op2
,
4313 SDVTList VTs
= getVTList(VT1
, VT2
);
4314 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4315 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4318 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4319 EVT VT1
, EVT VT2
, EVT VT3
,
4320 SDValue Op1
, SDValue Op2
,
4322 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4323 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4324 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4327 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4328 SDVTList VTs
, const SDValue
*Ops
,
4330 return MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4333 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4335 SDVTList VTs
= getVTList(VT
);
4336 return MorphNodeTo(N
, Opc
, VTs
, 0, 0);
4339 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4340 EVT VT
, SDValue Op1
) {
4341 SDVTList VTs
= getVTList(VT
);
4342 SDValue Ops
[] = { Op1
};
4343 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4346 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4347 EVT VT
, SDValue Op1
,
4349 SDVTList VTs
= getVTList(VT
);
4350 SDValue Ops
[] = { Op1
, Op2
};
4351 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4354 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4355 EVT VT
, SDValue Op1
,
4356 SDValue Op2
, SDValue Op3
) {
4357 SDVTList VTs
= getVTList(VT
);
4358 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4359 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4362 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4363 EVT VT
, const SDValue
*Ops
,
4365 SDVTList VTs
= getVTList(VT
);
4366 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4369 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4370 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4372 SDVTList VTs
= getVTList(VT1
, VT2
);
4373 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4376 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4378 SDVTList VTs
= getVTList(VT1
, VT2
);
4379 return MorphNodeTo(N
, Opc
, VTs
, (SDValue
*)0, 0);
4382 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4383 EVT VT1
, EVT VT2
, EVT VT3
,
4384 const SDValue
*Ops
, unsigned NumOps
) {
4385 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4386 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4389 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4392 SDVTList VTs
= getVTList(VT1
, VT2
);
4393 SDValue Ops
[] = { Op1
};
4394 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4397 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4399 SDValue Op1
, SDValue Op2
) {
4400 SDVTList VTs
= getVTList(VT1
, VT2
);
4401 SDValue Ops
[] = { Op1
, Op2
};
4402 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4405 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4407 SDValue Op1
, SDValue Op2
,
4409 SDVTList VTs
= getVTList(VT1
, VT2
);
4410 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4411 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4414 /// MorphNodeTo - These *mutate* the specified node to have the specified
4415 /// return type, opcode, and operands.
4417 /// Note that MorphNodeTo returns the resultant node. If there is already a
4418 /// node of the specified opcode and operands, it returns that node instead of
4419 /// the current one. Note that the DebugLoc need not be the same.
4421 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4422 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4423 /// node, and because it doesn't require CSE recalculation for any of
4424 /// the node's users.
4426 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4427 SDVTList VTs
, const SDValue
*Ops
,
4429 // If an identical node already exists, use it.
4431 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4432 FoldingSetNodeID ID
;
4433 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4434 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4438 if (!RemoveNodeFromCSEMaps(N
))
4441 // Start the morphing.
4443 N
->ValueList
= VTs
.VTs
;
4444 N
->NumValues
= VTs
.NumVTs
;
4446 // Clear the operands list, updating used nodes to remove this from their
4447 // use list. Keep track of any operands that become dead as a result.
4448 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4449 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4451 SDNode
*Used
= Use
.getNode();
4453 if (Used
->use_empty())
4454 DeadNodeSet
.insert(Used
);
4457 // If NumOps is larger than the # of operands we currently have, reallocate
4458 // the operand list.
4459 if (NumOps
> N
->NumOperands
) {
4460 if (N
->OperandsNeedDelete
)
4461 delete[] N
->OperandList
;
4463 if (N
->isMachineOpcode()) {
4464 // We're creating a final node that will live unmorphed for the
4465 // remainder of the current SelectionDAG iteration, so we can allocate
4466 // the operands directly out of a pool with no recycling metadata.
4467 N
->OperandList
= OperandAllocator
.Allocate
<SDUse
>(NumOps
);
4468 N
->OperandsNeedDelete
= false;
4470 N
->OperandList
= new SDUse
[NumOps
];
4471 N
->OperandsNeedDelete
= true;
4475 // Assign the new operands.
4476 N
->NumOperands
= NumOps
;
4477 for (unsigned i
= 0, e
= NumOps
; i
!= e
; ++i
) {
4478 N
->OperandList
[i
].setUser(N
);
4479 N
->OperandList
[i
].setInitial(Ops
[i
]);
4482 // Delete any nodes that are still dead after adding the uses for the
4484 SmallVector
<SDNode
*, 16> DeadNodes
;
4485 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4486 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4487 if ((*I
)->use_empty())
4488 DeadNodes
.push_back(*I
);
4489 RemoveDeadNodes(DeadNodes
);
4492 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4497 /// getTargetNode - These are used for target selectors to create a new node
4498 /// with specified return type(s), target opcode, and operands.
4500 /// Note that getTargetNode returns the resultant node. If there is already a
4501 /// node of the specified opcode and operands, it returns that node instead of
4502 /// the current one.
4503 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
) {
4504 return getNode(~Opcode
, dl
, VT
).getNode();
4507 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4509 return getNode(~Opcode
, dl
, VT
, Op1
).getNode();
4512 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4513 SDValue Op1
, SDValue Op2
) {
4514 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
).getNode();
4517 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4518 SDValue Op1
, SDValue Op2
,
4520 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
, Op3
).getNode();
4523 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4524 const SDValue
*Ops
, unsigned NumOps
) {
4525 return getNode(~Opcode
, dl
, VT
, Ops
, NumOps
).getNode();
4528 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4530 SDVTList VTs
= getVTList(VT1
, VT2
);
4532 return getNode(~Opcode
, dl
, VTs
, &Op
, 0).getNode();
4535 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4536 EVT VT2
, SDValue Op1
) {
4537 SDVTList VTs
= getVTList(VT1
, VT2
);
4538 return getNode(~Opcode
, dl
, VTs
, &Op1
, 1).getNode();
4541 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4542 EVT VT2
, SDValue Op1
,
4544 SDVTList VTs
= getVTList(VT1
, VT2
);
4545 SDValue Ops
[] = { Op1
, Op2
};
4546 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4549 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4550 EVT VT2
, SDValue Op1
,
4551 SDValue Op2
, SDValue Op3
) {
4552 SDVTList VTs
= getVTList(VT1
, VT2
);
4553 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4554 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4557 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4559 const SDValue
*Ops
, unsigned NumOps
) {
4560 SDVTList VTs
= getVTList(VT1
, VT2
);
4561 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4564 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4565 EVT VT1
, EVT VT2
, EVT VT3
,
4566 SDValue Op1
, SDValue Op2
) {
4567 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4568 SDValue Ops
[] = { Op1
, Op2
};
4569 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4572 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4573 EVT VT1
, EVT VT2
, EVT VT3
,
4574 SDValue Op1
, SDValue Op2
,
4576 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4577 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4578 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4581 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4582 EVT VT1
, EVT VT2
, EVT VT3
,
4583 const SDValue
*Ops
, unsigned NumOps
) {
4584 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4585 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4588 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4589 EVT VT2
, EVT VT3
, EVT VT4
,
4590 const SDValue
*Ops
, unsigned NumOps
) {
4591 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4592 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4595 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4596 const std::vector
<EVT
> &ResultTys
,
4597 const SDValue
*Ops
, unsigned NumOps
) {
4598 return getNode(~Opcode
, dl
, ResultTys
, Ops
, NumOps
).getNode();
4601 /// getTargetExtractSubreg - A convenience function for creating
4602 /// TargetInstrInfo::EXTRACT_SUBREG nodes.
4604 SelectionDAG::getTargetExtractSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
4606 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
4607 SDNode
*Subreg
= getTargetNode(TargetInstrInfo::EXTRACT_SUBREG
, DL
,
4608 VT
, Operand
, SRIdxVal
);
4609 return SDValue(Subreg
, 0);
4612 /// getNodeIfExists - Get the specified node if it's already available, or
4613 /// else return NULL.
4614 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4615 const SDValue
*Ops
, unsigned NumOps
) {
4616 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4617 FoldingSetNodeID ID
;
4618 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4620 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4626 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4627 /// This can cause recursive merging of nodes in the DAG.
4629 /// This version assumes From has a single result value.
4631 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
4632 DAGUpdateListener
*UpdateListener
) {
4633 SDNode
*From
= FromN
.getNode();
4634 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
4635 "Cannot replace with this method!");
4636 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
4638 // Iterate over all the existing uses of From. New uses will be added
4639 // to the beginning of the use list, which we avoid visiting.
4640 // This specifically avoids visiting uses of From that arise while the
4641 // replacement is happening, because any such uses would be the result
4642 // of CSE: If an existing node looks like From after one of its operands
4643 // is replaced by To, we don't want to replace of all its users with To
4644 // too. See PR3018 for more info.
4645 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4649 // This node is about to morph, remove its old self from the CSE maps.
4650 RemoveNodeFromCSEMaps(User
);
4652 // A user can appear in a use list multiple times, and when this
4653 // happens the uses are usually next to each other in the list.
4654 // To help reduce the number of CSE recomputations, process all
4655 // the uses of this user that we can find this way.
4657 SDUse
&Use
= UI
.getUse();
4660 } while (UI
!= UE
&& *UI
== User
);
4662 // Now that we have modified User, add it back to the CSE maps. If it
4663 // already exists there, recursively merge the results together.
4664 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4668 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4669 /// This can cause recursive merging of nodes in the DAG.
4671 /// This version assumes that for each value of From, there is a
4672 /// corresponding value in To in the same position with the same type.
4674 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
4675 DAGUpdateListener
*UpdateListener
) {
4677 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
4678 assert((!From
->hasAnyUseOfValue(i
) ||
4679 From
->getValueType(i
) == To
->getValueType(i
)) &&
4680 "Cannot use this version of ReplaceAllUsesWith!");
4683 // Handle the trivial case.
4687 // Iterate over just the existing users of From. See the comments in
4688 // the ReplaceAllUsesWith above.
4689 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4693 // This node is about to morph, remove its old self from the CSE maps.
4694 RemoveNodeFromCSEMaps(User
);
4696 // A user can appear in a use list multiple times, and when this
4697 // happens the uses are usually next to each other in the list.
4698 // To help reduce the number of CSE recomputations, process all
4699 // the uses of this user that we can find this way.
4701 SDUse
&Use
= UI
.getUse();
4704 } while (UI
!= UE
&& *UI
== User
);
4706 // Now that we have modified User, add it back to the CSE maps. If it
4707 // already exists there, recursively merge the results together.
4708 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4712 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4713 /// This can cause recursive merging of nodes in the DAG.
4715 /// This version can replace From with any result values. To must match the
4716 /// number and types of values returned by From.
4717 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
4719 DAGUpdateListener
*UpdateListener
) {
4720 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
4721 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
4723 // Iterate over just the existing users of From. See the comments in
4724 // the ReplaceAllUsesWith above.
4725 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4729 // This node is about to morph, remove its old self from the CSE maps.
4730 RemoveNodeFromCSEMaps(User
);
4732 // A user can appear in a use list multiple times, and when this
4733 // happens the uses are usually next to each other in the list.
4734 // To help reduce the number of CSE recomputations, process all
4735 // the uses of this user that we can find this way.
4737 SDUse
&Use
= UI
.getUse();
4738 const SDValue
&ToOp
= To
[Use
.getResNo()];
4741 } while (UI
!= UE
&& *UI
== User
);
4743 // Now that we have modified User, add it back to the CSE maps. If it
4744 // already exists there, recursively merge the results together.
4745 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4749 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4750 /// uses of other values produced by From.getNode() alone. The Deleted
4751 /// vector is handled the same way as for ReplaceAllUsesWith.
4752 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
4753 DAGUpdateListener
*UpdateListener
){
4754 // Handle the really simple, really trivial case efficiently.
4755 if (From
== To
) return;
4757 // Handle the simple, trivial, case efficiently.
4758 if (From
.getNode()->getNumValues() == 1) {
4759 ReplaceAllUsesWith(From
, To
, UpdateListener
);
4763 // Iterate over just the existing users of From. See the comments in
4764 // the ReplaceAllUsesWith above.
4765 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
4766 UE
= From
.getNode()->use_end();
4769 bool UserRemovedFromCSEMaps
= false;
4771 // A user can appear in a use list multiple times, and when this
4772 // happens the uses are usually next to each other in the list.
4773 // To help reduce the number of CSE recomputations, process all
4774 // the uses of this user that we can find this way.
4776 SDUse
&Use
= UI
.getUse();
4778 // Skip uses of different values from the same node.
4779 if (Use
.getResNo() != From
.getResNo()) {
4784 // If this node hasn't been modified yet, it's still in the CSE maps,
4785 // so remove its old self from the CSE maps.
4786 if (!UserRemovedFromCSEMaps
) {
4787 RemoveNodeFromCSEMaps(User
);
4788 UserRemovedFromCSEMaps
= true;
4793 } while (UI
!= UE
&& *UI
== User
);
4795 // We are iterating over all uses of the From node, so if a use
4796 // doesn't use the specific value, no changes are made.
4797 if (!UserRemovedFromCSEMaps
)
4800 // Now that we have modified User, add it back to the CSE maps. If it
4801 // already exists there, recursively merge the results together.
4802 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4807 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4808 /// to record information about a use.
4815 /// operator< - Sort Memos by User.
4816 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
4817 return (intptr_t)L
.User
< (intptr_t)R
.User
;
4821 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4822 /// uses of other values produced by From.getNode() alone. The same value
4823 /// may appear in both the From and To list. The Deleted vector is
4824 /// handled the same way as for ReplaceAllUsesWith.
4825 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
4828 DAGUpdateListener
*UpdateListener
){
4829 // Handle the simple, trivial case efficiently.
4831 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
4833 // Read up all the uses and make records of them. This helps
4834 // processing new uses that are introduced during the
4835 // replacement process.
4836 SmallVector
<UseMemo
, 4> Uses
;
4837 for (unsigned i
= 0; i
!= Num
; ++i
) {
4838 unsigned FromResNo
= From
[i
].getResNo();
4839 SDNode
*FromNode
= From
[i
].getNode();
4840 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
4841 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
4842 SDUse
&Use
= UI
.getUse();
4843 if (Use
.getResNo() == FromResNo
) {
4844 UseMemo Memo
= { *UI
, i
, &Use
};
4845 Uses
.push_back(Memo
);
4850 // Sort the uses, so that all the uses from a given User are together.
4851 std::sort(Uses
.begin(), Uses
.end());
4853 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
4854 UseIndex
!= UseIndexEnd
; ) {
4855 // We know that this user uses some value of From. If it is the right
4856 // value, update it.
4857 SDNode
*User
= Uses
[UseIndex
].User
;
4859 // This node is about to morph, remove its old self from the CSE maps.
4860 RemoveNodeFromCSEMaps(User
);
4862 // The Uses array is sorted, so all the uses for a given User
4863 // are next to each other in the list.
4864 // To help reduce the number of CSE recomputations, process all
4865 // the uses of this user that we can find this way.
4867 unsigned i
= Uses
[UseIndex
].Index
;
4868 SDUse
&Use
= *Uses
[UseIndex
].Use
;
4872 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
4874 // Now that we have modified User, add it back to the CSE maps. If it
4875 // already exists there, recursively merge the results together.
4876 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4880 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4881 /// based on their topological order. It returns the maximum id and a vector
4882 /// of the SDNodes* in assigned order by reference.
4883 unsigned SelectionDAG::AssignTopologicalOrder() {
4885 unsigned DAGSize
= 0;
4887 // SortedPos tracks the progress of the algorithm. Nodes before it are
4888 // sorted, nodes after it are unsorted. When the algorithm completes
4889 // it is at the end of the list.
4890 allnodes_iterator SortedPos
= allnodes_begin();
4892 // Visit all the nodes. Move nodes with no operands to the front of
4893 // the list immediately. Annotate nodes that do have operands with their
4894 // operand count. Before we do this, the Node Id fields of the nodes
4895 // may contain arbitrary values. After, the Node Id fields for nodes
4896 // before SortedPos will contain the topological sort index, and the
4897 // Node Id fields for nodes At SortedPos and after will contain the
4898 // count of outstanding operands.
4899 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
4901 unsigned Degree
= N
->getNumOperands();
4903 // A node with no uses, add it to the result array immediately.
4904 N
->setNodeId(DAGSize
++);
4905 allnodes_iterator Q
= N
;
4907 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
4910 // Temporarily use the Node Id as scratch space for the degree count.
4911 N
->setNodeId(Degree
);
4915 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4916 // such that by the time the end is reached all nodes will be sorted.
4917 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
4919 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4922 unsigned Degree
= P
->getNodeId();
4925 // All of P's operands are sorted, so P may sorted now.
4926 P
->setNodeId(DAGSize
++);
4928 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
4931 // Update P's outstanding operand count.
4932 P
->setNodeId(Degree
);
4937 assert(SortedPos
== AllNodes
.end() &&
4938 "Topological sort incomplete!");
4939 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
4940 "First node in topological sort is not the entry token!");
4941 assert(AllNodes
.front().getNodeId() == 0 &&
4942 "First node in topological sort has non-zero id!");
4943 assert(AllNodes
.front().getNumOperands() == 0 &&
4944 "First node in topological sort has operands!");
4945 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
4946 "Last node in topologic sort has unexpected id!");
4947 assert(AllNodes
.back().use_empty() &&
4948 "Last node in topologic sort has users!");
4949 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
4955 //===----------------------------------------------------------------------===//
4957 //===----------------------------------------------------------------------===//
4959 HandleSDNode::~HandleSDNode() {
4963 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, const GlobalValue
*GA
,
4964 EVT VT
, int64_t o
, unsigned char TF
)
4965 : SDNode(Opc
, DebugLoc::getUnknownLoc(), getSDVTList(VT
)),
4966 Offset(o
), TargetFlags(TF
) {
4967 TheGlobal
= const_cast<GlobalValue
*>(GA
);
4970 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, EVT memvt
,
4971 const Value
*srcValue
, int SVO
,
4972 unsigned alignment
, bool vol
)
4973 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4974 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4975 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4976 assert(getAlignment() == alignment
&& "Alignment representation error!");
4977 assert(isVolatile() == vol
&& "Volatile representation error!");
4980 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
4982 unsigned NumOps
, EVT memvt
, const Value
*srcValue
,
4983 int SVO
, unsigned alignment
, bool vol
)
4984 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
4985 MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4986 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4987 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4988 assert(getAlignment() == alignment
&& "Alignment representation error!");
4989 assert(isVolatile() == vol
&& "Volatile representation error!");
4992 /// getMemOperand - Return a MachineMemOperand object describing the memory
4993 /// reference performed by this memory reference.
4994 MachineMemOperand
MemSDNode::getMemOperand() const {
4996 if (isa
<LoadSDNode
>(this))
4997 Flags
= MachineMemOperand::MOLoad
;
4998 else if (isa
<StoreSDNode
>(this))
4999 Flags
= MachineMemOperand::MOStore
;
5000 else if (isa
<AtomicSDNode
>(this)) {
5001 Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
5004 const MemIntrinsicSDNode
* MemIntrinNode
= dyn_cast
<MemIntrinsicSDNode
>(this);
5005 assert(MemIntrinNode
&& "Unknown MemSDNode opcode!");
5006 if (MemIntrinNode
->readMem()) Flags
|= MachineMemOperand::MOLoad
;
5007 if (MemIntrinNode
->writeMem()) Flags
|= MachineMemOperand::MOStore
;
5010 int Size
= (getMemoryVT().getSizeInBits() + 7) >> 3;
5011 if (isVolatile()) Flags
|= MachineMemOperand::MOVolatile
;
5013 // Check if the memory reference references a frame index
5014 const FrameIndexSDNode
*FI
=
5015 dyn_cast
<const FrameIndexSDNode
>(getBasePtr().getNode());
5016 if (!getSrcValue() && FI
)
5017 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI
->getIndex()),
5018 Flags
, 0, Size
, getAlignment());
5020 return MachineMemOperand(getSrcValue(), Flags
, getSrcValueOffset(),
5021 Size
, getAlignment());
5024 /// Profile - Gather unique data for the node.
5026 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
5027 AddNodeIDNode(ID
, this);
5032 std::vector
<EVT
> VTs
;
5035 VTs
.reserve(MVT::LAST_VALUETYPE
);
5036 for (unsigned i
= 0; i
< MVT::LAST_VALUETYPE
; ++i
)
5037 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
5042 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
> > EVTs
;
5043 static ManagedStatic
<EVTArray
> SimpleVTArray
;
5044 static ManagedStatic
<sys::SmartMutex
<true> > VTMutex
;
5046 /// getValueTypeList - Return a pointer to the specified value type.
5048 const EVT
*SDNode::getValueTypeList(EVT VT
) {
5049 if (VT
.isExtended()) {
5050 sys::SmartScopedLock
<true> Lock(*VTMutex
);
5051 return &(*EVTs
->insert(VT
).first
);
5053 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
5057 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5058 /// indicated value. This method ignores uses of other values defined by this
5060 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
5061 assert(Value
< getNumValues() && "Bad value!");
5063 // TODO: Only iterate over uses of a given value of the node
5064 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
5065 if (UI
.getUse().getResNo() == Value
) {
5072 // Found exactly the right number of uses?
5077 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5078 /// value. This method ignores uses of other values defined by this operation.
5079 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
5080 assert(Value
< getNumValues() && "Bad value!");
5082 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
5083 if (UI
.getUse().getResNo() == Value
)
5090 /// isOnlyUserOf - Return true if this node is the only use of N.
5092 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
5094 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
5105 /// isOperand - Return true if this node is an operand of N.
5107 bool SDValue::isOperandOf(SDNode
*N
) const {
5108 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5109 if (*this == N
->getOperand(i
))
5114 bool SDNode::isOperandOf(SDNode
*N
) const {
5115 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
5116 if (this == N
->OperandList
[i
].getNode())
5121 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5122 /// be a chain) reaches the specified operand without crossing any
5123 /// side-effecting instructions. In practice, this looks through token
5124 /// factors and non-volatile loads. In order to remain efficient, this only
5125 /// looks a couple of nodes in, it does not do an exhaustive search.
5126 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
5127 unsigned Depth
) const {
5128 if (*this == Dest
) return true;
5130 // Don't search too deeply, we just want to be able to see through
5131 // TokenFactor's etc.
5132 if (Depth
== 0) return false;
5134 // If this is a token factor, all inputs to the TF happen in parallel. If any
5135 // of the operands of the TF reach dest, then we can do the xform.
5136 if (getOpcode() == ISD::TokenFactor
) {
5137 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5138 if (getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
5143 // Loads don't have side effects, look through them.
5144 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
5145 if (!Ld
->isVolatile())
5146 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
5152 static void findPredecessor(SDNode
*N
, const SDNode
*P
, bool &found
,
5153 SmallPtrSet
<SDNode
*, 32> &Visited
) {
5154 if (found
|| !Visited
.insert(N
))
5157 for (unsigned i
= 0, e
= N
->getNumOperands(); !found
&& i
!= e
; ++i
) {
5158 SDNode
*Op
= N
->getOperand(i
).getNode();
5163 findPredecessor(Op
, P
, found
, Visited
);
5167 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5168 /// is either an operand of N or it can be reached by recursively traversing
5169 /// up the operands.
5170 /// NOTE: this is an expensive method. Use it carefully.
5171 bool SDNode::isPredecessorOf(SDNode
*N
) const {
5172 SmallPtrSet
<SDNode
*, 32> Visited
;
5174 findPredecessor(N
, this, found
, Visited
);
5178 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
5179 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
5180 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5183 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5184 switch (getOpcode()) {
5186 if (getOpcode() < ISD::BUILTIN_OP_END
)
5187 return "<<Unknown DAG Node>>";
5188 if (isMachineOpcode()) {
5190 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5191 if (getMachineOpcode() < TII
->getNumOpcodes())
5192 return TII
->get(getMachineOpcode()).getName();
5193 return "<<Unknown Machine Node>>";
5196 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5197 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5198 if (Name
) return Name
;
5199 return "<<Unknown Target Node>>";
5201 return "<<Unknown Node>>";
5204 case ISD::DELETED_NODE
:
5205 return "<<Deleted Node!>>";
5207 case ISD::PREFETCH
: return "Prefetch";
5208 case ISD::MEMBARRIER
: return "MemBarrier";
5209 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5210 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5211 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5212 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5213 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5214 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5215 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5216 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5217 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5218 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5219 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5220 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5221 case ISD::PCMARKER
: return "PCMarker";
5222 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5223 case ISD::SRCVALUE
: return "SrcValue";
5224 case ISD::MEMOPERAND
: return "MemOperand";
5225 case ISD::EntryToken
: return "EntryToken";
5226 case ISD::TokenFactor
: return "TokenFactor";
5227 case ISD::AssertSext
: return "AssertSext";
5228 case ISD::AssertZext
: return "AssertZext";
5230 case ISD::BasicBlock
: return "BasicBlock";
5231 case ISD::VALUETYPE
: return "ValueType";
5232 case ISD::Register
: return "Register";
5234 case ISD::Constant
: return "Constant";
5235 case ISD::ConstantFP
: return "ConstantFP";
5236 case ISD::GlobalAddress
: return "GlobalAddress";
5237 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5238 case ISD::FrameIndex
: return "FrameIndex";
5239 case ISD::JumpTable
: return "JumpTable";
5240 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5241 case ISD::RETURNADDR
: return "RETURNADDR";
5242 case ISD::FRAMEADDR
: return "FRAMEADDR";
5243 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5244 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5245 case ISD::LSDAADDR
: return "LSDAADDR";
5246 case ISD::EHSELECTION
: return "EHSELECTION";
5247 case ISD::EH_RETURN
: return "EH_RETURN";
5248 case ISD::ConstantPool
: return "ConstantPool";
5249 case ISD::ExternalSymbol
: return "ExternalSymbol";
5250 case ISD::INTRINSIC_WO_CHAIN
: {
5251 unsigned IID
= cast
<ConstantSDNode
>(getOperand(0))->getZExtValue();
5252 return Intrinsic::getName((Intrinsic::ID
)IID
);
5254 case ISD::INTRINSIC_VOID
:
5255 case ISD::INTRINSIC_W_CHAIN
: {
5256 unsigned IID
= cast
<ConstantSDNode
>(getOperand(1))->getZExtValue();
5257 return Intrinsic::getName((Intrinsic::ID
)IID
);
5260 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5261 case ISD::TargetConstant
: return "TargetConstant";
5262 case ISD::TargetConstantFP
:return "TargetConstantFP";
5263 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5264 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5265 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5266 case ISD::TargetJumpTable
: return "TargetJumpTable";
5267 case ISD::TargetConstantPool
: return "TargetConstantPool";
5268 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5270 case ISD::CopyToReg
: return "CopyToReg";
5271 case ISD::CopyFromReg
: return "CopyFromReg";
5272 case ISD::UNDEF
: return "undef";
5273 case ISD::MERGE_VALUES
: return "merge_values";
5274 case ISD::INLINEASM
: return "inlineasm";
5275 case ISD::DBG_LABEL
: return "dbg_label";
5276 case ISD::EH_LABEL
: return "eh_label";
5277 case ISD::HANDLENODE
: return "handlenode";
5280 case ISD::FABS
: return "fabs";
5281 case ISD::FNEG
: return "fneg";
5282 case ISD::FSQRT
: return "fsqrt";
5283 case ISD::FSIN
: return "fsin";
5284 case ISD::FCOS
: return "fcos";
5285 case ISD::FPOWI
: return "fpowi";
5286 case ISD::FPOW
: return "fpow";
5287 case ISD::FTRUNC
: return "ftrunc";
5288 case ISD::FFLOOR
: return "ffloor";
5289 case ISD::FCEIL
: return "fceil";
5290 case ISD::FRINT
: return "frint";
5291 case ISD::FNEARBYINT
: return "fnearbyint";
5294 case ISD::ADD
: return "add";
5295 case ISD::SUB
: return "sub";
5296 case ISD::MUL
: return "mul";
5297 case ISD::MULHU
: return "mulhu";
5298 case ISD::MULHS
: return "mulhs";
5299 case ISD::SDIV
: return "sdiv";
5300 case ISD::UDIV
: return "udiv";
5301 case ISD::SREM
: return "srem";
5302 case ISD::UREM
: return "urem";
5303 case ISD::SMUL_LOHI
: return "smul_lohi";
5304 case ISD::UMUL_LOHI
: return "umul_lohi";
5305 case ISD::SDIVREM
: return "sdivrem";
5306 case ISD::UDIVREM
: return "udivrem";
5307 case ISD::AND
: return "and";
5308 case ISD::OR
: return "or";
5309 case ISD::XOR
: return "xor";
5310 case ISD::SHL
: return "shl";
5311 case ISD::SRA
: return "sra";
5312 case ISD::SRL
: return "srl";
5313 case ISD::ROTL
: return "rotl";
5314 case ISD::ROTR
: return "rotr";
5315 case ISD::FADD
: return "fadd";
5316 case ISD::FSUB
: return "fsub";
5317 case ISD::FMUL
: return "fmul";
5318 case ISD::FDIV
: return "fdiv";
5319 case ISD::FREM
: return "frem";
5320 case ISD::FCOPYSIGN
: return "fcopysign";
5321 case ISD::FGETSIGN
: return "fgetsign";
5323 case ISD::SETCC
: return "setcc";
5324 case ISD::VSETCC
: return "vsetcc";
5325 case ISD::SELECT
: return "select";
5326 case ISD::SELECT_CC
: return "select_cc";
5327 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5328 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5329 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5330 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5331 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5332 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5333 case ISD::CARRY_FALSE
: return "carry_false";
5334 case ISD::ADDC
: return "addc";
5335 case ISD::ADDE
: return "adde";
5336 case ISD::SADDO
: return "saddo";
5337 case ISD::UADDO
: return "uaddo";
5338 case ISD::SSUBO
: return "ssubo";
5339 case ISD::USUBO
: return "usubo";
5340 case ISD::SMULO
: return "smulo";
5341 case ISD::UMULO
: return "umulo";
5342 case ISD::SUBC
: return "subc";
5343 case ISD::SUBE
: return "sube";
5344 case ISD::SHL_PARTS
: return "shl_parts";
5345 case ISD::SRA_PARTS
: return "sra_parts";
5346 case ISD::SRL_PARTS
: return "srl_parts";
5348 // Conversion operators.
5349 case ISD::SIGN_EXTEND
: return "sign_extend";
5350 case ISD::ZERO_EXTEND
: return "zero_extend";
5351 case ISD::ANY_EXTEND
: return "any_extend";
5352 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5353 case ISD::TRUNCATE
: return "truncate";
5354 case ISD::FP_ROUND
: return "fp_round";
5355 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5356 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5357 case ISD::FP_EXTEND
: return "fp_extend";
5359 case ISD::SINT_TO_FP
: return "sint_to_fp";
5360 case ISD::UINT_TO_FP
: return "uint_to_fp";
5361 case ISD::FP_TO_SINT
: return "fp_to_sint";
5362 case ISD::FP_TO_UINT
: return "fp_to_uint";
5363 case ISD::BIT_CONVERT
: return "bit_convert";
5365 case ISD::CONVERT_RNDSAT
: {
5366 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5367 default: llvm_unreachable("Unknown cvt code!");
5368 case ISD::CVT_FF
: return "cvt_ff";
5369 case ISD::CVT_FS
: return "cvt_fs";
5370 case ISD::CVT_FU
: return "cvt_fu";
5371 case ISD::CVT_SF
: return "cvt_sf";
5372 case ISD::CVT_UF
: return "cvt_uf";
5373 case ISD::CVT_SS
: return "cvt_ss";
5374 case ISD::CVT_SU
: return "cvt_su";
5375 case ISD::CVT_US
: return "cvt_us";
5376 case ISD::CVT_UU
: return "cvt_uu";
5380 // Control flow instructions
5381 case ISD::BR
: return "br";
5382 case ISD::BRIND
: return "brind";
5383 case ISD::BR_JT
: return "br_jt";
5384 case ISD::BRCOND
: return "brcond";
5385 case ISD::BR_CC
: return "br_cc";
5386 case ISD::CALLSEQ_START
: return "callseq_start";
5387 case ISD::CALLSEQ_END
: return "callseq_end";
5390 case ISD::LOAD
: return "load";
5391 case ISD::STORE
: return "store";
5392 case ISD::VAARG
: return "vaarg";
5393 case ISD::VACOPY
: return "vacopy";
5394 case ISD::VAEND
: return "vaend";
5395 case ISD::VASTART
: return "vastart";
5396 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5397 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5398 case ISD::BUILD_PAIR
: return "build_pair";
5399 case ISD::STACKSAVE
: return "stacksave";
5400 case ISD::STACKRESTORE
: return "stackrestore";
5401 case ISD::TRAP
: return "trap";
5404 case ISD::BSWAP
: return "bswap";
5405 case ISD::CTPOP
: return "ctpop";
5406 case ISD::CTTZ
: return "cttz";
5407 case ISD::CTLZ
: return "ctlz";
5410 case ISD::DBG_STOPPOINT
: return "dbg_stoppoint";
5411 case ISD::DEBUG_LOC
: return "debug_loc";
5414 case ISD::TRAMPOLINE
: return "trampoline";
5417 switch (cast
<CondCodeSDNode
>(this)->get()) {
5418 default: llvm_unreachable("Unknown setcc condition!");
5419 case ISD::SETOEQ
: return "setoeq";
5420 case ISD::SETOGT
: return "setogt";
5421 case ISD::SETOGE
: return "setoge";
5422 case ISD::SETOLT
: return "setolt";
5423 case ISD::SETOLE
: return "setole";
5424 case ISD::SETONE
: return "setone";
5426 case ISD::SETO
: return "seto";
5427 case ISD::SETUO
: return "setuo";
5428 case ISD::SETUEQ
: return "setue";
5429 case ISD::SETUGT
: return "setugt";
5430 case ISD::SETUGE
: return "setuge";
5431 case ISD::SETULT
: return "setult";
5432 case ISD::SETULE
: return "setule";
5433 case ISD::SETUNE
: return "setune";
5435 case ISD::SETEQ
: return "seteq";
5436 case ISD::SETGT
: return "setgt";
5437 case ISD::SETGE
: return "setge";
5438 case ISD::SETLT
: return "setlt";
5439 case ISD::SETLE
: return "setle";
5440 case ISD::SETNE
: return "setne";
5445 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5454 return "<post-inc>";
5456 return "<post-dec>";
5460 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5461 std::string S
= "< ";
5475 if (getByValAlign())
5476 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5478 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5480 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5484 void SDNode::dump() const { dump(0); }
5485 void SDNode::dump(const SelectionDAG
*G
) const {
5489 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5490 OS
<< (void*)this << ": ";
5492 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5494 if (getValueType(i
) == MVT::Other
)
5497 OS
<< getValueType(i
).getEVTString();
5499 OS
<< " = " << getOperationName(G
);
5502 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5503 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE
) {
5504 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(this);
5506 for (unsigned i
= 0, e
= ValueList
[0].getVectorNumElements(); i
!= e
; ++i
) {
5507 int Idx
= SVN
->getMaskElt(i
);
5517 if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5518 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5519 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5520 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5521 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5522 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5523 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5526 CSDN
->getValueAPF().bitcastToAPInt().dump();
5529 } else if (const GlobalAddressSDNode
*GADN
=
5530 dyn_cast
<GlobalAddressSDNode
>(this)) {
5531 int64_t offset
= GADN
->getOffset();
5533 WriteAsOperand(OS
, GADN
->getGlobal());
5536 OS
<< " + " << offset
;
5538 OS
<< " " << offset
;
5539 if (unsigned int TF
= GADN
->getTargetFlags())
5540 OS
<< " [TF=" << TF
<< ']';
5541 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5542 OS
<< "<" << FIDN
->getIndex() << ">";
5543 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5544 OS
<< "<" << JTDN
->getIndex() << ">";
5545 if (unsigned int TF
= JTDN
->getTargetFlags())
5546 OS
<< " [TF=" << TF
<< ']';
5547 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5548 int offset
= CP
->getOffset();
5549 if (CP
->isMachineConstantPoolEntry())
5550 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5552 OS
<< "<" << *CP
->getConstVal() << ">";
5554 OS
<< " + " << offset
;
5556 OS
<< " " << offset
;
5557 if (unsigned int TF
= CP
->getTargetFlags())
5558 OS
<< " [TF=" << TF
<< ']';
5559 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5561 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5563 OS
<< LBB
->getName() << " ";
5564 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5565 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5566 if (G
&& R
->getReg() &&
5567 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5568 OS
<< " " << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5570 OS
<< " #" << R
->getReg();
5572 } else if (const ExternalSymbolSDNode
*ES
=
5573 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5574 OS
<< "'" << ES
->getSymbol() << "'";
5575 if (unsigned int TF
= ES
->getTargetFlags())
5576 OS
<< " [TF=" << TF
<< ']';
5577 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5579 OS
<< "<" << M
->getValue() << ">";
5582 } else if (const MemOperandSDNode
*M
= dyn_cast
<MemOperandSDNode
>(this)) {
5583 if (M
->MO
.getValue())
5584 OS
<< "<" << M
->MO
.getValue() << ":" << M
->MO
.getOffset() << ">";
5586 OS
<< "<null:" << M
->MO
.getOffset() << ">";
5587 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5588 OS
<< ":" << N
->getVT().getEVTString();
5590 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5591 const Value
*SrcValue
= LD
->getSrcValue();
5592 int SrcOffset
= LD
->getSrcValueOffset();
5598 OS
<< ":" << SrcOffset
<< ">";
5601 switch (LD
->getExtensionType()) {
5602 default: doExt
= false; break;
5603 case ISD::EXTLOAD
: OS
<< " <anyext "; break;
5604 case ISD::SEXTLOAD
: OS
<< " <sext "; break;
5605 case ISD::ZEXTLOAD
: OS
<< " <zext "; break;
5608 OS
<< LD
->getMemoryVT().getEVTString() << ">";
5610 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
5613 if (LD
->isVolatile())
5614 OS
<< " <volatile>";
5615 OS
<< " alignment=" << LD
->getAlignment();
5616 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
5617 const Value
*SrcValue
= ST
->getSrcValue();
5618 int SrcOffset
= ST
->getSrcValueOffset();
5624 OS
<< ":" << SrcOffset
<< ">";
5626 if (ST
->isTruncatingStore())
5627 OS
<< " <trunc " << ST
->getMemoryVT().getEVTString() << ">";
5629 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
5632 if (ST
->isVolatile())
5633 OS
<< " <volatile>";
5634 OS
<< " alignment=" << ST
->getAlignment();
5635 } else if (const AtomicSDNode
* AT
= dyn_cast
<AtomicSDNode
>(this)) {
5636 const Value
*SrcValue
= AT
->getSrcValue();
5637 int SrcOffset
= AT
->getSrcValueOffset();
5643 OS
<< ":" << SrcOffset
<< ">";
5644 if (AT
->isVolatile())
5645 OS
<< " <volatile>";
5646 OS
<< " alignment=" << AT
->getAlignment();
5650 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5653 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
5655 OS
<< (void*)getOperand(i
).getNode();
5656 if (unsigned RN
= getOperand(i
).getResNo())
5659 print_details(OS
, G
);
5662 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
5663 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5664 if (N
->getOperand(i
).getNode()->hasOneUse())
5665 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
5667 errs() << "\n" << std::string(indent
+2, ' ')
5668 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
5672 errs().indent(indent
);
5676 void SelectionDAG::dump() const {
5677 errs() << "SelectionDAG has " << AllNodes
.size() << " nodes:";
5679 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
5681 const SDNode
*N
= I
;
5682 if (!N
->hasOneUse() && N
!= getRoot().getNode())
5683 DumpNodes(N
, 2, this);
5686 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5691 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5693 print_details(OS
, G
);
5696 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
5697 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
5698 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
5699 if (!once
.insert(N
)) // If we've been here before, return now.
5701 // Dump the current SDNode, but don't end the line yet.
5702 OS
<< std::string(indent
, ' ');
5704 // Having printed this SDNode, walk the children:
5705 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5706 const SDNode
*child
= N
->getOperand(i
).getNode();
5709 if (child
->getNumOperands() == 0) {
5710 // This child has no grandchildren; print it inline right here.
5711 child
->printr(OS
, G
);
5713 } else { // Just the address. FIXME: also print the child's opcode
5715 if (unsigned RN
= N
->getOperand(i
).getResNo())
5720 // Dump children that have grandchildren on their own line(s).
5721 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5722 const SDNode
*child
= N
->getOperand(i
).getNode();
5723 DumpNodesr(OS
, child
, indent
+2, G
, once
);
5727 void SDNode::dumpr() const {
5728 VisitedSDNodeSet once
;
5729 DumpNodesr(errs(), this, 0, 0, once
);
5733 // getAddressSpace - Return the address space this GlobalAddress belongs to.
5734 unsigned GlobalAddressSDNode::getAddressSpace() const {
5735 return getGlobal()->getType()->getAddressSpace();
5739 const Type
*ConstantPoolSDNode::getType() const {
5740 if (isMachineConstantPoolEntry())
5741 return Val
.MachineCPVal
->getType();
5742 return Val
.ConstVal
->getType();
5745 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
5747 unsigned &SplatBitSize
,
5749 unsigned MinSplatBits
) {
5750 EVT VT
= getValueType(0);
5751 assert(VT
.isVector() && "Expected a vector type");
5752 unsigned sz
= VT
.getSizeInBits();
5753 if (MinSplatBits
> sz
)
5756 SplatValue
= APInt(sz
, 0);
5757 SplatUndef
= APInt(sz
, 0);
5759 // Get the bits. Bits with undefined values (when the corresponding element
5760 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5761 // in SplatValue. If any of the values are not constant, give up and return
5763 unsigned int nOps
= getNumOperands();
5764 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
5765 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
5766 for (unsigned i
= 0; i
< nOps
; ++i
) {
5767 SDValue OpVal
= getOperand(i
);
5768 unsigned BitPos
= i
* EltBitSize
;
5770 if (OpVal
.getOpcode() == ISD::UNDEF
)
5771 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+EltBitSize
);
5772 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
5773 SplatValue
|= (APInt(CN
->getAPIntValue()).zextOrTrunc(EltBitSize
).
5774 zextOrTrunc(sz
) << BitPos
);
5775 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
5776 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
5781 // The build_vector is all constants or undefs. Find the smallest element
5782 // size that splats the vector.
5784 HasAnyUndefs
= (SplatUndef
!= 0);
5787 unsigned HalfSize
= sz
/ 2;
5788 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
5789 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
5790 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
5791 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
5793 // If the two halves do not match (ignoring undef bits), stop here.
5794 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
5795 MinSplatBits
> HalfSize
)
5798 SplatValue
= HighValue
| LowValue
;
5799 SplatUndef
= HighUndef
& LowUndef
;
5808 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
5809 // Find the first non-undef value in the shuffle mask.
5811 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
5814 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
5816 // Make sure all remaining elements are either undef or the same as the first
5818 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
5819 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)