add a new MCInstPrinter class, move the (trivial) MCDisassmbler ctor inline.
[llvm/avr.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
bloba343fa4fc20e66777fc67edb3eb9646783dd57b8
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
14 // A = B op C
16 // to:
18 // A = B
19 // A op= C
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/ADT/BitVector.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 using namespace llvm;
50 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
52 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
53 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
55 STATISTIC(NumReMats, "Number of instructions re-materialized");
56 STATISTIC(NumDeletes, "Number of dead instructions deleted");
58 namespace {
59 class VISIBILITY_HIDDEN TwoAddressInstructionPass
60 : public MachineFunctionPass {
61 const TargetInstrInfo *TII;
62 const TargetRegisterInfo *TRI;
63 MachineRegisterInfo *MRI;
64 LiveVariables *LV;
66 // DistanceMap - Keep track the distance of a MI from the start of the
67 // current basic block.
68 DenseMap<MachineInstr*, unsigned> DistanceMap;
70 // SrcRegMap - A map from virtual registers to physical registers which
71 // are likely targets to be coalesced to due to copies from physical
72 // registers to virtual registers. e.g. v1024 = move r0.
73 DenseMap<unsigned, unsigned> SrcRegMap;
75 // DstRegMap - A map from virtual registers to physical registers which
76 // are likely targets to be coalesced to due to copies to physical
77 // registers from virtual registers. e.g. r1 = move v1024.
78 DenseMap<unsigned, unsigned> DstRegMap;
80 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81 unsigned Reg,
82 MachineBasicBlock::iterator OldPos);
84 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85 MachineInstr *MI, MachineInstr *DefMI,
86 MachineBasicBlock *MBB, unsigned Loc);
88 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89 unsigned &LastDef);
91 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92 unsigned Dist);
94 bool isProfitableToCommute(unsigned regB, unsigned regC,
95 MachineInstr *MI, MachineBasicBlock *MBB,
96 unsigned Dist);
98 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99 MachineFunction::iterator &mbbi,
100 unsigned RegB, unsigned RegC, unsigned Dist);
102 bool isProfitableToConv3Addr(unsigned RegA);
104 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105 MachineBasicBlock::iterator &nmi,
106 MachineFunction::iterator &mbbi,
107 unsigned RegB, unsigned Dist);
109 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
110 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
111 SmallVector<NewKill, 4> &NewKills,
112 MachineBasicBlock *MBB, unsigned Dist);
113 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
114 MachineBasicBlock::iterator &nmi,
115 MachineFunction::iterator &mbbi,
116 unsigned regB, unsigned regBIdx, unsigned Dist);
118 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
119 MachineBasicBlock::iterator &nmi,
120 MachineFunction::iterator &mbbi,
121 unsigned SrcIdx, unsigned DstIdx,
122 unsigned Dist);
124 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
125 SmallPtrSet<MachineInstr*, 8> &Processed);
127 public:
128 static char ID; // Pass identification, replacement for typeid
129 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
131 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
132 AU.setPreservesCFG();
133 AU.addPreserved<LiveVariables>();
134 AU.addPreservedID(MachineLoopInfoID);
135 AU.addPreservedID(MachineDominatorsID);
136 if (StrongPHIElim)
137 AU.addPreservedID(StrongPHIEliminationID);
138 else
139 AU.addPreservedID(PHIEliminationID);
140 MachineFunctionPass::getAnalysisUsage(AU);
143 /// runOnMachineFunction - Pass entry point.
144 bool runOnMachineFunction(MachineFunction&);
148 char TwoAddressInstructionPass::ID = 0;
149 static RegisterPass<TwoAddressInstructionPass>
150 X("twoaddressinstruction", "Two-Address instruction pass");
152 const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
154 /// Sink3AddrInstruction - A two-address instruction has been converted to a
155 /// three-address instruction to avoid clobbering a register. Try to sink it
156 /// past the instruction that would kill the above mentioned register to reduce
157 /// register pressure.
158 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
159 MachineInstr *MI, unsigned SavedReg,
160 MachineBasicBlock::iterator OldPos) {
161 // Check if it's safe to move this instruction.
162 bool SeenStore = true; // Be conservative.
163 if (!MI->isSafeToMove(TII, SeenStore))
164 return false;
166 unsigned DefReg = 0;
167 SmallSet<unsigned, 4> UseRegs;
169 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170 const MachineOperand &MO = MI->getOperand(i);
171 if (!MO.isReg())
172 continue;
173 unsigned MOReg = MO.getReg();
174 if (!MOReg)
175 continue;
176 if (MO.isUse() && MOReg != SavedReg)
177 UseRegs.insert(MO.getReg());
178 if (!MO.isDef())
179 continue;
180 if (MO.isImplicit())
181 // Don't try to move it if it implicitly defines a register.
182 return false;
183 if (DefReg)
184 // For now, don't move any instructions that define multiple registers.
185 return false;
186 DefReg = MO.getReg();
189 // Find the instruction that kills SavedReg.
190 MachineInstr *KillMI = NULL;
191 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
192 UE = MRI->use_end(); UI != UE; ++UI) {
193 MachineOperand &UseMO = UI.getOperand();
194 if (!UseMO.isKill())
195 continue;
196 KillMI = UseMO.getParent();
197 break;
200 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
201 return false;
203 // If any of the definitions are used by another instruction between the
204 // position and the kill use, then it's not safe to sink it.
206 // FIXME: This can be sped up if there is an easy way to query whether an
207 // instruction is before or after another instruction. Then we can use
208 // MachineRegisterInfo def / use instead.
209 MachineOperand *KillMO = NULL;
210 MachineBasicBlock::iterator KillPos = KillMI;
211 ++KillPos;
213 unsigned NumVisited = 0;
214 for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
215 MachineInstr *OtherMI = I;
216 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
217 return false;
218 ++NumVisited;
219 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
220 MachineOperand &MO = OtherMI->getOperand(i);
221 if (!MO.isReg())
222 continue;
223 unsigned MOReg = MO.getReg();
224 if (!MOReg)
225 continue;
226 if (DefReg == MOReg)
227 return false;
229 if (MO.isKill()) {
230 if (OtherMI == KillMI && MOReg == SavedReg)
231 // Save the operand that kills the register. We want to unset the kill
232 // marker if we can sink MI past it.
233 KillMO = &MO;
234 else if (UseRegs.count(MOReg))
235 // One of the uses is killed before the destination.
236 return false;
241 // Update kill and LV information.
242 KillMO->setIsKill(false);
243 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
244 KillMO->setIsKill(true);
246 if (LV)
247 LV->replaceKillInstruction(SavedReg, KillMI, MI);
249 // Move instruction to its destination.
250 MBB->remove(MI);
251 MBB->insert(KillPos, MI);
253 ++Num3AddrSunk;
254 return true;
257 /// isTwoAddrUse - Return true if the specified MI is using the specified
258 /// register as a two-address operand.
259 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
260 const TargetInstrDesc &TID = UseMI->getDesc();
261 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
262 MachineOperand &MO = UseMI->getOperand(i);
263 if (MO.isReg() && MO.getReg() == Reg &&
264 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
265 // Earlier use is a two-address one.
266 return true;
268 return false;
271 /// isProfitableToReMat - Return true if the heuristics determines it is likely
272 /// to be profitable to re-materialize the definition of Reg rather than copy
273 /// the register.
274 bool
275 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
276 const TargetRegisterClass *RC,
277 MachineInstr *MI, MachineInstr *DefMI,
278 MachineBasicBlock *MBB, unsigned Loc) {
279 bool OtherUse = false;
280 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
281 UE = MRI->use_end(); UI != UE; ++UI) {
282 MachineOperand &UseMO = UI.getOperand();
283 MachineInstr *UseMI = UseMO.getParent();
284 MachineBasicBlock *UseMBB = UseMI->getParent();
285 if (UseMBB == MBB) {
286 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
287 if (DI != DistanceMap.end() && DI->second == Loc)
288 continue; // Current use.
289 OtherUse = true;
290 // There is at least one other use in the MBB that will clobber the
291 // register.
292 if (isTwoAddrUse(UseMI, Reg))
293 return true;
297 // If other uses in MBB are not two-address uses, then don't remat.
298 if (OtherUse)
299 return false;
301 // No other uses in the same block, remat if it's defined in the same
302 // block so it does not unnecessarily extend the live range.
303 return MBB == DefMI->getParent();
306 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
307 /// last instruction in the MBB that defines the specified register and the
308 /// two-address instruction which is being processed. It also returns the last
309 /// def location by reference
310 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
311 MachineBasicBlock *MBB, unsigned Dist,
312 unsigned &LastDef) {
313 LastDef = 0;
314 unsigned LastUse = Dist;
315 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
316 E = MRI->reg_end(); I != E; ++I) {
317 MachineOperand &MO = I.getOperand();
318 MachineInstr *MI = MO.getParent();
319 if (MI->getParent() != MBB)
320 continue;
321 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
322 if (DI == DistanceMap.end())
323 continue;
324 if (MO.isUse() && DI->second < LastUse)
325 LastUse = DI->second;
326 if (MO.isDef() && DI->second > LastDef)
327 LastDef = DI->second;
330 return !(LastUse > LastDef && LastUse < Dist);
333 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
334 MachineBasicBlock *MBB,
335 unsigned Dist) {
336 unsigned LastUseDist = 0;
337 MachineInstr *LastUse = 0;
338 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339 E = MRI->reg_end(); I != E; ++I) {
340 MachineOperand &MO = I.getOperand();
341 MachineInstr *MI = MO.getParent();
342 if (MI->getParent() != MBB)
343 continue;
344 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345 if (DI == DistanceMap.end())
346 continue;
347 if (DI->second >= Dist)
348 continue;
350 if (MO.isUse() && DI->second > LastUseDist) {
351 LastUse = DI->first;
352 LastUseDist = DI->second;
355 return LastUse;
358 /// isCopyToReg - Return true if the specified MI is a copy instruction or
359 /// a extract_subreg instruction. It also returns the source and destination
360 /// registers and whether they are physical registers by reference.
361 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
362 unsigned &SrcReg, unsigned &DstReg,
363 bool &IsSrcPhys, bool &IsDstPhys) {
364 SrcReg = 0;
365 DstReg = 0;
366 unsigned SrcSubIdx, DstSubIdx;
367 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
368 if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
369 DstReg = MI.getOperand(0).getReg();
370 SrcReg = MI.getOperand(1).getReg();
371 } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
372 DstReg = MI.getOperand(0).getReg();
373 SrcReg = MI.getOperand(2).getReg();
374 } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
375 DstReg = MI.getOperand(0).getReg();
376 SrcReg = MI.getOperand(2).getReg();
380 if (DstReg) {
381 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
382 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
383 return true;
385 return false;
388 /// isKilled - Test if the given register value, which is used by the given
389 /// instruction, is killed by the given instruction. This looks through
390 /// coalescable copies to see if the original value is potentially not killed.
392 /// For example, in this code:
394 /// %reg1034 = copy %reg1024
395 /// %reg1035 = copy %reg1025<kill>
396 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
398 /// %reg1034 is not considered to be killed, since it is copied from a
399 /// register which is not killed. Treating it as not killed lets the
400 /// normal heuristics commute the (two-address) add, which lets
401 /// coalescing eliminate the extra copy.
403 static bool isKilled(MachineInstr &MI, unsigned Reg,
404 const MachineRegisterInfo *MRI,
405 const TargetInstrInfo *TII) {
406 MachineInstr *DefMI = &MI;
407 for (;;) {
408 if (!DefMI->killsRegister(Reg))
409 return false;
410 if (TargetRegisterInfo::isPhysicalRegister(Reg))
411 return true;
412 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
413 // If there are multiple defs, we can't do a simple analysis, so just
414 // go with what the kill flag says.
415 if (next(Begin) != MRI->def_end())
416 return true;
417 DefMI = &*Begin;
418 bool IsSrcPhys, IsDstPhys;
419 unsigned SrcReg, DstReg;
420 // If the def is something other than a copy, then it isn't going to
421 // be coalesced, so follow the kill flag.
422 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
423 return true;
424 Reg = SrcReg;
428 /// isTwoAddrUse - Return true if the specified MI uses the specified register
429 /// as a two-address use. If so, return the destination register by reference.
430 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
431 const TargetInstrDesc &TID = MI.getDesc();
432 unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
433 ? MI.getNumOperands() : TID.getNumOperands();
434 for (unsigned i = 0; i != NumOps; ++i) {
435 const MachineOperand &MO = MI.getOperand(i);
436 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
437 continue;
438 unsigned ti;
439 if (MI.isRegTiedToDefOperand(i, &ti)) {
440 DstReg = MI.getOperand(ti).getReg();
441 return true;
444 return false;
447 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
448 /// use, return the use instruction if it's a copy or a two-address use.
449 static
450 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
451 MachineRegisterInfo *MRI,
452 const TargetInstrInfo *TII,
453 bool &IsCopy,
454 unsigned &DstReg, bool &IsDstPhys) {
455 MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
456 if (UI == MRI->use_end())
457 return 0;
458 MachineInstr &UseMI = *UI;
459 if (++UI != MRI->use_end())
460 // More than one use.
461 return 0;
462 if (UseMI.getParent() != MBB)
463 return 0;
464 unsigned SrcReg;
465 bool IsSrcPhys;
466 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
467 IsCopy = true;
468 return &UseMI;
470 IsDstPhys = false;
471 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
472 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
473 return &UseMI;
475 return 0;
478 /// getMappedReg - Return the physical register the specified virtual register
479 /// might be mapped to.
480 static unsigned
481 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
482 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
483 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
484 if (SI == RegMap.end())
485 return 0;
486 Reg = SI->second;
488 if (TargetRegisterInfo::isPhysicalRegister(Reg))
489 return Reg;
490 return 0;
493 /// regsAreCompatible - Return true if the two registers are equal or aliased.
495 static bool
496 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
497 if (RegA == RegB)
498 return true;
499 if (!RegA || !RegB)
500 return false;
501 return TRI->regsOverlap(RegA, RegB);
505 /// isProfitableToReMat - Return true if it's potentially profitable to commute
506 /// the two-address instruction that's being processed.
507 bool
508 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
509 MachineInstr *MI, MachineBasicBlock *MBB,
510 unsigned Dist) {
511 // Determine if it's profitable to commute this two address instruction. In
512 // general, we want no uses between this instruction and the definition of
513 // the two-address register.
514 // e.g.
515 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
516 // %reg1029<def> = MOV8rr %reg1028
517 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
518 // insert => %reg1030<def> = MOV8rr %reg1028
519 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
520 // In this case, it might not be possible to coalesce the second MOV8rr
521 // instruction if the first one is coalesced. So it would be profitable to
522 // commute it:
523 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
524 // %reg1029<def> = MOV8rr %reg1028
525 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
526 // insert => %reg1030<def> = MOV8rr %reg1029
527 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
529 if (!MI->killsRegister(regC))
530 return false;
532 // Ok, we have something like:
533 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
534 // let's see if it's worth commuting it.
536 // Look for situations like this:
537 // %reg1024<def> = MOV r1
538 // %reg1025<def> = MOV r0
539 // %reg1026<def> = ADD %reg1024, %reg1025
540 // r0 = MOV %reg1026
541 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
542 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
543 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
544 unsigned ToRegB = getMappedReg(regB, DstRegMap);
545 unsigned ToRegC = getMappedReg(regC, DstRegMap);
546 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
547 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
548 regsAreCompatible(FromRegC, ToRegB, TRI)))
549 return true;
551 // If there is a use of regC between its last def (could be livein) and this
552 // instruction, then bail.
553 unsigned LastDefC = 0;
554 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
555 return false;
557 // If there is a use of regB between its last def (could be livein) and this
558 // instruction, then go ahead and make this transformation.
559 unsigned LastDefB = 0;
560 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
561 return true;
563 // Since there are no intervening uses for both registers, then commute
564 // if the def of regC is closer. Its live interval is shorter.
565 return LastDefB && LastDefC && LastDefC > LastDefB;
568 /// CommuteInstruction - Commute a two-address instruction and update the basic
569 /// block, distance map, and live variables if needed. Return true if it is
570 /// successful.
571 bool
572 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
573 MachineFunction::iterator &mbbi,
574 unsigned RegB, unsigned RegC, unsigned Dist) {
575 MachineInstr *MI = mi;
576 DEBUG(errs() << "2addr: COMMUTING : " << *MI);
577 MachineInstr *NewMI = TII->commuteInstruction(MI);
579 if (NewMI == 0) {
580 DEBUG(errs() << "2addr: COMMUTING FAILED!\n");
581 return false;
584 DEBUG(errs() << "2addr: COMMUTED TO: " << *NewMI);
585 // If the instruction changed to commute it, update livevar.
586 if (NewMI != MI) {
587 if (LV)
588 // Update live variables
589 LV->replaceKillInstruction(RegC, MI, NewMI);
591 mbbi->insert(mi, NewMI); // Insert the new inst
592 mbbi->erase(mi); // Nuke the old inst.
593 mi = NewMI;
594 DistanceMap.insert(std::make_pair(NewMI, Dist));
597 // Update source register map.
598 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
599 if (FromRegC) {
600 unsigned RegA = MI->getOperand(0).getReg();
601 SrcRegMap[RegA] = FromRegC;
604 return true;
607 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
608 /// given 2-address instruction to a 3-address one.
609 bool
610 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
611 // Look for situations like this:
612 // %reg1024<def> = MOV r1
613 // %reg1025<def> = MOV r0
614 // %reg1026<def> = ADD %reg1024, %reg1025
615 // r2 = MOV %reg1026
616 // Turn ADD into a 3-address instruction to avoid a copy.
617 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
618 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
619 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
622 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
623 /// three address one. Return true if this transformation was successful.
624 bool
625 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
626 MachineBasicBlock::iterator &nmi,
627 MachineFunction::iterator &mbbi,
628 unsigned RegB, unsigned Dist) {
629 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
630 if (NewMI) {
631 DEBUG(errs() << "2addr: CONVERTING 2-ADDR: " << *mi);
632 DEBUG(errs() << "2addr: TO 3-ADDR: " << *NewMI);
633 bool Sunk = false;
635 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
636 // FIXME: Temporary workaround. If the new instruction doesn't
637 // uses RegB, convertToThreeAddress must have created more
638 // then one instruction.
639 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
641 mbbi->erase(mi); // Nuke the old inst.
643 if (!Sunk) {
644 DistanceMap.insert(std::make_pair(NewMI, Dist));
645 mi = NewMI;
646 nmi = next(mi);
648 return true;
651 return false;
654 /// ProcessCopy - If the specified instruction is not yet processed, process it
655 /// if it's a copy. For a copy instruction, we find the physical registers the
656 /// source and destination registers might be mapped to. These are kept in
657 /// point-to maps used to determine future optimizations. e.g.
658 /// v1024 = mov r0
659 /// v1025 = mov r1
660 /// v1026 = add v1024, v1025
661 /// r1 = mov r1026
662 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
663 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
664 /// potentially joined with r1 on the output side. It's worthwhile to commute
665 /// 'add' to eliminate a copy.
666 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
667 MachineBasicBlock *MBB,
668 SmallPtrSet<MachineInstr*, 8> &Processed) {
669 if (Processed.count(MI))
670 return;
672 bool IsSrcPhys, IsDstPhys;
673 unsigned SrcReg, DstReg;
674 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
675 return;
677 if (IsDstPhys && !IsSrcPhys)
678 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
679 else if (!IsDstPhys && IsSrcPhys) {
680 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
681 if (!isNew)
682 assert(SrcRegMap[DstReg] == SrcReg &&
683 "Can't map to two src physical registers!");
685 SmallVector<unsigned, 4> VirtRegPairs;
686 bool IsCopy = false;
687 unsigned NewReg = 0;
688 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
689 IsCopy, NewReg, IsDstPhys)) {
690 if (IsCopy) {
691 if (!Processed.insert(UseMI))
692 break;
695 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
696 if (DI != DistanceMap.end())
697 // Earlier in the same MBB.Reached via a back edge.
698 break;
700 if (IsDstPhys) {
701 VirtRegPairs.push_back(NewReg);
702 break;
704 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
705 if (!isNew)
706 assert(SrcRegMap[NewReg] == DstReg &&
707 "Can't map to two src physical registers!");
708 VirtRegPairs.push_back(NewReg);
709 DstReg = NewReg;
712 if (!VirtRegPairs.empty()) {
713 unsigned ToReg = VirtRegPairs.back();
714 VirtRegPairs.pop_back();
715 while (!VirtRegPairs.empty()) {
716 unsigned FromReg = VirtRegPairs.back();
717 VirtRegPairs.pop_back();
718 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
719 if (!isNew)
720 assert(DstRegMap[FromReg] == ToReg &&
721 "Can't map to two dst physical registers!");
722 ToReg = FromReg;
727 Processed.insert(MI);
730 /// isSafeToDelete - If the specified instruction does not produce any side
731 /// effects and all of its defs are dead, then it's safe to delete.
732 static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
733 const TargetInstrInfo *TII,
734 SmallVector<unsigned, 4> &Kills) {
735 const TargetInstrDesc &TID = MI->getDesc();
736 if (TID.mayStore() || TID.isCall())
737 return false;
738 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
739 return false;
741 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
742 MachineOperand &MO = MI->getOperand(i);
743 if (!MO.isReg())
744 continue;
745 if (MO.isDef() && !MO.isDead())
746 return false;
747 if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
748 Kills.push_back(MO.getReg());
751 return true;
754 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
755 /// killed by instructions in MBB preceding the current instruction at
756 /// position Dist. If so, return true and record information about the
757 /// preceding kills in NewKills.
758 bool TwoAddressInstructionPass::
759 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
760 SmallVector<NewKill, 4> &NewKills,
761 MachineBasicBlock *MBB, unsigned Dist) {
762 while (!Kills.empty()) {
763 unsigned Kill = Kills.back();
764 Kills.pop_back();
765 if (TargetRegisterInfo::isPhysicalRegister(Kill))
766 return false;
768 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
769 if (!LastKill)
770 return false;
772 bool isModRef = LastKill->modifiesRegister(Kill);
773 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
774 LastKill));
776 return true;
779 /// DeleteUnusedInstr - If an instruction with a tied register operand can
780 /// be safely deleted, just delete it.
781 bool
782 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
783 MachineBasicBlock::iterator &nmi,
784 MachineFunction::iterator &mbbi,
785 unsigned regB, unsigned regBIdx,
786 unsigned Dist) {
787 // Check if the instruction has no side effects and if all its defs are dead.
788 SmallVector<unsigned, 4> Kills;
789 if (!isSafeToDelete(mi, regB, TII, Kills))
790 return false;
792 // If this instruction kills some virtual registers, we need to
793 // update the kill information. If it's not possible to do so,
794 // then bail out.
795 SmallVector<NewKill, 4> NewKills;
796 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
797 return false;
799 if (LV) {
800 while (!NewKills.empty()) {
801 MachineInstr *NewKill = NewKills.back().second;
802 unsigned Kill = NewKills.back().first.first;
803 bool isDead = NewKills.back().first.second;
804 NewKills.pop_back();
805 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
806 if (isDead)
807 LV->addVirtualRegisterDead(Kill, NewKill);
808 else
809 LV->addVirtualRegisterKilled(Kill, NewKill);
813 // If regB was marked as a kill, update its Kills list.
814 if (mi->getOperand(regBIdx).isKill())
815 LV->removeVirtualRegisterKilled(regB, mi);
818 mbbi->erase(mi); // Nuke the old inst.
819 mi = nmi;
820 return true;
823 /// TryInstructionTransform - For the case where an instruction has a single
824 /// pair of tied register operands, attempt some transformations that may
825 /// either eliminate the tied operands or improve the opportunities for
826 /// coalescing away the register copy. Returns true if the tied operands
827 /// are eliminated altogether.
828 bool TwoAddressInstructionPass::
829 TryInstructionTransform(MachineBasicBlock::iterator &mi,
830 MachineBasicBlock::iterator &nmi,
831 MachineFunction::iterator &mbbi,
832 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
833 const TargetInstrDesc &TID = mi->getDesc();
834 unsigned regA = mi->getOperand(DstIdx).getReg();
835 unsigned regB = mi->getOperand(SrcIdx).getReg();
837 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
838 "cannot make instruction into two-address form");
840 // If regA is dead and the instruction can be deleted, just delete
841 // it so it doesn't clobber regB.
842 bool regBKilled = isKilled(*mi, regB, MRI, TII);
843 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
844 DeleteUnusedInstr(mi, nmi, mbbi, regB, SrcIdx, Dist)) {
845 ++NumDeletes;
846 return true; // Done with this instruction.
849 // Check if it is profitable to commute the operands.
850 unsigned SrcOp1, SrcOp2;
851 unsigned regC = 0;
852 unsigned regCIdx = ~0U;
853 bool TryCommute = false;
854 bool AggressiveCommute = false;
855 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
856 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
857 if (SrcIdx == SrcOp1)
858 regCIdx = SrcOp2;
859 else if (SrcIdx == SrcOp2)
860 regCIdx = SrcOp1;
862 if (regCIdx != ~0U) {
863 regC = mi->getOperand(regCIdx).getReg();
864 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
865 // If C dies but B does not, swap the B and C operands.
866 // This makes the live ranges of A and C joinable.
867 TryCommute = true;
868 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
869 TryCommute = true;
870 AggressiveCommute = true;
875 // If it's profitable to commute, try to do so.
876 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
877 ++NumCommuted;
878 if (AggressiveCommute)
879 ++NumAggrCommuted;
880 return false;
883 if (TID.isConvertibleTo3Addr()) {
884 // This instruction is potentially convertible to a true
885 // three-address instruction. Check if it is profitable.
886 if (!regBKilled || isProfitableToConv3Addr(regA)) {
887 // Try to convert it.
888 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
889 ++NumConvertedTo3Addr;
890 return true; // Done with this instruction.
894 return false;
897 /// runOnMachineFunction - Reduce two-address instructions to two operands.
899 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
900 DEBUG(errs() << "Machine Function\n");
901 const TargetMachine &TM = MF.getTarget();
902 MRI = &MF.getRegInfo();
903 TII = TM.getInstrInfo();
904 TRI = TM.getRegisterInfo();
905 LV = getAnalysisIfAvailable<LiveVariables>();
907 bool MadeChange = false;
909 DEBUG(errs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
910 DEBUG(errs() << "********** Function: "
911 << MF.getFunction()->getName() << '\n');
913 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
914 BitVector ReMatRegs;
915 ReMatRegs.resize(MRI->getLastVirtReg()+1);
917 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
918 TiedOperandMap;
919 TiedOperandMap TiedOperands(4);
921 SmallPtrSet<MachineInstr*, 8> Processed;
922 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
923 mbbi != mbbe; ++mbbi) {
924 unsigned Dist = 0;
925 DistanceMap.clear();
926 SrcRegMap.clear();
927 DstRegMap.clear();
928 Processed.clear();
929 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
930 mi != me; ) {
931 MachineBasicBlock::iterator nmi = next(mi);
932 const TargetInstrDesc &TID = mi->getDesc();
933 bool FirstTied = true;
935 DistanceMap.insert(std::make_pair(mi, ++Dist));
937 ProcessCopy(&*mi, &*mbbi, Processed);
939 // First scan through all the tied register uses in this instruction
940 // and record a list of pairs of tied operands for each register.
941 unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
942 ? mi->getNumOperands() : TID.getNumOperands();
943 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
944 unsigned DstIdx = 0;
945 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
946 continue;
948 if (FirstTied) {
949 FirstTied = false;
950 ++NumTwoAddressInstrs;
951 DEBUG(errs() << '\t' << *mi);
954 assert(mi->getOperand(SrcIdx).isReg() &&
955 mi->getOperand(SrcIdx).getReg() &&
956 mi->getOperand(SrcIdx).isUse() &&
957 "two address instruction invalid");
959 unsigned regB = mi->getOperand(SrcIdx).getReg();
960 TiedOperandMap::iterator OI = TiedOperands.find(regB);
961 if (OI == TiedOperands.end()) {
962 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
963 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
965 OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
968 // Now iterate over the information collected above.
969 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
970 OE = TiedOperands.end(); OI != OE; ++OI) {
971 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
973 // If the instruction has a single pair of tied operands, try some
974 // transformations that may either eliminate the tied operands or
975 // improve the opportunities for coalescing away the register copy.
976 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
977 unsigned SrcIdx = TiedPairs[0].first;
978 unsigned DstIdx = TiedPairs[0].second;
980 // If the registers are already equal, nothing needs to be done.
981 if (mi->getOperand(SrcIdx).getReg() ==
982 mi->getOperand(DstIdx).getReg())
983 break; // Done with this instruction.
985 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
986 break; // The tied operands have been eliminated.
989 bool RemovedKillFlag = false;
990 bool AllUsesCopied = true;
991 unsigned LastCopiedReg = 0;
992 unsigned regB = OI->first;
993 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
994 unsigned SrcIdx = TiedPairs[tpi].first;
995 unsigned DstIdx = TiedPairs[tpi].second;
996 unsigned regA = mi->getOperand(DstIdx).getReg();
997 // Grab regB from the instruction because it may have changed if the
998 // instruction was commuted.
999 regB = mi->getOperand(SrcIdx).getReg();
1001 if (regA == regB) {
1002 // The register is tied to multiple destinations (or else we would
1003 // not have continued this far), but this use of the register
1004 // already matches the tied destination. Leave it.
1005 AllUsesCopied = false;
1006 continue;
1008 LastCopiedReg = regA;
1010 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1011 "cannot make instruction into two-address form");
1013 #ifndef NDEBUG
1014 // First, verify that we don't have a use of "a" in the instruction
1015 // (a = b + a for example) because our transformation will not
1016 // work. This should never occur because we are in SSA form.
1017 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1018 assert(i == DstIdx ||
1019 !mi->getOperand(i).isReg() ||
1020 mi->getOperand(i).getReg() != regA);
1021 #endif
1023 // Emit a copy or rematerialize the definition.
1024 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1025 MachineInstr *DefMI = MRI->getVRegDef(regB);
1026 // If it's safe and profitable, remat the definition instead of
1027 // copying it.
1028 if (DefMI &&
1029 DefMI->getDesc().isAsCheapAsAMove() &&
1030 DefMI->isSafeToReMat(TII, regB) &&
1031 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1032 DEBUG(errs() << "2addr: REMATTING : " << *DefMI << "\n");
1033 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1034 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI);
1035 ReMatRegs.set(regB);
1036 ++NumReMats;
1037 } else {
1038 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
1039 (void)Emitted;
1040 assert(Emitted && "Unable to issue a copy instruction!\n");
1043 MachineBasicBlock::iterator prevMI = prior(mi);
1044 // Update DistanceMap.
1045 DistanceMap.insert(std::make_pair(prevMI, Dist));
1046 DistanceMap[mi] = ++Dist;
1048 DEBUG(errs() << "\t\tprepend:\t" << *prevMI);
1050 MachineOperand &MO = mi->getOperand(SrcIdx);
1051 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1052 "inconsistent operand info for 2-reg pass");
1053 if (MO.isKill()) {
1054 MO.setIsKill(false);
1055 RemovedKillFlag = true;
1057 MO.setReg(regA);
1060 if (AllUsesCopied) {
1061 // Replace other (un-tied) uses of regB with LastCopiedReg.
1062 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1063 MachineOperand &MO = mi->getOperand(i);
1064 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1065 if (MO.isKill()) {
1066 MO.setIsKill(false);
1067 RemovedKillFlag = true;
1069 MO.setReg(LastCopiedReg);
1073 // Update live variables for regB.
1074 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1075 LV->addVirtualRegisterKilled(regB, prior(mi));
1077 } else if (RemovedKillFlag) {
1078 // Some tied uses of regB matched their destination registers, so
1079 // regB is still used in this instruction, but a kill flag was
1080 // removed from a different tied use of regB, so now we need to add
1081 // a kill flag to one of the remaining uses of regB.
1082 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1083 MachineOperand &MO = mi->getOperand(i);
1084 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1085 MO.setIsKill(true);
1086 break;
1091 MadeChange = true;
1093 DEBUG(errs() << "\t\trewrite to:\t" << *mi);
1096 // Clear TiedOperands here instead of at the top of the loop
1097 // since most instructions do not have tied operands.
1098 TiedOperands.clear();
1099 mi = nmi;
1103 // Some remat'ed instructions are dead.
1104 int VReg = ReMatRegs.find_first();
1105 while (VReg != -1) {
1106 if (MRI->use_empty(VReg)) {
1107 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1108 DefMI->eraseFromParent();
1110 VReg = ReMatRegs.find_next(VReg);
1113 return MadeChange;