add a new MCInstPrinter class, move the (trivial) MCDisassmbler ctor inline.
[llvm/avr.git] / lib / CodeGen / VirtRegRewriter.cpp
blob670e1cb575e6d4d1a56160577f5a9aa3a60a057d
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Function.h"
13 #include "llvm/CodeGen/MachineFrameInfo.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/Support/Compiler.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetLowering.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
24 #include "llvm/ADT/Statistic.h"
25 #include <algorithm>
26 using namespace llvm;
28 STATISTIC(NumDSE , "Number of dead stores elided");
29 STATISTIC(NumDSS , "Number of dead spill slots removed");
30 STATISTIC(NumCommutes, "Number of instructions commuted");
31 STATISTIC(NumDRM , "Number of re-materializable defs elided");
32 STATISTIC(NumStores , "Number of stores added");
33 STATISTIC(NumPSpills , "Number of physical register spills");
34 STATISTIC(NumOmitted , "Number of reloads omited");
35 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
36 STATISTIC(NumCopified, "Number of available reloads turned into copies");
37 STATISTIC(NumReMats , "Number of re-materialization");
38 STATISTIC(NumLoads , "Number of loads added");
39 STATISTIC(NumReused , "Number of values reused");
40 STATISTIC(NumDCE , "Number of copies elided");
41 STATISTIC(NumSUnfold , "Number of stores unfolded");
42 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
44 namespace {
45 enum RewriterName { local, trivial };
48 static cl::opt<RewriterName>
49 RewriterOpt("rewriter",
50 cl::desc("Rewriter to use: (default: local)"),
51 cl::Prefix,
52 cl::values(clEnumVal(local, "local rewriter"),
53 clEnumVal(trivial, "trivial rewriter"),
54 clEnumValEnd),
55 cl::init(local));
57 static cl::opt<bool>
58 ScheduleSpills("schedule-spills",
59 cl::desc("Schedule spill code"),
60 cl::init(false));
62 VirtRegRewriter::~VirtRegRewriter() {}
64 namespace {
66 /// This class is intended for use with the new spilling framework only. It
67 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
68 /// spill code.
69 struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
71 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
72 LiveIntervals* LIs) {
73 DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n");
74 DEBUG(errs() << "********** Function: "
75 << MF.getFunction()->getName() << '\n');
76 DEBUG(errs() << "**** Machine Instrs"
77 << "(NOTE! Does not include spills and reloads!) ****\n");
78 DEBUG(MF.dump());
80 MachineRegisterInfo *mri = &MF.getRegInfo();
82 bool changed = false;
84 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
85 liItr != liEnd; ++liItr) {
87 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
88 if (VRM.hasPhys(liItr->first)) {
89 unsigned preg = VRM.getPhys(liItr->first);
90 mri->replaceRegWith(liItr->first, preg);
91 mri->setPhysRegUsed(preg);
92 changed = true;
95 else {
96 if (!liItr->second->empty()) {
97 mri->setPhysRegUsed(liItr->first);
103 DEBUG(errs() << "**** Post Machine Instrs ****\n");
104 DEBUG(MF.dump());
106 return changed;
113 // ************************************************************************ //
115 namespace {
117 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
118 /// from top down, keep track of which spill slots or remat are available in
119 /// each register.
121 /// Note that not all physregs are created equal here. In particular, some
122 /// physregs are reloads that we are allowed to clobber or ignore at any time.
123 /// Other physregs are values that the register allocated program is using
124 /// that we cannot CHANGE, but we can read if we like. We keep track of this
125 /// on a per-stack-slot / remat id basis as the low bit in the value of the
126 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
127 /// this bit and addAvailable sets it if.
128 class VISIBILITY_HIDDEN AvailableSpills {
129 const TargetRegisterInfo *TRI;
130 const TargetInstrInfo *TII;
132 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
133 // or remat'ed virtual register values that are still available, due to
134 // being loaded or stored to, but not invalidated yet.
135 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
137 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
138 // indicating which stack slot values are currently held by a physreg. This
139 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
140 // physreg is modified.
141 std::multimap<unsigned, int> PhysRegsAvailable;
143 void disallowClobberPhysRegOnly(unsigned PhysReg);
145 void ClobberPhysRegOnly(unsigned PhysReg);
146 public:
147 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
148 : TRI(tri), TII(tii) {
151 /// clear - Reset the state.
152 void clear() {
153 SpillSlotsOrReMatsAvailable.clear();
154 PhysRegsAvailable.clear();
157 const TargetRegisterInfo *getRegInfo() const { return TRI; }
159 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
160 /// available in a physical register, return that PhysReg, otherwise
161 /// return 0.
162 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
163 std::map<int, unsigned>::const_iterator I =
164 SpillSlotsOrReMatsAvailable.find(Slot);
165 if (I != SpillSlotsOrReMatsAvailable.end()) {
166 return I->second >> 1; // Remove the CanClobber bit.
168 return 0;
171 /// addAvailable - Mark that the specified stack slot / remat is available
172 /// in the specified physreg. If CanClobber is true, the physreg can be
173 /// modified at any time without changing the semantics of the program.
174 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
175 // If this stack slot is thought to be available in some other physreg,
176 // remove its record.
177 ModifyStackSlotOrReMat(SlotOrReMat);
179 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
180 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
181 (unsigned)CanClobber;
183 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
184 DEBUG(errs() << "Remembering RM#"
185 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
186 else
187 DEBUG(errs() << "Remembering SS#" << SlotOrReMat);
188 DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n");
191 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
192 /// the value of the specified stackslot register if it desires. The
193 /// specified stack slot must be available in a physreg for this query to
194 /// make sense.
195 bool canClobberPhysRegForSS(int SlotOrReMat) const {
196 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
197 "Value not available!");
198 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
201 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
202 /// physical register where values for some stack slot(s) might be
203 /// available.
204 bool canClobberPhysReg(unsigned PhysReg) const {
205 std::multimap<unsigned, int>::const_iterator I =
206 PhysRegsAvailable.lower_bound(PhysReg);
207 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
208 int SlotOrReMat = I->second;
209 I++;
210 if (!canClobberPhysRegForSS(SlotOrReMat))
211 return false;
213 return true;
216 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
217 /// stackslot register. The register is still available but is no longer
218 /// allowed to be modifed.
219 void disallowClobberPhysReg(unsigned PhysReg);
221 /// ClobberPhysReg - This is called when the specified physreg changes
222 /// value. We use this to invalidate any info about stuff that lives in
223 /// it and any of its aliases.
224 void ClobberPhysReg(unsigned PhysReg);
226 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
227 /// slot changes. This removes information about which register the
228 /// previous value for this slot lives in (as the previous value is dead
229 /// now).
230 void ModifyStackSlotOrReMat(int SlotOrReMat);
232 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
233 /// into the specified MBB. Add available physical registers as potential
234 /// live-in's. If they are reused in the MBB, they will be added to the
235 /// live-in set to make register scavenger and post-allocation scheduler.
236 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
237 std::vector<MachineOperand*> &KillOps);
242 // ************************************************************************ //
244 // Given a location where a reload of a spilled register or a remat of
245 // a constant is to be inserted, attempt to find a safe location to
246 // insert the load at an earlier point in the basic-block, to hide
247 // latency of the load and to avoid address-generation interlock
248 // issues.
249 static MachineBasicBlock::iterator
250 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
251 MachineBasicBlock::iterator const Begin,
252 unsigned PhysReg,
253 const TargetRegisterInfo *TRI,
254 bool DoReMat,
255 int SSorRMId,
256 const TargetInstrInfo *TII,
257 const MachineFunction &MF)
259 if (!ScheduleSpills)
260 return InsertLoc;
262 // Spill backscheduling is of primary interest to addresses, so
263 // don't do anything if the register isn't in the register class
264 // used for pointers.
266 const TargetLowering *TL = MF.getTarget().getTargetLowering();
268 if (!TL->isTypeLegal(TL->getPointerTy()))
269 // Believe it or not, this is true on PIC16.
270 return InsertLoc;
272 const TargetRegisterClass *ptrRegClass =
273 TL->getRegClassFor(TL->getPointerTy());
274 if (!ptrRegClass->contains(PhysReg))
275 return InsertLoc;
277 // Scan upwards through the preceding instructions. If an instruction doesn't
278 // reference the stack slot or the register we're loading, we can
279 // backschedule the reload up past it.
280 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
281 while (NewInsertLoc != Begin) {
282 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
283 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
284 MachineOperand &Op = Prev->getOperand(i);
285 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
286 goto stop;
288 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
289 Prev->findRegisterDefOperand(PhysReg))
290 goto stop;
291 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
292 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
293 Prev->findRegisterDefOperand(*Alias))
294 goto stop;
295 NewInsertLoc = Prev;
297 stop:;
299 // If we made it to the beginning of the block, turn around and move back
300 // down just past any existing reloads. They're likely to be reloads/remats
301 // for instructions earlier than what our current reload/remat is for, so
302 // they should be scheduled earlier.
303 if (NewInsertLoc == Begin) {
304 int FrameIdx;
305 while (InsertLoc != NewInsertLoc &&
306 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
307 TII->isTriviallyReMaterializable(NewInsertLoc)))
308 ++NewInsertLoc;
311 return NewInsertLoc;
314 namespace {
316 // ReusedOp - For each reused operand, we keep track of a bit of information,
317 // in case we need to rollback upon processing a new operand. See comments
318 // below.
319 struct ReusedOp {
320 // The MachineInstr operand that reused an available value.
321 unsigned Operand;
323 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
324 unsigned StackSlotOrReMat;
326 // PhysRegReused - The physical register the value was available in.
327 unsigned PhysRegReused;
329 // AssignedPhysReg - The physreg that was assigned for use by the reload.
330 unsigned AssignedPhysReg;
332 // VirtReg - The virtual register itself.
333 unsigned VirtReg;
335 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
336 unsigned vreg)
337 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
338 AssignedPhysReg(apr), VirtReg(vreg) {}
341 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
342 /// is reused instead of reloaded.
343 class VISIBILITY_HIDDEN ReuseInfo {
344 MachineInstr &MI;
345 std::vector<ReusedOp> Reuses;
346 BitVector PhysRegsClobbered;
347 public:
348 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
349 PhysRegsClobbered.resize(tri->getNumRegs());
352 bool hasReuses() const {
353 return !Reuses.empty();
356 /// addReuse - If we choose to reuse a virtual register that is already
357 /// available instead of reloading it, remember that we did so.
358 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
359 unsigned PhysRegReused, unsigned AssignedPhysReg,
360 unsigned VirtReg) {
361 // If the reload is to the assigned register anyway, no undo will be
362 // required.
363 if (PhysRegReused == AssignedPhysReg) return;
365 // Otherwise, remember this.
366 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
367 AssignedPhysReg, VirtReg));
370 void markClobbered(unsigned PhysReg) {
371 PhysRegsClobbered.set(PhysReg);
374 bool isClobbered(unsigned PhysReg) const {
375 return PhysRegsClobbered.test(PhysReg);
378 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
379 /// is some other operand that is using the specified register, either pick
380 /// a new register to use, or evict the previous reload and use this reg.
381 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
382 MachineFunction &MF, MachineInstr *MI,
383 AvailableSpills &Spills,
384 std::vector<MachineInstr*> &MaybeDeadStores,
385 SmallSet<unsigned, 8> &Rejected,
386 BitVector &RegKills,
387 std::vector<MachineOperand*> &KillOps,
388 VirtRegMap &VRM);
390 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
391 /// 'Rejected' set to remember which registers have been considered and
392 /// rejected for the reload. This avoids infinite looping in case like
393 /// this:
394 /// t1 := op t2, t3
395 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
396 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
397 /// t1 <- desires r1
398 /// sees r1 is taken by t2, tries t2's reload register r0
399 /// sees r0 is taken by t3, tries t3's reload register r1
400 /// sees r1 is taken by t2, tries t2's reload register r0 ...
401 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
402 AvailableSpills &Spills,
403 std::vector<MachineInstr*> &MaybeDeadStores,
404 BitVector &RegKills,
405 std::vector<MachineOperand*> &KillOps,
406 VirtRegMap &VRM) {
407 SmallSet<unsigned, 8> Rejected;
408 MachineFunction &MF = *MI->getParent()->getParent();
409 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
410 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
411 Rejected, RegKills, KillOps, VRM);
417 // ****************** //
418 // Utility Functions //
419 // ****************** //
421 /// findSinglePredSuccessor - Return via reference a vector of machine basic
422 /// blocks each of which is a successor of the specified BB and has no other
423 /// predecessor.
424 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
425 SmallVectorImpl<MachineBasicBlock *> &Succs) {
426 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
427 SE = MBB->succ_end(); SI != SE; ++SI) {
428 MachineBasicBlock *SuccMBB = *SI;
429 if (SuccMBB->pred_size() == 1)
430 Succs.push_back(SuccMBB);
434 /// InvalidateKill - Invalidate register kill information for a specific
435 /// register. This also unsets the kills marker on the last kill operand.
436 static void InvalidateKill(unsigned Reg,
437 const TargetRegisterInfo* TRI,
438 BitVector &RegKills,
439 std::vector<MachineOperand*> &KillOps) {
440 if (RegKills[Reg]) {
441 KillOps[Reg]->setIsKill(false);
442 // KillOps[Reg] might be a def of a super-register.
443 unsigned KReg = KillOps[Reg]->getReg();
444 KillOps[KReg] = NULL;
445 RegKills.reset(KReg);
446 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
447 if (RegKills[*SR]) {
448 KillOps[*SR]->setIsKill(false);
449 KillOps[*SR] = NULL;
450 RegKills.reset(*SR);
456 /// InvalidateKills - MI is going to be deleted. If any of its operands are
457 /// marked kill, then invalidate the information.
458 static void InvalidateKills(MachineInstr &MI,
459 const TargetRegisterInfo* TRI,
460 BitVector &RegKills,
461 std::vector<MachineOperand*> &KillOps,
462 SmallVector<unsigned, 2> *KillRegs = NULL) {
463 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464 MachineOperand &MO = MI.getOperand(i);
465 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
466 continue;
467 unsigned Reg = MO.getReg();
468 if (TargetRegisterInfo::isVirtualRegister(Reg))
469 continue;
470 if (KillRegs)
471 KillRegs->push_back(Reg);
472 assert(Reg < KillOps.size());
473 if (KillOps[Reg] == &MO) {
474 KillOps[Reg] = NULL;
475 RegKills.reset(Reg);
476 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
477 if (RegKills[*SR]) {
478 KillOps[*SR] = NULL;
479 RegKills.reset(*SR);
486 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
487 /// (since it's spill instruction is removed), mark it isDead. Also checks if
488 /// the def MI has other definition operands that are not dead. Returns it by
489 /// reference.
490 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
491 MachineInstr &NewDef, unsigned Reg,
492 bool &HasLiveDef) {
493 // Due to remat, it's possible this reg isn't being reused. That is,
494 // the def of this reg (by prev MI) is now dead.
495 MachineInstr *DefMI = I;
496 MachineOperand *DefOp = NULL;
497 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
498 MachineOperand &MO = DefMI->getOperand(i);
499 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
500 continue;
501 if (MO.getReg() == Reg)
502 DefOp = &MO;
503 else if (!MO.isDead())
504 HasLiveDef = true;
506 if (!DefOp)
507 return false;
509 bool FoundUse = false, Done = false;
510 MachineBasicBlock::iterator E = &NewDef;
511 ++I; ++E;
512 for (; !Done && I != E; ++I) {
513 MachineInstr *NMI = I;
514 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
515 MachineOperand &MO = NMI->getOperand(j);
516 if (!MO.isReg() || MO.getReg() != Reg)
517 continue;
518 if (MO.isUse())
519 FoundUse = true;
520 Done = true; // Stop after scanning all the operands of this MI.
523 if (!FoundUse) {
524 // Def is dead!
525 DefOp->setIsDead();
526 return true;
528 return false;
531 /// UpdateKills - Track and update kill info. If a MI reads a register that is
532 /// marked kill, then it must be due to register reuse. Transfer the kill info
533 /// over.
534 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
535 BitVector &RegKills,
536 std::vector<MachineOperand*> &KillOps) {
537 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
538 MachineOperand &MO = MI.getOperand(i);
539 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
540 continue;
541 unsigned Reg = MO.getReg();
542 if (Reg == 0)
543 continue;
545 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
546 // That can't be right. Register is killed but not re-defined and it's
547 // being reused. Let's fix that.
548 KillOps[Reg]->setIsKill(false);
549 // KillOps[Reg] might be a def of a super-register.
550 unsigned KReg = KillOps[Reg]->getReg();
551 KillOps[KReg] = NULL;
552 RegKills.reset(KReg);
554 // Must be a def of a super-register. Its other sub-regsters are no
555 // longer killed as well.
556 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
557 KillOps[*SR] = NULL;
558 RegKills.reset(*SR);
561 if (!MI.isRegTiedToDefOperand(i))
562 // Unless it's a two-address operand, this is the new kill.
563 MO.setIsKill();
565 if (MO.isKill()) {
566 RegKills.set(Reg);
567 KillOps[Reg] = &MO;
568 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
569 RegKills.set(*SR);
570 KillOps[*SR] = &MO;
575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
576 const MachineOperand &MO = MI.getOperand(i);
577 if (!MO.isReg() || !MO.isDef())
578 continue;
579 unsigned Reg = MO.getReg();
580 RegKills.reset(Reg);
581 KillOps[Reg] = NULL;
582 // It also defines (or partially define) aliases.
583 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
584 RegKills.reset(*SR);
585 KillOps[*SR] = NULL;
590 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
592 static void ReMaterialize(MachineBasicBlock &MBB,
593 MachineBasicBlock::iterator &MII,
594 unsigned DestReg, unsigned Reg,
595 const TargetInstrInfo *TII,
596 const TargetRegisterInfo *TRI,
597 VirtRegMap &VRM) {
598 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
599 #ifndef NDEBUG
600 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
601 assert(TID.getNumDefs() == 1 &&
602 "Don't know how to remat instructions that define > 1 values!");
603 #endif
604 TII->reMaterialize(MBB, MII, DestReg,
605 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
606 MachineInstr *NewMI = prior(MII);
607 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
608 MachineOperand &MO = NewMI->getOperand(i);
609 if (!MO.isReg() || MO.getReg() == 0)
610 continue;
611 unsigned VirtReg = MO.getReg();
612 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
613 continue;
614 assert(MO.isUse());
615 unsigned SubIdx = MO.getSubReg();
616 unsigned Phys = VRM.getPhys(VirtReg);
617 assert(Phys);
618 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
619 MO.setReg(RReg);
620 MO.setSubReg(0);
622 ++NumReMats;
625 /// findSuperReg - Find the SubReg's super-register of given register class
626 /// where its SubIdx sub-register is SubReg.
627 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
628 unsigned SubIdx, const TargetRegisterInfo *TRI) {
629 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
630 I != E; ++I) {
631 unsigned Reg = *I;
632 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
633 return Reg;
635 return 0;
638 // ******************************** //
639 // Available Spills Implementation //
640 // ******************************** //
642 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
643 /// stackslot register. The register is still available but is no longer
644 /// allowed to be modifed.
645 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
646 std::multimap<unsigned, int>::iterator I =
647 PhysRegsAvailable.lower_bound(PhysReg);
648 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
649 int SlotOrReMat = I->second;
650 I++;
651 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
652 "Bidirectional map mismatch!");
653 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
654 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
655 << " copied, it is available for use but can no longer be modified\n");
659 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
660 /// stackslot register and its aliases. The register and its aliases may
661 /// still available but is no longer allowed to be modifed.
662 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
663 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
664 disallowClobberPhysRegOnly(*AS);
665 disallowClobberPhysRegOnly(PhysReg);
668 /// ClobberPhysRegOnly - This is called when the specified physreg changes
669 /// value. We use this to invalidate any info about stuff we thing lives in it.
670 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
671 std::multimap<unsigned, int>::iterator I =
672 PhysRegsAvailable.lower_bound(PhysReg);
673 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
674 int SlotOrReMat = I->second;
675 PhysRegsAvailable.erase(I++);
676 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
677 "Bidirectional map mismatch!");
678 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
679 DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
680 << " clobbered, invalidating ");
681 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
682 DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
683 else
684 DEBUG(errs() << "SS#" << SlotOrReMat << "\n");
688 /// ClobberPhysReg - This is called when the specified physreg changes
689 /// value. We use this to invalidate any info about stuff we thing lives in
690 /// it and any of its aliases.
691 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
692 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
693 ClobberPhysRegOnly(*AS);
694 ClobberPhysRegOnly(PhysReg);
697 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
698 /// into the specified MBB. Add available physical registers as potential
699 /// live-in's. If they are reused in the MBB, they will be added to the
700 /// live-in set to make register scavenger and post-allocation scheduler.
701 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
702 BitVector &RegKills,
703 std::vector<MachineOperand*> &KillOps) {
704 std::set<unsigned> NotAvailable;
705 for (std::multimap<unsigned, int>::iterator
706 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
707 I != E; ++I) {
708 unsigned Reg = I->first;
709 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
710 // FIXME: A temporary workaround. We can't reuse available value if it's
711 // not safe to move the def of the virtual register's class. e.g.
712 // X86::RFP* register classes. Do not add it as a live-in.
713 if (!TII->isSafeToMoveRegClassDefs(RC))
714 // This is no longer available.
715 NotAvailable.insert(Reg);
716 else {
717 MBB.addLiveIn(Reg);
718 InvalidateKill(Reg, TRI, RegKills, KillOps);
721 // Skip over the same register.
722 std::multimap<unsigned, int>::iterator NI = next(I);
723 while (NI != E && NI->first == Reg) {
724 ++I;
725 ++NI;
729 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
730 E = NotAvailable.end(); I != E; ++I) {
731 ClobberPhysReg(*I);
732 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
733 *SubRegs; ++SubRegs)
734 ClobberPhysReg(*SubRegs);
738 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
739 /// slot changes. This removes information about which register the previous
740 /// value for this slot lives in (as the previous value is dead now).
741 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
742 std::map<int, unsigned>::iterator It =
743 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
744 if (It == SpillSlotsOrReMatsAvailable.end()) return;
745 unsigned Reg = It->second >> 1;
746 SpillSlotsOrReMatsAvailable.erase(It);
748 // This register may hold the value of multiple stack slots, only remove this
749 // stack slot from the set of values the register contains.
750 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
751 for (; ; ++I) {
752 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
753 "Map inverse broken!");
754 if (I->second == SlotOrReMat) break;
756 PhysRegsAvailable.erase(I);
759 // ************************** //
760 // Reuse Info Implementation //
761 // ************************** //
763 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
764 /// is some other operand that is using the specified register, either pick
765 /// a new register to use, or evict the previous reload and use this reg.
766 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
767 unsigned PhysReg,
768 MachineFunction &MF,
769 MachineInstr *MI, AvailableSpills &Spills,
770 std::vector<MachineInstr*> &MaybeDeadStores,
771 SmallSet<unsigned, 8> &Rejected,
772 BitVector &RegKills,
773 std::vector<MachineOperand*> &KillOps,
774 VirtRegMap &VRM) {
775 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
776 const TargetRegisterInfo *TRI = Spills.getRegInfo();
778 if (Reuses.empty()) return PhysReg; // This is most often empty.
780 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
781 ReusedOp &Op = Reuses[ro];
782 // If we find some other reuse that was supposed to use this register
783 // exactly for its reload, we can change this reload to use ITS reload
784 // register. That is, unless its reload register has already been
785 // considered and subsequently rejected because it has also been reused
786 // by another operand.
787 if (Op.PhysRegReused == PhysReg &&
788 Rejected.count(Op.AssignedPhysReg) == 0 &&
789 RC->contains(Op.AssignedPhysReg)) {
790 // Yup, use the reload register that we didn't use before.
791 unsigned NewReg = Op.AssignedPhysReg;
792 Rejected.insert(PhysReg);
793 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
794 RegKills, KillOps, VRM);
795 } else {
796 // Otherwise, we might also have a problem if a previously reused
797 // value aliases the new register. If so, codegen the previous reload
798 // and use this one.
799 unsigned PRRU = Op.PhysRegReused;
800 if (TRI->regsOverlap(PRRU, PhysReg)) {
801 // Okay, we found out that an alias of a reused register
802 // was used. This isn't good because it means we have
803 // to undo a previous reuse.
804 MachineBasicBlock *MBB = MI->getParent();
805 const TargetRegisterClass *AliasRC =
806 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
808 // Copy Op out of the vector and remove it, we're going to insert an
809 // explicit load for it.
810 ReusedOp NewOp = Op;
811 Reuses.erase(Reuses.begin()+ro);
813 // MI may be using only a sub-register of PhysRegUsed.
814 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
815 unsigned SubIdx = 0;
816 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
817 "A reuse cannot be a virtual register");
818 if (PRRU != RealPhysRegUsed) {
819 // What was the sub-register index?
820 unsigned SubReg;
821 for (SubIdx = 1; (SubReg = TRI->getSubReg(PRRU, SubIdx)); SubIdx++)
822 if (SubReg == RealPhysRegUsed)
823 break;
824 assert(SubReg == RealPhysRegUsed &&
825 "Operand physreg is not a sub-register of PhysRegUsed");
828 // Ok, we're going to try to reload the assigned physreg into the
829 // slot that we were supposed to in the first place. However, that
830 // register could hold a reuse. Check to see if it conflicts or
831 // would prefer us to use a different register.
832 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
833 MF, MI, Spills, MaybeDeadStores,
834 Rejected, RegKills, KillOps, VRM);
836 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
837 int SSorRMId = DoReMat
838 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
840 // Back-schedule reloads and remats.
841 MachineBasicBlock::iterator InsertLoc =
842 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
843 DoReMat, SSorRMId, TII, MF);
845 if (DoReMat) {
846 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
847 TRI, VRM);
848 } else {
849 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
850 NewOp.StackSlotOrReMat, AliasRC);
851 MachineInstr *LoadMI = prior(InsertLoc);
852 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
853 // Any stores to this stack slot are not dead anymore.
854 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
855 ++NumLoads;
857 Spills.ClobberPhysReg(NewPhysReg);
858 Spills.ClobberPhysReg(NewOp.PhysRegReused);
860 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
861 MI->getOperand(NewOp.Operand).setReg(RReg);
862 MI->getOperand(NewOp.Operand).setSubReg(0);
864 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
865 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
866 DEBUG(errs() << '\t' << *prior(InsertLoc));
868 DEBUG(errs() << "Reuse undone!\n");
869 --NumReused;
871 // Finally, PhysReg is now available, go ahead and use it.
872 return PhysReg;
876 return PhysReg;
879 // ************************************************************************ //
881 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
882 /// stack slot mod/ref. It also checks if it's possible to unfold the
883 /// instruction by having it define a specified physical register instead.
884 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
885 const TargetInstrInfo *TII,
886 const TargetRegisterInfo *TRI,
887 VirtRegMap &VRM) {
888 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
889 return false;
891 bool Found = false;
892 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
893 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
894 unsigned VirtReg = I->second.first;
895 VirtRegMap::ModRef MR = I->second.second;
896 if (MR & VirtRegMap::isModRef)
897 if (VRM.getStackSlot(VirtReg) == SS) {
898 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
899 break;
902 if (!Found)
903 return false;
905 // Does the instruction uses a register that overlaps the scratch register?
906 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
907 MachineOperand &MO = MI.getOperand(i);
908 if (!MO.isReg() || MO.getReg() == 0)
909 continue;
910 unsigned Reg = MO.getReg();
911 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
912 if (!VRM.hasPhys(Reg))
913 continue;
914 Reg = VRM.getPhys(Reg);
916 if (TRI->regsOverlap(PhysReg, Reg))
917 return false;
919 return true;
922 /// FindFreeRegister - Find a free register of a given register class by looking
923 /// at (at most) the last two machine instructions.
924 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
925 MachineBasicBlock &MBB,
926 const TargetRegisterClass *RC,
927 const TargetRegisterInfo *TRI,
928 BitVector &AllocatableRegs) {
929 BitVector Defs(TRI->getNumRegs());
930 BitVector Uses(TRI->getNumRegs());
931 SmallVector<unsigned, 4> LocalUses;
932 SmallVector<unsigned, 4> Kills;
934 // Take a look at 2 instructions at most.
935 for (unsigned Count = 0; Count < 2; ++Count) {
936 if (MII == MBB.begin())
937 break;
938 MachineInstr *PrevMI = prior(MII);
939 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
940 MachineOperand &MO = PrevMI->getOperand(i);
941 if (!MO.isReg() || MO.getReg() == 0)
942 continue;
943 unsigned Reg = MO.getReg();
944 if (MO.isDef()) {
945 Defs.set(Reg);
946 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
947 Defs.set(*AS);
948 } else {
949 LocalUses.push_back(Reg);
950 if (MO.isKill() && AllocatableRegs[Reg])
951 Kills.push_back(Reg);
955 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
956 unsigned Kill = Kills[i];
957 if (!Defs[Kill] && !Uses[Kill] &&
958 TRI->getPhysicalRegisterRegClass(Kill) == RC)
959 return Kill;
961 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
962 unsigned Reg = LocalUses[i];
963 Uses.set(Reg);
964 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
965 Uses.set(*AS);
968 MII = PrevMI;
971 return 0;
974 static
975 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
976 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
977 MachineOperand &MO = MI->getOperand(i);
978 if (MO.isReg() && MO.getReg() == VirtReg)
979 MO.setReg(PhysReg);
983 namespace {
984 struct RefSorter {
985 bool operator()(const std::pair<MachineInstr*, int> &A,
986 const std::pair<MachineInstr*, int> &B) {
987 return A.second < B.second;
992 // ***************************** //
993 // Local Spiller Implementation //
994 // ***************************** //
996 namespace {
998 class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
999 MachineRegisterInfo *RegInfo;
1000 const TargetRegisterInfo *TRI;
1001 const TargetInstrInfo *TII;
1002 BitVector AllocatableRegs;
1003 DenseMap<MachineInstr*, unsigned> DistanceMap;
1004 public:
1006 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
1007 LiveIntervals* LIs) {
1008 RegInfo = &MF.getRegInfo();
1009 TRI = MF.getTarget().getRegisterInfo();
1010 TII = MF.getTarget().getInstrInfo();
1011 AllocatableRegs = TRI->getAllocatableSet(MF);
1012 DEBUG(errs() << "\n**** Local spiller rewriting function '"
1013 << MF.getFunction()->getName() << "':\n");
1014 DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and"
1015 " reloads!) ****\n");
1016 DEBUG(MF.dump());
1018 // Spills - Keep track of which spilled values are available in physregs
1019 // so that we can choose to reuse the physregs instead of emitting
1020 // reloads. This is usually refreshed per basic block.
1021 AvailableSpills Spills(TRI, TII);
1023 // Keep track of kill information.
1024 BitVector RegKills(TRI->getNumRegs());
1025 std::vector<MachineOperand*> KillOps;
1026 KillOps.resize(TRI->getNumRegs(), NULL);
1028 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1029 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1030 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1032 // Traverse the basic blocks depth first.
1033 MachineBasicBlock *Entry = MF.begin();
1034 SmallPtrSet<MachineBasicBlock*,16> Visited;
1035 for (df_ext_iterator<MachineBasicBlock*,
1036 SmallPtrSet<MachineBasicBlock*,16> >
1037 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1038 DFI != E; ++DFI) {
1039 MachineBasicBlock *MBB = *DFI;
1040 if (!EarlyVisited.count(MBB))
1041 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1043 // If this MBB is the only predecessor of a successor. Keep the
1044 // availability information and visit it next.
1045 do {
1046 // Keep visiting single predecessor successor as long as possible.
1047 SinglePredSuccs.clear();
1048 findSinglePredSuccessor(MBB, SinglePredSuccs);
1049 if (SinglePredSuccs.empty())
1050 MBB = 0;
1051 else {
1052 // FIXME: More than one successors, each of which has MBB has
1053 // the only predecessor.
1054 MBB = SinglePredSuccs[0];
1055 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1056 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1057 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1060 } while (MBB);
1062 // Clear the availability info.
1063 Spills.clear();
1066 DEBUG(errs() << "**** Post Machine Instrs ****\n");
1067 DEBUG(MF.dump());
1069 // Mark unused spill slots.
1070 MachineFrameInfo *MFI = MF.getFrameInfo();
1071 int SS = VRM.getLowSpillSlot();
1072 if (SS != VirtRegMap::NO_STACK_SLOT)
1073 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1074 if (!VRM.isSpillSlotUsed(SS)) {
1075 MFI->RemoveStackObject(SS);
1076 ++NumDSS;
1079 return true;
1082 private:
1084 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1085 /// a scratch register is available.
1086 /// xorq %r12<kill>, %r13
1087 /// addq %rax, -184(%rbp)
1088 /// addq %r13, -184(%rbp)
1089 /// ==>
1090 /// xorq %r12<kill>, %r13
1091 /// movq -184(%rbp), %r12
1092 /// addq %rax, %r12
1093 /// addq %r13, %r12
1094 /// movq %r12, -184(%rbp)
1095 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1096 MachineBasicBlock &MBB,
1097 MachineBasicBlock::iterator &MII,
1098 std::vector<MachineInstr*> &MaybeDeadStores,
1099 AvailableSpills &Spills,
1100 BitVector &RegKills,
1101 std::vector<MachineOperand*> &KillOps,
1102 VirtRegMap &VRM) {
1104 MachineBasicBlock::iterator NextMII = next(MII);
1105 if (NextMII == MBB.end())
1106 return false;
1108 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1109 return false;
1111 // Now let's see if the last couple of instructions happens to have freed up
1112 // a register.
1113 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1114 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1115 if (!PhysReg)
1116 return false;
1118 MachineFunction &MF = *MBB.getParent();
1119 TRI = MF.getTarget().getRegisterInfo();
1120 MachineInstr &MI = *MII;
1121 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1122 return false;
1124 // If the next instruction also folds the same SS modref and can be unfoled,
1125 // then it's worthwhile to issue a load from SS into the free register and
1126 // then unfold these instructions.
1127 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1128 return false;
1130 // Back-schedule reloads and remats.
1131 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
1133 // Load from SS to the spare physical register.
1134 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1135 // This invalidates Phys.
1136 Spills.ClobberPhysReg(PhysReg);
1137 // Remember it's available.
1138 Spills.addAvailable(SS, PhysReg);
1139 MaybeDeadStores[SS] = NULL;
1141 // Unfold current MI.
1142 SmallVector<MachineInstr*, 4> NewMIs;
1143 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1144 llvm_unreachable("Unable unfold the load / store folding instruction!");
1145 assert(NewMIs.size() == 1);
1146 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1147 VRM.transferRestorePts(&MI, NewMIs[0]);
1148 MII = MBB.insert(MII, NewMIs[0]);
1149 InvalidateKills(MI, TRI, RegKills, KillOps);
1150 VRM.RemoveMachineInstrFromMaps(&MI);
1151 MBB.erase(&MI);
1152 ++NumModRefUnfold;
1154 // Unfold next instructions that fold the same SS.
1155 do {
1156 MachineInstr &NextMI = *NextMII;
1157 NextMII = next(NextMII);
1158 NewMIs.clear();
1159 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1160 llvm_unreachable("Unable unfold the load / store folding instruction!");
1161 assert(NewMIs.size() == 1);
1162 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1163 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1164 MBB.insert(NextMII, NewMIs[0]);
1165 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1166 VRM.RemoveMachineInstrFromMaps(&NextMI);
1167 MBB.erase(&NextMI);
1168 ++NumModRefUnfold;
1169 if (NextMII == MBB.end())
1170 break;
1171 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1173 // Store the value back into SS.
1174 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1175 MachineInstr *StoreMI = prior(NextMII);
1176 VRM.addSpillSlotUse(SS, StoreMI);
1177 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1179 return true;
1182 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1183 /// instruction. e.g.
1184 /// xorl %edi, %eax
1185 /// movl %eax, -32(%ebp)
1186 /// movl -36(%ebp), %eax
1187 /// orl %eax, -32(%ebp)
1188 /// ==>
1189 /// xorl %edi, %eax
1190 /// orl -36(%ebp), %eax
1191 /// mov %eax, -32(%ebp)
1192 /// This enables unfolding optimization for a subsequent instruction which will
1193 /// also eliminate the newly introduced store instruction.
1194 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1195 MachineBasicBlock::iterator &MII,
1196 std::vector<MachineInstr*> &MaybeDeadStores,
1197 AvailableSpills &Spills,
1198 BitVector &RegKills,
1199 std::vector<MachineOperand*> &KillOps,
1200 VirtRegMap &VRM) {
1201 MachineFunction &MF = *MBB.getParent();
1202 MachineInstr &MI = *MII;
1203 unsigned UnfoldedOpc = 0;
1204 unsigned UnfoldPR = 0;
1205 unsigned UnfoldVR = 0;
1206 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1207 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1208 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1209 // Only transform a MI that folds a single register.
1210 if (UnfoldedOpc)
1211 return false;
1212 UnfoldVR = I->second.first;
1213 VirtRegMap::ModRef MR = I->second.second;
1214 // MI2VirtMap be can updated which invalidate the iterator.
1215 // Increment the iterator first.
1216 ++I;
1217 if (VRM.isAssignedReg(UnfoldVR))
1218 continue;
1219 // If this reference is not a use, any previous store is now dead.
1220 // Otherwise, the store to this stack slot is not dead anymore.
1221 FoldedSS = VRM.getStackSlot(UnfoldVR);
1222 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1223 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1224 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1225 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1226 continue;
1227 UnfoldPR = PhysReg;
1228 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1229 false, true);
1233 if (!UnfoldedOpc) {
1234 if (!UnfoldVR)
1235 return false;
1237 // Look for other unfolding opportunities.
1238 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1239 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1242 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1243 MachineOperand &MO = MI.getOperand(i);
1244 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1245 continue;
1246 unsigned VirtReg = MO.getReg();
1247 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1248 continue;
1249 if (VRM.isAssignedReg(VirtReg)) {
1250 unsigned PhysReg = VRM.getPhys(VirtReg);
1251 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1252 return false;
1253 } else if (VRM.isReMaterialized(VirtReg))
1254 continue;
1255 int SS = VRM.getStackSlot(VirtReg);
1256 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1257 if (PhysReg) {
1258 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1259 return false;
1260 continue;
1262 if (VRM.hasPhys(VirtReg)) {
1263 PhysReg = VRM.getPhys(VirtReg);
1264 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1265 continue;
1268 // Ok, we'll need to reload the value into a register which makes
1269 // it impossible to perform the store unfolding optimization later.
1270 // Let's see if it is possible to fold the load if the store is
1271 // unfolded. This allows us to perform the store unfolding
1272 // optimization.
1273 SmallVector<MachineInstr*, 4> NewMIs;
1274 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1275 assert(NewMIs.size() == 1);
1276 MachineInstr *NewMI = NewMIs.back();
1277 NewMIs.clear();
1278 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1279 assert(Idx != -1);
1280 SmallVector<unsigned, 1> Ops;
1281 Ops.push_back(Idx);
1282 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1283 if (FoldedMI) {
1284 VRM.addSpillSlotUse(SS, FoldedMI);
1285 if (!VRM.hasPhys(UnfoldVR))
1286 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1287 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1288 MII = MBB.insert(MII, FoldedMI);
1289 InvalidateKills(MI, TRI, RegKills, KillOps);
1290 VRM.RemoveMachineInstrFromMaps(&MI);
1291 MBB.erase(&MI);
1292 MF.DeleteMachineInstr(NewMI);
1293 return true;
1295 MF.DeleteMachineInstr(NewMI);
1299 return false;
1302 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1303 /// where SrcReg is r1 and it is tied to r0. Return true if after
1304 /// commuting this instruction it will be r0 = op r2, r1.
1305 static bool CommuteChangesDestination(MachineInstr *DefMI,
1306 const TargetInstrDesc &TID,
1307 unsigned SrcReg,
1308 const TargetInstrInfo *TII,
1309 unsigned &DstIdx) {
1310 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1311 return false;
1312 if (!DefMI->getOperand(1).isReg() ||
1313 DefMI->getOperand(1).getReg() != SrcReg)
1314 return false;
1315 unsigned DefIdx;
1316 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1317 return false;
1318 unsigned SrcIdx1, SrcIdx2;
1319 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1320 return false;
1321 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1322 DstIdx = 2;
1323 return true;
1325 return false;
1328 /// CommuteToFoldReload -
1329 /// Look for
1330 /// r1 = load fi#1
1331 /// r1 = op r1, r2<kill>
1332 /// store r1, fi#1
1334 /// If op is commutable and r2 is killed, then we can xform these to
1335 /// r2 = op r2, fi#1
1336 /// store r2, fi#1
1337 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1338 MachineBasicBlock::iterator &MII,
1339 unsigned VirtReg, unsigned SrcReg, int SS,
1340 AvailableSpills &Spills,
1341 BitVector &RegKills,
1342 std::vector<MachineOperand*> &KillOps,
1343 const TargetRegisterInfo *TRI,
1344 VirtRegMap &VRM) {
1345 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1346 return false;
1348 MachineFunction &MF = *MBB.getParent();
1349 MachineInstr &MI = *MII;
1350 MachineBasicBlock::iterator DefMII = prior(MII);
1351 MachineInstr *DefMI = DefMII;
1352 const TargetInstrDesc &TID = DefMI->getDesc();
1353 unsigned NewDstIdx;
1354 if (DefMII != MBB.begin() &&
1355 TID.isCommutable() &&
1356 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1357 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1358 unsigned NewReg = NewDstMO.getReg();
1359 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1360 return false;
1361 MachineInstr *ReloadMI = prior(DefMII);
1362 int FrameIdx;
1363 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1364 if (DestReg != SrcReg || FrameIdx != SS)
1365 return false;
1366 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1367 if (UseIdx == -1)
1368 return false;
1369 unsigned DefIdx;
1370 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1371 return false;
1372 assert(DefMI->getOperand(DefIdx).isReg() &&
1373 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1375 // Now commute def instruction.
1376 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1377 if (!CommutedMI)
1378 return false;
1379 SmallVector<unsigned, 1> Ops;
1380 Ops.push_back(NewDstIdx);
1381 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1382 // Not needed since foldMemoryOperand returns new MI.
1383 MF.DeleteMachineInstr(CommutedMI);
1384 if (!FoldedMI)
1385 return false;
1387 VRM.addSpillSlotUse(SS, FoldedMI);
1388 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1389 // Insert new def MI and spill MI.
1390 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1391 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1392 MII = prior(MII);
1393 MachineInstr *StoreMI = MII;
1394 VRM.addSpillSlotUse(SS, StoreMI);
1395 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1396 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1398 // Delete all 3 old instructions.
1399 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1400 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1401 MBB.erase(ReloadMI);
1402 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1403 VRM.RemoveMachineInstrFromMaps(DefMI);
1404 MBB.erase(DefMI);
1405 InvalidateKills(MI, TRI, RegKills, KillOps);
1406 VRM.RemoveMachineInstrFromMaps(&MI);
1407 MBB.erase(&MI);
1409 // If NewReg was previously holding value of some SS, it's now clobbered.
1410 // This has to be done now because it's a physical register. When this
1411 // instruction is re-visited, it's ignored.
1412 Spills.ClobberPhysReg(NewReg);
1414 ++NumCommutes;
1415 return true;
1418 return false;
1421 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1422 /// the last store to the same slot is now dead. If so, remove the last store.
1423 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1424 MachineBasicBlock::iterator &MII,
1425 int Idx, unsigned PhysReg, int StackSlot,
1426 const TargetRegisterClass *RC,
1427 bool isAvailable, MachineInstr *&LastStore,
1428 AvailableSpills &Spills,
1429 SmallSet<MachineInstr*, 4> &ReMatDefs,
1430 BitVector &RegKills,
1431 std::vector<MachineOperand*> &KillOps,
1432 VirtRegMap &VRM) {
1434 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1435 MachineInstr *StoreMI = next(MII);
1436 VRM.addSpillSlotUse(StackSlot, StoreMI);
1437 DEBUG(errs() << "Store:\t" << *StoreMI);
1439 // If there is a dead store to this stack slot, nuke it now.
1440 if (LastStore) {
1441 DEBUG(errs() << "Removed dead store:\t" << *LastStore);
1442 ++NumDSE;
1443 SmallVector<unsigned, 2> KillRegs;
1444 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1445 MachineBasicBlock::iterator PrevMII = LastStore;
1446 bool CheckDef = PrevMII != MBB.begin();
1447 if (CheckDef)
1448 --PrevMII;
1449 VRM.RemoveMachineInstrFromMaps(LastStore);
1450 MBB.erase(LastStore);
1451 if (CheckDef) {
1452 // Look at defs of killed registers on the store. Mark the defs
1453 // as dead since the store has been deleted and they aren't
1454 // being reused.
1455 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1456 bool HasOtherDef = false;
1457 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1458 MachineInstr *DeadDef = PrevMII;
1459 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1460 // FIXME: This assumes a remat def does not have side effects.
1461 VRM.RemoveMachineInstrFromMaps(DeadDef);
1462 MBB.erase(DeadDef);
1463 ++NumDRM;
1470 LastStore = next(MII);
1472 // If the stack slot value was previously available in some other
1473 // register, change it now. Otherwise, make the register available,
1474 // in PhysReg.
1475 Spills.ModifyStackSlotOrReMat(StackSlot);
1476 Spills.ClobberPhysReg(PhysReg);
1477 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1478 ++NumStores;
1481 /// TransferDeadness - A identity copy definition is dead and it's being
1482 /// removed. Find the last def or use and mark it as dead / kill.
1483 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1484 unsigned Reg, BitVector &RegKills,
1485 std::vector<MachineOperand*> &KillOps,
1486 VirtRegMap &VRM) {
1487 SmallPtrSet<MachineInstr*, 4> Seens;
1488 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1489 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1490 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1491 MachineInstr *UDMI = &*RI;
1492 if (UDMI->getParent() != MBB)
1493 continue;
1494 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1495 if (DI == DistanceMap.end() || DI->second > CurDist)
1496 continue;
1497 if (Seens.insert(UDMI))
1498 Refs.push_back(std::make_pair(UDMI, DI->second));
1501 if (Refs.empty())
1502 return;
1503 std::sort(Refs.begin(), Refs.end(), RefSorter());
1505 while (!Refs.empty()) {
1506 MachineInstr *LastUDMI = Refs.back().first;
1507 Refs.pop_back();
1509 MachineOperand *LastUD = NULL;
1510 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1511 MachineOperand &MO = LastUDMI->getOperand(i);
1512 if (!MO.isReg() || MO.getReg() != Reg)
1513 continue;
1514 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1515 LastUD = &MO;
1516 if (LastUDMI->isRegTiedToDefOperand(i))
1517 break;
1519 if (LastUD->isDef()) {
1520 // If the instruction has no side effect, delete it and propagate
1521 // backward further. Otherwise, mark is dead and we are done.
1522 if (!TII->isDeadInstruction(LastUDMI)) {
1523 LastUD->setIsDead();
1524 break;
1526 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1527 MBB->erase(LastUDMI);
1528 } else {
1529 LastUD->setIsKill();
1530 RegKills.set(Reg);
1531 KillOps[Reg] = LastUD;
1532 break;
1537 /// rewriteMBB - Keep track of which spills are available even after the
1538 /// register allocator is done with them. If possible, avid reloading vregs.
1539 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1540 LiveIntervals *LIs,
1541 AvailableSpills &Spills, BitVector &RegKills,
1542 std::vector<MachineOperand*> &KillOps) {
1544 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1545 << MBB.getBasicBlock()->getName() << "':\n");
1547 MachineFunction &MF = *MBB.getParent();
1549 // MaybeDeadStores - When we need to write a value back into a stack slot,
1550 // keep track of the inserted store. If the stack slot value is never read
1551 // (because the value was used from some available register, for example), and
1552 // subsequently stored to, the original store is dead. This map keeps track
1553 // of inserted stores that are not used. If we see a subsequent store to the
1554 // same stack slot, the original store is deleted.
1555 std::vector<MachineInstr*> MaybeDeadStores;
1556 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1558 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1559 SmallSet<MachineInstr*, 4> ReMatDefs;
1561 // Clear kill info.
1562 SmallSet<unsigned, 2> KilledMIRegs;
1563 RegKills.reset();
1564 KillOps.clear();
1565 KillOps.resize(TRI->getNumRegs(), NULL);
1567 unsigned Dist = 0;
1568 DistanceMap.clear();
1569 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1570 MII != E; ) {
1571 MachineBasicBlock::iterator NextMII = next(MII);
1573 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1574 bool Erased = false;
1575 bool BackTracked = false;
1576 if (OptimizeByUnfold(MBB, MII,
1577 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1578 NextMII = next(MII);
1580 MachineInstr &MI = *MII;
1582 if (VRM.hasEmergencySpills(&MI)) {
1583 // Spill physical register(s) in the rare case the allocator has run out
1584 // of registers to allocate.
1585 SmallSet<int, 4> UsedSS;
1586 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1587 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1588 unsigned PhysReg = EmSpills[i];
1589 const TargetRegisterClass *RC =
1590 TRI->getPhysicalRegisterRegClass(PhysReg);
1591 assert(RC && "Unable to determine register class!");
1592 int SS = VRM.getEmergencySpillSlot(RC);
1593 if (UsedSS.count(SS))
1594 llvm_unreachable("Need to spill more than one physical registers!");
1595 UsedSS.insert(SS);
1596 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1597 MachineInstr *StoreMI = prior(MII);
1598 VRM.addSpillSlotUse(SS, StoreMI);
1600 // Back-schedule reloads and remats.
1601 MachineBasicBlock::iterator InsertLoc =
1602 ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
1603 SS, TII, MF);
1605 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1607 MachineInstr *LoadMI = prior(InsertLoc);
1608 VRM.addSpillSlotUse(SS, LoadMI);
1609 ++NumPSpills;
1610 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1612 NextMII = next(MII);
1615 // Insert restores here if asked to.
1616 if (VRM.isRestorePt(&MI)) {
1617 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1618 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1619 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1620 if (!VRM.getPreSplitReg(VirtReg))
1621 continue; // Split interval spilled again.
1622 unsigned Phys = VRM.getPhys(VirtReg);
1623 RegInfo->setPhysRegUsed(Phys);
1625 // Check if the value being restored if available. If so, it must be
1626 // from a predecessor BB that fallthrough into this BB. We do not
1627 // expect:
1628 // BB1:
1629 // r1 = load fi#1
1630 // ...
1631 // = r1<kill>
1632 // ... # r1 not clobbered
1633 // ...
1634 // = load fi#1
1635 bool DoReMat = VRM.isReMaterialized(VirtReg);
1636 int SSorRMId = DoReMat
1637 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1638 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1639 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1640 if (InReg == Phys) {
1641 // If the value is already available in the expected register, save
1642 // a reload / remat.
1643 if (SSorRMId)
1644 DEBUG(errs() << "Reusing RM#"
1645 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1646 else
1647 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1648 DEBUG(errs() << " from physreg "
1649 << TRI->getName(InReg) << " for vreg"
1650 << VirtReg <<" instead of reloading into physreg "
1651 << TRI->getName(Phys) << '\n');
1652 ++NumOmitted;
1653 continue;
1654 } else if (InReg && InReg != Phys) {
1655 if (SSorRMId)
1656 DEBUG(errs() << "Reusing RM#"
1657 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1658 else
1659 DEBUG(errs() << "Reusing SS#" << SSorRMId);
1660 DEBUG(errs() << " from physreg "
1661 << TRI->getName(InReg) << " for vreg"
1662 << VirtReg <<" by copying it into physreg "
1663 << TRI->getName(Phys) << '\n');
1665 // If the reloaded / remat value is available in another register,
1666 // copy it to the desired register.
1668 // Back-schedule reloads and remats.
1669 MachineBasicBlock::iterator InsertLoc =
1670 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1671 SSorRMId, TII, MF);
1673 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
1675 // This invalidates Phys.
1676 Spills.ClobberPhysReg(Phys);
1677 // Remember it's available.
1678 Spills.addAvailable(SSorRMId, Phys);
1680 // Mark is killed.
1681 MachineInstr *CopyMI = prior(InsertLoc);
1682 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1683 KillOpnd->setIsKill();
1684 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1686 DEBUG(errs() << '\t' << *CopyMI);
1687 ++NumCopified;
1688 continue;
1691 // Back-schedule reloads and remats.
1692 MachineBasicBlock::iterator InsertLoc =
1693 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1694 SSorRMId, TII, MF);
1696 if (VRM.isReMaterialized(VirtReg)) {
1697 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
1698 } else {
1699 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1700 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1701 MachineInstr *LoadMI = prior(InsertLoc);
1702 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1703 ++NumLoads;
1704 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1707 // This invalidates Phys.
1708 Spills.ClobberPhysReg(Phys);
1709 // Remember it's available.
1710 Spills.addAvailable(SSorRMId, Phys);
1712 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1713 DEBUG(errs() << '\t' << *prior(MII));
1717 // Insert spills here if asked to.
1718 if (VRM.isSpillPt(&MI)) {
1719 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1720 VRM.getSpillPtSpills(&MI);
1721 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1722 unsigned VirtReg = SpillRegs[i].first;
1723 bool isKill = SpillRegs[i].second;
1724 if (!VRM.getPreSplitReg(VirtReg))
1725 continue; // Split interval spilled again.
1726 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1727 unsigned Phys = VRM.getPhys(VirtReg);
1728 int StackSlot = VRM.getStackSlot(VirtReg);
1729 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1730 MachineInstr *StoreMI = next(MII);
1731 VRM.addSpillSlotUse(StackSlot, StoreMI);
1732 DEBUG(errs() << "Store:\t" << *StoreMI);
1733 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1735 NextMII = next(MII);
1738 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1739 /// reuse.
1740 ReuseInfo ReusedOperands(MI, TRI);
1741 SmallVector<unsigned, 4> VirtUseOps;
1742 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1743 MachineOperand &MO = MI.getOperand(i);
1744 if (!MO.isReg() || MO.getReg() == 0)
1745 continue; // Ignore non-register operands.
1747 unsigned VirtReg = MO.getReg();
1748 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1749 // Ignore physregs for spilling, but remember that it is used by this
1750 // function.
1751 RegInfo->setPhysRegUsed(VirtReg);
1752 continue;
1755 // We want to process implicit virtual register uses first.
1756 if (MO.isImplicit())
1757 // If the virtual register is implicitly defined, emit a implicit_def
1758 // before so scavenger knows it's "defined".
1759 // FIXME: This is a horrible hack done the by register allocator to
1760 // remat a definition with virtual register operand.
1761 VirtUseOps.insert(VirtUseOps.begin(), i);
1762 else
1763 VirtUseOps.push_back(i);
1766 // Process all of the spilled uses and all non spilled reg references.
1767 SmallVector<int, 2> PotentialDeadStoreSlots;
1768 KilledMIRegs.clear();
1769 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1770 unsigned i = VirtUseOps[j];
1771 MachineOperand &MO = MI.getOperand(i);
1772 unsigned VirtReg = MO.getReg();
1773 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1774 "Not a virtual register?");
1776 unsigned SubIdx = MO.getSubReg();
1777 if (VRM.isAssignedReg(VirtReg)) {
1778 // This virtual register was assigned a physreg!
1779 unsigned Phys = VRM.getPhys(VirtReg);
1780 RegInfo->setPhysRegUsed(Phys);
1781 if (MO.isDef())
1782 ReusedOperands.markClobbered(Phys);
1783 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1784 MI.getOperand(i).setReg(RReg);
1785 MI.getOperand(i).setSubReg(0);
1786 if (VRM.isImplicitlyDefined(VirtReg))
1787 // FIXME: Is this needed?
1788 BuildMI(MBB, &MI, MI.getDebugLoc(),
1789 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1790 continue;
1793 // This virtual register is now known to be a spilled value.
1794 if (!MO.isUse())
1795 continue; // Handle defs in the loop below (handle use&def here though)
1797 bool AvoidReload = MO.isUndef();
1798 // Check if it is defined by an implicit def. It should not be spilled.
1799 // Note, this is for correctness reason. e.g.
1800 // 8 %reg1024<def> = IMPLICIT_DEF
1801 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1802 // The live range [12, 14) are not part of the r1024 live interval since
1803 // it's defined by an implicit def. It will not conflicts with live
1804 // interval of r1025. Now suppose both registers are spilled, you can
1805 // easily see a situation where both registers are reloaded before
1806 // the INSERT_SUBREG and both target registers that would overlap.
1807 bool DoReMat = VRM.isReMaterialized(VirtReg);
1808 int SSorRMId = DoReMat
1809 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1810 int ReuseSlot = SSorRMId;
1812 // Check to see if this stack slot is available.
1813 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1815 // If this is a sub-register use, make sure the reuse register is in the
1816 // right register class. For example, for x86 not all of the 32-bit
1817 // registers have accessible sub-registers.
1818 // Similarly so for EXTRACT_SUBREG. Consider this:
1819 // EDI = op
1820 // MOV32_mr fi#1, EDI
1821 // ...
1822 // = EXTRACT_SUBREG fi#1
1823 // fi#1 is available in EDI, but it cannot be reused because it's not in
1824 // the right register file.
1825 if (PhysReg && !AvoidReload &&
1826 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1827 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1828 if (!RC->contains(PhysReg))
1829 PhysReg = 0;
1832 if (PhysReg && !AvoidReload) {
1833 // This spilled operand might be part of a two-address operand. If this
1834 // is the case, then changing it will necessarily require changing the
1835 // def part of the instruction as well. However, in some cases, we
1836 // aren't allowed to modify the reused register. If none of these cases
1837 // apply, reuse it.
1838 bool CanReuse = true;
1839 bool isTied = MI.isRegTiedToDefOperand(i);
1840 if (isTied) {
1841 // Okay, we have a two address operand. We can reuse this physreg as
1842 // long as we are allowed to clobber the value and there isn't an
1843 // earlier def that has already clobbered the physreg.
1844 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1845 Spills.canClobberPhysReg(PhysReg);
1848 if (CanReuse) {
1849 // If this stack slot value is already available, reuse it!
1850 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1851 DEBUG(errs() << "Reusing RM#"
1852 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
1853 else
1854 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1855 DEBUG(errs() << " from physreg "
1856 << TRI->getName(PhysReg) << " for vreg"
1857 << VirtReg <<" instead of reloading into physreg "
1858 << TRI->getName(VRM.getPhys(VirtReg)) << '\n');
1859 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1860 MI.getOperand(i).setReg(RReg);
1861 MI.getOperand(i).setSubReg(0);
1863 // The only technical detail we have is that we don't know that
1864 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1865 // later in the instruction. In particular, consider 'op V1, V2'.
1866 // If V1 is available in physreg R0, we would choose to reuse it
1867 // here, instead of reloading it into the register the allocator
1868 // indicated (say R1). However, V2 might have to be reloaded
1869 // later, and it might indicate that it needs to live in R0. When
1870 // this occurs, we need to have information available that
1871 // indicates it is safe to use R1 for the reload instead of R0.
1873 // To further complicate matters, we might conflict with an alias,
1874 // or R0 and R1 might not be compatible with each other. In this
1875 // case, we actually insert a reload for V1 in R1, ensuring that
1876 // we can get at R0 or its alias.
1877 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1878 VRM.getPhys(VirtReg), VirtReg);
1879 if (isTied)
1880 // Only mark it clobbered if this is a use&def operand.
1881 ReusedOperands.markClobbered(PhysReg);
1882 ++NumReused;
1884 if (MI.getOperand(i).isKill() &&
1885 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1887 // The store of this spilled value is potentially dead, but we
1888 // won't know for certain until we've confirmed that the re-use
1889 // above is valid, which means waiting until the other operands
1890 // are processed. For now we just track the spill slot, we'll
1891 // remove it after the other operands are processed if valid.
1893 PotentialDeadStoreSlots.push_back(ReuseSlot);
1896 // Mark is isKill if it's there no other uses of the same virtual
1897 // register and it's not a two-address operand. IsKill will be
1898 // unset if reg is reused.
1899 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1900 MI.getOperand(i).setIsKill();
1901 KilledMIRegs.insert(VirtReg);
1904 continue;
1905 } // CanReuse
1907 // Otherwise we have a situation where we have a two-address instruction
1908 // whose mod/ref operand needs to be reloaded. This reload is already
1909 // available in some register "PhysReg", but if we used PhysReg as the
1910 // operand to our 2-addr instruction, the instruction would modify
1911 // PhysReg. This isn't cool if something later uses PhysReg and expects
1912 // to get its initial value.
1914 // To avoid this problem, and to avoid doing a load right after a store,
1915 // we emit a copy from PhysReg into the designated register for this
1916 // operand.
1917 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1918 assert(DesignatedReg && "Must map virtreg to physreg!");
1920 // Note that, if we reused a register for a previous operand, the
1921 // register we want to reload into might not actually be
1922 // available. If this occurs, use the register indicated by the
1923 // reuser.
1924 if (ReusedOperands.hasReuses())
1925 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1926 DesignatedReg, &MI,
1927 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1929 // If the mapped designated register is actually the physreg we have
1930 // incoming, we don't need to inserted a dead copy.
1931 if (DesignatedReg == PhysReg) {
1932 // If this stack slot value is already available, reuse it!
1933 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1934 DEBUG(errs() << "Reusing RM#"
1935 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
1936 else
1937 DEBUG(errs() << "Reusing SS#" << ReuseSlot);
1938 DEBUG(errs() << " from physreg " << TRI->getName(PhysReg)
1939 << " for vreg" << VirtReg
1940 << " instead of reloading into same physreg.\n");
1941 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1942 MI.getOperand(i).setReg(RReg);
1943 MI.getOperand(i).setSubReg(0);
1944 ReusedOperands.markClobbered(RReg);
1945 ++NumReused;
1946 continue;
1949 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1950 RegInfo->setPhysRegUsed(DesignatedReg);
1951 ReusedOperands.markClobbered(DesignatedReg);
1953 // Back-schedule reloads and remats.
1954 MachineBasicBlock::iterator InsertLoc =
1955 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
1956 SSorRMId, TII, MF);
1958 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
1960 MachineInstr *CopyMI = prior(InsertLoc);
1961 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1963 // This invalidates DesignatedReg.
1964 Spills.ClobberPhysReg(DesignatedReg);
1966 Spills.addAvailable(ReuseSlot, DesignatedReg);
1967 unsigned RReg =
1968 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1969 MI.getOperand(i).setReg(RReg);
1970 MI.getOperand(i).setSubReg(0);
1971 DEBUG(errs() << '\t' << *prior(MII));
1972 ++NumReused;
1973 continue;
1974 } // if (PhysReg)
1976 // Otherwise, reload it and remember that we have it.
1977 PhysReg = VRM.getPhys(VirtReg);
1978 assert(PhysReg && "Must map virtreg to physreg!");
1980 // Note that, if we reused a register for a previous operand, the
1981 // register we want to reload into might not actually be
1982 // available. If this occurs, use the register indicated by the
1983 // reuser.
1984 if (ReusedOperands.hasReuses())
1985 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1986 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1988 RegInfo->setPhysRegUsed(PhysReg);
1989 ReusedOperands.markClobbered(PhysReg);
1990 if (AvoidReload)
1991 ++NumAvoided;
1992 else {
1993 // Back-schedule reloads and remats.
1994 MachineBasicBlock::iterator InsertLoc =
1995 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
1996 SSorRMId, TII, MF);
1998 if (DoReMat) {
1999 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
2000 } else {
2001 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
2002 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
2003 MachineInstr *LoadMI = prior(InsertLoc);
2004 VRM.addSpillSlotUse(SSorRMId, LoadMI);
2005 ++NumLoads;
2006 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
2008 // This invalidates PhysReg.
2009 Spills.ClobberPhysReg(PhysReg);
2011 // Any stores to this stack slot are not dead anymore.
2012 if (!DoReMat)
2013 MaybeDeadStores[SSorRMId] = NULL;
2014 Spills.addAvailable(SSorRMId, PhysReg);
2015 // Assumes this is the last use. IsKill will be unset if reg is reused
2016 // unless it's a two-address operand.
2017 if (!MI.isRegTiedToDefOperand(i) &&
2018 KilledMIRegs.count(VirtReg) == 0) {
2019 MI.getOperand(i).setIsKill();
2020 KilledMIRegs.insert(VirtReg);
2023 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2024 DEBUG(errs() << '\t' << *prior(InsertLoc));
2026 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2027 MI.getOperand(i).setReg(RReg);
2028 MI.getOperand(i).setSubReg(0);
2031 // Ok - now we can remove stores that have been confirmed dead.
2032 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2033 // This was the last use and the spilled value is still available
2034 // for reuse. That means the spill was unnecessary!
2035 int PDSSlot = PotentialDeadStoreSlots[j];
2036 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2037 if (DeadStore) {
2038 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
2039 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2040 VRM.RemoveMachineInstrFromMaps(DeadStore);
2041 MBB.erase(DeadStore);
2042 MaybeDeadStores[PDSSlot] = NULL;
2043 ++NumDSE;
2048 DEBUG(errs() << '\t' << MI);
2051 // If we have folded references to memory operands, make sure we clear all
2052 // physical registers that may contain the value of the spilled virtual
2053 // register
2054 SmallSet<int, 2> FoldedSS;
2055 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2056 unsigned VirtReg = I->second.first;
2057 VirtRegMap::ModRef MR = I->second.second;
2058 DEBUG(errs() << "Folded vreg: " << VirtReg << " MR: " << MR);
2060 // MI2VirtMap be can updated which invalidate the iterator.
2061 // Increment the iterator first.
2062 ++I;
2063 int SS = VRM.getStackSlot(VirtReg);
2064 if (SS == VirtRegMap::NO_STACK_SLOT)
2065 continue;
2066 FoldedSS.insert(SS);
2067 DEBUG(errs() << " - StackSlot: " << SS << "\n");
2069 // If this folded instruction is just a use, check to see if it's a
2070 // straight load from the virt reg slot.
2071 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2072 int FrameIdx;
2073 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2074 if (DestReg && FrameIdx == SS) {
2075 // If this spill slot is available, turn it into a copy (or nothing)
2076 // instead of leaving it as a load!
2077 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2078 DEBUG(errs() << "Promoted Load To Copy: " << MI);
2079 if (DestReg != InReg) {
2080 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2081 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2082 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2083 unsigned SubIdx = DefMO->getSubReg();
2084 // Revisit the copy so we make sure to notice the effects of the
2085 // operation on the destreg (either needing to RA it if it's
2086 // virtual or needing to clobber any values if it's physical).
2087 NextMII = &MI;
2088 --NextMII; // backtrack to the copy.
2089 // Propagate the sub-register index over.
2090 if (SubIdx) {
2091 DefMO = NextMII->findRegisterDefOperand(DestReg);
2092 DefMO->setSubReg(SubIdx);
2095 // Mark is killed.
2096 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2097 KillOpnd->setIsKill();
2099 BackTracked = true;
2100 } else {
2101 DEBUG(errs() << "Removing now-noop copy: " << MI);
2102 // Unset last kill since it's being reused.
2103 InvalidateKill(InReg, TRI, RegKills, KillOps);
2104 Spills.disallowClobberPhysReg(InReg);
2107 InvalidateKills(MI, TRI, RegKills, KillOps);
2108 VRM.RemoveMachineInstrFromMaps(&MI);
2109 MBB.erase(&MI);
2110 Erased = true;
2111 goto ProcessNextInst;
2113 } else {
2114 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2115 SmallVector<MachineInstr*, 4> NewMIs;
2116 if (PhysReg &&
2117 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2118 MBB.insert(MII, NewMIs[0]);
2119 InvalidateKills(MI, TRI, RegKills, KillOps);
2120 VRM.RemoveMachineInstrFromMaps(&MI);
2121 MBB.erase(&MI);
2122 Erased = true;
2123 --NextMII; // backtrack to the unfolded instruction.
2124 BackTracked = true;
2125 goto ProcessNextInst;
2130 // If this reference is not a use, any previous store is now dead.
2131 // Otherwise, the store to this stack slot is not dead anymore.
2132 MachineInstr* DeadStore = MaybeDeadStores[SS];
2133 if (DeadStore) {
2134 bool isDead = !(MR & VirtRegMap::isRef);
2135 MachineInstr *NewStore = NULL;
2136 if (MR & VirtRegMap::isModRef) {
2137 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2138 SmallVector<MachineInstr*, 4> NewMIs;
2139 // We can reuse this physreg as long as we are allowed to clobber
2140 // the value and there isn't an earlier def that has already clobbered
2141 // the physreg.
2142 if (PhysReg &&
2143 !ReusedOperands.isClobbered(PhysReg) &&
2144 Spills.canClobberPhysReg(PhysReg) &&
2145 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2146 MachineOperand *KillOpnd =
2147 DeadStore->findRegisterUseOperand(PhysReg, true);
2148 // Note, if the store is storing a sub-register, it's possible the
2149 // super-register is needed below.
2150 if (KillOpnd && !KillOpnd->getSubReg() &&
2151 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2152 MBB.insert(MII, NewMIs[0]);
2153 NewStore = NewMIs[1];
2154 MBB.insert(MII, NewStore);
2155 VRM.addSpillSlotUse(SS, NewStore);
2156 InvalidateKills(MI, TRI, RegKills, KillOps);
2157 VRM.RemoveMachineInstrFromMaps(&MI);
2158 MBB.erase(&MI);
2159 Erased = true;
2160 --NextMII;
2161 --NextMII; // backtrack to the unfolded instruction.
2162 BackTracked = true;
2163 isDead = true;
2164 ++NumSUnfold;
2169 if (isDead) { // Previous store is dead.
2170 // If we get here, the store is dead, nuke it now.
2171 DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
2172 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2173 VRM.RemoveMachineInstrFromMaps(DeadStore);
2174 MBB.erase(DeadStore);
2175 if (!NewStore)
2176 ++NumDSE;
2179 MaybeDeadStores[SS] = NULL;
2180 if (NewStore) {
2181 // Treat this store as a spill merged into a copy. That makes the
2182 // stack slot value available.
2183 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2184 goto ProcessNextInst;
2188 // If the spill slot value is available, and this is a new definition of
2189 // the value, the value is not available anymore.
2190 if (MR & VirtRegMap::isMod) {
2191 // Notice that the value in this stack slot has been modified.
2192 Spills.ModifyStackSlotOrReMat(SS);
2194 // If this is *just* a mod of the value, check to see if this is just a
2195 // store to the spill slot (i.e. the spill got merged into the copy). If
2196 // so, realize that the vreg is available now, and add the store to the
2197 // MaybeDeadStore info.
2198 int StackSlot;
2199 if (!(MR & VirtRegMap::isRef)) {
2200 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2201 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2202 "Src hasn't been allocated yet?");
2204 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2205 Spills, RegKills, KillOps, TRI, VRM)) {
2206 NextMII = next(MII);
2207 BackTracked = true;
2208 goto ProcessNextInst;
2211 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2212 // this as a potentially dead store in case there is a subsequent
2213 // store into the stack slot without a read from it.
2214 MaybeDeadStores[StackSlot] = &MI;
2216 // If the stack slot value was previously available in some other
2217 // register, change it now. Otherwise, make the register
2218 // available in PhysReg.
2219 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2225 // Process all of the spilled defs.
2226 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2227 MachineOperand &MO = MI.getOperand(i);
2228 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2229 continue;
2231 unsigned VirtReg = MO.getReg();
2232 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2233 // Check to see if this is a noop copy. If so, eliminate the
2234 // instruction before considering the dest reg to be changed.
2235 // Also check if it's copying from an "undef", if so, we can't
2236 // eliminate this or else the undef marker is lost and it will
2237 // confuses the scavenger. This is extremely rare.
2238 unsigned Src, Dst, SrcSR, DstSR;
2239 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2240 !MI.findRegisterUseOperand(Src)->isUndef()) {
2241 ++NumDCE;
2242 DEBUG(errs() << "Removing now-noop copy: " << MI);
2243 SmallVector<unsigned, 2> KillRegs;
2244 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2245 if (MO.isDead() && !KillRegs.empty()) {
2246 // Source register or an implicit super/sub-register use is killed.
2247 assert(KillRegs[0] == Dst ||
2248 TRI->isSubRegister(KillRegs[0], Dst) ||
2249 TRI->isSuperRegister(KillRegs[0], Dst));
2250 // Last def is now dead.
2251 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
2253 VRM.RemoveMachineInstrFromMaps(&MI);
2254 MBB.erase(&MI);
2255 Erased = true;
2256 Spills.disallowClobberPhysReg(VirtReg);
2257 goto ProcessNextInst;
2260 // If it's not a no-op copy, it clobbers the value in the destreg.
2261 Spills.ClobberPhysReg(VirtReg);
2262 ReusedOperands.markClobbered(VirtReg);
2264 // Check to see if this instruction is a load from a stack slot into
2265 // a register. If so, this provides the stack slot value in the reg.
2266 int FrameIdx;
2267 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2268 assert(DestReg == VirtReg && "Unknown load situation!");
2270 // If it is a folded reference, then it's not safe to clobber.
2271 bool Folded = FoldedSS.count(FrameIdx);
2272 // Otherwise, if it wasn't available, remember that it is now!
2273 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2274 goto ProcessNextInst;
2277 continue;
2280 unsigned SubIdx = MO.getSubReg();
2281 bool DoReMat = VRM.isReMaterialized(VirtReg);
2282 if (DoReMat)
2283 ReMatDefs.insert(&MI);
2285 // The only vregs left are stack slot definitions.
2286 int StackSlot = VRM.getStackSlot(VirtReg);
2287 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2289 // If this def is part of a two-address operand, make sure to execute
2290 // the store from the correct physical register.
2291 unsigned PhysReg;
2292 unsigned TiedOp;
2293 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2294 PhysReg = MI.getOperand(TiedOp).getReg();
2295 if (SubIdx) {
2296 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2297 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2298 "Can't find corresponding super-register!");
2299 PhysReg = SuperReg;
2301 } else {
2302 PhysReg = VRM.getPhys(VirtReg);
2303 if (ReusedOperands.isClobbered(PhysReg)) {
2304 // Another def has taken the assigned physreg. It must have been a
2305 // use&def which got it due to reuse. Undo the reuse!
2306 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2307 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2311 assert(PhysReg && "VR not assigned a physical register?");
2312 RegInfo->setPhysRegUsed(PhysReg);
2313 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2314 ReusedOperands.markClobbered(RReg);
2315 MI.getOperand(i).setReg(RReg);
2316 MI.getOperand(i).setSubReg(0);
2318 if (!MO.isDead()) {
2319 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2320 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2321 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2322 NextMII = next(MII);
2324 // Check to see if this is a noop copy. If so, eliminate the
2325 // instruction before considering the dest reg to be changed.
2327 unsigned Src, Dst, SrcSR, DstSR;
2328 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2329 ++NumDCE;
2330 DEBUG(errs() << "Removing now-noop copy: " << MI);
2331 InvalidateKills(MI, TRI, RegKills, KillOps);
2332 VRM.RemoveMachineInstrFromMaps(&MI);
2333 MBB.erase(&MI);
2334 Erased = true;
2335 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2336 goto ProcessNextInst;
2341 ProcessNextInst:
2342 // Delete dead instructions without side effects.
2343 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
2344 InvalidateKills(MI, TRI, RegKills, KillOps);
2345 VRM.RemoveMachineInstrFromMaps(&MI);
2346 MBB.erase(&MI);
2347 Erased = true;
2349 if (!Erased)
2350 DistanceMap.insert(std::make_pair(&MI, Dist++));
2351 if (!Erased && !BackTracked) {
2352 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2353 UpdateKills(*II, TRI, RegKills, KillOps);
2355 MII = NextMII;
2364 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2365 switch (RewriterOpt) {
2366 default: llvm_unreachable("Unreachable!");
2367 case local:
2368 return new LocalRewriter();
2369 case trivial:
2370 return new TrivialRewriter();