1 //===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements Loop Index Splitting Pass. This pass handles three
13 // [1] A loop may be eliminated if the body is executed exactly once.
16 // for (i = 0; i < N; ++i) {
27 // [2] A loop's iteration space may be shrunk if the loop body is executed
28 // for a proper sub-range of the loop's iteration space. For example,
30 // for (i = 0; i < N; ++i) {
31 // if (i > A && i < B) {
36 // is transformed to iterators from A to B, if A > 0 and B < N.
38 // [3] A loop may be split if the loop body is dominated by a branch.
41 // for (i = LB; i < UB; ++i) { if (i < SV) A; else B; }
43 // is transformed into
46 // for (i = LB; i < min(UB, AEV); ++i)
48 // for (i = max(LB, BSV); i < UB; ++i);
51 //===----------------------------------------------------------------------===//
53 #define DEBUG_TYPE "loop-index-split"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/IntrinsicInst.h"
56 #include "llvm/LLVMContext.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/Dominators.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Cloning.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/ADT/DepthFirstIterator.h"
64 #include "llvm/ADT/Statistic.h"
68 STATISTIC(NumIndexSplit
, "Number of loop index split");
69 STATISTIC(NumIndexSplitRemoved
, "Number of loops eliminated by loop index split");
70 STATISTIC(NumRestrictBounds
, "Number of loop iteration space restricted");
74 class LoopIndexSplit
: public LoopPass
{
76 static char ID
; // Pass ID, replacement for typeid
77 LoopIndexSplit() : LoopPass(&ID
) {}
79 // Index split Loop L. Return true if loop is split.
80 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
82 void getAnalysisUsage(AnalysisUsage
&AU
) const {
83 AU
.addPreserved
<ScalarEvolution
>();
84 AU
.addRequiredID(LCSSAID
);
85 AU
.addPreservedID(LCSSAID
);
86 AU
.addRequired
<LoopInfo
>();
87 AU
.addPreserved
<LoopInfo
>();
88 AU
.addRequiredID(LoopSimplifyID
);
89 AU
.addPreservedID(LoopSimplifyID
);
90 AU
.addRequired
<DominatorTree
>();
91 AU
.addRequired
<DominanceFrontier
>();
92 AU
.addPreserved
<DominatorTree
>();
93 AU
.addPreserved
<DominanceFrontier
>();
97 /// processOneIterationLoop -- Eliminate loop if loop body is executed
98 /// only once. For example,
99 /// for (i = 0; i < N; ++i) {
105 bool processOneIterationLoop();
107 // -- Routines used by updateLoopIterationSpace();
109 /// updateLoopIterationSpace -- Update loop's iteration space if loop
110 /// body is executed for certain IV range only. For example,
112 /// for (i = 0; i < N; ++i) {
113 /// if ( i > A && i < B) {
117 /// is transformed to iterators from A to B, if A > 0 and B < N.
119 bool updateLoopIterationSpace();
121 /// restrictLoopBound - Op dominates loop body. Op compares an IV based value
122 /// with a loop invariant value. Update loop's lower and upper bound based on
123 /// the loop invariant value.
124 bool restrictLoopBound(ICmpInst
&Op
);
126 // --- Routines used by splitLoop(). --- /
130 /// removeBlocks - Remove basic block DeadBB and all blocks dominated by
131 /// DeadBB. This routine is used to remove split condition's dead branch,
132 /// dominated by DeadBB. LiveBB dominates split conidition's other branch.
133 void removeBlocks(BasicBlock
*DeadBB
, Loop
*LP
, BasicBlock
*LiveBB
);
135 /// moveExitCondition - Move exit condition EC into split condition block.
136 void moveExitCondition(BasicBlock
*CondBB
, BasicBlock
*ActiveBB
,
137 BasicBlock
*ExitBB
, ICmpInst
*EC
, ICmpInst
*SC
,
138 PHINode
*IV
, Instruction
*IVAdd
, Loop
*LP
,
141 /// updatePHINodes - CFG has been changed.
143 /// - ExitBB's single predecessor was Latch
144 /// - Latch's second successor was Header
146 /// - ExitBB's single predecessor was Header
147 /// - Latch's one and only successor was Header
149 /// Update ExitBB PHINodes' to reflect this change.
150 void updatePHINodes(BasicBlock
*ExitBB
, BasicBlock
*Latch
,
152 PHINode
*IV
, Instruction
*IVIncrement
, Loop
*LP
);
154 // --- Utility routines --- /
156 /// cleanBlock - A block is considered clean if all non terminal
157 /// instructions are either PHINodes or IV based values.
158 bool cleanBlock(BasicBlock
*BB
);
160 /// IVisLT - If Op is comparing IV based value with an loop invariant and
161 /// IV based value is less than the loop invariant then return the loop
162 /// invariant. Otherwise return NULL.
163 Value
* IVisLT(ICmpInst
&Op
);
165 /// IVisLE - If Op is comparing IV based value with an loop invariant and
166 /// IV based value is less than or equal to the loop invariant then
167 /// return the loop invariant. Otherwise return NULL.
168 Value
* IVisLE(ICmpInst
&Op
);
170 /// IVisGT - If Op is comparing IV based value with an loop invariant and
171 /// IV based value is greater than the loop invariant then return the loop
172 /// invariant. Otherwise return NULL.
173 Value
* IVisGT(ICmpInst
&Op
);
175 /// IVisGE - If Op is comparing IV based value with an loop invariant and
176 /// IV based value is greater than or equal to the loop invariant then
177 /// return the loop invariant. Otherwise return NULL.
178 Value
* IVisGE(ICmpInst
&Op
);
182 // Current Loop information.
187 DominanceFrontier
*DF
;
190 ICmpInst
*ExitCondition
;
191 ICmpInst
*SplitCondition
;
194 Instruction
*IVIncrement
;
195 SmallPtrSet
<Value
*, 4> IVBasedValues
;
199 char LoopIndexSplit::ID
= 0;
200 static RegisterPass
<LoopIndexSplit
>
201 X("loop-index-split", "Index Split Loops");
203 Pass
*llvm::createLoopIndexSplitPass() {
204 return new LoopIndexSplit();
207 // Index split Loop L. Return true if loop is split.
208 bool LoopIndexSplit::runOnLoop(Loop
*IncomingLoop
, LPPassManager
&LPM_Ref
) {
212 // FIXME - Nested loops make dominator info updates tricky.
213 if (!L
->getSubLoops().empty())
216 DT
= &getAnalysis
<DominatorTree
>();
217 LI
= &getAnalysis
<LoopInfo
>();
218 DF
= &getAnalysis
<DominanceFrontier
>();
220 // Initialize loop data.
221 IndVar
= L
->getCanonicalInductionVariable();
222 if (!IndVar
) return false;
224 bool P1InLoop
= L
->contains(IndVar
->getIncomingBlock(1));
225 IVStartValue
= IndVar
->getIncomingValue(!P1InLoop
);
226 IVIncrement
= dyn_cast
<Instruction
>(IndVar
->getIncomingValue(P1InLoop
));
227 if (!IVIncrement
) return false;
229 IVBasedValues
.clear();
230 IVBasedValues
.insert(IndVar
);
231 IVBasedValues
.insert(IVIncrement
);
232 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
234 for(BasicBlock::iterator BI
= (*I
)->begin(), BE
= (*I
)->end();
236 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(BI
))
237 if (BO
!= IVIncrement
238 && (BO
->getOpcode() == Instruction::Add
239 || BO
->getOpcode() == Instruction::Sub
))
240 if (IVBasedValues
.count(BO
->getOperand(0))
241 && L
->isLoopInvariant(BO
->getOperand(1)))
242 IVBasedValues
.insert(BO
);
245 // Reject loop if loop exit condition is not suitable.
246 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
249 BranchInst
*EBR
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
250 if (!EBR
) return false;
251 ExitCondition
= dyn_cast
<ICmpInst
>(EBR
->getCondition());
252 if (!ExitCondition
) return false;
253 if (ExitingBlock
!= L
->getLoopLatch()) return false;
254 IVExitValue
= ExitCondition
->getOperand(1);
255 if (!L
->isLoopInvariant(IVExitValue
))
256 IVExitValue
= ExitCondition
->getOperand(0);
257 if (!L
->isLoopInvariant(IVExitValue
))
259 if (!IVBasedValues
.count(
260 ExitCondition
->getOperand(IVExitValue
== ExitCondition
->getOperand(0))))
263 // If start value is more then exit value where induction variable
264 // increments by 1 then we are potentially dealing with an infinite loop.
265 // Do not index split this loop.
266 if (ConstantInt
*SV
= dyn_cast
<ConstantInt
>(IVStartValue
))
267 if (ConstantInt
*EV
= dyn_cast
<ConstantInt
>(IVExitValue
))
268 if (SV
->getSExtValue() > EV
->getSExtValue())
271 if (processOneIterationLoop())
274 if (updateLoopIterationSpace())
283 // --- Helper routines ---
284 // isUsedOutsideLoop - Returns true iff V is used outside the loop L.
285 static bool isUsedOutsideLoop(Value
*V
, Loop
*L
) {
286 for(Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ++UI
)
287 if (!L
->contains(cast
<Instruction
>(*UI
)->getParent()))
293 static Value
*getPlusOne(Value
*V
, bool Sign
, Instruction
*InsertPt
,
294 LLVMContext
&Context
) {
295 Constant
*One
= ConstantInt::get(V
->getType(), 1, Sign
);
296 return BinaryOperator::CreateAdd(V
, One
, "lsp", InsertPt
);
300 static Value
*getMinusOne(Value
*V
, bool Sign
, Instruction
*InsertPt
,
301 LLVMContext
&Context
) {
302 Constant
*One
= ConstantInt::get(V
->getType(), 1, Sign
);
303 return BinaryOperator::CreateSub(V
, One
, "lsp", InsertPt
);
306 // Return min(V1, V1)
307 static Value
*getMin(Value
*V1
, Value
*V2
, bool Sign
, Instruction
*InsertPt
) {
309 Value
*C
= new ICmpInst(InsertPt
,
310 Sign
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
312 return SelectInst::Create(C
, V1
, V2
, "lsp", InsertPt
);
315 // Return max(V1, V2)
316 static Value
*getMax(Value
*V1
, Value
*V2
, bool Sign
, Instruction
*InsertPt
) {
318 Value
*C
= new ICmpInst(InsertPt
,
319 Sign
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
321 return SelectInst::Create(C
, V2
, V1
, "lsp", InsertPt
);
324 /// processOneIterationLoop -- Eliminate loop if loop body is executed
325 /// only once. For example,
326 /// for (i = 0; i < N; ++i) {
332 bool LoopIndexSplit::processOneIterationLoop() {
333 SplitCondition
= NULL
;
334 BasicBlock
*Latch
= L
->getLoopLatch();
335 BasicBlock
*Header
= L
->getHeader();
336 BranchInst
*BR
= dyn_cast
<BranchInst
>(Header
->getTerminator());
337 if (!BR
) return false;
338 if (!isa
<BranchInst
>(Latch
->getTerminator())) return false;
339 if (BR
->isUnconditional()) return false;
340 SplitCondition
= dyn_cast
<ICmpInst
>(BR
->getCondition());
341 if (!SplitCondition
) return false;
342 if (SplitCondition
== ExitCondition
) return false;
343 if (SplitCondition
->getPredicate() != ICmpInst::ICMP_EQ
) return false;
344 if (BR
->getOperand(1) != Latch
) return false;
345 if (!IVBasedValues
.count(SplitCondition
->getOperand(0))
346 && !IVBasedValues
.count(SplitCondition
->getOperand(1)))
349 // If IV is used outside the loop then this loop traversal is required.
350 // FIXME: Calculate and use last IV value.
351 if (isUsedOutsideLoop(IVIncrement
, L
))
354 // If BR operands are not IV or not loop invariants then skip this loop.
355 Value
*OPV
= SplitCondition
->getOperand(0);
356 Value
*SplitValue
= SplitCondition
->getOperand(1);
357 if (!L
->isLoopInvariant(SplitValue
))
358 std::swap(OPV
, SplitValue
);
359 if (!L
->isLoopInvariant(SplitValue
))
361 Instruction
*OPI
= dyn_cast
<Instruction
>(OPV
);
364 if (OPI
->getParent() != Header
|| isUsedOutsideLoop(OPI
, L
))
366 Value
*StartValue
= IVStartValue
;
367 Value
*ExitValue
= IVExitValue
;;
370 // If BR operand is IV based then use this operand to calculate
371 // effective conditions for loop body.
372 BinaryOperator
*BOPV
= dyn_cast
<BinaryOperator
>(OPV
);
375 if (BOPV
->getOpcode() != Instruction::Add
)
377 StartValue
= BinaryOperator::CreateAdd(OPV
, StartValue
, "" , BR
);
378 ExitValue
= BinaryOperator::CreateAdd(OPV
, ExitValue
, "" , BR
);
381 if (!cleanBlock(Header
))
384 if (!cleanBlock(Latch
))
387 // If the merge point for BR is not loop latch then skip this loop.
388 if (BR
->getSuccessor(0) != Latch
) {
389 DominanceFrontier::iterator DF0
= DF
->find(BR
->getSuccessor(0));
390 assert (DF0
!= DF
->end() && "Unable to find dominance frontier");
391 if (!DF0
->second
.count(Latch
))
395 if (BR
->getSuccessor(1) != Latch
) {
396 DominanceFrontier::iterator DF1
= DF
->find(BR
->getSuccessor(1));
397 assert (DF1
!= DF
->end() && "Unable to find dominance frontier");
398 if (!DF1
->second
.count(Latch
))
402 // Now, Current loop L contains compare instruction
403 // that compares induction variable, IndVar, against loop invariant. And
404 // entire (i.e. meaningful) loop body is dominated by this compare
405 // instruction. In such case eliminate
406 // loop structure surrounding this loop body. For example,
407 // for (int i = start; i < end; ++i) {
408 // if ( i == somevalue) {
412 // can be transformed into
413 // if (somevalue >= start && somevalue < end) {
418 // Replace index variable with split value in loop body. Loop body is executed
419 // only when index variable is equal to split value.
420 IndVar
->replaceAllUsesWith(SplitValue
);
422 // Replace split condition in header.
424 // SplitCondition : icmp eq i32 IndVar, SplitValue
426 // c1 = icmp uge i32 SplitValue, StartValue
427 // c2 = icmp ult i32 SplitValue, ExitValue
429 Instruction
*C1
= new ICmpInst(BR
, ExitCondition
->isSignedPredicate() ?
430 ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
,
431 SplitValue
, StartValue
, "lisplit");
433 CmpInst::Predicate C2P
= ExitCondition
->getPredicate();
434 BranchInst
*LatchBR
= cast
<BranchInst
>(Latch
->getTerminator());
435 if (LatchBR
->getOperand(1) != Header
)
436 C2P
= CmpInst::getInversePredicate(C2P
);
437 Instruction
*C2
= new ICmpInst(BR
, C2P
, SplitValue
, ExitValue
, "lisplit");
438 Instruction
*NSplitCond
= BinaryOperator::CreateAnd(C1
, C2
, "lisplit", BR
);
440 SplitCondition
->replaceAllUsesWith(NSplitCond
);
441 SplitCondition
->eraseFromParent();
443 // Remove Latch to Header edge.
444 BasicBlock
*LatchSucc
= NULL
;
445 Header
->removePredecessor(Latch
);
446 for (succ_iterator SI
= succ_begin(Latch
), E
= succ_end(Latch
);
452 // Clean up latch block.
453 Value
*LatchBRCond
= LatchBR
->getCondition();
454 LatchBR
->setUnconditionalDest(LatchSucc
);
455 RecursivelyDeleteTriviallyDeadInstructions(LatchBRCond
);
457 LPM
->deleteLoopFromQueue(L
);
459 // Update Dominator Info.
460 // Only CFG change done is to remove Latch to Header edge. This
461 // does not change dominator tree because Latch did not dominate
464 DominanceFrontier::iterator HeaderDF
= DF
->find(Header
);
465 if (HeaderDF
!= DF
->end())
466 DF
->removeFromFrontier(HeaderDF
, Header
);
468 DominanceFrontier::iterator LatchDF
= DF
->find(Latch
);
469 if (LatchDF
!= DF
->end())
470 DF
->removeFromFrontier(LatchDF
, Header
);
473 ++NumIndexSplitRemoved
;
477 /// restrictLoopBound - Op dominates loop body. Op compares an IV based value
478 /// with a loop invariant value. Update loop's lower and upper bound based on
479 /// the loop invariant value.
480 bool LoopIndexSplit::restrictLoopBound(ICmpInst
&Op
) {
481 bool Sign
= Op
.isSignedPredicate();
482 Instruction
*PHTerm
= L
->getLoopPreheader()->getTerminator();
484 if (IVisGT(*ExitCondition
) || IVisGE(*ExitCondition
)) {
486 cast
<BranchInst
>(ExitCondition
->getParent()->getTerminator());
487 ExitCondition
->setPredicate(ExitCondition
->getInversePredicate());
488 BasicBlock
*T
= EBR
->getSuccessor(0);
489 EBR
->setSuccessor(0, EBR
->getSuccessor(1));
490 EBR
->setSuccessor(1, T
);
493 LLVMContext
&Context
= Op
.getContext();
495 // New upper and lower bounds.
498 if (Value
*V
= IVisLT(Op
)) {
499 // Restrict upper bound.
500 if (IVisLE(*ExitCondition
))
501 V
= getMinusOne(V
, Sign
, PHTerm
, Context
);
502 NUB
= getMin(V
, IVExitValue
, Sign
, PHTerm
);
503 } else if (Value
*V
= IVisLE(Op
)) {
504 // Restrict upper bound.
505 if (IVisLT(*ExitCondition
))
506 V
= getPlusOne(V
, Sign
, PHTerm
, Context
);
507 NUB
= getMin(V
, IVExitValue
, Sign
, PHTerm
);
508 } else if (Value
*V
= IVisGT(Op
)) {
509 // Restrict lower bound.
510 V
= getPlusOne(V
, Sign
, PHTerm
, Context
);
511 NLB
= getMax(V
, IVStartValue
, Sign
, PHTerm
);
512 } else if (Value
*V
= IVisGE(Op
))
513 // Restrict lower bound.
514 NLB
= getMax(V
, IVStartValue
, Sign
, PHTerm
);
520 unsigned i
= IndVar
->getBasicBlockIndex(L
->getLoopPreheader());
521 IndVar
->setIncomingValue(i
, NLB
);
525 unsigned i
= (ExitCondition
->getOperand(0) != IVExitValue
);
526 ExitCondition
->setOperand(i
, NUB
);
531 /// updateLoopIterationSpace -- Update loop's iteration space if loop
532 /// body is executed for certain IV range only. For example,
534 /// for (i = 0; i < N; ++i) {
535 /// if ( i > A && i < B) {
539 /// is transformed to iterators from A to B, if A > 0 and B < N.
541 bool LoopIndexSplit::updateLoopIterationSpace() {
542 SplitCondition
= NULL
;
543 if (ExitCondition
->getPredicate() == ICmpInst::ICMP_NE
544 || ExitCondition
->getPredicate() == ICmpInst::ICMP_EQ
)
546 BasicBlock
*Latch
= L
->getLoopLatch();
547 BasicBlock
*Header
= L
->getHeader();
548 BranchInst
*BR
= dyn_cast
<BranchInst
>(Header
->getTerminator());
549 if (!BR
) return false;
550 if (!isa
<BranchInst
>(Latch
->getTerminator())) return false;
551 if (BR
->isUnconditional()) return false;
552 BinaryOperator
*AND
= dyn_cast
<BinaryOperator
>(BR
->getCondition());
553 if (!AND
) return false;
554 if (AND
->getOpcode() != Instruction::And
) return false;
555 ICmpInst
*Op0
= dyn_cast
<ICmpInst
>(AND
->getOperand(0));
556 ICmpInst
*Op1
= dyn_cast
<ICmpInst
>(AND
->getOperand(1));
559 IVBasedValues
.insert(AND
);
560 IVBasedValues
.insert(Op0
);
561 IVBasedValues
.insert(Op1
);
562 if (!cleanBlock(Header
)) return false;
563 BasicBlock
*ExitingBlock
= ExitCondition
->getParent();
564 if (!cleanBlock(ExitingBlock
)) return false;
566 // If the merge point for BR is not loop latch then skip this loop.
567 if (BR
->getSuccessor(0) != Latch
) {
568 DominanceFrontier::iterator DF0
= DF
->find(BR
->getSuccessor(0));
569 assert (DF0
!= DF
->end() && "Unable to find dominance frontier");
570 if (!DF0
->second
.count(Latch
))
574 if (BR
->getSuccessor(1) != Latch
) {
575 DominanceFrontier::iterator DF1
= DF
->find(BR
->getSuccessor(1));
576 assert (DF1
!= DF
->end() && "Unable to find dominance frontier");
577 if (!DF1
->second
.count(Latch
))
581 // Verify that loop exiting block has only two predecessor, where one pred
582 // is split condition block. The other predecessor will become exiting block's
583 // dominator after CFG is updated. TODO : Handle CFG's where exiting block has
584 // more then two predecessors. This requires extra work in updating dominator
586 BasicBlock
*ExitingBBPred
= NULL
;
587 for (pred_iterator PI
= pred_begin(ExitingBlock
), PE
= pred_end(ExitingBlock
);
589 BasicBlock
*BB
= *PI
;
598 if (!restrictLoopBound(*Op0
))
601 if (!restrictLoopBound(*Op1
))
605 if (BR
->getSuccessor(0) == ExitingBlock
)
606 BR
->setUnconditionalDest(BR
->getSuccessor(1));
608 BR
->setUnconditionalDest(BR
->getSuccessor(0));
610 AND
->eraseFromParent();
611 if (Op0
->use_empty())
612 Op0
->eraseFromParent();
613 if (Op1
->use_empty())
614 Op1
->eraseFromParent();
616 // Update domiantor info. Now, ExitingBlock has only one predecessor,
617 // ExitingBBPred, and it is ExitingBlock's immediate domiantor.
618 DT
->changeImmediateDominator(ExitingBlock
, ExitingBBPred
);
620 BasicBlock
*ExitBlock
= ExitingBlock
->getTerminator()->getSuccessor(1);
621 if (L
->contains(ExitBlock
))
622 ExitBlock
= ExitingBlock
->getTerminator()->getSuccessor(0);
624 // If ExitingBlock is a member of the loop basic blocks' DF list then
625 // replace ExitingBlock with header and exit block in the DF list
626 DominanceFrontier::iterator ExitingBlockDF
= DF
->find(ExitingBlock
);
627 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
630 if (BB
== Header
|| BB
== ExitingBlock
)
632 DominanceFrontier::iterator BBDF
= DF
->find(BB
);
633 DominanceFrontier::DomSetType::iterator DomSetI
= BBDF
->second
.begin();
634 DominanceFrontier::DomSetType::iterator DomSetE
= BBDF
->second
.end();
635 while (DomSetI
!= DomSetE
) {
636 DominanceFrontier::DomSetType::iterator CurrentItr
= DomSetI
;
638 BasicBlock
*DFBB
= *CurrentItr
;
639 if (DFBB
== ExitingBlock
) {
640 BBDF
->second
.erase(DFBB
);
641 for (DominanceFrontier::DomSetType::iterator
642 EBI
= ExitingBlockDF
->second
.begin(),
643 EBE
= ExitingBlockDF
->second
.end(); EBI
!= EBE
; ++EBI
)
644 BBDF
->second
.insert(*EBI
);
652 /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB.
653 /// This routine is used to remove split condition's dead branch, dominated by
654 /// DeadBB. LiveBB dominates split conidition's other branch.
655 void LoopIndexSplit::removeBlocks(BasicBlock
*DeadBB
, Loop
*LP
,
656 BasicBlock
*LiveBB
) {
658 // First update DeadBB's dominance frontier.
659 SmallVector
<BasicBlock
*, 8> FrontierBBs
;
660 DominanceFrontier::iterator DeadBBDF
= DF
->find(DeadBB
);
661 if (DeadBBDF
!= DF
->end()) {
662 SmallVector
<BasicBlock
*, 8> PredBlocks
;
664 DominanceFrontier::DomSetType DeadBBSet
= DeadBBDF
->second
;
665 for (DominanceFrontier::DomSetType::iterator DeadBBSetI
= DeadBBSet
.begin(),
666 DeadBBSetE
= DeadBBSet
.end(); DeadBBSetI
!= DeadBBSetE
; ++DeadBBSetI
)
668 BasicBlock
*FrontierBB
= *DeadBBSetI
;
669 FrontierBBs
.push_back(FrontierBB
);
671 // Rremove any PHI incoming edge from blocks dominated by DeadBB.
673 for(pred_iterator PI
= pred_begin(FrontierBB
), PE
= pred_end(FrontierBB
);
676 if (P
== DeadBB
|| DT
->dominates(DeadBB
, P
))
677 PredBlocks
.push_back(P
);
680 for(BasicBlock::iterator FBI
= FrontierBB
->begin(), FBE
= FrontierBB
->end();
682 if (PHINode
*PN
= dyn_cast
<PHINode
>(FBI
)) {
683 for(SmallVector
<BasicBlock
*, 8>::iterator PI
= PredBlocks
.begin(),
684 PE
= PredBlocks
.end(); PI
!= PE
; ++PI
) {
686 PN
->removeIncomingValue(P
);
695 // Now remove DeadBB and all nodes dominated by DeadBB in df order.
696 SmallVector
<BasicBlock
*, 32> WorkList
;
697 DomTreeNode
*DN
= DT
->getNode(DeadBB
);
698 for (df_iterator
<DomTreeNode
*> DI
= df_begin(DN
),
699 E
= df_end(DN
); DI
!= E
; ++DI
) {
700 BasicBlock
*BB
= DI
->getBlock();
701 WorkList
.push_back(BB
);
702 BB
->replaceAllUsesWith(UndefValue::get(
703 Type::getLabelTy(DeadBB
->getContext())));
706 while (!WorkList
.empty()) {
707 BasicBlock
*BB
= WorkList
.back(); WorkList
.pop_back();
708 LPM
->deleteSimpleAnalysisValue(BB
, LP
);
709 for(BasicBlock::iterator BBI
= BB
->begin(), BBE
= BB
->end();
711 Instruction
*I
= BBI
;
713 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
714 LPM
->deleteSimpleAnalysisValue(I
, LP
);
715 I
->eraseFromParent();
720 BB
->eraseFromParent();
723 // Update Frontier BBs' dominator info.
724 while (!FrontierBBs
.empty()) {
725 BasicBlock
*FBB
= FrontierBBs
.back(); FrontierBBs
.pop_back();
726 BasicBlock
*NewDominator
= FBB
->getSinglePredecessor();
728 pred_iterator PI
= pred_begin(FBB
), PE
= pred_end(FBB
);
731 if (NewDominator
!= LiveBB
) {
732 for(; PI
!= PE
; ++PI
) {
735 NewDominator
= LiveBB
;
738 NewDominator
= DT
->findNearestCommonDominator(NewDominator
, P
);
742 assert (NewDominator
&& "Unable to fix dominator info.");
743 DT
->changeImmediateDominator(FBB
, NewDominator
);
744 DF
->changeImmediateDominator(FBB
, NewDominator
, DT
);
749 // moveExitCondition - Move exit condition EC into split condition block CondBB.
750 void LoopIndexSplit::moveExitCondition(BasicBlock
*CondBB
, BasicBlock
*ActiveBB
,
751 BasicBlock
*ExitBB
, ICmpInst
*EC
,
752 ICmpInst
*SC
, PHINode
*IV
,
753 Instruction
*IVAdd
, Loop
*LP
,
754 unsigned ExitValueNum
) {
756 BasicBlock
*ExitingBB
= EC
->getParent();
757 Instruction
*CurrentBR
= CondBB
->getTerminator();
759 // Move exit condition into split condition block.
760 EC
->moveBefore(CurrentBR
);
761 EC
->setOperand(ExitValueNum
== 0 ? 1 : 0, IV
);
763 // Move exiting block's branch into split condition block. Update its branch
765 BranchInst
*ExitingBR
= cast
<BranchInst
>(ExitingBB
->getTerminator());
766 ExitingBR
->moveBefore(CurrentBR
);
767 BasicBlock
*OrigDestBB
= NULL
;
768 if (ExitingBR
->getSuccessor(0) == ExitBB
) {
769 OrigDestBB
= ExitingBR
->getSuccessor(1);
770 ExitingBR
->setSuccessor(1, ActiveBB
);
773 OrigDestBB
= ExitingBR
->getSuccessor(0);
774 ExitingBR
->setSuccessor(0, ActiveBB
);
777 // Remove split condition and current split condition branch.
778 SC
->eraseFromParent();
779 CurrentBR
->eraseFromParent();
781 // Connect exiting block to original destination.
782 BranchInst::Create(OrigDestBB
, ExitingBB
);
785 updatePHINodes(ExitBB
, ExitingBB
, CondBB
, IV
, IVAdd
, LP
);
787 // Fix dominator info.
788 // ExitBB is now dominated by CondBB
789 DT
->changeImmediateDominator(ExitBB
, CondBB
);
790 DF
->changeImmediateDominator(ExitBB
, CondBB
, DT
);
792 // Blocks outside the loop may have been in the dominance frontier of blocks
793 // inside the condition; this is now impossible because the blocks inside the
794 // condition no loger dominate the exit. Remove the relevant blocks from
795 // the dominance frontiers.
796 for (Loop::block_iterator I
= LP
->block_begin(), E
= LP
->block_end();
798 if (*I
== CondBB
|| !DT
->dominates(CondBB
, *I
)) continue;
799 DominanceFrontier::iterator BBDF
= DF
->find(*I
);
800 DominanceFrontier::DomSetType::iterator DomSetI
= BBDF
->second
.begin();
801 DominanceFrontier::DomSetType::iterator DomSetE
= BBDF
->second
.end();
802 while (DomSetI
!= DomSetE
) {
803 DominanceFrontier::DomSetType::iterator CurrentItr
= DomSetI
;
805 BasicBlock
*DFBB
= *CurrentItr
;
806 if (!LP
->contains(DFBB
))
807 BBDF
->second
.erase(DFBB
);
812 /// updatePHINodes - CFG has been changed.
814 /// - ExitBB's single predecessor was Latch
815 /// - Latch's second successor was Header
817 /// - ExitBB's single predecessor is Header
818 /// - Latch's one and only successor is Header
820 /// Update ExitBB PHINodes' to reflect this change.
821 void LoopIndexSplit::updatePHINodes(BasicBlock
*ExitBB
, BasicBlock
*Latch
,
823 PHINode
*IV
, Instruction
*IVIncrement
,
826 for (BasicBlock::iterator BI
= ExitBB
->begin(), BE
= ExitBB
->end();
828 PHINode
*PN
= dyn_cast
<PHINode
>(BI
);
833 Value
*V
= PN
->getIncomingValueForBlock(Latch
);
834 if (PHINode
*PHV
= dyn_cast
<PHINode
>(V
)) {
835 // PHV is in Latch. PHV has one use is in ExitBB PHINode. And one use
836 // in Header which is new incoming value for PN.
838 for (Value::use_iterator UI
= PHV
->use_begin(), E
= PHV
->use_end();
840 if (PHINode
*U
= dyn_cast
<PHINode
>(*UI
))
841 if (LP
->contains(U
->getParent())) {
846 // Add incoming value from header only if PN has any use inside the loop.
848 PN
->addIncoming(NewV
, Header
);
850 } else if (Instruction
*PHI
= dyn_cast
<Instruction
>(V
)) {
851 // If this instruction is IVIncrement then IV is new incoming value
852 // from header otherwise this instruction must be incoming value from
853 // header because loop is in LCSSA form.
854 if (PHI
== IVIncrement
)
855 PN
->addIncoming(IV
, Header
);
857 PN
->addIncoming(V
, Header
);
859 // Otherwise this is an incoming value from header because loop is in
861 PN
->addIncoming(V
, Header
);
863 // Remove incoming value from Latch.
864 PN
->removeIncomingValue(Latch
);
868 bool LoopIndexSplit::splitLoop() {
869 SplitCondition
= NULL
;
870 if (ExitCondition
->getPredicate() == ICmpInst::ICMP_NE
871 || ExitCondition
->getPredicate() == ICmpInst::ICMP_EQ
)
873 BasicBlock
*Header
= L
->getHeader();
874 BasicBlock
*Latch
= L
->getLoopLatch();
875 BranchInst
*SBR
= NULL
; // Split Condition Branch
876 BranchInst
*EBR
= cast
<BranchInst
>(ExitCondition
->getParent()->getTerminator());
877 // If Exiting block includes loop variant instructions then this
878 // loop may not be split safely.
879 BasicBlock
*ExitingBlock
= ExitCondition
->getParent();
880 if (!cleanBlock(ExitingBlock
)) return false;
882 LLVMContext
&Context
= Header
->getContext();
884 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
886 BranchInst
*BR
= dyn_cast
<BranchInst
>((*I
)->getTerminator());
887 if (!BR
|| BR
->isUnconditional()) continue;
888 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(BR
->getCondition());
889 if (!CI
|| CI
== ExitCondition
890 || CI
->getPredicate() == ICmpInst::ICMP_NE
891 || CI
->getPredicate() == ICmpInst::ICMP_EQ
)
894 // Unable to handle triangle loops at the moment.
895 // In triangle loop, split condition is in header and one of the
896 // the split destination is loop latch. If split condition is EQ
897 // then such loops are already handle in processOneIterationLoop().
899 && (Latch
== BR
->getSuccessor(0) || Latch
== BR
->getSuccessor(1)))
902 // If the block does not dominate the latch then this is not a diamond.
903 // Such loop may not benefit from index split.
904 if (!DT
->dominates((*I
), Latch
))
907 // If split condition branches heads do not have single predecessor,
908 // SplitCondBlock, then is not possible to remove inactive branch.
909 if (!BR
->getSuccessor(0)->getSinglePredecessor()
910 || !BR
->getSuccessor(1)->getSinglePredecessor())
913 // If the merge point for BR is not loop latch then skip this condition.
914 if (BR
->getSuccessor(0) != Latch
) {
915 DominanceFrontier::iterator DF0
= DF
->find(BR
->getSuccessor(0));
916 assert (DF0
!= DF
->end() && "Unable to find dominance frontier");
917 if (!DF0
->second
.count(Latch
))
921 if (BR
->getSuccessor(1) != Latch
) {
922 DominanceFrontier::iterator DF1
= DF
->find(BR
->getSuccessor(1));
923 assert (DF1
!= DF
->end() && "Unable to find dominance frontier");
924 if (!DF1
->second
.count(Latch
))
935 // If the predicate sign does not match then skip.
936 if (ExitCondition
->isSignedPredicate() != SplitCondition
->isSignedPredicate())
939 unsigned EVOpNum
= (ExitCondition
->getOperand(1) == IVExitValue
);
940 unsigned SVOpNum
= IVBasedValues
.count(SplitCondition
->getOperand(0));
941 Value
*SplitValue
= SplitCondition
->getOperand(SVOpNum
);
942 if (!L
->isLoopInvariant(SplitValue
))
944 if (!IVBasedValues
.count(SplitCondition
->getOperand(!SVOpNum
)))
947 // Normalize loop conditions so that it is easier to calculate new loop
949 if (IVisGT(*ExitCondition
) || IVisGE(*ExitCondition
)) {
950 ExitCondition
->setPredicate(ExitCondition
->getInversePredicate());
951 BasicBlock
*T
= EBR
->getSuccessor(0);
952 EBR
->setSuccessor(0, EBR
->getSuccessor(1));
953 EBR
->setSuccessor(1, T
);
956 if (IVisGT(*SplitCondition
) || IVisGE(*SplitCondition
)) {
957 SplitCondition
->setPredicate(SplitCondition
->getInversePredicate());
958 BasicBlock
*T
= SBR
->getSuccessor(0);
959 SBR
->setSuccessor(0, SBR
->getSuccessor(1));
960 SBR
->setSuccessor(1, T
);
963 //[*] Calculate new loop bounds.
964 Value
*AEV
= SplitValue
;
965 Value
*BSV
= SplitValue
;
966 bool Sign
= SplitCondition
->isSignedPredicate();
967 Instruction
*PHTerm
= L
->getLoopPreheader()->getTerminator();
969 if (IVisLT(*ExitCondition
)) {
970 if (IVisLT(*SplitCondition
)) {
973 else if (IVisLE(*SplitCondition
)) {
974 AEV
= getPlusOne(SplitValue
, Sign
, PHTerm
, Context
);
975 BSV
= getPlusOne(SplitValue
, Sign
, PHTerm
, Context
);
977 assert (0 && "Unexpected split condition!");
980 else if (IVisLE(*ExitCondition
)) {
981 if (IVisLT(*SplitCondition
)) {
982 AEV
= getMinusOne(SplitValue
, Sign
, PHTerm
, Context
);
984 else if (IVisLE(*SplitCondition
)) {
985 BSV
= getPlusOne(SplitValue
, Sign
, PHTerm
, Context
);
987 assert (0 && "Unexpected split condition!");
990 assert (0 && "Unexpected exit condition!");
992 AEV
= getMin(AEV
, IVExitValue
, Sign
, PHTerm
);
993 BSV
= getMax(BSV
, IVStartValue
, Sign
, PHTerm
);
996 DenseMap
<const Value
*, Value
*> ValueMap
;
997 Loop
*BLoop
= CloneLoop(L
, LPM
, LI
, ValueMap
, this);
1000 // [*] ALoop's exiting edge enters BLoop's header.
1001 // ALoop's original exit block becomes BLoop's exit block.
1002 PHINode
*B_IndVar
= cast
<PHINode
>(ValueMap
[IndVar
]);
1003 BasicBlock
*A_ExitingBlock
= ExitCondition
->getParent();
1004 BranchInst
*A_ExitInsn
=
1005 dyn_cast
<BranchInst
>(A_ExitingBlock
->getTerminator());
1006 assert (A_ExitInsn
&& "Unable to find suitable loop exit branch");
1007 BasicBlock
*B_ExitBlock
= A_ExitInsn
->getSuccessor(1);
1008 BasicBlock
*B_Header
= BLoop
->getHeader();
1009 if (ALoop
->contains(B_ExitBlock
)) {
1010 B_ExitBlock
= A_ExitInsn
->getSuccessor(0);
1011 A_ExitInsn
->setSuccessor(0, B_Header
);
1013 A_ExitInsn
->setSuccessor(1, B_Header
);
1015 // [*] Update ALoop's exit value using new exit value.
1016 ExitCondition
->setOperand(EVOpNum
, AEV
);
1018 // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from
1019 // original loop's preheader. Add incoming PHINode values from
1020 // ALoop's exiting block. Update BLoop header's domiantor info.
1022 // Collect inverse map of Header PHINodes.
1023 DenseMap
<Value
*, Value
*> InverseMap
;
1024 for (BasicBlock::iterator BI
= ALoop
->getHeader()->begin(),
1025 BE
= ALoop
->getHeader()->end(); BI
!= BE
; ++BI
) {
1026 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
1027 PHINode
*PNClone
= cast
<PHINode
>(ValueMap
[PN
]);
1028 InverseMap
[PNClone
] = PN
;
1033 BasicBlock
*A_Preheader
= ALoop
->getLoopPreheader();
1034 for (BasicBlock::iterator BI
= B_Header
->begin(), BE
= B_Header
->end();
1036 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
1037 // Remove incoming value from original preheader.
1038 PN
->removeIncomingValue(A_Preheader
);
1040 // Add incoming value from A_ExitingBlock.
1042 PN
->addIncoming(BSV
, A_ExitingBlock
);
1044 PHINode
*OrigPN
= cast
<PHINode
>(InverseMap
[PN
]);
1046 // If loop header is also loop exiting block then
1047 // OrigPN is incoming value for B loop header.
1048 if (A_ExitingBlock
== ALoop
->getHeader())
1051 V2
= OrigPN
->getIncomingValueForBlock(A_ExitingBlock
);
1052 PN
->addIncoming(V2
, A_ExitingBlock
);
1058 DT
->changeImmediateDominator(B_Header
, A_ExitingBlock
);
1059 DF
->changeImmediateDominator(B_Header
, A_ExitingBlock
, DT
);
1061 // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit
1062 // block. Remove incoming PHINode values from ALoop's exiting block.
1063 // Add new incoming values from BLoop's incoming exiting value.
1064 // Update BLoop exit block's dominator info..
1065 BasicBlock
*B_ExitingBlock
= cast
<BasicBlock
>(ValueMap
[A_ExitingBlock
]);
1066 for (BasicBlock::iterator BI
= B_ExitBlock
->begin(), BE
= B_ExitBlock
->end();
1068 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
1069 PN
->addIncoming(ValueMap
[PN
->getIncomingValueForBlock(A_ExitingBlock
)],
1071 PN
->removeIncomingValue(A_ExitingBlock
);
1076 DT
->changeImmediateDominator(B_ExitBlock
, B_ExitingBlock
);
1077 DF
->changeImmediateDominator(B_ExitBlock
, B_ExitingBlock
, DT
);
1079 //[*] Split ALoop's exit edge. This creates a new block which
1080 // serves two purposes. First one is to hold PHINode defnitions
1081 // to ensure that ALoop's LCSSA form. Second use it to act
1082 // as a preheader for BLoop.
1083 BasicBlock
*A_ExitBlock
= SplitEdge(A_ExitingBlock
, B_Header
, this);
1085 //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes
1086 // in A_ExitBlock to redefine outgoing PHI definitions from ALoop.
1087 for(BasicBlock::iterator BI
= B_Header
->begin(), BE
= B_Header
->end();
1089 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
1090 Value
*V1
= PN
->getIncomingValueForBlock(A_ExitBlock
);
1091 PHINode
*newPHI
= PHINode::Create(PN
->getType(), PN
->getName());
1092 newPHI
->addIncoming(V1
, A_ExitingBlock
);
1093 A_ExitBlock
->getInstList().push_front(newPHI
);
1094 PN
->removeIncomingValue(A_ExitBlock
);
1095 PN
->addIncoming(newPHI
, A_ExitBlock
);
1100 //[*] Eliminate split condition's inactive branch from ALoop.
1101 BasicBlock
*A_SplitCondBlock
= SplitCondition
->getParent();
1102 BranchInst
*A_BR
= cast
<BranchInst
>(A_SplitCondBlock
->getTerminator());
1103 BasicBlock
*A_InactiveBranch
= NULL
;
1104 BasicBlock
*A_ActiveBranch
= NULL
;
1105 A_ActiveBranch
= A_BR
->getSuccessor(0);
1106 A_InactiveBranch
= A_BR
->getSuccessor(1);
1107 A_BR
->setUnconditionalDest(A_ActiveBranch
);
1108 removeBlocks(A_InactiveBranch
, L
, A_ActiveBranch
);
1110 //[*] Eliminate split condition's inactive branch in from BLoop.
1111 BasicBlock
*B_SplitCondBlock
= cast
<BasicBlock
>(ValueMap
[A_SplitCondBlock
]);
1112 BranchInst
*B_BR
= cast
<BranchInst
>(B_SplitCondBlock
->getTerminator());
1113 BasicBlock
*B_InactiveBranch
= NULL
;
1114 BasicBlock
*B_ActiveBranch
= NULL
;
1115 B_ActiveBranch
= B_BR
->getSuccessor(1);
1116 B_InactiveBranch
= B_BR
->getSuccessor(0);
1117 B_BR
->setUnconditionalDest(B_ActiveBranch
);
1118 removeBlocks(B_InactiveBranch
, BLoop
, B_ActiveBranch
);
1120 BasicBlock
*A_Header
= ALoop
->getHeader();
1121 if (A_ExitingBlock
== A_Header
)
1124 //[*] Move exit condition into split condition block to avoid
1125 // executing dead loop iteration.
1126 ICmpInst
*B_ExitCondition
= cast
<ICmpInst
>(ValueMap
[ExitCondition
]);
1127 Instruction
*B_IndVarIncrement
= cast
<Instruction
>(ValueMap
[IVIncrement
]);
1128 ICmpInst
*B_SplitCondition
= cast
<ICmpInst
>(ValueMap
[SplitCondition
]);
1130 moveExitCondition(A_SplitCondBlock
, A_ActiveBranch
, A_ExitBlock
, ExitCondition
,
1131 cast
<ICmpInst
>(SplitCondition
), IndVar
, IVIncrement
,
1134 moveExitCondition(B_SplitCondBlock
, B_ActiveBranch
,
1135 B_ExitBlock
, B_ExitCondition
,
1136 B_SplitCondition
, B_IndVar
, B_IndVarIncrement
,
1143 /// cleanBlock - A block is considered clean if all non terminal instructions
1144 /// are either, PHINodes, IV based.
1145 bool LoopIndexSplit::cleanBlock(BasicBlock
*BB
) {
1146 Instruction
*Terminator
= BB
->getTerminator();
1147 for(BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end();
1149 Instruction
*I
= BI
;
1151 if (isa
<PHINode
>(I
) || I
== Terminator
|| I
== ExitCondition
1152 || I
== SplitCondition
|| IVBasedValues
.count(I
)
1153 || isa
<DbgInfoIntrinsic
>(I
))
1156 if (I
->mayHaveSideEffects())
1159 // I is used only inside this block then it is OK.
1160 bool usedOutsideBB
= false;
1161 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
1163 Instruction
*U
= cast
<Instruction
>(UI
);
1164 if (U
->getParent() != BB
)
1165 usedOutsideBB
= true;
1170 // Otherwise we have a instruction that may not allow loop spliting.
1176 /// IVisLT - If Op is comparing IV based value with an loop invariant and
1177 /// IV based value is less than the loop invariant then return the loop
1178 /// invariant. Otherwise return NULL.
1179 Value
* LoopIndexSplit::IVisLT(ICmpInst
&Op
) {
1180 ICmpInst::Predicate P
= Op
.getPredicate();
1181 if ((P
== ICmpInst::ICMP_SLT
|| P
== ICmpInst::ICMP_ULT
)
1182 && IVBasedValues
.count(Op
.getOperand(0))
1183 && L
->isLoopInvariant(Op
.getOperand(1)))
1184 return Op
.getOperand(1);
1186 if ((P
== ICmpInst::ICMP_SGT
|| P
== ICmpInst::ICMP_UGT
)
1187 && IVBasedValues
.count(Op
.getOperand(1))
1188 && L
->isLoopInvariant(Op
.getOperand(0)))
1189 return Op
.getOperand(0);
1194 /// IVisLE - If Op is comparing IV based value with an loop invariant and
1195 /// IV based value is less than or equal to the loop invariant then
1196 /// return the loop invariant. Otherwise return NULL.
1197 Value
* LoopIndexSplit::IVisLE(ICmpInst
&Op
) {
1198 ICmpInst::Predicate P
= Op
.getPredicate();
1199 if ((P
== ICmpInst::ICMP_SLE
|| P
== ICmpInst::ICMP_ULE
)
1200 && IVBasedValues
.count(Op
.getOperand(0))
1201 && L
->isLoopInvariant(Op
.getOperand(1)))
1202 return Op
.getOperand(1);
1204 if ((P
== ICmpInst::ICMP_SGE
|| P
== ICmpInst::ICMP_UGE
)
1205 && IVBasedValues
.count(Op
.getOperand(1))
1206 && L
->isLoopInvariant(Op
.getOperand(0)))
1207 return Op
.getOperand(0);
1212 /// IVisGT - If Op is comparing IV based value with an loop invariant and
1213 /// IV based value is greater than the loop invariant then return the loop
1214 /// invariant. Otherwise return NULL.
1215 Value
* LoopIndexSplit::IVisGT(ICmpInst
&Op
) {
1216 ICmpInst::Predicate P
= Op
.getPredicate();
1217 if ((P
== ICmpInst::ICMP_SGT
|| P
== ICmpInst::ICMP_UGT
)
1218 && IVBasedValues
.count(Op
.getOperand(0))
1219 && L
->isLoopInvariant(Op
.getOperand(1)))
1220 return Op
.getOperand(1);
1222 if ((P
== ICmpInst::ICMP_SLT
|| P
== ICmpInst::ICMP_ULT
)
1223 && IVBasedValues
.count(Op
.getOperand(1))
1224 && L
->isLoopInvariant(Op
.getOperand(0)))
1225 return Op
.getOperand(0);
1230 /// IVisGE - If Op is comparing IV based value with an loop invariant and
1231 /// IV based value is greater than or equal to the loop invariant then
1232 /// return the loop invariant. Otherwise return NULL.
1233 Value
* LoopIndexSplit::IVisGE(ICmpInst
&Op
) {
1234 ICmpInst::Predicate P
= Op
.getPredicate();
1235 if ((P
== ICmpInst::ICMP_SGE
|| P
== ICmpInst::ICMP_UGE
)
1236 && IVBasedValues
.count(Op
.getOperand(0))
1237 && L
->isLoopInvariant(Op
.getOperand(1)))
1238 return Op
.getOperand(1);
1240 if ((P
== ICmpInst::ICMP_SLE
|| P
== ICmpInst::ICMP_ULE
)
1241 && IVBasedValues
.count(Op
.getOperand(1))
1242 && L
->isLoopInvariant(Op
.getOperand(0)))
1243 return Op
.getOperand(0);