1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/GetElementPtrTypeIterator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetData.h"
32 STATISTIC(NumMemCpyInstr
, "Number of memcpy instructions deleted");
33 STATISTIC(NumMemSetInfer
, "Number of memsets inferred");
34 STATISTIC(NumMoveToCpy
, "Number of memmoves converted to memcpy");
36 /// isBytewiseValue - If the specified value can be set by repeating the same
37 /// byte in memory, return the i8 value that it is represented with. This is
38 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
39 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
40 /// byte store (e.g. i16 0x1234), return null.
41 static Value
*isBytewiseValue(Value
*V
, LLVMContext
&Context
) {
42 // All byte-wide stores are splatable, even of arbitrary variables.
43 if (V
->getType() == Type::getInt8Ty(Context
)) return V
;
45 // Constant float and double values can be handled as integer values if the
46 // corresponding integer value is "byteable". An important case is 0.0.
47 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
48 if (CFP
->getType() == Type::getFloatTy(Context
))
49 V
= ConstantExpr::getBitCast(CFP
, Type::getInt32Ty(Context
));
50 if (CFP
->getType() == Type::getDoubleTy(Context
))
51 V
= ConstantExpr::getBitCast(CFP
, Type::getInt64Ty(Context
));
52 // Don't handle long double formats, which have strange constraints.
55 // We can handle constant integers that are power of two in size and a
56 // multiple of 8 bits.
57 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
58 unsigned Width
= CI
->getBitWidth();
59 if (isPowerOf2_32(Width
) && Width
> 8) {
60 // We can handle this value if the recursive binary decomposition is the
61 // same at all levels.
62 APInt Val
= CI
->getValue();
64 while (Val
.getBitWidth() != 8) {
65 unsigned NextWidth
= Val
.getBitWidth()/2;
66 Val2
= Val
.lshr(NextWidth
);
67 Val2
.trunc(Val
.getBitWidth()/2);
68 Val
.trunc(Val
.getBitWidth()/2);
70 // If the top/bottom halves aren't the same, reject it.
74 return ConstantInt::get(Context
, Val
);
78 // Conceptually, we could handle things like:
79 // %a = zext i8 %X to i16
82 // but until there is an example that actually needs this, it doesn't seem
83 // worth worrying about.
87 static int64_t GetOffsetFromIndex(const GetElementPtrInst
*GEP
, unsigned Idx
,
88 bool &VariableIdxFound
, TargetData
&TD
) {
89 // Skip over the first indices.
90 gep_type_iterator GTI
= gep_type_begin(GEP
);
91 for (unsigned i
= 1; i
!= Idx
; ++i
, ++GTI
)
94 // Compute the offset implied by the rest of the indices.
96 for (unsigned i
= Idx
, e
= GEP
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
97 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
99 return VariableIdxFound
= true;
100 if (OpC
->isZero()) continue; // No offset.
102 // Handle struct indices, which add their field offset to the pointer.
103 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
104 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
108 // Otherwise, we have a sequential type like an array or vector. Multiply
109 // the index by the ElementSize.
110 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
111 Offset
+= Size
*OpC
->getSExtValue();
117 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
118 /// constant offset, and return that constant offset. For example, Ptr1 might
119 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
120 static bool IsPointerOffset(Value
*Ptr1
, Value
*Ptr2
, int64_t &Offset
,
122 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
123 // base. After that base, they may have some number of common (and
124 // potentially variable) indices. After that they handle some constant
125 // offset, which determines their offset from each other. At this point, we
126 // handle no other case.
127 GetElementPtrInst
*GEP1
= dyn_cast
<GetElementPtrInst
>(Ptr1
);
128 GetElementPtrInst
*GEP2
= dyn_cast
<GetElementPtrInst
>(Ptr2
);
129 if (!GEP1
|| !GEP2
|| GEP1
->getOperand(0) != GEP2
->getOperand(0))
132 // Skip any common indices and track the GEP types.
134 for (; Idx
!= GEP1
->getNumOperands() && Idx
!= GEP2
->getNumOperands(); ++Idx
)
135 if (GEP1
->getOperand(Idx
) != GEP2
->getOperand(Idx
))
138 bool VariableIdxFound
= false;
139 int64_t Offset1
= GetOffsetFromIndex(GEP1
, Idx
, VariableIdxFound
, TD
);
140 int64_t Offset2
= GetOffsetFromIndex(GEP2
, Idx
, VariableIdxFound
, TD
);
141 if (VariableIdxFound
) return false;
143 Offset
= Offset2
-Offset1
;
148 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
149 /// This allows us to analyze stores like:
154 /// which sometimes happens with stores to arrays of structs etc. When we see
155 /// the first store, we make a range [1, 2). The second store extends the range
156 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
157 /// two ranges into [0, 3) which is memset'able.
160 // Start/End - A semi range that describes the span that this range covers.
161 // The range is closed at the start and open at the end: [Start, End).
164 /// StartPtr - The getelementptr instruction that points to the start of the
168 /// Alignment - The known alignment of the first store.
171 /// TheStores - The actual stores that make up this range.
172 SmallVector
<StoreInst
*, 16> TheStores
;
174 bool isProfitableToUseMemset(const TargetData
&TD
) const;
177 } // end anon namespace
179 bool MemsetRange::isProfitableToUseMemset(const TargetData
&TD
) const {
180 // If we found more than 8 stores to merge or 64 bytes, use memset.
181 if (TheStores
.size() >= 8 || End
-Start
>= 64) return true;
183 // Assume that the code generator is capable of merging pairs of stores
184 // together if it wants to.
185 if (TheStores
.size() <= 2) return false;
187 // If we have fewer than 8 stores, it can still be worthwhile to do this.
188 // For example, merging 4 i8 stores into an i32 store is useful almost always.
189 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
190 // memset will be split into 2 32-bit stores anyway) and doing so can
191 // pessimize the llvm optimizer.
193 // Since we don't have perfect knowledge here, make some assumptions: assume
194 // the maximum GPR width is the same size as the pointer size and assume that
195 // this width can be stored. If so, check to see whether we will end up
196 // actually reducing the number of stores used.
197 unsigned Bytes
= unsigned(End
-Start
);
198 unsigned NumPointerStores
= Bytes
/TD
.getPointerSize();
200 // Assume the remaining bytes if any are done a byte at a time.
201 unsigned NumByteStores
= Bytes
- NumPointerStores
*TD
.getPointerSize();
203 // If we will reduce the # stores (according to this heuristic), do the
204 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
206 return TheStores
.size() > NumPointerStores
+NumByteStores
;
212 /// Ranges - A sorted list of the memset ranges. We use std::list here
213 /// because each element is relatively large and expensive to copy.
214 std::list
<MemsetRange
> Ranges
;
215 typedef std::list
<MemsetRange
>::iterator range_iterator
;
218 MemsetRanges(TargetData
&td
) : TD(td
) {}
220 typedef std::list
<MemsetRange
>::const_iterator const_iterator
;
221 const_iterator
begin() const { return Ranges
.begin(); }
222 const_iterator
end() const { return Ranges
.end(); }
223 bool empty() const { return Ranges
.empty(); }
225 void addStore(int64_t OffsetFromFirst
, StoreInst
*SI
);
228 } // end anon namespace
231 /// addStore - Add a new store to the MemsetRanges data structure. This adds a
232 /// new range for the specified store at the specified offset, merging into
233 /// existing ranges as appropriate.
234 void MemsetRanges::addStore(int64_t Start
, StoreInst
*SI
) {
235 int64_t End
= Start
+TD
.getTypeStoreSize(SI
->getOperand(0)->getType());
237 // Do a linear search of the ranges to see if this can be joined and/or to
238 // find the insertion point in the list. We keep the ranges sorted for
239 // simplicity here. This is a linear search of a linked list, which is ugly,
240 // however the number of ranges is limited, so this won't get crazy slow.
241 range_iterator I
= Ranges
.begin(), E
= Ranges
.end();
243 while (I
!= E
&& Start
> I
->End
)
246 // We now know that I == E, in which case we didn't find anything to merge
247 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
248 // to insert a new range. Handle this now.
249 if (I
== E
|| End
< I
->Start
) {
250 MemsetRange
&R
= *Ranges
.insert(I
, MemsetRange());
253 R
.StartPtr
= SI
->getPointerOperand();
254 R
.Alignment
= SI
->getAlignment();
255 R
.TheStores
.push_back(SI
);
259 // This store overlaps with I, add it.
260 I
->TheStores
.push_back(SI
);
262 // At this point, we may have an interval that completely contains our store.
263 // If so, just add it to the interval and return.
264 if (I
->Start
<= Start
&& I
->End
>= End
)
267 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
268 // but is not entirely contained within the range.
270 // See if the range extends the start of the range. In this case, it couldn't
271 // possibly cause it to join the prior range, because otherwise we would have
273 if (Start
< I
->Start
) {
275 I
->StartPtr
= SI
->getPointerOperand();
278 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
279 // is in or right at the end of I), and that End >= I->Start. Extend I out to
283 range_iterator NextI
= I
;
284 while (++NextI
!= E
&& End
>= NextI
->Start
) {
285 // Merge the range in.
286 I
->TheStores
.append(NextI
->TheStores
.begin(), NextI
->TheStores
.end());
287 if (NextI
->End
> I
->End
)
295 //===----------------------------------------------------------------------===//
297 //===----------------------------------------------------------------------===//
300 class MemCpyOpt
: public FunctionPass
{
301 bool runOnFunction(Function
&F
);
303 static char ID
; // Pass identification, replacement for typeid
304 MemCpyOpt() : FunctionPass(&ID
) {}
307 // This transformation requires dominator postdominator info
308 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
309 AU
.setPreservesCFG();
310 AU
.addRequired
<DominatorTree
>();
311 AU
.addRequired
<MemoryDependenceAnalysis
>();
312 AU
.addRequired
<AliasAnalysis
>();
313 AU
.addPreserved
<AliasAnalysis
>();
314 AU
.addPreserved
<MemoryDependenceAnalysis
>();
318 bool processStore(StoreInst
*SI
, BasicBlock::iterator
&BBI
);
319 bool processMemCpy(MemCpyInst
*M
);
320 bool processMemMove(MemMoveInst
*M
);
321 bool performCallSlotOptzn(MemCpyInst
*cpy
, CallInst
*C
);
322 bool iterateOnFunction(Function
&F
);
325 char MemCpyOpt::ID
= 0;
328 // createMemCpyOptPass - The public interface to this file...
329 FunctionPass
*llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
331 static RegisterPass
<MemCpyOpt
> X("memcpyopt",
332 "MemCpy Optimization");
336 /// processStore - When GVN is scanning forward over instructions, we look for
337 /// some other patterns to fold away. In particular, this looks for stores to
338 /// neighboring locations of memory. If it sees enough consequtive ones
339 /// (currently 4) it attempts to merge them together into a memcpy/memset.
340 bool MemCpyOpt::processStore(StoreInst
*SI
, BasicBlock::iterator
&BBI
) {
341 if (SI
->isVolatile()) return false;
343 LLVMContext
&Context
= SI
->getContext();
345 // There are two cases that are interesting for this code to handle: memcpy
346 // and memset. Right now we only handle memset.
348 // Ensure that the value being stored is something that can be memset'able a
349 // byte at a time like "0" or "-1" or any width, as well as things like
350 // 0xA0A0A0A0 and 0.0.
351 Value
*ByteVal
= isBytewiseValue(SI
->getOperand(0), Context
);
355 TargetData
*TD
= getAnalysisIfAvailable
<TargetData
>();
356 if (!TD
) return false;
357 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
358 Module
*M
= SI
->getParent()->getParent()->getParent();
360 // Okay, so we now have a single store that can be splatable. Scan to find
361 // all subsequent stores of the same value to offset from the same pointer.
362 // Join these together into ranges, so we can decide whether contiguous blocks
364 MemsetRanges
Ranges(*TD
);
366 Value
*StartPtr
= SI
->getPointerOperand();
368 BasicBlock::iterator BI
= SI
;
369 for (++BI
; !isa
<TerminatorInst
>(BI
); ++BI
) {
370 if (isa
<CallInst
>(BI
) || isa
<InvokeInst
>(BI
)) {
371 // If the call is readnone, ignore it, otherwise bail out. We don't even
372 // allow readonly here because we don't want something like:
373 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
374 if (AA
.getModRefBehavior(CallSite::get(BI
)) ==
375 AliasAnalysis::DoesNotAccessMemory
)
378 // TODO: If this is a memset, try to join it in.
381 } else if (isa
<VAArgInst
>(BI
) || isa
<LoadInst
>(BI
))
384 // If this is a non-store instruction it is fine, ignore it.
385 StoreInst
*NextStore
= dyn_cast
<StoreInst
>(BI
);
386 if (NextStore
== 0) continue;
388 // If this is a store, see if we can merge it in.
389 if (NextStore
->isVolatile()) break;
391 // Check to see if this stored value is of the same byte-splattable value.
392 if (ByteVal
!= isBytewiseValue(NextStore
->getOperand(0), Context
))
395 // Check to see if this store is to a constant offset from the start ptr.
397 if (!IsPointerOffset(StartPtr
, NextStore
->getPointerOperand(), Offset
, *TD
))
400 Ranges
.addStore(Offset
, NextStore
);
403 // If we have no ranges, then we just had a single store with nothing that
404 // could be merged in. This is a very common case of course.
408 // If we had at least one store that could be merged in, add the starting
409 // store as well. We try to avoid this unless there is at least something
410 // interesting as a small compile-time optimization.
411 Ranges
.addStore(0, SI
);
413 Function
*MemSetF
= 0;
415 // Now that we have full information about ranges, loop over the ranges and
416 // emit memset's for anything big enough to be worthwhile.
417 bool MadeChange
= false;
418 for (MemsetRanges::const_iterator I
= Ranges
.begin(), E
= Ranges
.end();
420 const MemsetRange
&Range
= *I
;
422 if (Range
.TheStores
.size() == 1) continue;
424 // If it is profitable to lower this range to memset, do so now.
425 if (!Range
.isProfitableToUseMemset(*TD
))
428 // Otherwise, we do want to transform this! Create a new memset. We put
429 // the memset right before the first instruction that isn't part of this
430 // memset block. This ensure that the memset is dominated by any addressing
431 // instruction needed by the start of the block.
432 BasicBlock::iterator InsertPt
= BI
;
435 const Type
*Ty
= Type::getInt64Ty(Context
);
436 MemSetF
= Intrinsic::getDeclaration(M
, Intrinsic::memset
, &Ty
, 1);
439 // Get the starting pointer of the block.
440 StartPtr
= Range
.StartPtr
;
442 // Cast the start ptr to be i8* as memset requires.
443 const Type
*i8Ptr
= PointerType::getUnqual(Type::getInt8Ty(Context
));
444 if (StartPtr
->getType() != i8Ptr
)
445 StartPtr
= new BitCastInst(StartPtr
, i8Ptr
, StartPtr
->getName(),
449 StartPtr
, ByteVal
, // Start, value
451 ConstantInt::get(Type::getInt64Ty(Context
), Range
.End
-Range
.Start
),
453 ConstantInt::get(Type::getInt32Ty(Context
), Range
.Alignment
)
455 Value
*C
= CallInst::Create(MemSetF
, Ops
, Ops
+4, "", InsertPt
);
456 DEBUG(errs() << "Replace stores:\n";
457 for (unsigned i
= 0, e
= Range
.TheStores
.size(); i
!= e
; ++i
)
458 errs() << *Range
.TheStores
[i
];
459 errs() << "With: " << *C
); C
=C
;
461 // Don't invalidate the iterator
464 // Zap all the stores.
465 for (SmallVector
<StoreInst
*, 16>::const_iterator
466 SI
= Range
.TheStores
.begin(),
467 SE
= Range
.TheStores
.end(); SI
!= SE
; ++SI
)
468 (*SI
)->eraseFromParent();
477 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
478 /// and checks for the possibility of a call slot optimization by having
479 /// the call write its result directly into the destination of the memcpy.
480 bool MemCpyOpt::performCallSlotOptzn(MemCpyInst
*cpy
, CallInst
*C
) {
481 // The general transformation to keep in mind is
483 // call @func(..., src, ...)
484 // memcpy(dest, src, ...)
488 // memcpy(dest, src, ...)
489 // call @func(..., dest, ...)
491 // Since moving the memcpy is technically awkward, we additionally check that
492 // src only holds uninitialized values at the moment of the call, meaning that
493 // the memcpy can be discarded rather than moved.
495 // Deliberately get the source and destination with bitcasts stripped away,
496 // because we'll need to do type comparisons based on the underlying type.
497 Value
*cpyDest
= cpy
->getDest();
498 Value
*cpySrc
= cpy
->getSource();
499 CallSite CS
= CallSite::get(C
);
501 // We need to be able to reason about the size of the memcpy, so we require
502 // that it be a constant.
503 ConstantInt
*cpyLength
= dyn_cast
<ConstantInt
>(cpy
->getLength());
507 // Require that src be an alloca. This simplifies the reasoning considerably.
508 AllocaInst
*srcAlloca
= dyn_cast
<AllocaInst
>(cpySrc
);
512 // Check that all of src is copied to dest.
513 TargetData
*TD
= getAnalysisIfAvailable
<TargetData
>();
514 if (!TD
) return false;
516 ConstantInt
*srcArraySize
= dyn_cast
<ConstantInt
>(srcAlloca
->getArraySize());
520 uint64_t srcSize
= TD
->getTypeAllocSize(srcAlloca
->getAllocatedType()) *
521 srcArraySize
->getZExtValue();
523 if (cpyLength
->getZExtValue() < srcSize
)
526 // Check that accessing the first srcSize bytes of dest will not cause a
527 // trap. Otherwise the transform is invalid since it might cause a trap
528 // to occur earlier than it otherwise would.
529 if (AllocaInst
*A
= dyn_cast
<AllocaInst
>(cpyDest
)) {
530 // The destination is an alloca. Check it is larger than srcSize.
531 ConstantInt
*destArraySize
= dyn_cast
<ConstantInt
>(A
->getArraySize());
535 uint64_t destSize
= TD
->getTypeAllocSize(A
->getAllocatedType()) *
536 destArraySize
->getZExtValue();
538 if (destSize
< srcSize
)
540 } else if (Argument
*A
= dyn_cast
<Argument
>(cpyDest
)) {
541 // If the destination is an sret parameter then only accesses that are
542 // outside of the returned struct type can trap.
543 if (!A
->hasStructRetAttr())
546 const Type
*StructTy
= cast
<PointerType
>(A
->getType())->getElementType();
547 uint64_t destSize
= TD
->getTypeAllocSize(StructTy
);
549 if (destSize
< srcSize
)
555 // Check that src is not accessed except via the call and the memcpy. This
556 // guarantees that it holds only undefined values when passed in (so the final
557 // memcpy can be dropped), that it is not read or written between the call and
558 // the memcpy, and that writing beyond the end of it is undefined.
559 SmallVector
<User
*, 8> srcUseList(srcAlloca
->use_begin(),
560 srcAlloca
->use_end());
561 while (!srcUseList
.empty()) {
562 User
*UI
= srcUseList
.back();
563 srcUseList
.pop_back();
565 if (isa
<BitCastInst
>(UI
)) {
566 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
568 srcUseList
.push_back(*I
);
569 } else if (GetElementPtrInst
*G
= dyn_cast
<GetElementPtrInst
>(UI
)) {
570 if (G
->hasAllZeroIndices())
571 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
573 srcUseList
.push_back(*I
);
576 } else if (UI
!= C
&& UI
!= cpy
) {
581 // Since we're changing the parameter to the callsite, we need to make sure
582 // that what would be the new parameter dominates the callsite.
583 DominatorTree
&DT
= getAnalysis
<DominatorTree
>();
584 if (Instruction
*cpyDestInst
= dyn_cast
<Instruction
>(cpyDest
))
585 if (!DT
.dominates(cpyDestInst
, C
))
588 // In addition to knowing that the call does not access src in some
589 // unexpected manner, for example via a global, which we deduce from
590 // the use analysis, we also need to know that it does not sneakily
591 // access dest. We rely on AA to figure this out for us.
592 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
593 if (AA
.getModRefInfo(C
, cpy
->getRawDest(), srcSize
) !=
594 AliasAnalysis::NoModRef
)
597 // All the checks have passed, so do the transformation.
598 bool changedArgument
= false;
599 for (unsigned i
= 0; i
< CS
.arg_size(); ++i
)
600 if (CS
.getArgument(i
)->stripPointerCasts() == cpySrc
) {
601 if (cpySrc
->getType() != cpyDest
->getType())
602 cpyDest
= CastInst::CreatePointerCast(cpyDest
, cpySrc
->getType(),
603 cpyDest
->getName(), C
);
604 changedArgument
= true;
605 if (CS
.getArgument(i
)->getType() == cpyDest
->getType())
606 CS
.setArgument(i
, cpyDest
);
608 CS
.setArgument(i
, CastInst::CreatePointerCast(cpyDest
,
609 CS
.getArgument(i
)->getType(), cpyDest
->getName(), C
));
612 if (!changedArgument
)
615 // Drop any cached information about the call, because we may have changed
616 // its dependence information by changing its parameter.
617 MemoryDependenceAnalysis
&MD
= getAnalysis
<MemoryDependenceAnalysis
>();
618 MD
.removeInstruction(C
);
621 MD
.removeInstruction(cpy
);
622 cpy
->eraseFromParent();
628 /// processMemCpy - perform simplication of memcpy's. If we have memcpy A which
629 /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
630 /// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
631 /// This allows later passes to remove the first memcpy altogether.
632 bool MemCpyOpt::processMemCpy(MemCpyInst
*M
) {
633 MemoryDependenceAnalysis
&MD
= getAnalysis
<MemoryDependenceAnalysis
>();
635 // The are two possible optimizations we can do for memcpy:
636 // a) memcpy-memcpy xform which exposes redundance for DSE.
637 // b) call-memcpy xform for return slot optimization.
638 MemDepResult dep
= MD
.getDependency(M
);
639 if (!dep
.isClobber())
641 if (!isa
<MemCpyInst
>(dep
.getInst())) {
642 if (CallInst
*C
= dyn_cast
<CallInst
>(dep
.getInst()))
643 return performCallSlotOptzn(M
, C
);
647 MemCpyInst
*MDep
= cast
<MemCpyInst
>(dep
.getInst());
649 // We can only transforms memcpy's where the dest of one is the source of the
651 if (M
->getSource() != MDep
->getDest())
654 // Second, the length of the memcpy's must be the same, or the preceeding one
655 // must be larger than the following one.
656 ConstantInt
*C1
= dyn_cast
<ConstantInt
>(MDep
->getLength());
657 ConstantInt
*C2
= dyn_cast
<ConstantInt
>(M
->getLength());
661 uint64_t DepSize
= C1
->getValue().getZExtValue();
662 uint64_t CpySize
= C2
->getValue().getZExtValue();
664 if (DepSize
< CpySize
)
667 // Finally, we have to make sure that the dest of the second does not
668 // alias the source of the first
669 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
670 if (AA
.alias(M
->getRawDest(), CpySize
, MDep
->getRawSource(), DepSize
) !=
671 AliasAnalysis::NoAlias
)
673 else if (AA
.alias(M
->getRawDest(), CpySize
, M
->getRawSource(), CpySize
) !=
674 AliasAnalysis::NoAlias
)
676 else if (AA
.alias(MDep
->getRawDest(), DepSize
, MDep
->getRawSource(), DepSize
)
677 != AliasAnalysis::NoAlias
)
680 // If all checks passed, then we can transform these memcpy's
681 const Type
*Ty
= M
->getLength()->getType();
682 Function
*MemCpyFun
= Intrinsic::getDeclaration(
683 M
->getParent()->getParent()->getParent(),
684 M
->getIntrinsicID(), &Ty
, 1);
687 M
->getRawDest(), MDep
->getRawSource(), M
->getLength(), M
->getAlignmentCst()
690 CallInst
*C
= CallInst::Create(MemCpyFun
, Args
, Args
+4, "", M
);
693 // If C and M don't interfere, then this is a valid transformation. If they
694 // did, this would mean that the two sources overlap, which would be bad.
695 if (MD
.getDependency(C
) == dep
) {
696 MD
.removeInstruction(M
);
697 M
->eraseFromParent();
702 // Otherwise, there was no point in doing this, so we remove the call we
703 // inserted and act like nothing happened.
704 MD
.removeInstruction(C
);
705 C
->eraseFromParent();
709 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
710 /// are guaranteed not to alias.
711 bool MemCpyOpt::processMemMove(MemMoveInst
*M
) {
712 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
714 // If the memmove is a constant size, use it for the alias query, this allows
715 // us to optimize things like: memmove(P, P+64, 64);
716 uint64_t MemMoveSize
= ~0ULL;
717 if (ConstantInt
*Len
= dyn_cast
<ConstantInt
>(M
->getLength()))
718 MemMoveSize
= Len
->getZExtValue();
720 // See if the pointers alias.
721 if (AA
.alias(M
->getRawDest(), MemMoveSize
, M
->getRawSource(), MemMoveSize
) !=
722 AliasAnalysis::NoAlias
)
725 DEBUG(errs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M
<< "\n");
727 // If not, then we know we can transform this.
728 Module
*Mod
= M
->getParent()->getParent()->getParent();
729 const Type
*Ty
= M
->getLength()->getType();
730 M
->setOperand(0, Intrinsic::getDeclaration(Mod
, Intrinsic::memcpy
, &Ty
, 1));
732 // MemDep may have over conservative information about this instruction, just
733 // conservatively flush it from the cache.
734 getAnalysis
<MemoryDependenceAnalysis
>().removeInstruction(M
);
741 // MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
742 bool MemCpyOpt::iterateOnFunction(Function
&F
) {
743 bool MadeChange
= false;
745 // Walk all instruction in the function.
746 for (Function::iterator BB
= F
.begin(), BBE
= F
.end(); BB
!= BBE
; ++BB
) {
747 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end();
749 // Avoid invalidating the iterator.
750 Instruction
*I
= BI
++;
752 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
753 MadeChange
|= processStore(SI
, BI
);
754 else if (MemCpyInst
*M
= dyn_cast
<MemCpyInst
>(I
))
755 MadeChange
|= processMemCpy(M
);
756 else if (MemMoveInst
*M
= dyn_cast
<MemMoveInst
>(I
)) {
757 if (processMemMove(M
)) {
758 --BI
; // Reprocess the new memcpy.
768 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
771 bool MemCpyOpt::runOnFunction(Function
&F
) {
772 bool MadeChange
= false;
774 if (!iterateOnFunction(F
))