add a new MCInstPrinter class, move the (trivial) MCDisassmbler ctor inline.
[llvm/avr.git] / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
blob8274e5aeb619b7857513bcc10dccd8de33cc7387
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using dominator frontiers to place PHI nodes, then traversing
13 // the function in depth-first order to rewrite loads and stores as appropriate.
14 // This is just the standard SSA construction algorithm to construct "pruned"
15 // SSA form.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "mem2reg"
20 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Analysis/Dominators.h"
28 #include "llvm/Analysis/AliasSetTracker.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/Compiler.h"
36 #include <algorithm>
37 using namespace llvm;
39 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
40 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
41 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
42 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
44 // Provide DenseMapInfo for all pointers.
45 namespace llvm {
46 template<>
47 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
48 typedef std::pair<BasicBlock*, unsigned> EltTy;
49 static inline EltTy getEmptyKey() {
50 return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
52 static inline EltTy getTombstoneKey() {
53 return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
55 static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
56 return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
58 static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
59 return LHS == RHS;
61 static bool isPod() { return true; }
65 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
66 /// This is true if there are only loads and stores to the alloca.
67 ///
68 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
69 // FIXME: If the memory unit is of pointer or integer type, we can permit
70 // assignments to subsections of the memory unit.
72 // Only allow direct and non-volatile loads and stores...
73 for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
74 UI != UE; ++UI) // Loop over all of the uses of the alloca
75 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
76 if (LI->isVolatile())
77 return false;
78 } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
79 if (SI->getOperand(0) == AI)
80 return false; // Don't allow a store OF the AI, only INTO the AI.
81 if (SI->isVolatile())
82 return false;
83 } else if (const BitCastInst *BC = dyn_cast<BitCastInst>(*UI)) {
84 // A bitcast that does not feed into debug info inhibits promotion.
85 if (!BC->hasOneUse() || !isa<DbgInfoIntrinsic>(*BC->use_begin()))
86 return false;
87 // If the only use is by debug info, this alloca will not exist in
88 // non-debug code, so don't try to promote; this ensures the same
89 // codegen with debug info. Otherwise, debug info should not
90 // inhibit promotion (but we must examine other uses).
91 if (AI->hasOneUse())
92 return false;
93 } else {
94 return false;
97 return true;
100 namespace {
101 struct AllocaInfo;
103 // Data package used by RenamePass()
104 class VISIBILITY_HIDDEN RenamePassData {
105 public:
106 typedef std::vector<Value *> ValVector;
108 RenamePassData() {}
109 RenamePassData(BasicBlock *B, BasicBlock *P,
110 const ValVector &V) : BB(B), Pred(P), Values(V) {}
111 BasicBlock *BB;
112 BasicBlock *Pred;
113 ValVector Values;
115 void swap(RenamePassData &RHS) {
116 std::swap(BB, RHS.BB);
117 std::swap(Pred, RHS.Pred);
118 Values.swap(RHS.Values);
122 /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
123 /// load/store instructions in the block that directly load or store an alloca.
125 /// This functionality is important because it avoids scanning large basic
126 /// blocks multiple times when promoting many allocas in the same block.
127 class VISIBILITY_HIDDEN LargeBlockInfo {
128 /// InstNumbers - For each instruction that we track, keep the index of the
129 /// instruction. The index starts out as the number of the instruction from
130 /// the start of the block.
131 DenseMap<const Instruction *, unsigned> InstNumbers;
132 public:
134 /// isInterestingInstruction - This code only looks at accesses to allocas.
135 static bool isInterestingInstruction(const Instruction *I) {
136 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
137 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
140 /// getInstructionIndex - Get or calculate the index of the specified
141 /// instruction.
142 unsigned getInstructionIndex(const Instruction *I) {
143 assert(isInterestingInstruction(I) &&
144 "Not a load/store to/from an alloca?");
146 // If we already have this instruction number, return it.
147 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
148 if (It != InstNumbers.end()) return It->second;
150 // Scan the whole block to get the instruction. This accumulates
151 // information for every interesting instruction in the block, in order to
152 // avoid gratuitus rescans.
153 const BasicBlock *BB = I->getParent();
154 unsigned InstNo = 0;
155 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
156 BBI != E; ++BBI)
157 if (isInterestingInstruction(BBI))
158 InstNumbers[BBI] = InstNo++;
159 It = InstNumbers.find(I);
161 assert(It != InstNumbers.end() && "Didn't insert instruction?");
162 return It->second;
165 void deleteValue(const Instruction *I) {
166 InstNumbers.erase(I);
169 void clear() {
170 InstNumbers.clear();
174 struct VISIBILITY_HIDDEN PromoteMem2Reg {
175 /// Allocas - The alloca instructions being promoted.
177 std::vector<AllocaInst*> Allocas;
178 DominatorTree &DT;
179 DominanceFrontier &DF;
181 /// AST - An AliasSetTracker object to update. If null, don't update it.
183 AliasSetTracker *AST;
185 LLVMContext &Context;
187 /// AllocaLookup - Reverse mapping of Allocas.
189 std::map<AllocaInst*, unsigned> AllocaLookup;
191 /// NewPhiNodes - The PhiNodes we're adding.
193 DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
195 /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
196 /// it corresponds to.
197 DenseMap<PHINode*, unsigned> PhiToAllocaMap;
199 /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
200 /// each alloca that is of pointer type, we keep track of what to copyValue
201 /// to the inserted PHI nodes here.
203 std::vector<Value*> PointerAllocaValues;
205 /// Visited - The set of basic blocks the renamer has already visited.
207 SmallPtrSet<BasicBlock*, 16> Visited;
209 /// BBNumbers - Contains a stable numbering of basic blocks to avoid
210 /// non-determinstic behavior.
211 DenseMap<BasicBlock*, unsigned> BBNumbers;
213 /// BBNumPreds - Lazily compute the number of predecessors a block has.
214 DenseMap<const BasicBlock*, unsigned> BBNumPreds;
215 public:
216 PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
217 DominanceFrontier &df, AliasSetTracker *ast,
218 LLVMContext &C)
219 : Allocas(A), DT(dt), DF(df), AST(ast), Context(C) {}
221 void run();
223 /// properlyDominates - Return true if I1 properly dominates I2.
225 bool properlyDominates(Instruction *I1, Instruction *I2) const {
226 if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
227 I1 = II->getNormalDest()->begin();
228 return DT.properlyDominates(I1->getParent(), I2->getParent());
231 /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
233 bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
234 return DT.dominates(BB1, BB2);
237 private:
238 void RemoveFromAllocasList(unsigned &AllocaIdx) {
239 Allocas[AllocaIdx] = Allocas.back();
240 Allocas.pop_back();
241 --AllocaIdx;
244 unsigned getNumPreds(const BasicBlock *BB) {
245 unsigned &NP = BBNumPreds[BB];
246 if (NP == 0)
247 NP = std::distance(pred_begin(BB), pred_end(BB))+1;
248 return NP-1;
251 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
252 AllocaInfo &Info);
253 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
254 const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
255 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
257 void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
258 LargeBlockInfo &LBI);
259 void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
260 LargeBlockInfo &LBI);
263 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
264 RenamePassData::ValVector &IncVals,
265 std::vector<RenamePassData> &Worklist);
266 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
267 SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
270 struct AllocaInfo {
271 std::vector<BasicBlock*> DefiningBlocks;
272 std::vector<BasicBlock*> UsingBlocks;
274 StoreInst *OnlyStore;
275 BasicBlock *OnlyBlock;
276 bool OnlyUsedInOneBlock;
278 Value *AllocaPointerVal;
280 void clear() {
281 DefiningBlocks.clear();
282 UsingBlocks.clear();
283 OnlyStore = 0;
284 OnlyBlock = 0;
285 OnlyUsedInOneBlock = true;
286 AllocaPointerVal = 0;
289 /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
290 /// ivars.
291 void AnalyzeAlloca(AllocaInst *AI) {
292 clear();
294 // As we scan the uses of the alloca instruction, keep track of stores,
295 // and decide whether all of the loads and stores to the alloca are within
296 // the same basic block.
297 for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
298 U != E;) {
299 Instruction *User = cast<Instruction>(*U);
300 ++U;
301 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
302 // Remove any uses of this alloca in DbgInfoInstrinsics.
303 assert(BC->hasOneUse() && "Unexpected alloca uses!");
304 DbgInfoIntrinsic *DI = cast<DbgInfoIntrinsic>(*BC->use_begin());
305 DI->eraseFromParent();
306 BC->eraseFromParent();
307 continue;
309 else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
310 // Remember the basic blocks which define new values for the alloca
311 DefiningBlocks.push_back(SI->getParent());
312 AllocaPointerVal = SI->getOperand(0);
313 OnlyStore = SI;
314 } else {
315 LoadInst *LI = cast<LoadInst>(User);
316 // Otherwise it must be a load instruction, keep track of variable
317 // reads.
318 UsingBlocks.push_back(LI->getParent());
319 AllocaPointerVal = LI;
322 if (OnlyUsedInOneBlock) {
323 if (OnlyBlock == 0)
324 OnlyBlock = User->getParent();
325 else if (OnlyBlock != User->getParent())
326 OnlyUsedInOneBlock = false;
331 } // end of anonymous namespace
334 void PromoteMem2Reg::run() {
335 Function &F = *DF.getRoot()->getParent();
337 if (AST) PointerAllocaValues.resize(Allocas.size());
339 AllocaInfo Info;
340 LargeBlockInfo LBI;
342 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
343 AllocaInst *AI = Allocas[AllocaNum];
345 assert(isAllocaPromotable(AI) &&
346 "Cannot promote non-promotable alloca!");
347 assert(AI->getParent()->getParent() == &F &&
348 "All allocas should be in the same function, which is same as DF!");
350 if (AI->use_empty()) {
351 // If there are no uses of the alloca, just delete it now.
352 if (AST) AST->deleteValue(AI);
353 AI->eraseFromParent();
355 // Remove the alloca from the Allocas list, since it has been processed
356 RemoveFromAllocasList(AllocaNum);
357 ++NumDeadAlloca;
358 continue;
361 // Calculate the set of read and write-locations for each alloca. This is
362 // analogous to finding the 'uses' and 'definitions' of each variable.
363 Info.AnalyzeAlloca(AI);
365 // If there is only a single store to this value, replace any loads of
366 // it that are directly dominated by the definition with the value stored.
367 if (Info.DefiningBlocks.size() == 1) {
368 RewriteSingleStoreAlloca(AI, Info, LBI);
370 // Finally, after the scan, check to see if the store is all that is left.
371 if (Info.UsingBlocks.empty()) {
372 // Remove the (now dead) store and alloca.
373 Info.OnlyStore->eraseFromParent();
374 LBI.deleteValue(Info.OnlyStore);
376 if (AST) AST->deleteValue(AI);
377 AI->eraseFromParent();
378 LBI.deleteValue(AI);
380 // The alloca has been processed, move on.
381 RemoveFromAllocasList(AllocaNum);
383 ++NumSingleStore;
384 continue;
388 // If the alloca is only read and written in one basic block, just perform a
389 // linear sweep over the block to eliminate it.
390 if (Info.OnlyUsedInOneBlock) {
391 PromoteSingleBlockAlloca(AI, Info, LBI);
393 // Finally, after the scan, check to see if the stores are all that is
394 // left.
395 if (Info.UsingBlocks.empty()) {
397 // Remove the (now dead) stores and alloca.
398 while (!AI->use_empty()) {
399 StoreInst *SI = cast<StoreInst>(AI->use_back());
400 SI->eraseFromParent();
401 LBI.deleteValue(SI);
404 if (AST) AST->deleteValue(AI);
405 AI->eraseFromParent();
406 LBI.deleteValue(AI);
408 // The alloca has been processed, move on.
409 RemoveFromAllocasList(AllocaNum);
411 ++NumLocalPromoted;
412 continue;
416 // If we haven't computed a numbering for the BB's in the function, do so
417 // now.
418 if (BBNumbers.empty()) {
419 unsigned ID = 0;
420 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
421 BBNumbers[I] = ID++;
424 // If we have an AST to keep updated, remember some pointer value that is
425 // stored into the alloca.
426 if (AST)
427 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
429 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
430 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
432 // At this point, we're committed to promoting the alloca using IDF's, and
433 // the standard SSA construction algorithm. Determine which blocks need PHI
434 // nodes and see if we can optimize out some work by avoiding insertion of
435 // dead phi nodes.
436 DetermineInsertionPoint(AI, AllocaNum, Info);
439 if (Allocas.empty())
440 return; // All of the allocas must have been trivial!
442 LBI.clear();
445 // Set the incoming values for the basic block to be null values for all of
446 // the alloca's. We do this in case there is a load of a value that has not
447 // been stored yet. In this case, it will get this null value.
449 RenamePassData::ValVector Values(Allocas.size());
450 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
451 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
453 // Walks all basic blocks in the function performing the SSA rename algorithm
454 // and inserting the phi nodes we marked as necessary
456 std::vector<RenamePassData> RenamePassWorkList;
457 RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
458 while (!RenamePassWorkList.empty()) {
459 RenamePassData RPD;
460 RPD.swap(RenamePassWorkList.back());
461 RenamePassWorkList.pop_back();
462 // RenamePass may add new worklist entries.
463 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
466 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
467 Visited.clear();
469 // Remove the allocas themselves from the function.
470 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
471 Instruction *A = Allocas[i];
473 // If there are any uses of the alloca instructions left, they must be in
474 // sections of dead code that were not processed on the dominance frontier.
475 // Just delete the users now.
477 if (!A->use_empty())
478 A->replaceAllUsesWith(UndefValue::get(A->getType()));
479 if (AST) AST->deleteValue(A);
480 A->eraseFromParent();
484 // Loop over all of the PHI nodes and see if there are any that we can get
485 // rid of because they merge all of the same incoming values. This can
486 // happen due to undef values coming into the PHI nodes. This process is
487 // iterative, because eliminating one PHI node can cause others to be removed.
488 bool EliminatedAPHI = true;
489 while (EliminatedAPHI) {
490 EliminatedAPHI = false;
492 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
493 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
494 PHINode *PN = I->second;
496 // If this PHI node merges one value and/or undefs, get the value.
497 if (Value *V = PN->hasConstantValue(&DT)) {
498 if (AST && isa<PointerType>(PN->getType()))
499 AST->deleteValue(PN);
500 PN->replaceAllUsesWith(V);
501 PN->eraseFromParent();
502 NewPhiNodes.erase(I++);
503 EliminatedAPHI = true;
504 continue;
506 ++I;
510 // At this point, the renamer has added entries to PHI nodes for all reachable
511 // code. Unfortunately, there may be unreachable blocks which the renamer
512 // hasn't traversed. If this is the case, the PHI nodes may not
513 // have incoming values for all predecessors. Loop over all PHI nodes we have
514 // created, inserting undef values if they are missing any incoming values.
516 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
517 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
518 // We want to do this once per basic block. As such, only process a block
519 // when we find the PHI that is the first entry in the block.
520 PHINode *SomePHI = I->second;
521 BasicBlock *BB = SomePHI->getParent();
522 if (&BB->front() != SomePHI)
523 continue;
525 // Only do work here if there the PHI nodes are missing incoming values. We
526 // know that all PHI nodes that were inserted in a block will have the same
527 // number of incoming values, so we can just check any of them.
528 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
529 continue;
531 // Get the preds for BB.
532 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
534 // Ok, now we know that all of the PHI nodes are missing entries for some
535 // basic blocks. Start by sorting the incoming predecessors for efficient
536 // access.
537 std::sort(Preds.begin(), Preds.end());
539 // Now we loop through all BB's which have entries in SomePHI and remove
540 // them from the Preds list.
541 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
542 // Do a log(n) search of the Preds list for the entry we want.
543 SmallVector<BasicBlock*, 16>::iterator EntIt =
544 std::lower_bound(Preds.begin(), Preds.end(),
545 SomePHI->getIncomingBlock(i));
546 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
547 "PHI node has entry for a block which is not a predecessor!");
549 // Remove the entry
550 Preds.erase(EntIt);
553 // At this point, the blocks left in the preds list must have dummy
554 // entries inserted into every PHI nodes for the block. Update all the phi
555 // nodes in this block that we are inserting (there could be phis before
556 // mem2reg runs).
557 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
558 BasicBlock::iterator BBI = BB->begin();
559 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
560 SomePHI->getNumIncomingValues() == NumBadPreds) {
561 Value *UndefVal = UndefValue::get(SomePHI->getType());
562 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
563 SomePHI->addIncoming(UndefVal, Preds[pred]);
567 NewPhiNodes.clear();
571 /// ComputeLiveInBlocks - Determine which blocks the value is live in. These
572 /// are blocks which lead to uses. Knowing this allows us to avoid inserting
573 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
574 /// would be dead).
575 void PromoteMem2Reg::
576 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
577 const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
578 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
580 // To determine liveness, we must iterate through the predecessors of blocks
581 // where the def is live. Blocks are added to the worklist if we need to
582 // check their predecessors. Start with all the using blocks.
583 SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
584 LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
585 Info.UsingBlocks.begin(), Info.UsingBlocks.end());
587 // If any of the using blocks is also a definition block, check to see if the
588 // definition occurs before or after the use. If it happens before the use,
589 // the value isn't really live-in.
590 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
591 BasicBlock *BB = LiveInBlockWorklist[i];
592 if (!DefBlocks.count(BB)) continue;
594 // Okay, this is a block that both uses and defines the value. If the first
595 // reference to the alloca is a def (store), then we know it isn't live-in.
596 for (BasicBlock::iterator I = BB->begin(); ; ++I) {
597 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
598 if (SI->getOperand(1) != AI) continue;
600 // We found a store to the alloca before a load. The alloca is not
601 // actually live-in here.
602 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
603 LiveInBlockWorklist.pop_back();
604 --i, --e;
605 break;
606 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
607 if (LI->getOperand(0) != AI) continue;
609 // Okay, we found a load before a store to the alloca. It is actually
610 // live into this block.
611 break;
616 // Now that we have a set of blocks where the phi is live-in, recursively add
617 // their predecessors until we find the full region the value is live.
618 while (!LiveInBlockWorklist.empty()) {
619 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
621 // The block really is live in here, insert it into the set. If already in
622 // the set, then it has already been processed.
623 if (!LiveInBlocks.insert(BB))
624 continue;
626 // Since the value is live into BB, it is either defined in a predecessor or
627 // live into it to. Add the preds to the worklist unless they are a
628 // defining block.
629 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
630 BasicBlock *P = *PI;
632 // The value is not live into a predecessor if it defines the value.
633 if (DefBlocks.count(P))
634 continue;
636 // Otherwise it is, add to the worklist.
637 LiveInBlockWorklist.push_back(P);
642 /// DetermineInsertionPoint - At this point, we're committed to promoting the
643 /// alloca using IDF's, and the standard SSA construction algorithm. Determine
644 /// which blocks need phi nodes and see if we can optimize out some work by
645 /// avoiding insertion of dead phi nodes.
646 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
647 AllocaInfo &Info) {
649 // Unique the set of defining blocks for efficient lookup.
650 SmallPtrSet<BasicBlock*, 32> DefBlocks;
651 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
653 // Determine which blocks the value is live in. These are blocks which lead
654 // to uses.
655 SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
656 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
658 // Compute the locations where PhiNodes need to be inserted. Look at the
659 // dominance frontier of EACH basic-block we have a write in.
660 unsigned CurrentVersion = 0;
661 SmallPtrSet<PHINode*, 16> InsertedPHINodes;
662 std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
663 while (!Info.DefiningBlocks.empty()) {
664 BasicBlock *BB = Info.DefiningBlocks.back();
665 Info.DefiningBlocks.pop_back();
667 // Look up the DF for this write, add it to defining blocks.
668 DominanceFrontier::const_iterator it = DF.find(BB);
669 if (it == DF.end()) continue;
671 const DominanceFrontier::DomSetType &S = it->second;
673 // In theory we don't need the indirection through the DFBlocks vector.
674 // In practice, the order of calling QueuePhiNode would depend on the
675 // (unspecified) ordering of basic blocks in the dominance frontier,
676 // which would give PHI nodes non-determinstic subscripts. Fix this by
677 // processing blocks in order of the occurance in the function.
678 for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
679 PE = S.end(); P != PE; ++P) {
680 // If the frontier block is not in the live-in set for the alloca, don't
681 // bother processing it.
682 if (!LiveInBlocks.count(*P))
683 continue;
685 DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
688 // Sort by which the block ordering in the function.
689 if (DFBlocks.size() > 1)
690 std::sort(DFBlocks.begin(), DFBlocks.end());
692 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
693 BasicBlock *BB = DFBlocks[i].second;
694 if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
695 Info.DefiningBlocks.push_back(BB);
697 DFBlocks.clear();
701 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
702 /// replace any loads of it that are directly dominated by the definition with
703 /// the value stored.
704 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
705 AllocaInfo &Info,
706 LargeBlockInfo &LBI) {
707 StoreInst *OnlyStore = Info.OnlyStore;
708 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
709 BasicBlock *StoreBB = OnlyStore->getParent();
710 int StoreIndex = -1;
712 // Clear out UsingBlocks. We will reconstruct it here if needed.
713 Info.UsingBlocks.clear();
715 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
716 Instruction *UserInst = cast<Instruction>(*UI++);
717 if (!isa<LoadInst>(UserInst)) {
718 assert(UserInst == OnlyStore && "Should only have load/stores");
719 continue;
721 LoadInst *LI = cast<LoadInst>(UserInst);
723 // Okay, if we have a load from the alloca, we want to replace it with the
724 // only value stored to the alloca. We can do this if the value is
725 // dominated by the store. If not, we use the rest of the mem2reg machinery
726 // to insert the phi nodes as needed.
727 if (!StoringGlobalVal) { // Non-instructions are always dominated.
728 if (LI->getParent() == StoreBB) {
729 // If we have a use that is in the same block as the store, compare the
730 // indices of the two instructions to see which one came first. If the
731 // load came before the store, we can't handle it.
732 if (StoreIndex == -1)
733 StoreIndex = LBI.getInstructionIndex(OnlyStore);
735 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
736 // Can't handle this load, bail out.
737 Info.UsingBlocks.push_back(StoreBB);
738 continue;
741 } else if (LI->getParent() != StoreBB &&
742 !dominates(StoreBB, LI->getParent())) {
743 // If the load and store are in different blocks, use BB dominance to
744 // check their relationships. If the store doesn't dom the use, bail
745 // out.
746 Info.UsingBlocks.push_back(LI->getParent());
747 continue;
751 // Otherwise, we *can* safely rewrite this load.
752 LI->replaceAllUsesWith(OnlyStore->getOperand(0));
753 if (AST && isa<PointerType>(LI->getType()))
754 AST->deleteValue(LI);
755 LI->eraseFromParent();
756 LBI.deleteValue(LI);
760 namespace {
762 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
763 /// first element of a pair.
764 struct StoreIndexSearchPredicate {
765 bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
766 const std::pair<unsigned, StoreInst*> &RHS) {
767 return LHS.first < RHS.first;
773 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
774 /// block. If this is the case, avoid traversing the CFG and inserting a lot of
775 /// potentially useless PHI nodes by just performing a single linear pass over
776 /// the basic block using the Alloca.
778 /// If we cannot promote this alloca (because it is read before it is written),
779 /// return true. This is necessary in cases where, due to control flow, the
780 /// alloca is potentially undefined on some control flow paths. e.g. code like
781 /// this is potentially correct:
783 /// for (...) { if (c) { A = undef; undef = B; } }
785 /// ... so long as A is not used before undef is set.
787 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
788 LargeBlockInfo &LBI) {
789 // The trickiest case to handle is when we have large blocks. Because of this,
790 // this code is optimized assuming that large blocks happen. This does not
791 // significantly pessimize the small block case. This uses LargeBlockInfo to
792 // make it efficient to get the index of various operations in the block.
794 // Clear out UsingBlocks. We will reconstruct it here if needed.
795 Info.UsingBlocks.clear();
797 // Walk the use-def list of the alloca, getting the locations of all stores.
798 typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
799 StoresByIndexTy StoresByIndex;
801 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
802 UI != E; ++UI)
803 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
804 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
806 // If there are no stores to the alloca, just replace any loads with undef.
807 if (StoresByIndex.empty()) {
808 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
809 if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
810 LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
811 if (AST && isa<PointerType>(LI->getType()))
812 AST->deleteValue(LI);
813 LBI.deleteValue(LI);
814 LI->eraseFromParent();
816 return;
819 // Sort the stores by their index, making it efficient to do a lookup with a
820 // binary search.
821 std::sort(StoresByIndex.begin(), StoresByIndex.end());
823 // Walk all of the loads from this alloca, replacing them with the nearest
824 // store above them, if any.
825 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
826 LoadInst *LI = dyn_cast<LoadInst>(*UI++);
827 if (!LI) continue;
829 unsigned LoadIdx = LBI.getInstructionIndex(LI);
831 // Find the nearest store that has a lower than this load.
832 StoresByIndexTy::iterator I =
833 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
834 std::pair<unsigned, StoreInst*>(LoadIdx, 0),
835 StoreIndexSearchPredicate());
837 // If there is no store before this load, then we can't promote this load.
838 if (I == StoresByIndex.begin()) {
839 // Can't handle this load, bail out.
840 Info.UsingBlocks.push_back(LI->getParent());
841 continue;
844 // Otherwise, there was a store before this load, the load takes its value.
845 --I;
846 LI->replaceAllUsesWith(I->second->getOperand(0));
847 if (AST && isa<PointerType>(LI->getType()))
848 AST->deleteValue(LI);
849 LI->eraseFromParent();
850 LBI.deleteValue(LI);
855 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
856 // Alloca returns true if there wasn't already a phi-node for that variable
858 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
859 unsigned &Version,
860 SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
861 // Look up the basic-block in question.
862 PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
864 // If the BB already has a phi node added for the i'th alloca then we're done!
865 if (PN) return false;
867 // Create a PhiNode using the dereferenced type... and add the phi-node to the
868 // BasicBlock.
869 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
870 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
871 BB->begin());
872 ++NumPHIInsert;
873 PhiToAllocaMap[PN] = AllocaNo;
874 PN->reserveOperandSpace(getNumPreds(BB));
876 InsertedPHINodes.insert(PN);
878 if (AST && isa<PointerType>(PN->getType()))
879 AST->copyValue(PointerAllocaValues[AllocaNo], PN);
881 return true;
884 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
885 // stores to the allocas which we are promoting. IncomingVals indicates what
886 // value each Alloca contains on exit from the predecessor block Pred.
888 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
889 RenamePassData::ValVector &IncomingVals,
890 std::vector<RenamePassData> &Worklist) {
891 NextIteration:
892 // If we are inserting any phi nodes into this BB, they will already be in the
893 // block.
894 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
895 // If we have PHI nodes to update, compute the number of edges from Pred to
896 // BB.
897 if (PhiToAllocaMap.count(APN)) {
898 // We want to be able to distinguish between PHI nodes being inserted by
899 // this invocation of mem2reg from those phi nodes that already existed in
900 // the IR before mem2reg was run. We determine that APN is being inserted
901 // because it is missing incoming edges. All other PHI nodes being
902 // inserted by this pass of mem2reg will have the same number of incoming
903 // operands so far. Remember this count.
904 unsigned NewPHINumOperands = APN->getNumOperands();
906 unsigned NumEdges = 0;
907 for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
908 if (*I == BB)
909 ++NumEdges;
910 assert(NumEdges && "Must be at least one edge from Pred to BB!");
912 // Add entries for all the phis.
913 BasicBlock::iterator PNI = BB->begin();
914 do {
915 unsigned AllocaNo = PhiToAllocaMap[APN];
917 // Add N incoming values to the PHI node.
918 for (unsigned i = 0; i != NumEdges; ++i)
919 APN->addIncoming(IncomingVals[AllocaNo], Pred);
921 // The currently active variable for this block is now the PHI.
922 IncomingVals[AllocaNo] = APN;
924 // Get the next phi node.
925 ++PNI;
926 APN = dyn_cast<PHINode>(PNI);
927 if (APN == 0) break;
929 // Verify that it is missing entries. If not, it is not being inserted
930 // by this mem2reg invocation so we want to ignore it.
931 } while (APN->getNumOperands() == NewPHINumOperands);
935 // Don't revisit blocks.
936 if (!Visited.insert(BB)) return;
938 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
939 Instruction *I = II++; // get the instruction, increment iterator
941 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
942 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
943 if (!Src) continue;
945 std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
946 if (AI == AllocaLookup.end()) continue;
948 Value *V = IncomingVals[AI->second];
950 // Anything using the load now uses the current value.
951 LI->replaceAllUsesWith(V);
952 if (AST && isa<PointerType>(LI->getType()))
953 AST->deleteValue(LI);
954 BB->getInstList().erase(LI);
955 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
956 // Delete this instruction and mark the name as the current holder of the
957 // value
958 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
959 if (!Dest) continue;
961 std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
962 if (ai == AllocaLookup.end())
963 continue;
965 // what value were we writing?
966 IncomingVals[ai->second] = SI->getOperand(0);
967 BB->getInstList().erase(SI);
971 // 'Recurse' to our successors.
972 succ_iterator I = succ_begin(BB), E = succ_end(BB);
973 if (I == E) return;
975 // Keep track of the successors so we don't visit the same successor twice
976 SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
978 // Handle the first successor without using the worklist.
979 VisitedSuccs.insert(*I);
980 Pred = BB;
981 BB = *I;
982 ++I;
984 for (; I != E; ++I)
985 if (VisitedSuccs.insert(*I))
986 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
988 goto NextIteration;
991 /// PromoteMemToReg - Promote the specified list of alloca instructions into
992 /// scalar registers, inserting PHI nodes as appropriate. This function makes
993 /// use of DominanceFrontier information. This function does not modify the CFG
994 /// of the function at all. All allocas must be from the same function.
996 /// If AST is specified, the specified tracker is updated to reflect changes
997 /// made to the IR.
999 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1000 DominatorTree &DT, DominanceFrontier &DF,
1001 LLVMContext &Context, AliasSetTracker *AST) {
1002 // If there is nothing to do, bail out...
1003 if (Allocas.empty()) return;
1005 PromoteMem2Reg(Allocas, DT, DF, AST, Context).run();