add a new MCInstPrinter class, move the (trivial) MCDisassmbler ctor inline.
[llvm/avr.git] / lib / Transforms / Utils / SSI.cpp
blobe5a1dd1bb73c97e97af9b08b8b269a87f7570314
1 //===------------------- SSI.cpp - Creates SSI Representation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts a list of variables to the Static Single Information
11 // form. This is a program representation described by Scott Ananian in his
12 // Master Thesis: "The Static Single Information Form (1999)".
13 // We are building an on-demand representation, that is, we do not convert
14 // every single variable in the target function to SSI form. Rather, we receive
15 // a list of target variables that must be converted. We also do not
16 // completely convert a target variable to the SSI format. Instead, we only
17 // change the variable in the points where new information can be attached
18 // to its live range, that is, at branch points.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "ssi"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/SSI.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/Dominators.h"
29 using namespace llvm;
31 static const std::string SSI_PHI = "SSI_phi";
32 static const std::string SSI_SIG = "SSI_sigma";
34 static const unsigned UNSIGNED_INFINITE = ~0U;
36 STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
37 STATISTIC(NumPhiInserted, "Number of phi functions inserted");
39 void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
40 AU.addRequired<DominanceFrontier>();
41 AU.addRequired<DominatorTree>();
42 AU.setPreservesCFG();
45 bool SSI::runOnFunction(Function &F) {
46 DT_ = &getAnalysis<DominatorTree>();
47 return false;
50 /// This methods creates the SSI representation for the list of values
51 /// received. It will only create SSI representation if a value is used
52 /// in a to decide a branch. Repeated values are created only once.
53 ///
54 void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
55 init(value);
57 for (unsigned i = 0; i < num_values; ++i) {
58 if (created.insert(value[i])) {
59 needConstruction[i] = true;
62 insertSigmaFunctions(value);
64 // Test if there is a need to transform to SSI
65 if (needConstruction.any()) {
66 insertPhiFunctions(value);
67 renameInit(value);
68 rename(DT_->getRoot());
69 fixPhis();
72 clean();
75 /// Insert sigma functions (a sigma function is a phi function with one
76 /// operator)
77 ///
78 void SSI::insertSigmaFunctions(SmallVectorImpl<Instruction *> &value) {
79 for (unsigned i = 0; i < num_values; ++i) {
80 if (!needConstruction[i])
81 continue;
83 for (Value::use_iterator begin = value[i]->use_begin(), end =
84 value[i]->use_end(); begin != end; ++begin) {
85 // Test if the Use of the Value is in a comparator
86 if (CmpInst *CI = dyn_cast<CmpInst>(begin)) {
87 // Iterates through all uses of CmpInst
88 for (Value::use_iterator begin_ci = CI->use_begin(), end_ci =
89 CI->use_end(); begin_ci != end_ci; ++begin_ci) {
90 // Test if any use of CmpInst is in a Terminator
91 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) {
92 insertSigma(TI, value[i], i);
100 /// Inserts Sigma Functions in every BasicBlock successor to Terminator
101 /// Instruction TI. All inserted Sigma Function are related to Instruction I.
103 void SSI::insertSigma(TerminatorInst *TI, Instruction *I, unsigned pos) {
104 // Basic Block of the Terminator Instruction
105 BasicBlock *BB = TI->getParent();
106 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
107 // Next Basic Block
108 BasicBlock *BB_next = TI->getSuccessor(i);
109 if (BB_next != BB &&
110 BB_next->getSinglePredecessor() != NULL &&
111 dominateAny(BB_next, I)) {
112 PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin());
113 PN->addIncoming(I, BB);
114 sigmas.insert(std::make_pair(PN, pos));
115 created.insert(PN);
116 needConstruction[pos] = true;
117 defsites[pos].push_back(BB_next);
118 ++NumSigmaInserted;
123 /// Insert phi functions when necessary
125 void SSI::insertPhiFunctions(SmallVectorImpl<Instruction *> &value) {
126 DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
127 for (unsigned i = 0; i < num_values; ++i) {
128 // Test if there were any sigmas for this variable
129 if (needConstruction[i]) {
131 SmallPtrSet<BasicBlock *, 16> BB_visited;
133 // Insert phi functions if there is any sigma function
134 while (!defsites[i].empty()) {
136 BasicBlock *BB = defsites[i].back();
138 defsites[i].pop_back();
139 DominanceFrontier::iterator DF_BB = DF->find(BB);
141 // The BB is unreachable. Skip it.
142 if (DF_BB == DF->end())
143 continue;
145 // Iterates through all the dominance frontier of BB
146 for (std::set<BasicBlock *>::iterator DF_BB_begin =
147 DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
148 DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
149 BasicBlock *BB_dominated = *DF_BB_begin;
151 // Test if has not yet visited this node and if the
152 // original definition dominates this node
153 if (BB_visited.insert(BB_dominated) &&
154 DT_->properlyDominates(value_original[i], BB_dominated) &&
155 dominateAny(BB_dominated, value[i])) {
156 PHINode *PN = PHINode::Create(
157 value[i]->getType(), SSI_PHI, BB_dominated->begin());
158 phis.insert(std::make_pair(PN, i));
159 created.insert(PN);
161 defsites[i].push_back(BB_dominated);
162 ++NumPhiInserted;
166 BB_visited.clear();
171 /// Some initialization for the rename part
173 void SSI::renameInit(SmallVectorImpl<Instruction *> &value) {
174 value_stack.resize(num_values);
175 for (unsigned i = 0; i < num_values; ++i) {
176 value_stack[i].push_back(value[i]);
180 /// Renames all variables in the specified BasicBlock.
181 /// Only variables that need to be rename will be.
183 void SSI::rename(BasicBlock *BB) {
184 BitVector *defined = new BitVector(num_values, false);
186 // Iterate through instructions and make appropriate renaming.
187 // For SSI_PHI (b = PHI()), store b at value_stack as a new
188 // definition of the variable it represents.
189 // For SSI_SIG (b = PHI(a)), substitute a with the current
190 // value of a, present in the value_stack.
191 // Then store bin the value_stack as the new definition of a.
192 // For all other instructions (b = OP(a, c, d, ...)), we need to substitute
193 // all operands with its current value, present in value_stack.
194 for (BasicBlock::iterator begin = BB->begin(), end = BB->end();
195 begin != end; ++begin) {
196 Instruction *I = begin;
197 if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
198 int position;
200 // Treat SSI_PHI
201 if ((position = getPositionPhi(PN)) != -1) {
202 value_stack[position].push_back(PN);
203 (*defined)[position] = true;
206 // Treat SSI_SIG
207 else if ((position = getPositionSigma(PN)) != -1) {
208 substituteUse(I);
209 value_stack[position].push_back(PN);
210 (*defined)[position] = true;
213 // Treat all other PHI functions
214 else {
215 substituteUse(I);
219 // Treat all other functions
220 else {
221 substituteUse(I);
225 // This loop iterates in all BasicBlocks that are successors of the current
226 // BasicBlock. For each SSI_PHI instruction found, insert an operand.
227 // This operand is the current operand in value_stack for the variable
228 // in "position". And the BasicBlock this operand represents is the current
229 // BasicBlock.
230 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
231 BasicBlock *BB_succ = *SI;
233 for (BasicBlock::iterator begin = BB_succ->begin(),
234 notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
235 Instruction *I = begin;
236 PHINode *PN = dyn_cast<PHINode>(I);
237 int position;
238 if (PN && ((position = getPositionPhi(PN)) != -1)) {
239 PN->addIncoming(value_stack[position].back(), BB);
244 // This loop calls rename on all children from this block. This time children
245 // refers to a successor block in the dominance tree.
246 DomTreeNode *DTN = DT_->getNode(BB);
247 for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end();
248 begin != end; ++begin) {
249 DomTreeNodeBase<BasicBlock> *DTN_children = *begin;
250 BasicBlock *BB_children = DTN_children->getBlock();
251 rename(BB_children);
254 // Now we remove all inserted definitions of a variable from the top of
255 // the stack leaving the previous one as the top.
256 if (defined->any()) {
257 for (unsigned i = 0; i < num_values; ++i) {
258 if ((*defined)[i]) {
259 value_stack[i].pop_back();
264 delete defined;
267 /// Substitute any use in this instruction for the last definition of
268 /// the variable
270 void SSI::substituteUse(Instruction *I) {
271 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
272 Value *operand = I->getOperand(i);
273 for (unsigned j = 0; j < num_values; ++j) {
274 if (operand == value_stack[j].front() &&
275 I != value_stack[j].back()) {
276 PHINode *PN_I = dyn_cast<PHINode>(I);
277 PHINode *PN_vs = dyn_cast<PHINode>(value_stack[j].back());
279 // If a phi created in a BasicBlock is used as an operand of another
280 // created in the same BasicBlock, this step marks this second phi,
281 // to fix this issue later. It cannot be fixed now, because the
282 // operands of the first phi are not final yet.
283 if (PN_I && PN_vs &&
284 value_stack[j].back()->getParent() == I->getParent()) {
286 phisToFix.insert(PN_I);
289 I->setOperand(i, value_stack[j].back());
290 break;
296 /// Test if the BasicBlock BB dominates any use or definition of value.
297 /// If it dominates a phi instruction that is on the same BasicBlock,
298 /// that does not count.
300 bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
301 for (Value::use_iterator begin = value->use_begin(),
302 end = value->use_end(); begin != end; ++begin) {
303 Instruction *I = cast<Instruction>(*begin);
304 BasicBlock *BB_father = I->getParent();
305 if (BB == BB_father && isa<PHINode>(I))
306 continue;
307 if (DT_->dominates(BB, BB_father)) {
308 return true;
311 return false;
314 /// When there is a phi node that is created in a BasicBlock and it is used
315 /// as an operand of another phi function used in the same BasicBlock,
316 /// LLVM looks this as an error. So on the second phi, the first phi is called
317 /// P and the BasicBlock it incomes is B. This P will be replaced by the value
318 /// it has for BasicBlock B. It also includes undef values for predecessors
319 /// that were not included in the phi.
321 void SSI::fixPhis() {
322 for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
323 end = phisToFix.end(); begin != end; ++begin) {
324 PHINode *PN = *begin;
325 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
326 PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i));
327 if (PN_father && PN->getParent() == PN_father->getParent() &&
328 !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) {
329 BasicBlock *BB = PN->getIncomingBlock(i);
330 int pos = PN_father->getBasicBlockIndex(BB);
331 PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
336 for (DenseMapIterator<PHINode *, unsigned> begin = phis.begin(),
337 end = phis.end(); begin != end; ++begin) {
338 PHINode *PN = begin->first;
339 BasicBlock *BB = PN->getParent();
340 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
341 SmallVector<BasicBlock*, 8> Preds(PI, PE);
342 for (unsigned size = Preds.size();
343 PI != PE && PN->getNumIncomingValues() != size; ++PI) {
344 bool found = false;
345 for (unsigned i = 0, pn_end = PN->getNumIncomingValues();
346 i < pn_end; ++i) {
347 if (PN->getIncomingBlock(i) == *PI) {
348 found = true;
349 break;
352 if (!found) {
353 PN->addIncoming(UndefValue::get(PN->getType()), *PI);
359 /// Return which variable (position on the vector of variables) this phi
360 /// represents on the phis list.
362 unsigned SSI::getPositionPhi(PHINode *PN) {
363 DenseMap<PHINode *, unsigned>::iterator val = phis.find(PN);
364 if (val == phis.end())
365 return UNSIGNED_INFINITE;
366 else
367 return val->second;
370 /// Return which variable (position on the vector of variables) this phi
371 /// represents on the sigmas list.
373 unsigned SSI::getPositionSigma(PHINode *PN) {
374 DenseMap<PHINode *, unsigned>::iterator val = sigmas.find(PN);
375 if (val == sigmas.end())
376 return UNSIGNED_INFINITE;
377 else
378 return val->second;
381 /// Initializes
383 void SSI::init(SmallVectorImpl<Instruction *> &value) {
384 num_values = value.size();
385 needConstruction.resize(num_values, false);
387 value_original.resize(num_values);
388 defsites.resize(num_values);
390 for (unsigned i = 0; i < num_values; ++i) {
391 value_original[i] = value[i]->getParent();
392 defsites[i].push_back(value_original[i]);
396 /// Clean all used resources in this creation of SSI
398 void SSI::clean() {
399 for (unsigned i = 0; i < num_values; ++i) {
400 defsites[i].clear();
401 if (i < value_stack.size())
402 value_stack[i].clear();
405 phis.clear();
406 sigmas.clear();
407 phisToFix.clear();
409 defsites.clear();
410 value_stack.clear();
411 value_original.clear();
412 needConstruction.clear();
415 /// createSSIPass - The public interface to this file...
417 FunctionPass *llvm::createSSIPass() { return new SSI(); }
419 char SSI::ID = 0;
420 static RegisterPass<SSI> X("ssi", "Static Single Information Construction");
422 /// SSIEverything - A pass that runs createSSI on every non-void variable,
423 /// intended for debugging.
424 namespace {
425 struct VISIBILITY_HIDDEN SSIEverything : public FunctionPass {
426 static char ID; // Pass identification, replacement for typeid
427 SSIEverything() : FunctionPass(&ID) {}
429 bool runOnFunction(Function &F);
431 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
432 AU.addRequired<SSI>();
437 bool SSIEverything::runOnFunction(Function &F) {
438 SmallVector<Instruction *, 16> Insts;
439 SSI &ssi = getAnalysis<SSI>();
441 if (F.isDeclaration() || F.isIntrinsic()) return false;
443 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
444 for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
445 if (I->getType() != Type::getVoidTy(F.getContext()))
446 Insts.push_back(I);
448 ssi.createSSI(Insts);
449 return true;
452 /// createSSIEverythingPass - The public interface to this file...
454 FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
456 char SSIEverything::ID = 0;
457 static RegisterPass<SSIEverything>
458 Y("ssi-everything", "Static Single Information Construction");