add a new MCInstPrinter class, move the (trivial) MCDisassmbler ctor inline.
[llvm/avr.git] / lib / Transforms / Utils / UnrollLoop.cpp
blob4d838b50e345143297c0927dddecc92bd186d7c1
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
14 // It works best when loops have been canonicalized by the -indvars pass,
15 // allowing it to determine the trip counts of loops easily.
17 // The process of unrolling can produce extraneous basic blocks linked with
18 // unconditional branches. This will be corrected in the future.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "loop-unroll"
22 #include "llvm/Transforms/Utils/UnrollLoop.h"
23 #include "llvm/BasicBlock.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include <cstdio>
34 using namespace llvm;
36 // TODO: Should these be here or in LoopUnroll?
37 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
38 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
40 /// RemapInstruction - Convert the instruction operands from referencing the
41 /// current values into those specified by ValueMap.
42 static inline void RemapInstruction(Instruction *I,
43 DenseMap<const Value *, Value*> &ValueMap) {
44 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
45 Value *Op = I->getOperand(op);
46 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
47 if (It != ValueMap.end()) Op = It->second;
48 I->setOperand(op, Op);
52 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
53 /// only has one predecessor, and that predecessor only has one successor.
54 /// The LoopInfo Analysis that is passed will be kept consistent.
55 /// Returns the new combined block.
56 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
57 // Merge basic blocks into their predecessor if there is only one distinct
58 // pred, and if there is only one distinct successor of the predecessor, and
59 // if there are no PHI nodes.
60 BasicBlock *OnlyPred = BB->getSinglePredecessor();
61 if (!OnlyPred) return 0;
63 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
64 return 0;
66 DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred);
68 // Resolve any PHI nodes at the start of the block. They are all
69 // guaranteed to have exactly one entry if they exist, unless there are
70 // multiple duplicate (but guaranteed to be equal) entries for the
71 // incoming edges. This occurs when there are multiple edges from
72 // OnlyPred to OnlySucc.
73 FoldSingleEntryPHINodes(BB);
75 // Delete the unconditional branch from the predecessor...
76 OnlyPred->getInstList().pop_back();
78 // Move all definitions in the successor to the predecessor...
79 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
81 // Make all PHI nodes that referred to BB now refer to Pred as their
82 // source...
83 BB->replaceAllUsesWith(OnlyPred);
85 std::string OldName = BB->getName();
87 // Erase basic block from the function...
88 LI->removeBlock(BB);
89 BB->eraseFromParent();
91 // Inherit predecessor's name if it exists...
92 if (!OldName.empty() && !OnlyPred->hasName())
93 OnlyPred->setName(OldName);
95 return OnlyPred;
98 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
99 /// if unrolling was succesful, or false if the loop was unmodified. Unrolling
100 /// can only fail when the loop's latch block is not terminated by a conditional
101 /// branch instruction. However, if the trip count (and multiple) are not known,
102 /// loop unrolling will mostly produce more code that is no faster.
104 /// The LoopInfo Analysis that is passed will be kept consistent.
106 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
107 /// removed from the LoopPassManager as well. LPM can also be NULL.
108 bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
109 assert(L->isLCSSAForm());
111 BasicBlock *Header = L->getHeader();
112 BasicBlock *LatchBlock = L->getLoopLatch();
113 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
115 if (!BI || BI->isUnconditional()) {
116 // The loop-rotate pass can be helpful to avoid this in many cases.
117 DEBUG(errs() <<
118 " Can't unroll; loop not terminated by a conditional branch.\n");
119 return false;
122 // Find trip count
123 unsigned TripCount = L->getSmallConstantTripCount();
124 // Find trip multiple if count is not available
125 unsigned TripMultiple = 1;
126 if (TripCount == 0)
127 TripMultiple = L->getSmallConstantTripMultiple();
129 if (TripCount != 0)
130 DEBUG(errs() << " Trip Count = " << TripCount << "\n");
131 if (TripMultiple != 1)
132 DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n");
134 // Effectively "DCE" unrolled iterations that are beyond the tripcount
135 // and will never be executed.
136 if (TripCount != 0 && Count > TripCount)
137 Count = TripCount;
139 assert(Count > 0);
140 assert(TripMultiple > 0);
141 assert(TripCount == 0 || TripCount % TripMultiple == 0);
143 // Are we eliminating the loop control altogether?
144 bool CompletelyUnroll = Count == TripCount;
146 // If we know the trip count, we know the multiple...
147 unsigned BreakoutTrip = 0;
148 if (TripCount != 0) {
149 BreakoutTrip = TripCount % Count;
150 TripMultiple = 0;
151 } else {
152 // Figure out what multiple to use.
153 BreakoutTrip = TripMultiple =
154 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
157 if (CompletelyUnroll) {
158 DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
159 << " with trip count " << TripCount << "!\n");
160 } else {
161 DEBUG(errs() << "UNROLLING loop %" << Header->getName()
162 << " by " << Count);
163 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
164 DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
165 } else if (TripMultiple != 1) {
166 DEBUG(errs() << " with " << TripMultiple << " trips per branch");
168 DEBUG(errs() << "!\n");
171 std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
173 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
174 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
176 // For the first iteration of the loop, we should use the precloned values for
177 // PHI nodes. Insert associations now.
178 typedef DenseMap<const Value*, Value*> ValueMapTy;
179 ValueMapTy LastValueMap;
180 std::vector<PHINode*> OrigPHINode;
181 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
182 PHINode *PN = cast<PHINode>(I);
183 OrigPHINode.push_back(PN);
184 if (Instruction *I =
185 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
186 if (L->contains(I->getParent()))
187 LastValueMap[I] = I;
190 std::vector<BasicBlock*> Headers;
191 std::vector<BasicBlock*> Latches;
192 Headers.push_back(Header);
193 Latches.push_back(LatchBlock);
195 for (unsigned It = 1; It != Count; ++It) {
196 char SuffixBuffer[100];
197 sprintf(SuffixBuffer, ".%d", It);
199 std::vector<BasicBlock*> NewBlocks;
201 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
202 E = LoopBlocks.end(); BB != E; ++BB) {
203 ValueMapTy ValueMap;
204 BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
205 Header->getParent()->getBasicBlockList().push_back(New);
207 // Loop over all of the PHI nodes in the block, changing them to use the
208 // incoming values from the previous block.
209 if (*BB == Header)
210 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
211 PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
212 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
213 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
214 if (It > 1 && L->contains(InValI->getParent()))
215 InVal = LastValueMap[InValI];
216 ValueMap[OrigPHINode[i]] = InVal;
217 New->getInstList().erase(NewPHI);
220 // Update our running map of newest clones
221 LastValueMap[*BB] = New;
222 for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
223 VI != VE; ++VI)
224 LastValueMap[VI->first] = VI->second;
226 L->addBasicBlockToLoop(New, LI->getBase());
228 // Add phi entries for newly created values to all exit blocks except
229 // the successor of the latch block. The successor of the exit block will
230 // be updated specially after unrolling all the way.
231 if (*BB != LatchBlock)
232 for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
233 UI != UE;) {
234 Instruction *UseInst = cast<Instruction>(*UI);
235 ++UI;
236 if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
237 PHINode *phi = cast<PHINode>(UseInst);
238 Value *Incoming = phi->getIncomingValueForBlock(*BB);
239 phi->addIncoming(Incoming, New);
243 // Keep track of new headers and latches as we create them, so that
244 // we can insert the proper branches later.
245 if (*BB == Header)
246 Headers.push_back(New);
247 if (*BB == LatchBlock) {
248 Latches.push_back(New);
250 // Also, clear out the new latch's back edge so that it doesn't look
251 // like a new loop, so that it's amenable to being merged with adjacent
252 // blocks later on.
253 TerminatorInst *Term = New->getTerminator();
254 assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
255 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
256 Term->setSuccessor(!ContinueOnTrue, NULL);
259 NewBlocks.push_back(New);
262 // Remap all instructions in the most recent iteration
263 for (unsigned i = 0; i < NewBlocks.size(); ++i)
264 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
265 E = NewBlocks[i]->end(); I != E; ++I)
266 RemapInstruction(I, LastValueMap);
269 // The latch block exits the loop. If there are any PHI nodes in the
270 // successor blocks, update them to use the appropriate values computed as the
271 // last iteration of the loop.
272 if (Count != 1) {
273 SmallPtrSet<PHINode*, 8> Users;
274 for (Value::use_iterator UI = LatchBlock->use_begin(),
275 UE = LatchBlock->use_end(); UI != UE; ++UI)
276 if (PHINode *phi = dyn_cast<PHINode>(*UI))
277 Users.insert(phi);
279 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
280 for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
281 SI != SE; ++SI) {
282 PHINode *PN = *SI;
283 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
284 // If this value was defined in the loop, take the value defined by the
285 // last iteration of the loop.
286 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
287 if (L->contains(InValI->getParent()))
288 InVal = LastValueMap[InVal];
290 PN->addIncoming(InVal, LastIterationBB);
294 // Now, if we're doing complete unrolling, loop over the PHI nodes in the
295 // original block, setting them to their incoming values.
296 if (CompletelyUnroll) {
297 BasicBlock *Preheader = L->getLoopPreheader();
298 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
299 PHINode *PN = OrigPHINode[i];
300 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
301 Header->getInstList().erase(PN);
305 // Now that all the basic blocks for the unrolled iterations are in place,
306 // set up the branches to connect them.
307 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
308 // The original branch was replicated in each unrolled iteration.
309 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
311 // The branch destination.
312 unsigned j = (i + 1) % e;
313 BasicBlock *Dest = Headers[j];
314 bool NeedConditional = true;
316 // For a complete unroll, make the last iteration end with a branch
317 // to the exit block.
318 if (CompletelyUnroll && j == 0) {
319 Dest = LoopExit;
320 NeedConditional = false;
323 // If we know the trip count or a multiple of it, we can safely use an
324 // unconditional branch for some iterations.
325 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
326 NeedConditional = false;
329 if (NeedConditional) {
330 // Update the conditional branch's successor for the following
331 // iteration.
332 Term->setSuccessor(!ContinueOnTrue, Dest);
333 } else {
334 Term->setUnconditionalDest(Dest);
335 // Merge adjacent basic blocks, if possible.
336 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
337 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
338 std::replace(Headers.begin(), Headers.end(), Dest, Fold);
343 // At this point, the code is well formed. We now do a quick sweep over the
344 // inserted code, doing constant propagation and dead code elimination as we
345 // go.
346 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
347 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
348 BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
349 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
350 Instruction *Inst = I++;
352 if (isInstructionTriviallyDead(Inst))
353 (*BB)->getInstList().erase(Inst);
354 else if (Constant *C = ConstantFoldInstruction(Inst,
355 Header->getContext())) {
356 Inst->replaceAllUsesWith(C);
357 (*BB)->getInstList().erase(Inst);
361 NumCompletelyUnrolled += CompletelyUnroll;
362 ++NumUnrolled;
363 // Remove the loop from the LoopPassManager if it's completely removed.
364 if (CompletelyUnroll && LPM != NULL)
365 LPM->deleteLoopFromQueue(L);
367 // If we didn't completely unroll the loop, it should still be in LCSSA form.
368 if (!CompletelyUnroll)
369 assert(L->isLCSSAForm());
371 return true;