Indentation.
[llvm/avr.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blob3c4f9de1cd9873ae74a2c77002f4f714d5a46dc0
1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include <algorithm>
40 #include <set>
41 using namespace llvm;
43 STATISTIC(NodesCombined , "Number of dag nodes combined");
44 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
48 namespace {
49 static cl::opt<bool>
50 CombinerAA("combiner-alias-analysis", cl::Hidden,
51 cl::desc("Turn on alias analysis during testing"));
53 static cl::opt<bool>
54 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
55 cl::desc("Include global information in alias analysis"));
57 //------------------------------ DAGCombiner ---------------------------------//
59 class VISIBILITY_HIDDEN DAGCombiner {
60 SelectionDAG &DAG;
61 const TargetLowering &TLI;
62 CombineLevel Level;
63 CodeGenOpt::Level OptLevel;
64 bool LegalOperations;
65 bool LegalTypes;
67 // Worklist of all of the nodes that need to be simplified.
68 std::vector<SDNode*> WorkList;
70 // AA - Used for DAG load/store alias analysis.
71 AliasAnalysis &AA;
73 /// AddUsersToWorkList - When an instruction is simplified, add all users of
74 /// the instruction to the work lists because they might get more simplified
75 /// now.
76 ///
77 void AddUsersToWorkList(SDNode *N) {
78 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
79 UI != UE; ++UI)
80 AddToWorkList(*UI);
83 /// visit - call the node-specific routine that knows how to fold each
84 /// particular type of node.
85 SDValue visit(SDNode *N);
87 public:
88 /// AddToWorkList - Add to the work list making sure it's instance is at the
89 /// the back (next to be processed.)
90 void AddToWorkList(SDNode *N) {
91 removeFromWorkList(N);
92 WorkList.push_back(N);
95 /// removeFromWorkList - remove all instances of N from the worklist.
96 ///
97 void removeFromWorkList(SDNode *N) {
98 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
99 WorkList.end());
102 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
103 bool AddTo = true);
105 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
106 return CombineTo(N, &Res, 1, AddTo);
109 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
110 bool AddTo = true) {
111 SDValue To[] = { Res0, Res1 };
112 return CombineTo(N, To, 2, AddTo);
115 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
117 private:
119 /// SimplifyDemandedBits - Check the specified integer node value to see if
120 /// it can be simplified or if things it uses can be simplified by bit
121 /// propagation. If so, return true.
122 bool SimplifyDemandedBits(SDValue Op) {
123 APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
124 return SimplifyDemandedBits(Op, Demanded);
127 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
129 bool CombineToPreIndexedLoadStore(SDNode *N);
130 bool CombineToPostIndexedLoadStore(SDNode *N);
133 /// combine - call the node-specific routine that knows how to fold each
134 /// particular type of node. If that doesn't do anything, try the
135 /// target-specific DAG combines.
136 SDValue combine(SDNode *N);
138 // Visitation implementation - Implement dag node combining for different
139 // node types. The semantics are as follows:
140 // Return Value:
141 // SDValue.getNode() == 0 - No change was made
142 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
143 // otherwise - N should be replaced by the returned Operand.
145 SDValue visitTokenFactor(SDNode *N);
146 SDValue visitMERGE_VALUES(SDNode *N);
147 SDValue visitADD(SDNode *N);
148 SDValue visitSUB(SDNode *N);
149 SDValue visitADDC(SDNode *N);
150 SDValue visitADDE(SDNode *N);
151 SDValue visitMUL(SDNode *N);
152 SDValue visitSDIV(SDNode *N);
153 SDValue visitUDIV(SDNode *N);
154 SDValue visitSREM(SDNode *N);
155 SDValue visitUREM(SDNode *N);
156 SDValue visitMULHU(SDNode *N);
157 SDValue visitMULHS(SDNode *N);
158 SDValue visitSMUL_LOHI(SDNode *N);
159 SDValue visitUMUL_LOHI(SDNode *N);
160 SDValue visitSDIVREM(SDNode *N);
161 SDValue visitUDIVREM(SDNode *N);
162 SDValue visitAND(SDNode *N);
163 SDValue visitOR(SDNode *N);
164 SDValue visitXOR(SDNode *N);
165 SDValue SimplifyVBinOp(SDNode *N);
166 SDValue visitSHL(SDNode *N);
167 SDValue visitSRA(SDNode *N);
168 SDValue visitSRL(SDNode *N);
169 SDValue visitCTLZ(SDNode *N);
170 SDValue visitCTTZ(SDNode *N);
171 SDValue visitCTPOP(SDNode *N);
172 SDValue visitSELECT(SDNode *N);
173 SDValue visitSELECT_CC(SDNode *N);
174 SDValue visitSETCC(SDNode *N);
175 SDValue visitSIGN_EXTEND(SDNode *N);
176 SDValue visitZERO_EXTEND(SDNode *N);
177 SDValue visitANY_EXTEND(SDNode *N);
178 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
179 SDValue visitTRUNCATE(SDNode *N);
180 SDValue visitBIT_CONVERT(SDNode *N);
181 SDValue visitBUILD_PAIR(SDNode *N);
182 SDValue visitFADD(SDNode *N);
183 SDValue visitFSUB(SDNode *N);
184 SDValue visitFMUL(SDNode *N);
185 SDValue visitFDIV(SDNode *N);
186 SDValue visitFREM(SDNode *N);
187 SDValue visitFCOPYSIGN(SDNode *N);
188 SDValue visitSINT_TO_FP(SDNode *N);
189 SDValue visitUINT_TO_FP(SDNode *N);
190 SDValue visitFP_TO_SINT(SDNode *N);
191 SDValue visitFP_TO_UINT(SDNode *N);
192 SDValue visitFP_ROUND(SDNode *N);
193 SDValue visitFP_ROUND_INREG(SDNode *N);
194 SDValue visitFP_EXTEND(SDNode *N);
195 SDValue visitFNEG(SDNode *N);
196 SDValue visitFABS(SDNode *N);
197 SDValue visitBRCOND(SDNode *N);
198 SDValue visitBR_CC(SDNode *N);
199 SDValue visitLOAD(SDNode *N);
200 SDValue visitSTORE(SDNode *N);
201 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
202 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
203 SDValue visitBUILD_VECTOR(SDNode *N);
204 SDValue visitCONCAT_VECTORS(SDNode *N);
205 SDValue visitVECTOR_SHUFFLE(SDNode *N);
207 SDValue XformToShuffleWithZero(SDNode *N);
208 SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
210 SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
212 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
213 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
214 SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
215 SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
216 SDValue N3, ISD::CondCode CC,
217 bool NotExtCompare = false);
218 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
219 DebugLoc DL, bool foldBooleans = true);
220 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
221 unsigned HiOp);
222 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
223 SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, EVT);
224 SDValue BuildSDIV(SDNode *N);
225 SDValue BuildUDIV(SDNode *N);
226 SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
227 SDValue ReduceLoadWidth(SDNode *N);
228 SDValue ReduceLoadOpStoreWidth(SDNode *N);
230 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
232 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
233 /// looking for aliasing nodes and adding them to the Aliases vector.
234 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
235 SmallVector<SDValue, 8> &Aliases);
237 /// isAlias - Return true if there is any possibility that the two addresses
238 /// overlap.
239 bool isAlias(SDValue Ptr1, int64_t Size1,
240 const Value *SrcValue1, int SrcValueOffset1,
241 SDValue Ptr2, int64_t Size2,
242 const Value *SrcValue2, int SrcValueOffset2) const;
244 /// FindAliasInfo - Extracts the relevant alias information from the memory
245 /// node. Returns true if the operand was a load.
246 bool FindAliasInfo(SDNode *N,
247 SDValue &Ptr, int64_t &Size,
248 const Value *&SrcValue, int &SrcValueOffset) const;
250 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
251 /// looking for a better chain (aliasing node.)
252 SDValue FindBetterChain(SDNode *N, SDValue Chain);
254 /// getShiftAmountTy - Returns a type large enough to hold any valid
255 /// shift amount - before type legalization these can be huge.
256 EVT getShiftAmountTy() {
257 return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy();
260 public:
261 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
262 : DAG(D),
263 TLI(D.getTargetLoweringInfo()),
264 Level(Unrestricted),
265 OptLevel(OL),
266 LegalOperations(false),
267 LegalTypes(false),
268 AA(A) {}
270 /// Run - runs the dag combiner on all nodes in the work list
271 void Run(CombineLevel AtLevel);
276 namespace {
277 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
278 /// nodes from the worklist.
279 class VISIBILITY_HIDDEN WorkListRemover :
280 public SelectionDAG::DAGUpdateListener {
281 DAGCombiner &DC;
282 public:
283 explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
285 virtual void NodeDeleted(SDNode *N, SDNode *E) {
286 DC.removeFromWorkList(N);
289 virtual void NodeUpdated(SDNode *N) {
290 // Ignore updates.
295 //===----------------------------------------------------------------------===//
296 // TargetLowering::DAGCombinerInfo implementation
297 //===----------------------------------------------------------------------===//
299 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
300 ((DAGCombiner*)DC)->AddToWorkList(N);
303 SDValue TargetLowering::DAGCombinerInfo::
304 CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
305 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
308 SDValue TargetLowering::DAGCombinerInfo::
309 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
310 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
314 SDValue TargetLowering::DAGCombinerInfo::
315 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
316 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
319 void TargetLowering::DAGCombinerInfo::
320 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
321 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
324 //===----------------------------------------------------------------------===//
325 // Helper Functions
326 //===----------------------------------------------------------------------===//
328 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
329 /// specified expression for the same cost as the expression itself, or 2 if we
330 /// can compute the negated form more cheaply than the expression itself.
331 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
332 unsigned Depth = 0) {
333 // No compile time optimizations on this type.
334 if (Op.getValueType() == MVT::ppcf128)
335 return 0;
337 // fneg is removable even if it has multiple uses.
338 if (Op.getOpcode() == ISD::FNEG) return 2;
340 // Don't allow anything with multiple uses.
341 if (!Op.hasOneUse()) return 0;
343 // Don't recurse exponentially.
344 if (Depth > 6) return 0;
346 switch (Op.getOpcode()) {
347 default: return false;
348 case ISD::ConstantFP:
349 // Don't invert constant FP values after legalize. The negated constant
350 // isn't necessarily legal.
351 return LegalOperations ? 0 : 1;
352 case ISD::FADD:
353 // FIXME: determine better conditions for this xform.
354 if (!UnsafeFPMath) return 0;
356 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
357 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
358 return V;
359 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
360 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
361 case ISD::FSUB:
362 // We can't turn -(A-B) into B-A when we honor signed zeros.
363 if (!UnsafeFPMath) return 0;
365 // fold (fneg (fsub A, B)) -> (fsub B, A)
366 return 1;
368 case ISD::FMUL:
369 case ISD::FDIV:
370 if (HonorSignDependentRoundingFPMath()) return 0;
372 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
373 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
374 return V;
376 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
378 case ISD::FP_EXTEND:
379 case ISD::FP_ROUND:
380 case ISD::FSIN:
381 return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1);
385 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
386 /// returns the newly negated expression.
387 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
388 bool LegalOperations, unsigned Depth = 0) {
389 // fneg is removable even if it has multiple uses.
390 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
392 // Don't allow anything with multiple uses.
393 assert(Op.hasOneUse() && "Unknown reuse!");
395 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
396 switch (Op.getOpcode()) {
397 default: llvm_unreachable("Unknown code");
398 case ISD::ConstantFP: {
399 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
400 V.changeSign();
401 return DAG.getConstantFP(V, Op.getValueType());
403 case ISD::FADD:
404 // FIXME: determine better conditions for this xform.
405 assert(UnsafeFPMath);
407 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
408 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
409 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
410 GetNegatedExpression(Op.getOperand(0), DAG,
411 LegalOperations, Depth+1),
412 Op.getOperand(1));
413 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
414 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
415 GetNegatedExpression(Op.getOperand(1), DAG,
416 LegalOperations, Depth+1),
417 Op.getOperand(0));
418 case ISD::FSUB:
419 // We can't turn -(A-B) into B-A when we honor signed zeros.
420 assert(UnsafeFPMath);
422 // fold (fneg (fsub 0, B)) -> B
423 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
424 if (N0CFP->getValueAPF().isZero())
425 return Op.getOperand(1);
427 // fold (fneg (fsub A, B)) -> (fsub B, A)
428 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
429 Op.getOperand(1), Op.getOperand(0));
431 case ISD::FMUL:
432 case ISD::FDIV:
433 assert(!HonorSignDependentRoundingFPMath());
435 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
436 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
437 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
438 GetNegatedExpression(Op.getOperand(0), DAG,
439 LegalOperations, Depth+1),
440 Op.getOperand(1));
442 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
443 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
444 Op.getOperand(0),
445 GetNegatedExpression(Op.getOperand(1), DAG,
446 LegalOperations, Depth+1));
448 case ISD::FP_EXTEND:
449 case ISD::FSIN:
450 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
451 GetNegatedExpression(Op.getOperand(0), DAG,
452 LegalOperations, Depth+1));
453 case ISD::FP_ROUND:
454 return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
455 GetNegatedExpression(Op.getOperand(0), DAG,
456 LegalOperations, Depth+1),
457 Op.getOperand(1));
462 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
463 // that selects between the values 1 and 0, making it equivalent to a setcc.
464 // Also, set the incoming LHS, RHS, and CC references to the appropriate
465 // nodes based on the type of node we are checking. This simplifies life a
466 // bit for the callers.
467 static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
468 SDValue &CC) {
469 if (N.getOpcode() == ISD::SETCC) {
470 LHS = N.getOperand(0);
471 RHS = N.getOperand(1);
472 CC = N.getOperand(2);
473 return true;
475 if (N.getOpcode() == ISD::SELECT_CC &&
476 N.getOperand(2).getOpcode() == ISD::Constant &&
477 N.getOperand(3).getOpcode() == ISD::Constant &&
478 cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
479 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
480 LHS = N.getOperand(0);
481 RHS = N.getOperand(1);
482 CC = N.getOperand(4);
483 return true;
485 return false;
488 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
489 // one use. If this is true, it allows the users to invert the operation for
490 // free when it is profitable to do so.
491 static bool isOneUseSetCC(SDValue N) {
492 SDValue N0, N1, N2;
493 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
494 return true;
495 return false;
498 SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
499 SDValue N0, SDValue N1) {
500 EVT VT = N0.getValueType();
501 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
502 if (isa<ConstantSDNode>(N1)) {
503 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
504 SDValue OpNode =
505 DAG.FoldConstantArithmetic(Opc, VT,
506 cast<ConstantSDNode>(N0.getOperand(1)),
507 cast<ConstantSDNode>(N1));
508 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
509 } else if (N0.hasOneUse()) {
510 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
511 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
512 N0.getOperand(0), N1);
513 AddToWorkList(OpNode.getNode());
514 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
518 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
519 if (isa<ConstantSDNode>(N0)) {
520 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
521 SDValue OpNode =
522 DAG.FoldConstantArithmetic(Opc, VT,
523 cast<ConstantSDNode>(N1.getOperand(1)),
524 cast<ConstantSDNode>(N0));
525 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
526 } else if (N1.hasOneUse()) {
527 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
528 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
529 N1.getOperand(0), N0);
530 AddToWorkList(OpNode.getNode());
531 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
535 return SDValue();
538 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
539 bool AddTo) {
540 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
541 ++NodesCombined;
542 DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
543 DOUT << "\nWith: "; DEBUG(To[0].getNode()->dump(&DAG));
544 DOUT << " and " << NumTo-1 << " other values\n";
545 DEBUG(for (unsigned i = 0, e = NumTo; i != e; ++i)
546 assert(N->getValueType(i) == To[i].getValueType() &&
547 "Cannot combine value to value of different type!"));
548 WorkListRemover DeadNodes(*this);
549 DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
551 if (AddTo) {
552 // Push the new nodes and any users onto the worklist
553 for (unsigned i = 0, e = NumTo; i != e; ++i) {
554 if (To[i].getNode()) {
555 AddToWorkList(To[i].getNode());
556 AddUsersToWorkList(To[i].getNode());
561 // Finally, if the node is now dead, remove it from the graph. The node
562 // may not be dead if the replacement process recursively simplified to
563 // something else needing this node.
564 if (N->use_empty()) {
565 // Nodes can be reintroduced into the worklist. Make sure we do not
566 // process a node that has been replaced.
567 removeFromWorkList(N);
569 // Finally, since the node is now dead, remove it from the graph.
570 DAG.DeleteNode(N);
572 return SDValue(N, 0);
575 void
576 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &
577 TLO) {
578 // Replace all uses. If any nodes become isomorphic to other nodes and
579 // are deleted, make sure to remove them from our worklist.
580 WorkListRemover DeadNodes(*this);
581 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
583 // Push the new node and any (possibly new) users onto the worklist.
584 AddToWorkList(TLO.New.getNode());
585 AddUsersToWorkList(TLO.New.getNode());
587 // Finally, if the node is now dead, remove it from the graph. The node
588 // may not be dead if the replacement process recursively simplified to
589 // something else needing this node.
590 if (TLO.Old.getNode()->use_empty()) {
591 removeFromWorkList(TLO.Old.getNode());
593 // If the operands of this node are only used by the node, they will now
594 // be dead. Make sure to visit them first to delete dead nodes early.
595 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
596 if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
597 AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
599 DAG.DeleteNode(TLO.Old.getNode());
603 /// SimplifyDemandedBits - Check the specified integer node value to see if
604 /// it can be simplified or if things it uses can be simplified by bit
605 /// propagation. If so, return true.
606 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
607 TargetLowering::TargetLoweringOpt TLO(DAG);
608 APInt KnownZero, KnownOne;
609 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
610 return false;
612 // Revisit the node.
613 AddToWorkList(Op.getNode());
615 // Replace the old value with the new one.
616 ++NodesCombined;
617 DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.getNode()->dump(&DAG));
618 DOUT << "\nWith: "; DEBUG(TLO.New.getNode()->dump(&DAG));
619 DOUT << '\n';
621 CommitTargetLoweringOpt(TLO);
622 return true;
625 //===----------------------------------------------------------------------===//
626 // Main DAG Combiner implementation
627 //===----------------------------------------------------------------------===//
629 void DAGCombiner::Run(CombineLevel AtLevel) {
630 // set the instance variables, so that the various visit routines may use it.
631 Level = AtLevel;
632 LegalOperations = Level >= NoIllegalOperations;
633 LegalTypes = Level >= NoIllegalTypes;
635 // Add all the dag nodes to the worklist.
636 WorkList.reserve(DAG.allnodes_size());
637 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
638 E = DAG.allnodes_end(); I != E; ++I)
639 WorkList.push_back(I);
641 // Create a dummy node (which is not added to allnodes), that adds a reference
642 // to the root node, preventing it from being deleted, and tracking any
643 // changes of the root.
644 HandleSDNode Dummy(DAG.getRoot());
646 // The root of the dag may dangle to deleted nodes until the dag combiner is
647 // done. Set it to null to avoid confusion.
648 DAG.setRoot(SDValue());
650 // while the worklist isn't empty, inspect the node on the end of it and
651 // try and combine it.
652 while (!WorkList.empty()) {
653 SDNode *N = WorkList.back();
654 WorkList.pop_back();
656 // If N has no uses, it is dead. Make sure to revisit all N's operands once
657 // N is deleted from the DAG, since they too may now be dead or may have a
658 // reduced number of uses, allowing other xforms.
659 if (N->use_empty() && N != &Dummy) {
660 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661 AddToWorkList(N->getOperand(i).getNode());
663 DAG.DeleteNode(N);
664 continue;
667 SDValue RV = combine(N);
669 if (RV.getNode() == 0)
670 continue;
672 ++NodesCombined;
674 // If we get back the same node we passed in, rather than a new node or
675 // zero, we know that the node must have defined multiple values and
676 // CombineTo was used. Since CombineTo takes care of the worklist
677 // mechanics for us, we have no work to do in this case.
678 if (RV.getNode() == N)
679 continue;
681 assert(N->getOpcode() != ISD::DELETED_NODE &&
682 RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
683 "Node was deleted but visit returned new node!");
685 DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
686 DOUT << "\nWith: "; DEBUG(RV.getNode()->dump(&DAG));
687 DOUT << '\n';
688 WorkListRemover DeadNodes(*this);
689 if (N->getNumValues() == RV.getNode()->getNumValues())
690 DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
691 else {
692 assert(N->getValueType(0) == RV.getValueType() &&
693 N->getNumValues() == 1 && "Type mismatch");
694 SDValue OpV = RV;
695 DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
698 // Push the new node and any users onto the worklist
699 AddToWorkList(RV.getNode());
700 AddUsersToWorkList(RV.getNode());
702 // Add any uses of the old node to the worklist in case this node is the
703 // last one that uses them. They may become dead after this node is
704 // deleted.
705 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
706 AddToWorkList(N->getOperand(i).getNode());
708 // Finally, if the node is now dead, remove it from the graph. The node
709 // may not be dead if the replacement process recursively simplified to
710 // something else needing this node.
711 if (N->use_empty()) {
712 // Nodes can be reintroduced into the worklist. Make sure we do not
713 // process a node that has been replaced.
714 removeFromWorkList(N);
716 // Finally, since the node is now dead, remove it from the graph.
717 DAG.DeleteNode(N);
721 // If the root changed (e.g. it was a dead load, update the root).
722 DAG.setRoot(Dummy.getValue());
725 SDValue DAGCombiner::visit(SDNode *N) {
726 switch(N->getOpcode()) {
727 default: break;
728 case ISD::TokenFactor: return visitTokenFactor(N);
729 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
730 case ISD::ADD: return visitADD(N);
731 case ISD::SUB: return visitSUB(N);
732 case ISD::ADDC: return visitADDC(N);
733 case ISD::ADDE: return visitADDE(N);
734 case ISD::MUL: return visitMUL(N);
735 case ISD::SDIV: return visitSDIV(N);
736 case ISD::UDIV: return visitUDIV(N);
737 case ISD::SREM: return visitSREM(N);
738 case ISD::UREM: return visitUREM(N);
739 case ISD::MULHU: return visitMULHU(N);
740 case ISD::MULHS: return visitMULHS(N);
741 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
742 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
743 case ISD::SDIVREM: return visitSDIVREM(N);
744 case ISD::UDIVREM: return visitUDIVREM(N);
745 case ISD::AND: return visitAND(N);
746 case ISD::OR: return visitOR(N);
747 case ISD::XOR: return visitXOR(N);
748 case ISD::SHL: return visitSHL(N);
749 case ISD::SRA: return visitSRA(N);
750 case ISD::SRL: return visitSRL(N);
751 case ISD::CTLZ: return visitCTLZ(N);
752 case ISD::CTTZ: return visitCTTZ(N);
753 case ISD::CTPOP: return visitCTPOP(N);
754 case ISD::SELECT: return visitSELECT(N);
755 case ISD::SELECT_CC: return visitSELECT_CC(N);
756 case ISD::SETCC: return visitSETCC(N);
757 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
758 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
759 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
760 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
761 case ISD::TRUNCATE: return visitTRUNCATE(N);
762 case ISD::BIT_CONVERT: return visitBIT_CONVERT(N);
763 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
764 case ISD::FADD: return visitFADD(N);
765 case ISD::FSUB: return visitFSUB(N);
766 case ISD::FMUL: return visitFMUL(N);
767 case ISD::FDIV: return visitFDIV(N);
768 case ISD::FREM: return visitFREM(N);
769 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
770 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
771 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
772 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
773 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
774 case ISD::FP_ROUND: return visitFP_ROUND(N);
775 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
776 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
777 case ISD::FNEG: return visitFNEG(N);
778 case ISD::FABS: return visitFABS(N);
779 case ISD::BRCOND: return visitBRCOND(N);
780 case ISD::BR_CC: return visitBR_CC(N);
781 case ISD::LOAD: return visitLOAD(N);
782 case ISD::STORE: return visitSTORE(N);
783 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
784 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
785 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
786 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
787 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
789 return SDValue();
792 SDValue DAGCombiner::combine(SDNode *N) {
793 SDValue RV = visit(N);
795 // If nothing happened, try a target-specific DAG combine.
796 if (RV.getNode() == 0) {
797 assert(N->getOpcode() != ISD::DELETED_NODE &&
798 "Node was deleted but visit returned NULL!");
800 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
801 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
803 // Expose the DAG combiner to the target combiner impls.
804 TargetLowering::DAGCombinerInfo
805 DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
807 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
811 // If N is a commutative binary node, try commuting it to enable more
812 // sdisel CSE.
813 if (RV.getNode() == 0 &&
814 SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
815 N->getNumValues() == 1) {
816 SDValue N0 = N->getOperand(0);
817 SDValue N1 = N->getOperand(1);
819 // Constant operands are canonicalized to RHS.
820 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
821 SDValue Ops[] = { N1, N0 };
822 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
823 Ops, 2);
824 if (CSENode)
825 return SDValue(CSENode, 0);
829 return RV;
832 /// getInputChainForNode - Given a node, return its input chain if it has one,
833 /// otherwise return a null sd operand.
834 static SDValue getInputChainForNode(SDNode *N) {
835 if (unsigned NumOps = N->getNumOperands()) {
836 if (N->getOperand(0).getValueType() == MVT::Other)
837 return N->getOperand(0);
838 else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
839 return N->getOperand(NumOps-1);
840 for (unsigned i = 1; i < NumOps-1; ++i)
841 if (N->getOperand(i).getValueType() == MVT::Other)
842 return N->getOperand(i);
844 return SDValue();
847 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
848 // If N has two operands, where one has an input chain equal to the other,
849 // the 'other' chain is redundant.
850 if (N->getNumOperands() == 2) {
851 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
852 return N->getOperand(0);
853 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
854 return N->getOperand(1);
857 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
858 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
859 SmallPtrSet<SDNode*, 16> SeenOps;
860 bool Changed = false; // If we should replace this token factor.
862 // Start out with this token factor.
863 TFs.push_back(N);
865 // Iterate through token factors. The TFs grows when new token factors are
866 // encountered.
867 for (unsigned i = 0; i < TFs.size(); ++i) {
868 SDNode *TF = TFs[i];
870 // Check each of the operands.
871 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
872 SDValue Op = TF->getOperand(i);
874 switch (Op.getOpcode()) {
875 case ISD::EntryToken:
876 // Entry tokens don't need to be added to the list. They are
877 // rededundant.
878 Changed = true;
879 break;
881 case ISD::TokenFactor:
882 if ((CombinerAA || Op.hasOneUse()) &&
883 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
884 // Queue up for processing.
885 TFs.push_back(Op.getNode());
886 // Clean up in case the token factor is removed.
887 AddToWorkList(Op.getNode());
888 Changed = true;
889 break;
891 // Fall thru
893 default:
894 // Only add if it isn't already in the list.
895 if (SeenOps.insert(Op.getNode()))
896 Ops.push_back(Op);
897 else
898 Changed = true;
899 break;
904 SDValue Result;
906 // If we've change things around then replace token factor.
907 if (Changed) {
908 if (Ops.empty()) {
909 // The entry token is the only possible outcome.
910 Result = DAG.getEntryNode();
911 } else {
912 // New and improved token factor.
913 Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
914 MVT::Other, &Ops[0], Ops.size());
917 // Don't add users to work list.
918 return CombineTo(N, Result, false);
921 return Result;
924 /// MERGE_VALUES can always be eliminated.
925 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
926 WorkListRemover DeadNodes(*this);
927 // Replacing results may cause a different MERGE_VALUES to suddenly
928 // be CSE'd with N, and carry its uses with it. Iterate until no
929 // uses remain, to ensure that the node can be safely deleted.
930 do {
931 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
932 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
933 &DeadNodes);
934 } while (!N->use_empty());
935 removeFromWorkList(N);
936 DAG.DeleteNode(N);
937 return SDValue(N, 0); // Return N so it doesn't get rechecked!
940 static
941 SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
942 SelectionDAG &DAG) {
943 EVT VT = N0.getValueType();
944 SDValue N00 = N0.getOperand(0);
945 SDValue N01 = N0.getOperand(1);
946 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
948 if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
949 isa<ConstantSDNode>(N00.getOperand(1))) {
950 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
951 N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
952 DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
953 N00.getOperand(0), N01),
954 DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
955 N00.getOperand(1), N01));
956 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
959 return SDValue();
962 SDValue DAGCombiner::visitADD(SDNode *N) {
963 SDValue N0 = N->getOperand(0);
964 SDValue N1 = N->getOperand(1);
965 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
966 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
967 EVT VT = N0.getValueType();
969 // fold vector ops
970 if (VT.isVector()) {
971 SDValue FoldedVOp = SimplifyVBinOp(N);
972 if (FoldedVOp.getNode()) return FoldedVOp;
975 // fold (add x, undef) -> undef
976 if (N0.getOpcode() == ISD::UNDEF)
977 return N0;
978 if (N1.getOpcode() == ISD::UNDEF)
979 return N1;
980 // fold (add c1, c2) -> c1+c2
981 if (N0C && N1C)
982 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
983 // canonicalize constant to RHS
984 if (N0C && !N1C)
985 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
986 // fold (add x, 0) -> x
987 if (N1C && N1C->isNullValue())
988 return N0;
989 // fold (add Sym, c) -> Sym+c
990 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
991 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
992 GA->getOpcode() == ISD::GlobalAddress)
993 return DAG.getGlobalAddress(GA->getGlobal(), VT,
994 GA->getOffset() +
995 (uint64_t)N1C->getSExtValue());
996 // fold ((c1-A)+c2) -> (c1+c2)-A
997 if (N1C && N0.getOpcode() == ISD::SUB)
998 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
999 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1000 DAG.getConstant(N1C->getAPIntValue()+
1001 N0C->getAPIntValue(), VT),
1002 N0.getOperand(1));
1003 // reassociate add
1004 SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1005 if (RADD.getNode() != 0)
1006 return RADD;
1007 // fold ((0-A) + B) -> B-A
1008 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1009 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1010 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1011 // fold (A + (0-B)) -> A-B
1012 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1013 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1014 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1015 // fold (A+(B-A)) -> B
1016 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1017 return N1.getOperand(0);
1018 // fold ((B-A)+A) -> B
1019 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1020 return N0.getOperand(0);
1021 // fold (A+(B-(A+C))) to (B-C)
1022 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1023 N0 == N1.getOperand(1).getOperand(0))
1024 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1025 N1.getOperand(1).getOperand(1));
1026 // fold (A+(B-(C+A))) to (B-C)
1027 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1028 N0 == N1.getOperand(1).getOperand(1))
1029 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1030 N1.getOperand(1).getOperand(0));
1031 // fold (A+((B-A)+or-C)) to (B+or-C)
1032 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1033 N1.getOperand(0).getOpcode() == ISD::SUB &&
1034 N0 == N1.getOperand(0).getOperand(1))
1035 return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1036 N1.getOperand(0).getOperand(0), N1.getOperand(1));
1038 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1039 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1040 SDValue N00 = N0.getOperand(0);
1041 SDValue N01 = N0.getOperand(1);
1042 SDValue N10 = N1.getOperand(0);
1043 SDValue N11 = N1.getOperand(1);
1045 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1046 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1047 DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1048 DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1051 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1052 return SDValue(N, 0);
1054 // fold (a+b) -> (a|b) iff a and b share no bits.
1055 if (VT.isInteger() && !VT.isVector()) {
1056 APInt LHSZero, LHSOne;
1057 APInt RHSZero, RHSOne;
1058 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
1059 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1061 if (LHSZero.getBoolValue()) {
1062 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1064 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1065 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1066 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1067 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1068 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1072 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1073 if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1074 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1075 if (Result.getNode()) return Result;
1077 if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1078 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1079 if (Result.getNode()) return Result;
1082 return SDValue();
1085 SDValue DAGCombiner::visitADDC(SDNode *N) {
1086 SDValue N0 = N->getOperand(0);
1087 SDValue N1 = N->getOperand(1);
1088 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1089 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1090 EVT VT = N0.getValueType();
1092 // If the flag result is dead, turn this into an ADD.
1093 if (N->hasNUsesOfValue(0, 1))
1094 return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0),
1095 DAG.getNode(ISD::CARRY_FALSE,
1096 N->getDebugLoc(), MVT::Flag));
1098 // canonicalize constant to RHS.
1099 if (N0C && !N1C)
1100 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1102 // fold (addc x, 0) -> x + no carry out
1103 if (N1C && N1C->isNullValue())
1104 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1105 N->getDebugLoc(), MVT::Flag));
1107 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1108 APInt LHSZero, LHSOne;
1109 APInt RHSZero, RHSOne;
1110 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
1111 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1113 if (LHSZero.getBoolValue()) {
1114 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1116 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1117 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1118 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1119 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1120 return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1121 DAG.getNode(ISD::CARRY_FALSE,
1122 N->getDebugLoc(), MVT::Flag));
1125 return SDValue();
1128 SDValue DAGCombiner::visitADDE(SDNode *N) {
1129 SDValue N0 = N->getOperand(0);
1130 SDValue N1 = N->getOperand(1);
1131 SDValue CarryIn = N->getOperand(2);
1132 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1133 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1135 // canonicalize constant to RHS
1136 if (N0C && !N1C)
1137 return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1138 N1, N0, CarryIn);
1140 // fold (adde x, y, false) -> (addc x, y)
1141 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1142 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1144 return SDValue();
1147 SDValue DAGCombiner::visitSUB(SDNode *N) {
1148 SDValue N0 = N->getOperand(0);
1149 SDValue N1 = N->getOperand(1);
1150 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1151 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1152 EVT VT = N0.getValueType();
1154 // fold vector ops
1155 if (VT.isVector()) {
1156 SDValue FoldedVOp = SimplifyVBinOp(N);
1157 if (FoldedVOp.getNode()) return FoldedVOp;
1160 // fold (sub x, x) -> 0
1161 if (N0 == N1)
1162 return DAG.getConstant(0, N->getValueType(0));
1163 // fold (sub c1, c2) -> c1-c2
1164 if (N0C && N1C)
1165 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1166 // fold (sub x, c) -> (add x, -c)
1167 if (N1C)
1168 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1169 DAG.getConstant(-N1C->getAPIntValue(), VT));
1170 // fold (A+B)-A -> B
1171 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1172 return N0.getOperand(1);
1173 // fold (A+B)-B -> A
1174 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1175 return N0.getOperand(0);
1176 // fold ((A+(B+or-C))-B) -> A+or-C
1177 if (N0.getOpcode() == ISD::ADD &&
1178 (N0.getOperand(1).getOpcode() == ISD::SUB ||
1179 N0.getOperand(1).getOpcode() == ISD::ADD) &&
1180 N0.getOperand(1).getOperand(0) == N1)
1181 return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1182 N0.getOperand(0), N0.getOperand(1).getOperand(1));
1183 // fold ((A+(C+B))-B) -> A+C
1184 if (N0.getOpcode() == ISD::ADD &&
1185 N0.getOperand(1).getOpcode() == ISD::ADD &&
1186 N0.getOperand(1).getOperand(1) == N1)
1187 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1188 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1189 // fold ((A-(B-C))-C) -> A-B
1190 if (N0.getOpcode() == ISD::SUB &&
1191 N0.getOperand(1).getOpcode() == ISD::SUB &&
1192 N0.getOperand(1).getOperand(1) == N1)
1193 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1194 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1196 // If either operand of a sub is undef, the result is undef
1197 if (N0.getOpcode() == ISD::UNDEF)
1198 return N0;
1199 if (N1.getOpcode() == ISD::UNDEF)
1200 return N1;
1202 // If the relocation model supports it, consider symbol offsets.
1203 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1204 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1205 // fold (sub Sym, c) -> Sym-c
1206 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1207 return DAG.getGlobalAddress(GA->getGlobal(), VT,
1208 GA->getOffset() -
1209 (uint64_t)N1C->getSExtValue());
1210 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1211 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1212 if (GA->getGlobal() == GB->getGlobal())
1213 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1214 VT);
1217 return SDValue();
1220 SDValue DAGCombiner::visitMUL(SDNode *N) {
1221 SDValue N0 = N->getOperand(0);
1222 SDValue N1 = N->getOperand(1);
1223 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1224 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1225 EVT VT = N0.getValueType();
1227 // fold vector ops
1228 if (VT.isVector()) {
1229 SDValue FoldedVOp = SimplifyVBinOp(N);
1230 if (FoldedVOp.getNode()) return FoldedVOp;
1233 // fold (mul x, undef) -> 0
1234 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1235 return DAG.getConstant(0, VT);
1236 // fold (mul c1, c2) -> c1*c2
1237 if (N0C && N1C)
1238 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1239 // canonicalize constant to RHS
1240 if (N0C && !N1C)
1241 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1242 // fold (mul x, 0) -> 0
1243 if (N1C && N1C->isNullValue())
1244 return N1;
1245 // fold (mul x, -1) -> 0-x
1246 if (N1C && N1C->isAllOnesValue())
1247 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1248 DAG.getConstant(0, VT), N0);
1249 // fold (mul x, (1 << c)) -> x << c
1250 if (N1C && N1C->getAPIntValue().isPowerOf2())
1251 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1252 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1253 getShiftAmountTy()));
1254 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1255 if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1256 unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1257 // FIXME: If the input is something that is easily negated (e.g. a
1258 // single-use add), we should put the negate there.
1259 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1260 DAG.getConstant(0, VT),
1261 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1262 DAG.getConstant(Log2Val, getShiftAmountTy())));
1264 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1265 if (N1C && N0.getOpcode() == ISD::SHL &&
1266 isa<ConstantSDNode>(N0.getOperand(1))) {
1267 SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1268 N1, N0.getOperand(1));
1269 AddToWorkList(C3.getNode());
1270 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1271 N0.getOperand(0), C3);
1274 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1275 // use.
1277 SDValue Sh(0,0), Y(0,0);
1278 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1279 if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1280 N0.getNode()->hasOneUse()) {
1281 Sh = N0; Y = N1;
1282 } else if (N1.getOpcode() == ISD::SHL &&
1283 isa<ConstantSDNode>(N1.getOperand(1)) &&
1284 N1.getNode()->hasOneUse()) {
1285 Sh = N1; Y = N0;
1288 if (Sh.getNode()) {
1289 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1290 Sh.getOperand(0), Y);
1291 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1292 Mul, Sh.getOperand(1));
1296 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1297 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1298 isa<ConstantSDNode>(N0.getOperand(1)))
1299 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1300 DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1301 N0.getOperand(0), N1),
1302 DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1303 N0.getOperand(1), N1));
1305 // reassociate mul
1306 SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1307 if (RMUL.getNode() != 0)
1308 return RMUL;
1310 return SDValue();
1313 SDValue DAGCombiner::visitSDIV(SDNode *N) {
1314 SDValue N0 = N->getOperand(0);
1315 SDValue N1 = N->getOperand(1);
1316 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1317 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1318 EVT VT = N->getValueType(0);
1320 // fold vector ops
1321 if (VT.isVector()) {
1322 SDValue FoldedVOp = SimplifyVBinOp(N);
1323 if (FoldedVOp.getNode()) return FoldedVOp;
1326 // fold (sdiv c1, c2) -> c1/c2
1327 if (N0C && N1C && !N1C->isNullValue())
1328 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1329 // fold (sdiv X, 1) -> X
1330 if (N1C && N1C->getSExtValue() == 1LL)
1331 return N0;
1332 // fold (sdiv X, -1) -> 0-X
1333 if (N1C && N1C->isAllOnesValue())
1334 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1335 DAG.getConstant(0, VT), N0);
1336 // If we know the sign bits of both operands are zero, strength reduce to a
1337 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1338 if (!VT.isVector()) {
1339 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1340 return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1341 N0, N1);
1343 // fold (sdiv X, pow2) -> simple ops after legalize
1344 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1345 (isPowerOf2_64(N1C->getSExtValue()) ||
1346 isPowerOf2_64(-N1C->getSExtValue()))) {
1347 // If dividing by powers of two is cheap, then don't perform the following
1348 // fold.
1349 if (TLI.isPow2DivCheap())
1350 return SDValue();
1352 int64_t pow2 = N1C->getSExtValue();
1353 int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1354 unsigned lg2 = Log2_64(abs2);
1356 // Splat the sign bit into the register
1357 SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1358 DAG.getConstant(VT.getSizeInBits()-1,
1359 getShiftAmountTy()));
1360 AddToWorkList(SGN.getNode());
1362 // Add (N0 < 0) ? abs2 - 1 : 0;
1363 SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1364 DAG.getConstant(VT.getSizeInBits() - lg2,
1365 getShiftAmountTy()));
1366 SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1367 AddToWorkList(SRL.getNode());
1368 AddToWorkList(ADD.getNode()); // Divide by pow2
1369 SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1370 DAG.getConstant(lg2, getShiftAmountTy()));
1372 // If we're dividing by a positive value, we're done. Otherwise, we must
1373 // negate the result.
1374 if (pow2 > 0)
1375 return SRA;
1377 AddToWorkList(SRA.getNode());
1378 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1379 DAG.getConstant(0, VT), SRA);
1382 // if integer divide is expensive and we satisfy the requirements, emit an
1383 // alternate sequence.
1384 if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) &&
1385 !TLI.isIntDivCheap()) {
1386 SDValue Op = BuildSDIV(N);
1387 if (Op.getNode()) return Op;
1390 // undef / X -> 0
1391 if (N0.getOpcode() == ISD::UNDEF)
1392 return DAG.getConstant(0, VT);
1393 // X / undef -> undef
1394 if (N1.getOpcode() == ISD::UNDEF)
1395 return N1;
1397 return SDValue();
1400 SDValue DAGCombiner::visitUDIV(SDNode *N) {
1401 SDValue N0 = N->getOperand(0);
1402 SDValue N1 = N->getOperand(1);
1403 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1404 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1405 EVT VT = N->getValueType(0);
1407 // fold vector ops
1408 if (VT.isVector()) {
1409 SDValue FoldedVOp = SimplifyVBinOp(N);
1410 if (FoldedVOp.getNode()) return FoldedVOp;
1413 // fold (udiv c1, c2) -> c1/c2
1414 if (N0C && N1C && !N1C->isNullValue())
1415 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1416 // fold (udiv x, (1 << c)) -> x >>u c
1417 if (N1C && N1C->getAPIntValue().isPowerOf2())
1418 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1419 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1420 getShiftAmountTy()));
1421 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1422 if (N1.getOpcode() == ISD::SHL) {
1423 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1424 if (SHC->getAPIntValue().isPowerOf2()) {
1425 EVT ADDVT = N1.getOperand(1).getValueType();
1426 SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1427 N1.getOperand(1),
1428 DAG.getConstant(SHC->getAPIntValue()
1429 .logBase2(),
1430 ADDVT));
1431 AddToWorkList(Add.getNode());
1432 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1436 // fold (udiv x, c) -> alternate
1437 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1438 SDValue Op = BuildUDIV(N);
1439 if (Op.getNode()) return Op;
1442 // undef / X -> 0
1443 if (N0.getOpcode() == ISD::UNDEF)
1444 return DAG.getConstant(0, VT);
1445 // X / undef -> undef
1446 if (N1.getOpcode() == ISD::UNDEF)
1447 return N1;
1449 return SDValue();
1452 SDValue DAGCombiner::visitSREM(SDNode *N) {
1453 SDValue N0 = N->getOperand(0);
1454 SDValue N1 = N->getOperand(1);
1455 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1456 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1457 EVT VT = N->getValueType(0);
1459 // fold (srem c1, c2) -> c1%c2
1460 if (N0C && N1C && !N1C->isNullValue())
1461 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1462 // If we know the sign bits of both operands are zero, strength reduce to a
1463 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1464 if (!VT.isVector()) {
1465 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1466 return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1469 // If X/C can be simplified by the division-by-constant logic, lower
1470 // X%C to the equivalent of X-X/C*C.
1471 if (N1C && !N1C->isNullValue()) {
1472 SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1473 AddToWorkList(Div.getNode());
1474 SDValue OptimizedDiv = combine(Div.getNode());
1475 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1476 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1477 OptimizedDiv, N1);
1478 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1479 AddToWorkList(Mul.getNode());
1480 return Sub;
1484 // undef % X -> 0
1485 if (N0.getOpcode() == ISD::UNDEF)
1486 return DAG.getConstant(0, VT);
1487 // X % undef -> undef
1488 if (N1.getOpcode() == ISD::UNDEF)
1489 return N1;
1491 return SDValue();
1494 SDValue DAGCombiner::visitUREM(SDNode *N) {
1495 SDValue N0 = N->getOperand(0);
1496 SDValue N1 = N->getOperand(1);
1497 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1498 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1499 EVT VT = N->getValueType(0);
1501 // fold (urem c1, c2) -> c1%c2
1502 if (N0C && N1C && !N1C->isNullValue())
1503 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
1504 // fold (urem x, pow2) -> (and x, pow2-1)
1505 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1506 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
1507 DAG.getConstant(N1C->getAPIntValue()-1,VT));
1508 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1509 if (N1.getOpcode() == ISD::SHL) {
1510 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1511 if (SHC->getAPIntValue().isPowerOf2()) {
1512 SDValue Add =
1513 DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
1514 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
1515 VT));
1516 AddToWorkList(Add.getNode());
1517 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
1522 // If X/C can be simplified by the division-by-constant logic, lower
1523 // X%C to the equivalent of X-X/C*C.
1524 if (N1C && !N1C->isNullValue()) {
1525 SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
1526 AddToWorkList(Div.getNode());
1527 SDValue OptimizedDiv = combine(Div.getNode());
1528 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1529 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1530 OptimizedDiv, N1);
1531 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1532 AddToWorkList(Mul.getNode());
1533 return Sub;
1537 // undef % X -> 0
1538 if (N0.getOpcode() == ISD::UNDEF)
1539 return DAG.getConstant(0, VT);
1540 // X % undef -> undef
1541 if (N1.getOpcode() == ISD::UNDEF)
1542 return N1;
1544 return SDValue();
1547 SDValue DAGCombiner::visitMULHS(SDNode *N) {
1548 SDValue N0 = N->getOperand(0);
1549 SDValue N1 = N->getOperand(1);
1550 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1551 EVT VT = N->getValueType(0);
1553 // fold (mulhs x, 0) -> 0
1554 if (N1C && N1C->isNullValue())
1555 return N1;
1556 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1557 if (N1C && N1C->getAPIntValue() == 1)
1558 return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
1559 DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
1560 getShiftAmountTy()));
1561 // fold (mulhs x, undef) -> 0
1562 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1563 return DAG.getConstant(0, VT);
1565 return SDValue();
1568 SDValue DAGCombiner::visitMULHU(SDNode *N) {
1569 SDValue N0 = N->getOperand(0);
1570 SDValue N1 = N->getOperand(1);
1571 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1572 EVT VT = N->getValueType(0);
1574 // fold (mulhu x, 0) -> 0
1575 if (N1C && N1C->isNullValue())
1576 return N1;
1577 // fold (mulhu x, 1) -> 0
1578 if (N1C && N1C->getAPIntValue() == 1)
1579 return DAG.getConstant(0, N0.getValueType());
1580 // fold (mulhu x, undef) -> 0
1581 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1582 return DAG.getConstant(0, VT);
1584 return SDValue();
1587 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1588 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1589 /// that are being performed. Return true if a simplification was made.
1591 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1592 unsigned HiOp) {
1593 // If the high half is not needed, just compute the low half.
1594 bool HiExists = N->hasAnyUseOfValue(1);
1595 if (!HiExists &&
1596 (!LegalOperations ||
1597 TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1598 SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
1599 N->op_begin(), N->getNumOperands());
1600 return CombineTo(N, Res, Res);
1603 // If the low half is not needed, just compute the high half.
1604 bool LoExists = N->hasAnyUseOfValue(0);
1605 if (!LoExists &&
1606 (!LegalOperations ||
1607 TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1608 SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
1609 N->op_begin(), N->getNumOperands());
1610 return CombineTo(N, Res, Res);
1613 // If both halves are used, return as it is.
1614 if (LoExists && HiExists)
1615 return SDValue();
1617 // If the two computed results can be simplified separately, separate them.
1618 if (LoExists) {
1619 SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
1620 N->op_begin(), N->getNumOperands());
1621 AddToWorkList(Lo.getNode());
1622 SDValue LoOpt = combine(Lo.getNode());
1623 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
1624 (!LegalOperations ||
1625 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
1626 return CombineTo(N, LoOpt, LoOpt);
1629 if (HiExists) {
1630 SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
1631 N->op_begin(), N->getNumOperands());
1632 AddToWorkList(Hi.getNode());
1633 SDValue HiOpt = combine(Hi.getNode());
1634 if (HiOpt.getNode() && HiOpt != Hi &&
1635 (!LegalOperations ||
1636 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
1637 return CombineTo(N, HiOpt, HiOpt);
1640 return SDValue();
1643 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1644 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1645 if (Res.getNode()) return Res;
1647 return SDValue();
1650 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1651 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1652 if (Res.getNode()) return Res;
1654 return SDValue();
1657 SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
1658 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1659 if (Res.getNode()) return Res;
1661 return SDValue();
1664 SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
1665 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1666 if (Res.getNode()) return Res;
1668 return SDValue();
1671 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1672 /// two operands of the same opcode, try to simplify it.
1673 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1674 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1675 EVT VT = N0.getValueType();
1676 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1678 // For each of OP in AND/OR/XOR:
1679 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1680 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1681 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1682 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
1683 if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1684 N0.getOpcode() == ISD::SIGN_EXTEND ||
1685 (N0.getOpcode() == ISD::TRUNCATE &&
1686 !TLI.isTruncateFree(N0.getOperand(0).getValueType(), VT))) &&
1687 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
1688 (!LegalOperations ||
1689 TLI.isOperationLegal(N->getOpcode(), N0.getOperand(0).getValueType()))) {
1690 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
1691 N0.getOperand(0).getValueType(),
1692 N0.getOperand(0), N1.getOperand(0));
1693 AddToWorkList(ORNode.getNode());
1694 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
1697 // For each of OP in SHL/SRL/SRA/AND...
1698 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1699 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1700 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1701 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1702 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1703 N0.getOperand(1) == N1.getOperand(1)) {
1704 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
1705 N0.getOperand(0).getValueType(),
1706 N0.getOperand(0), N1.getOperand(0));
1707 AddToWorkList(ORNode.getNode());
1708 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
1709 ORNode, N0.getOperand(1));
1712 return SDValue();
1715 SDValue DAGCombiner::visitAND(SDNode *N) {
1716 SDValue N0 = N->getOperand(0);
1717 SDValue N1 = N->getOperand(1);
1718 SDValue LL, LR, RL, RR, CC0, CC1;
1719 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1720 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1721 EVT VT = N1.getValueType();
1722 unsigned BitWidth = VT.getSizeInBits();
1724 // fold vector ops
1725 if (VT.isVector()) {
1726 SDValue FoldedVOp = SimplifyVBinOp(N);
1727 if (FoldedVOp.getNode()) return FoldedVOp;
1730 // fold (and x, undef) -> 0
1731 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1732 return DAG.getConstant(0, VT);
1733 // fold (and c1, c2) -> c1&c2
1734 if (N0C && N1C)
1735 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
1736 // canonicalize constant to RHS
1737 if (N0C && !N1C)
1738 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
1739 // fold (and x, -1) -> x
1740 if (N1C && N1C->isAllOnesValue())
1741 return N0;
1742 // if (and x, c) is known to be zero, return 0
1743 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
1744 APInt::getAllOnesValue(BitWidth)))
1745 return DAG.getConstant(0, VT);
1746 // reassociate and
1747 SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
1748 if (RAND.getNode() != 0)
1749 return RAND;
1750 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1751 if (N1C && N0.getOpcode() == ISD::OR)
1752 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1753 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
1754 return N1;
1755 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1756 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1757 SDValue N0Op0 = N0.getOperand(0);
1758 APInt Mask = ~N1C->getAPIntValue();
1759 Mask.trunc(N0Op0.getValueSizeInBits());
1760 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1761 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
1762 N0.getValueType(), N0Op0);
1764 // Replace uses of the AND with uses of the Zero extend node.
1765 CombineTo(N, Zext);
1767 // We actually want to replace all uses of the any_extend with the
1768 // zero_extend, to avoid duplicating things. This will later cause this
1769 // AND to be folded.
1770 CombineTo(N0.getNode(), Zext);
1771 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1774 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1775 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1776 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1777 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1779 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1780 LL.getValueType().isInteger()) {
1781 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1782 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
1783 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
1784 LR.getValueType(), LL, RL);
1785 AddToWorkList(ORNode.getNode());
1786 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1788 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1789 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1790 SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
1791 LR.getValueType(), LL, RL);
1792 AddToWorkList(ANDNode.getNode());
1793 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
1795 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1796 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1797 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
1798 LR.getValueType(), LL, RL);
1799 AddToWorkList(ORNode.getNode());
1800 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1803 // canonicalize equivalent to ll == rl
1804 if (LL == RR && LR == RL) {
1805 Op1 = ISD::getSetCCSwappedOperands(Op1);
1806 std::swap(RL, RR);
1808 if (LL == RL && LR == RR) {
1809 bool isInteger = LL.getValueType().isInteger();
1810 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1811 if (Result != ISD::SETCC_INVALID &&
1812 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
1813 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
1814 LL, LR, Result);
1818 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1819 if (N0.getOpcode() == N1.getOpcode()) {
1820 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1821 if (Tmp.getNode()) return Tmp;
1824 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1825 // fold (and (sra)) -> (and (srl)) when possible.
1826 if (!VT.isVector() &&
1827 SimplifyDemandedBits(SDValue(N, 0)))
1828 return SDValue(N, 0);
1829 // fold (zext_inreg (extload x)) -> (zextload x)
1830 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
1831 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1832 EVT EVT = LN0->getMemoryVT();
1833 // If we zero all the possible extended bits, then we can turn this into
1834 // a zextload if we are running before legalize or the operation is legal.
1835 unsigned BitWidth = N1.getValueSizeInBits();
1836 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1837 BitWidth - EVT.getSizeInBits())) &&
1838 ((!LegalOperations && !LN0->isVolatile()) ||
1839 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1840 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
1841 LN0->getChain(), LN0->getBasePtr(),
1842 LN0->getSrcValue(),
1843 LN0->getSrcValueOffset(), EVT,
1844 LN0->isVolatile(), LN0->getAlignment());
1845 AddToWorkList(N);
1846 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
1847 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1850 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1851 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
1852 N0.hasOneUse()) {
1853 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1854 EVT EVT = LN0->getMemoryVT();
1855 // If we zero all the possible extended bits, then we can turn this into
1856 // a zextload if we are running before legalize or the operation is legal.
1857 unsigned BitWidth = N1.getValueSizeInBits();
1858 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1859 BitWidth - EVT.getSizeInBits())) &&
1860 ((!LegalOperations && !LN0->isVolatile()) ||
1861 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1862 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
1863 LN0->getChain(),
1864 LN0->getBasePtr(), LN0->getSrcValue(),
1865 LN0->getSrcValueOffset(), EVT,
1866 LN0->isVolatile(), LN0->getAlignment());
1867 AddToWorkList(N);
1868 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
1869 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1873 // fold (and (load x), 255) -> (zextload x, i8)
1874 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1875 if (N1C && N0.getOpcode() == ISD::LOAD) {
1876 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1877 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1878 LN0->isUnindexed() && N0.hasOneUse() &&
1879 // Do not change the width of a volatile load.
1880 !LN0->isVolatile()) {
1881 EVT ExtVT = MVT::Other;
1882 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
1883 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
1884 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
1886 EVT LoadedVT = LN0->getMemoryVT();
1888 // Do not generate loads of non-round integer types since these can
1889 // be expensive (and would be wrong if the type is not byte sized).
1890 if (ExtVT != MVT::Other && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
1891 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
1892 EVT PtrType = N0.getOperand(1).getValueType();
1894 // For big endian targets, we need to add an offset to the pointer to
1895 // load the correct bytes. For little endian systems, we merely need to
1896 // read fewer bytes from the same pointer.
1897 unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8;
1898 unsigned EVTStoreBytes = ExtVT.getStoreSizeInBits()/8;
1899 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1900 unsigned Alignment = LN0->getAlignment();
1901 SDValue NewPtr = LN0->getBasePtr();
1903 if (TLI.isBigEndian()) {
1904 NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
1905 NewPtr, DAG.getConstant(PtrOff, PtrType));
1906 Alignment = MinAlign(Alignment, PtrOff);
1909 AddToWorkList(NewPtr.getNode());
1910 SDValue Load =
1911 DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(),
1912 NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(),
1913 ExtVT, LN0->isVolatile(), Alignment);
1914 AddToWorkList(N);
1915 CombineTo(N0.getNode(), Load, Load.getValue(1));
1916 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1921 return SDValue();
1924 SDValue DAGCombiner::visitOR(SDNode *N) {
1925 SDValue N0 = N->getOperand(0);
1926 SDValue N1 = N->getOperand(1);
1927 SDValue LL, LR, RL, RR, CC0, CC1;
1928 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1929 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1930 EVT VT = N1.getValueType();
1932 // fold vector ops
1933 if (VT.isVector()) {
1934 SDValue FoldedVOp = SimplifyVBinOp(N);
1935 if (FoldedVOp.getNode()) return FoldedVOp;
1938 // fold (or x, undef) -> -1
1939 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1940 return DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
1941 // fold (or c1, c2) -> c1|c2
1942 if (N0C && N1C)
1943 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
1944 // canonicalize constant to RHS
1945 if (N0C && !N1C)
1946 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
1947 // fold (or x, 0) -> x
1948 if (N1C && N1C->isNullValue())
1949 return N0;
1950 // fold (or x, -1) -> -1
1951 if (N1C && N1C->isAllOnesValue())
1952 return N1;
1953 // fold (or x, c) -> c iff (x & ~c) == 0
1954 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1955 return N1;
1956 // reassociate or
1957 SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
1958 if (ROR.getNode() != 0)
1959 return ROR;
1960 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1961 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1962 isa<ConstantSDNode>(N0.getOperand(1))) {
1963 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1964 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
1965 DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
1966 N0.getOperand(0), N1),
1967 DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
1969 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1970 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1971 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1972 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1974 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1975 LL.getValueType().isInteger()) {
1976 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1977 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1978 if (cast<ConstantSDNode>(LR)->isNullValue() &&
1979 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1980 SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
1981 LR.getValueType(), LL, RL);
1982 AddToWorkList(ORNode.getNode());
1983 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1985 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1986 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1987 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1988 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1989 SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
1990 LR.getValueType(), LL, RL);
1991 AddToWorkList(ANDNode.getNode());
1992 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
1995 // canonicalize equivalent to ll == rl
1996 if (LL == RR && LR == RL) {
1997 Op1 = ISD::getSetCCSwappedOperands(Op1);
1998 std::swap(RL, RR);
2000 if (LL == RL && LR == RR) {
2001 bool isInteger = LL.getValueType().isInteger();
2002 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
2003 if (Result != ISD::SETCC_INVALID &&
2004 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2005 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2006 LL, LR, Result);
2010 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2011 if (N0.getOpcode() == N1.getOpcode()) {
2012 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2013 if (Tmp.getNode()) return Tmp;
2016 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2017 if (N0.getOpcode() == ISD::AND &&
2018 N1.getOpcode() == ISD::AND &&
2019 N0.getOperand(1).getOpcode() == ISD::Constant &&
2020 N1.getOperand(1).getOpcode() == ISD::Constant &&
2021 // Don't increase # computations.
2022 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
2023 // We can only do this xform if we know that bits from X that are set in C2
2024 // but not in C1 are already zero. Likewise for Y.
2025 const APInt &LHSMask =
2026 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2027 const APInt &RHSMask =
2028 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
2030 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
2031 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
2032 SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
2033 N0.getOperand(0), N1.getOperand(0));
2034 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
2035 DAG.getConstant(LHSMask | RHSMask, VT));
2039 // See if this is some rotate idiom.
2040 if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
2041 return SDValue(Rot, 0);
2043 return SDValue();
2046 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2047 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
2048 if (Op.getOpcode() == ISD::AND) {
2049 if (isa<ConstantSDNode>(Op.getOperand(1))) {
2050 Mask = Op.getOperand(1);
2051 Op = Op.getOperand(0);
2052 } else {
2053 return false;
2057 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
2058 Shift = Op;
2059 return true;
2062 return false;
2065 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2066 // idioms for rotate, and if the target supports rotation instructions, generate
2067 // a rot[lr].
2068 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
2069 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2070 EVT VT = LHS.getValueType();
2071 if (!TLI.isTypeLegal(VT)) return 0;
2073 // The target must have at least one rotate flavor.
2074 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
2075 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
2076 if (!HasROTL && !HasROTR) return 0;
2078 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2079 SDValue LHSShift; // The shift.
2080 SDValue LHSMask; // AND value if any.
2081 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
2082 return 0; // Not part of a rotate.
2084 SDValue RHSShift; // The shift.
2085 SDValue RHSMask; // AND value if any.
2086 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
2087 return 0; // Not part of a rotate.
2089 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
2090 return 0; // Not shifting the same value.
2092 if (LHSShift.getOpcode() == RHSShift.getOpcode())
2093 return 0; // Shifts must disagree.
2095 // Canonicalize shl to left side in a shl/srl pair.
2096 if (RHSShift.getOpcode() == ISD::SHL) {
2097 std::swap(LHS, RHS);
2098 std::swap(LHSShift, RHSShift);
2099 std::swap(LHSMask , RHSMask );
2102 unsigned OpSizeInBits = VT.getSizeInBits();
2103 SDValue LHSShiftArg = LHSShift.getOperand(0);
2104 SDValue LHSShiftAmt = LHSShift.getOperand(1);
2105 SDValue RHSShiftAmt = RHSShift.getOperand(1);
2107 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2108 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2109 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
2110 RHSShiftAmt.getOpcode() == ISD::Constant) {
2111 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
2112 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
2113 if ((LShVal + RShVal) != OpSizeInBits)
2114 return 0;
2116 SDValue Rot;
2117 if (HasROTL)
2118 Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
2119 else
2120 Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
2122 // If there is an AND of either shifted operand, apply it to the result.
2123 if (LHSMask.getNode() || RHSMask.getNode()) {
2124 APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
2126 if (LHSMask.getNode()) {
2127 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
2128 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2130 if (RHSMask.getNode()) {
2131 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2132 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2135 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
2138 return Rot.getNode();
2141 // If there is a mask here, and we have a variable shift, we can't be sure
2142 // that we're masking out the right stuff.
2143 if (LHSMask.getNode() || RHSMask.getNode())
2144 return 0;
2146 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2147 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2148 if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2149 LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2150 if (ConstantSDNode *SUBC =
2151 dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2152 if (SUBC->getAPIntValue() == OpSizeInBits) {
2153 if (HasROTL)
2154 return DAG.getNode(ISD::ROTL, DL, VT,
2155 LHSShiftArg, LHSShiftAmt).getNode();
2156 else
2157 return DAG.getNode(ISD::ROTR, DL, VT,
2158 LHSShiftArg, RHSShiftAmt).getNode();
2163 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2164 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2165 if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2166 RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2167 if (ConstantSDNode *SUBC =
2168 dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2169 if (SUBC->getAPIntValue() == OpSizeInBits) {
2170 if (HasROTR)
2171 return DAG.getNode(ISD::ROTR, DL, VT,
2172 LHSShiftArg, RHSShiftAmt).getNode();
2173 else
2174 return DAG.getNode(ISD::ROTL, DL, VT,
2175 LHSShiftArg, LHSShiftAmt).getNode();
2180 // Look for sign/zext/any-extended or truncate cases:
2181 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2182 || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2183 || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
2184 || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
2185 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2186 || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2187 || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
2188 || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
2189 SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
2190 SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
2191 if (RExtOp0.getOpcode() == ISD::SUB &&
2192 RExtOp0.getOperand(1) == LExtOp0) {
2193 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2194 // (rotl x, y)
2195 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2196 // (rotr x, (sub 32, y))
2197 if (ConstantSDNode *SUBC =
2198 dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2199 if (SUBC->getAPIntValue() == OpSizeInBits) {
2200 return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
2201 LHSShiftArg,
2202 HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
2205 } else if (LExtOp0.getOpcode() == ISD::SUB &&
2206 RExtOp0 == LExtOp0.getOperand(1)) {
2207 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2208 // (rotr x, y)
2209 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2210 // (rotl x, (sub 32, y))
2211 if (ConstantSDNode *SUBC =
2212 dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2213 if (SUBC->getAPIntValue() == OpSizeInBits) {
2214 return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
2215 LHSShiftArg,
2216 HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
2222 return 0;
2225 SDValue DAGCombiner::visitXOR(SDNode *N) {
2226 SDValue N0 = N->getOperand(0);
2227 SDValue N1 = N->getOperand(1);
2228 SDValue LHS, RHS, CC;
2229 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2230 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2231 EVT VT = N0.getValueType();
2233 // fold vector ops
2234 if (VT.isVector()) {
2235 SDValue FoldedVOp = SimplifyVBinOp(N);
2236 if (FoldedVOp.getNode()) return FoldedVOp;
2239 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2240 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
2241 return DAG.getConstant(0, VT);
2242 // fold (xor x, undef) -> undef
2243 if (N0.getOpcode() == ISD::UNDEF)
2244 return N0;
2245 if (N1.getOpcode() == ISD::UNDEF)
2246 return N1;
2247 // fold (xor c1, c2) -> c1^c2
2248 if (N0C && N1C)
2249 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
2250 // canonicalize constant to RHS
2251 if (N0C && !N1C)
2252 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
2253 // fold (xor x, 0) -> x
2254 if (N1C && N1C->isNullValue())
2255 return N0;
2256 // reassociate xor
2257 SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
2258 if (RXOR.getNode() != 0)
2259 return RXOR;
2261 // fold !(x cc y) -> (x !cc y)
2262 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2263 bool isInt = LHS.getValueType().isInteger();
2264 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2265 isInt);
2267 if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
2268 switch (N0.getOpcode()) {
2269 default:
2270 llvm_unreachable("Unhandled SetCC Equivalent!");
2271 case ISD::SETCC:
2272 return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
2273 case ISD::SELECT_CC:
2274 return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
2275 N0.getOperand(3), NotCC);
2280 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2281 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2282 N0.getNode()->hasOneUse() &&
2283 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2284 SDValue V = N0.getOperand(0);
2285 V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
2286 DAG.getConstant(1, V.getValueType()));
2287 AddToWorkList(V.getNode());
2288 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
2291 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2292 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
2293 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2294 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2295 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2296 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2297 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
2298 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
2299 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
2300 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
2303 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2304 if (N1C && N1C->isAllOnesValue() &&
2305 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2306 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2307 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2308 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2309 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
2310 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
2311 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
2312 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
2315 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2316 if (N1C && N0.getOpcode() == ISD::XOR) {
2317 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2318 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2319 if (N00C)
2320 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
2321 DAG.getConstant(N1C->getAPIntValue() ^
2322 N00C->getAPIntValue(), VT));
2323 if (N01C)
2324 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
2325 DAG.getConstant(N1C->getAPIntValue() ^
2326 N01C->getAPIntValue(), VT));
2328 // fold (xor x, x) -> 0
2329 if (N0 == N1) {
2330 if (!VT.isVector()) {
2331 return DAG.getConstant(0, VT);
2332 } else if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)){
2333 // Produce a vector of zeros.
2334 SDValue El = DAG.getConstant(0, VT.getVectorElementType());
2335 std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
2336 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
2337 &Ops[0], Ops.size());
2341 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2342 if (N0.getOpcode() == N1.getOpcode()) {
2343 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2344 if (Tmp.getNode()) return Tmp;
2347 // Simplify the expression using non-local knowledge.
2348 if (!VT.isVector() &&
2349 SimplifyDemandedBits(SDValue(N, 0)))
2350 return SDValue(N, 0);
2352 return SDValue();
2355 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2356 /// the shift amount is a constant.
2357 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2358 SDNode *LHS = N->getOperand(0).getNode();
2359 if (!LHS->hasOneUse()) return SDValue();
2361 // We want to pull some binops through shifts, so that we have (and (shift))
2362 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2363 // thing happens with address calculations, so it's important to canonicalize
2364 // it.
2365 bool HighBitSet = false; // Can we transform this if the high bit is set?
2367 switch (LHS->getOpcode()) {
2368 default: return SDValue();
2369 case ISD::OR:
2370 case ISD::XOR:
2371 HighBitSet = false; // We can only transform sra if the high bit is clear.
2372 break;
2373 case ISD::AND:
2374 HighBitSet = true; // We can only transform sra if the high bit is set.
2375 break;
2376 case ISD::ADD:
2377 if (N->getOpcode() != ISD::SHL)
2378 return SDValue(); // only shl(add) not sr[al](add).
2379 HighBitSet = false; // We can only transform sra if the high bit is clear.
2380 break;
2383 // We require the RHS of the binop to be a constant as well.
2384 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2385 if (!BinOpCst) return SDValue();
2387 // FIXME: disable this unless the input to the binop is a shift by a constant.
2388 // If it is not a shift, it pessimizes some common cases like:
2390 // void foo(int *X, int i) { X[i & 1235] = 1; }
2391 // int bar(int *X, int i) { return X[i & 255]; }
2392 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
2393 if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2394 BinOpLHSVal->getOpcode() != ISD::SRA &&
2395 BinOpLHSVal->getOpcode() != ISD::SRL) ||
2396 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2397 return SDValue();
2399 EVT VT = N->getValueType(0);
2401 // If this is a signed shift right, and the high bit is modified by the
2402 // logical operation, do not perform the transformation. The highBitSet
2403 // boolean indicates the value of the high bit of the constant which would
2404 // cause it to be modified for this operation.
2405 if (N->getOpcode() == ISD::SRA) {
2406 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2407 if (BinOpRHSSignSet != HighBitSet)
2408 return SDValue();
2411 // Fold the constants, shifting the binop RHS by the shift amount.
2412 SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
2413 N->getValueType(0),
2414 LHS->getOperand(1), N->getOperand(1));
2416 // Create the new shift.
2417 SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(),
2418 VT, LHS->getOperand(0), N->getOperand(1));
2420 // Create the new binop.
2421 return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
2424 SDValue DAGCombiner::visitSHL(SDNode *N) {
2425 SDValue N0 = N->getOperand(0);
2426 SDValue N1 = N->getOperand(1);
2427 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2428 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2429 EVT VT = N0.getValueType();
2430 unsigned OpSizeInBits = VT.getSizeInBits();
2432 // fold (shl c1, c2) -> c1<<c2
2433 if (N0C && N1C)
2434 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
2435 // fold (shl 0, x) -> 0
2436 if (N0C && N0C->isNullValue())
2437 return N0;
2438 // fold (shl x, c >= size(x)) -> undef
2439 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
2440 return DAG.getUNDEF(VT);
2441 // fold (shl x, 0) -> x
2442 if (N1C && N1C->isNullValue())
2443 return N0;
2444 // if (shl x, c) is known to be zero, return 0
2445 if (DAG.MaskedValueIsZero(SDValue(N, 0),
2446 APInt::getAllOnesValue(VT.getSizeInBits())))
2447 return DAG.getConstant(0, VT);
2448 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2449 if (N1.getOpcode() == ISD::TRUNCATE &&
2450 N1.getOperand(0).getOpcode() == ISD::AND &&
2451 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2452 SDValue N101 = N1.getOperand(0).getOperand(1);
2453 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2454 EVT TruncVT = N1.getValueType();
2455 SDValue N100 = N1.getOperand(0).getOperand(0);
2456 APInt TruncC = N101C->getAPIntValue();
2457 TruncC.trunc(TruncVT.getSizeInBits());
2458 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
2459 DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
2460 DAG.getNode(ISD::TRUNCATE,
2461 N->getDebugLoc(),
2462 TruncVT, N100),
2463 DAG.getConstant(TruncC, TruncVT)));
2467 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2468 return SDValue(N, 0);
2470 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2471 if (N1C && N0.getOpcode() == ISD::SHL &&
2472 N0.getOperand(1).getOpcode() == ISD::Constant) {
2473 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2474 uint64_t c2 = N1C->getZExtValue();
2475 if (c1 + c2 > OpSizeInBits)
2476 return DAG.getConstant(0, VT);
2477 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
2478 DAG.getConstant(c1 + c2, N1.getValueType()));
2480 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2481 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2482 if (N1C && N0.getOpcode() == ISD::SRL &&
2483 N0.getOperand(1).getOpcode() == ISD::Constant) {
2484 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2485 if (c1 < VT.getSizeInBits()) {
2486 uint64_t c2 = N1C->getZExtValue();
2487 SDValue HiBitsMask =
2488 DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
2489 VT.getSizeInBits() - c1),
2490 VT);
2491 SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT,
2492 N0.getOperand(0),
2493 HiBitsMask);
2494 if (c2 > c1)
2495 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
2496 DAG.getConstant(c2-c1, N1.getValueType()));
2497 else
2498 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
2499 DAG.getConstant(c1-c2, N1.getValueType()));
2502 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2503 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
2504 SDValue HiBitsMask =
2505 DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
2506 VT.getSizeInBits() -
2507 N1C->getZExtValue()),
2508 VT);
2509 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
2510 HiBitsMask);
2513 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2516 SDValue DAGCombiner::visitSRA(SDNode *N) {
2517 SDValue N0 = N->getOperand(0);
2518 SDValue N1 = N->getOperand(1);
2519 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2520 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2521 EVT VT = N0.getValueType();
2523 // fold (sra c1, c2) -> (sra c1, c2)
2524 if (N0C && N1C)
2525 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
2526 // fold (sra 0, x) -> 0
2527 if (N0C && N0C->isNullValue())
2528 return N0;
2529 // fold (sra -1, x) -> -1
2530 if (N0C && N0C->isAllOnesValue())
2531 return N0;
2532 // fold (sra x, (setge c, size(x))) -> undef
2533 if (N1C && N1C->getZExtValue() >= VT.getSizeInBits())
2534 return DAG.getUNDEF(VT);
2535 // fold (sra x, 0) -> x
2536 if (N1C && N1C->isNullValue())
2537 return N0;
2538 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2539 // sext_inreg.
2540 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2541 unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getZExtValue();
2542 EVT EVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
2543 if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
2544 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
2545 N0.getOperand(0), DAG.getValueType(EVT));
2548 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2549 if (N1C && N0.getOpcode() == ISD::SRA) {
2550 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2551 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
2552 if (Sum >= VT.getSizeInBits()) Sum = VT.getSizeInBits()-1;
2553 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
2554 DAG.getConstant(Sum, N1C->getValueType(0)));
2558 // fold (sra (shl X, m), (sub result_size, n))
2559 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2560 // result_size - n != m.
2561 // If truncate is free for the target sext(shl) is likely to result in better
2562 // code.
2563 if (N0.getOpcode() == ISD::SHL) {
2564 // Get the two constanst of the shifts, CN0 = m, CN = n.
2565 const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2566 if (N01C && N1C) {
2567 // Determine what the truncate's result bitsize and type would be.
2568 unsigned VTValSize = VT.getSizeInBits();
2569 EVT TruncVT =
2570 EVT::getIntegerVT(*DAG.getContext(), VTValSize - N1C->getZExtValue());
2571 // Determine the residual right-shift amount.
2572 signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
2574 // If the shift is not a no-op (in which case this should be just a sign
2575 // extend already), the truncated to type is legal, sign_extend is legal
2576 // on that type, and the the truncate to that type is both legal and free,
2577 // perform the transform.
2578 if ((ShiftAmt > 0) &&
2579 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
2580 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
2581 TLI.isTruncateFree(VT, TruncVT)) {
2583 SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy());
2584 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
2585 N0.getOperand(0), Amt);
2586 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
2587 Shift);
2588 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
2589 N->getValueType(0), Trunc);
2594 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2595 if (N1.getOpcode() == ISD::TRUNCATE &&
2596 N1.getOperand(0).getOpcode() == ISD::AND &&
2597 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2598 SDValue N101 = N1.getOperand(0).getOperand(1);
2599 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2600 EVT TruncVT = N1.getValueType();
2601 SDValue N100 = N1.getOperand(0).getOperand(0);
2602 APInt TruncC = N101C->getAPIntValue();
2603 TruncC.trunc(TruncVT.getSizeInBits());
2604 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
2605 DAG.getNode(ISD::AND, N->getDebugLoc(),
2606 TruncVT,
2607 DAG.getNode(ISD::TRUNCATE,
2608 N->getDebugLoc(),
2609 TruncVT, N100),
2610 DAG.getConstant(TruncC, TruncVT)));
2614 // Simplify, based on bits shifted out of the LHS.
2615 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2616 return SDValue(N, 0);
2619 // If the sign bit is known to be zero, switch this to a SRL.
2620 if (DAG.SignBitIsZero(N0))
2621 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
2623 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2626 SDValue DAGCombiner::visitSRL(SDNode *N) {
2627 SDValue N0 = N->getOperand(0);
2628 SDValue N1 = N->getOperand(1);
2629 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2630 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2631 EVT VT = N0.getValueType();
2632 unsigned OpSizeInBits = VT.getSizeInBits();
2634 // fold (srl c1, c2) -> c1 >>u c2
2635 if (N0C && N1C)
2636 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
2637 // fold (srl 0, x) -> 0
2638 if (N0C && N0C->isNullValue())
2639 return N0;
2640 // fold (srl x, c >= size(x)) -> undef
2641 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
2642 return DAG.getUNDEF(VT);
2643 // fold (srl x, 0) -> x
2644 if (N1C && N1C->isNullValue())
2645 return N0;
2646 // if (srl x, c) is known to be zero, return 0
2647 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2648 APInt::getAllOnesValue(OpSizeInBits)))
2649 return DAG.getConstant(0, VT);
2651 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2652 if (N1C && N0.getOpcode() == ISD::SRL &&
2653 N0.getOperand(1).getOpcode() == ISD::Constant) {
2654 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2655 uint64_t c2 = N1C->getZExtValue();
2656 if (c1 + c2 > OpSizeInBits)
2657 return DAG.getConstant(0, VT);
2658 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
2659 DAG.getConstant(c1 + c2, N1.getValueType()));
2662 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2663 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2664 // Shifting in all undef bits?
2665 EVT SmallVT = N0.getOperand(0).getValueType();
2666 if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
2667 return DAG.getUNDEF(VT);
2669 SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
2670 N0.getOperand(0), N1);
2671 AddToWorkList(SmallShift.getNode());
2672 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
2675 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2676 // bit, which is unmodified by sra.
2677 if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
2678 if (N0.getOpcode() == ISD::SRA)
2679 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
2682 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2683 if (N1C && N0.getOpcode() == ISD::CTLZ &&
2684 N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
2685 APInt KnownZero, KnownOne;
2686 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
2687 DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2689 // If any of the input bits are KnownOne, then the input couldn't be all
2690 // zeros, thus the result of the srl will always be zero.
2691 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2693 // If all of the bits input the to ctlz node are known to be zero, then
2694 // the result of the ctlz is "32" and the result of the shift is one.
2695 APInt UnknownBits = ~KnownZero & Mask;
2696 if (UnknownBits == 0) return DAG.getConstant(1, VT);
2698 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2699 if ((UnknownBits & (UnknownBits - 1)) == 0) {
2700 // Okay, we know that only that the single bit specified by UnknownBits
2701 // could be set on input to the CTLZ node. If this bit is set, the SRL
2702 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2703 // to an SRL/XOR pair, which is likely to simplify more.
2704 unsigned ShAmt = UnknownBits.countTrailingZeros();
2705 SDValue Op = N0.getOperand(0);
2707 if (ShAmt) {
2708 Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
2709 DAG.getConstant(ShAmt, getShiftAmountTy()));
2710 AddToWorkList(Op.getNode());
2713 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
2714 Op, DAG.getConstant(1, VT));
2718 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2719 if (N1.getOpcode() == ISD::TRUNCATE &&
2720 N1.getOperand(0).getOpcode() == ISD::AND &&
2721 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2722 SDValue N101 = N1.getOperand(0).getOperand(1);
2723 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2724 EVT TruncVT = N1.getValueType();
2725 SDValue N100 = N1.getOperand(0).getOperand(0);
2726 APInt TruncC = N101C->getAPIntValue();
2727 TruncC.trunc(TruncVT.getSizeInBits());
2728 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
2729 DAG.getNode(ISD::AND, N->getDebugLoc(),
2730 TruncVT,
2731 DAG.getNode(ISD::TRUNCATE,
2732 N->getDebugLoc(),
2733 TruncVT, N100),
2734 DAG.getConstant(TruncC, TruncVT)));
2738 // fold operands of srl based on knowledge that the low bits are not
2739 // demanded.
2740 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2741 return SDValue(N, 0);
2743 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2746 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
2747 SDValue N0 = N->getOperand(0);
2748 EVT VT = N->getValueType(0);
2750 // fold (ctlz c1) -> c2
2751 if (isa<ConstantSDNode>(N0))
2752 return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
2753 return SDValue();
2756 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
2757 SDValue N0 = N->getOperand(0);
2758 EVT VT = N->getValueType(0);
2760 // fold (cttz c1) -> c2
2761 if (isa<ConstantSDNode>(N0))
2762 return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
2763 return SDValue();
2766 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
2767 SDValue N0 = N->getOperand(0);
2768 EVT VT = N->getValueType(0);
2770 // fold (ctpop c1) -> c2
2771 if (isa<ConstantSDNode>(N0))
2772 return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
2773 return SDValue();
2776 SDValue DAGCombiner::visitSELECT(SDNode *N) {
2777 SDValue N0 = N->getOperand(0);
2778 SDValue N1 = N->getOperand(1);
2779 SDValue N2 = N->getOperand(2);
2780 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2781 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2782 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2783 EVT VT = N->getValueType(0);
2784 EVT VT0 = N0.getValueType();
2786 // fold (select C, X, X) -> X
2787 if (N1 == N2)
2788 return N1;
2789 // fold (select true, X, Y) -> X
2790 if (N0C && !N0C->isNullValue())
2791 return N1;
2792 // fold (select false, X, Y) -> Y
2793 if (N0C && N0C->isNullValue())
2794 return N2;
2795 // fold (select C, 1, X) -> (or C, X)
2796 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
2797 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
2798 // fold (select C, 0, 1) -> (xor C, 1)
2799 if (VT.isInteger() &&
2800 (VT0 == MVT::i1 ||
2801 (VT0.isInteger() &&
2802 TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent)) &&
2803 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
2804 SDValue XORNode;
2805 if (VT == VT0)
2806 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
2807 N0, DAG.getConstant(1, VT0));
2808 XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
2809 N0, DAG.getConstant(1, VT0));
2810 AddToWorkList(XORNode.getNode());
2811 if (VT.bitsGT(VT0))
2812 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
2813 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
2815 // fold (select C, 0, X) -> (and (not C), X)
2816 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2817 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
2818 AddToWorkList(NOTNode.getNode());
2819 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
2821 // fold (select C, X, 1) -> (or (not C), X)
2822 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
2823 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
2824 AddToWorkList(NOTNode.getNode());
2825 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
2827 // fold (select C, X, 0) -> (and C, X)
2828 if (VT == MVT::i1 && N2C && N2C->isNullValue())
2829 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
2830 // fold (select X, X, Y) -> (or X, Y)
2831 // fold (select X, 1, Y) -> (or X, Y)
2832 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
2833 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
2834 // fold (select X, Y, X) -> (and X, Y)
2835 // fold (select X, Y, 0) -> (and X, Y)
2836 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
2837 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
2839 // If we can fold this based on the true/false value, do so.
2840 if (SimplifySelectOps(N, N1, N2))
2841 return SDValue(N, 0); // Don't revisit N.
2843 // fold selects based on a setcc into other things, such as min/max/abs
2844 if (N0.getOpcode() == ISD::SETCC) {
2845 // FIXME:
2846 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2847 // having to say they don't support SELECT_CC on every type the DAG knows
2848 // about, since there is no way to mark an opcode illegal at all value types
2849 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
2850 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
2851 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
2852 N0.getOperand(0), N0.getOperand(1),
2853 N1, N2, N0.getOperand(2));
2854 return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
2857 return SDValue();
2860 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
2861 SDValue N0 = N->getOperand(0);
2862 SDValue N1 = N->getOperand(1);
2863 SDValue N2 = N->getOperand(2);
2864 SDValue N3 = N->getOperand(3);
2865 SDValue N4 = N->getOperand(4);
2866 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2868 // fold select_cc lhs, rhs, x, x, cc -> x
2869 if (N2 == N3)
2870 return N2;
2872 // Determine if the condition we're dealing with is constant
2873 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
2874 N0, N1, CC, N->getDebugLoc(), false);
2875 if (SCC.getNode()) AddToWorkList(SCC.getNode());
2877 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
2878 if (!SCCC->isNullValue())
2879 return N2; // cond always true -> true val
2880 else
2881 return N3; // cond always false -> false val
2884 // Fold to a simpler select_cc
2885 if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
2886 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
2887 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2888 SCC.getOperand(2));
2890 // If we can fold this based on the true/false value, do so.
2891 if (SimplifySelectOps(N, N2, N3))
2892 return SDValue(N, 0); // Don't revisit N.
2894 // fold select_cc into other things, such as min/max/abs
2895 return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
2898 SDValue DAGCombiner::visitSETCC(SDNode *N) {
2899 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2900 cast<CondCodeSDNode>(N->getOperand(2))->get(),
2901 N->getDebugLoc());
2904 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2905 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
2906 // transformation. Returns true if extension are possible and the above
2907 // mentioned transformation is profitable.
2908 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
2909 unsigned ExtOpc,
2910 SmallVector<SDNode*, 4> &ExtendNodes,
2911 const TargetLowering &TLI) {
2912 bool HasCopyToRegUses = false;
2913 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2914 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
2915 UE = N0.getNode()->use_end();
2916 UI != UE; ++UI) {
2917 SDNode *User = *UI;
2918 if (User == N)
2919 continue;
2920 if (UI.getUse().getResNo() != N0.getResNo())
2921 continue;
2922 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2923 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
2924 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2925 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2926 // Sign bits will be lost after a zext.
2927 return false;
2928 bool Add = false;
2929 for (unsigned i = 0; i != 2; ++i) {
2930 SDValue UseOp = User->getOperand(i);
2931 if (UseOp == N0)
2932 continue;
2933 if (!isa<ConstantSDNode>(UseOp))
2934 return false;
2935 Add = true;
2937 if (Add)
2938 ExtendNodes.push_back(User);
2939 continue;
2941 // If truncates aren't free and there are users we can't
2942 // extend, it isn't worthwhile.
2943 if (!isTruncFree)
2944 return false;
2945 // Remember if this value is live-out.
2946 if (User->getOpcode() == ISD::CopyToReg)
2947 HasCopyToRegUses = true;
2950 if (HasCopyToRegUses) {
2951 bool BothLiveOut = false;
2952 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2953 UI != UE; ++UI) {
2954 SDUse &Use = UI.getUse();
2955 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
2956 BothLiveOut = true;
2957 break;
2960 if (BothLiveOut)
2961 // Both unextended and extended values are live out. There had better be
2962 // good a reason for the transformation.
2963 return ExtendNodes.size();
2965 return true;
2968 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2969 SDValue N0 = N->getOperand(0);
2970 EVT VT = N->getValueType(0);
2972 // fold (sext c1) -> c1
2973 if (isa<ConstantSDNode>(N0))
2974 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
2976 // fold (sext (sext x)) -> (sext x)
2977 // fold (sext (aext x)) -> (sext x)
2978 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2979 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
2980 N0.getOperand(0));
2982 if (N0.getOpcode() == ISD::TRUNCATE) {
2983 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2984 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2985 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
2986 if (NarrowLoad.getNode()) {
2987 if (NarrowLoad.getNode() != N0.getNode())
2988 CombineTo(N0.getNode(), NarrowLoad);
2989 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2992 // See if the value being truncated is already sign extended. If so, just
2993 // eliminate the trunc/sext pair.
2994 SDValue Op = N0.getOperand(0);
2995 unsigned OpBits = Op.getValueType().getSizeInBits();
2996 unsigned MidBits = N0.getValueType().getSizeInBits();
2997 unsigned DestBits = VT.getSizeInBits();
2998 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
3000 if (OpBits == DestBits) {
3001 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
3002 // bits, it is already ready.
3003 if (NumSignBits > DestBits-MidBits)
3004 return Op;
3005 } else if (OpBits < DestBits) {
3006 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
3007 // bits, just sext from i32.
3008 if (NumSignBits > OpBits-MidBits)
3009 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
3010 } else {
3011 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
3012 // bits, just truncate to i32.
3013 if (NumSignBits > OpBits-MidBits)
3014 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
3017 // fold (sext (truncate x)) -> (sextinreg x).
3018 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
3019 N0.getValueType())) {
3020 if (Op.getValueType().bitsLT(VT))
3021 Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
3022 else if (Op.getValueType().bitsGT(VT))
3023 Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
3024 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
3025 DAG.getValueType(N0.getValueType()));
3029 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3030 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3031 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3032 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
3033 bool DoXform = true;
3034 SmallVector<SDNode*, 4> SetCCs;
3035 if (!N0.hasOneUse())
3036 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
3037 if (DoXform) {
3038 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3039 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3040 LN0->getChain(),
3041 LN0->getBasePtr(), LN0->getSrcValue(),
3042 LN0->getSrcValueOffset(),
3043 N0.getValueType(),
3044 LN0->isVolatile(), LN0->getAlignment());
3045 CombineTo(N, ExtLoad);
3046 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3047 N0.getValueType(), ExtLoad);
3048 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3050 // Extend SetCC uses if necessary.
3051 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3052 SDNode *SetCC = SetCCs[i];
3053 SmallVector<SDValue, 4> Ops;
3055 for (unsigned j = 0; j != 2; ++j) {
3056 SDValue SOp = SetCC->getOperand(j);
3057 if (SOp == Trunc)
3058 Ops.push_back(ExtLoad);
3059 else
3060 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND,
3061 N->getDebugLoc(), VT, SOp));
3064 Ops.push_back(SetCC->getOperand(2));
3065 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3066 SetCC->getValueType(0),
3067 &Ops[0], Ops.size()));
3070 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3074 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3075 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3076 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
3077 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
3078 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3079 EVT EVT = LN0->getMemoryVT();
3080 if ((!LegalOperations && !LN0->isVolatile()) ||
3081 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT)) {
3082 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3083 LN0->getChain(),
3084 LN0->getBasePtr(), LN0->getSrcValue(),
3085 LN0->getSrcValueOffset(), EVT,
3086 LN0->isVolatile(), LN0->getAlignment());
3087 CombineTo(N, ExtLoad);
3088 CombineTo(N0.getNode(),
3089 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3090 N0.getValueType(), ExtLoad),
3091 ExtLoad.getValue(1));
3092 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3096 if (N0.getOpcode() == ISD::SETCC) {
3097 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
3098 if (VT.isVector() &&
3099 // We know that the # elements of the results is the same as the
3100 // # elements of the compare (and the # elements of the compare result
3101 // for that matter). Check to see that they are the same size. If so,
3102 // we know that the element size of the sext'd result matches the
3103 // element size of the compare operands.
3104 VT.getSizeInBits() == N0.getOperand(0).getValueType().getSizeInBits() &&
3106 // Only do this before legalize for now.
3107 !LegalOperations) {
3108 return DAG.getVSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
3109 N0.getOperand(1),
3110 cast<CondCodeSDNode>(N0.getOperand(2))->get());
3113 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3114 SDValue NegOne =
3115 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3116 SDValue SCC =
3117 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3118 NegOne, DAG.getConstant(0, VT),
3119 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3120 if (SCC.getNode()) return SCC;
3125 // fold (sext x) -> (zext x) if the sign bit is known zero.
3126 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
3127 DAG.SignBitIsZero(N0))
3128 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
3130 return SDValue();
3133 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
3134 SDValue N0 = N->getOperand(0);
3135 EVT VT = N->getValueType(0);
3137 // fold (zext c1) -> c1
3138 if (isa<ConstantSDNode>(N0))
3139 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
3140 // fold (zext (zext x)) -> (zext x)
3141 // fold (zext (aext x)) -> (zext x)
3142 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
3143 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
3144 N0.getOperand(0));
3146 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3147 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3148 if (N0.getOpcode() == ISD::TRUNCATE) {
3149 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3150 if (NarrowLoad.getNode()) {
3151 if (NarrowLoad.getNode() != N0.getNode())
3152 CombineTo(N0.getNode(), NarrowLoad);
3153 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
3157 // fold (zext (truncate x)) -> (and x, mask)
3158 if (N0.getOpcode() == ISD::TRUNCATE &&
3159 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
3160 SDValue Op = N0.getOperand(0);
3161 if (Op.getValueType().bitsLT(VT)) {
3162 Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
3163 } else if (Op.getValueType().bitsGT(VT)) {
3164 Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
3166 return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), N0.getValueType());
3169 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3170 // if either of the casts is not free.
3171 if (N0.getOpcode() == ISD::AND &&
3172 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3173 N0.getOperand(1).getOpcode() == ISD::Constant &&
3174 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
3175 N0.getValueType()) ||
3176 !TLI.isZExtFree(N0.getValueType(), VT))) {
3177 SDValue X = N0.getOperand(0).getOperand(0);
3178 if (X.getValueType().bitsLT(VT)) {
3179 X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
3180 } else if (X.getValueType().bitsGT(VT)) {
3181 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
3183 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3184 Mask.zext(VT.getSizeInBits());
3185 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3186 X, DAG.getConstant(Mask, VT));
3189 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3190 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3191 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3192 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
3193 bool DoXform = true;
3194 SmallVector<SDNode*, 4> SetCCs;
3195 if (!N0.hasOneUse())
3196 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
3197 if (DoXform) {
3198 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3199 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
3200 LN0->getChain(),
3201 LN0->getBasePtr(), LN0->getSrcValue(),
3202 LN0->getSrcValueOffset(),
3203 N0.getValueType(),
3204 LN0->isVolatile(), LN0->getAlignment());
3205 CombineTo(N, ExtLoad);
3206 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3207 N0.getValueType(), ExtLoad);
3208 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3210 // Extend SetCC uses if necessary.
3211 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3212 SDNode *SetCC = SetCCs[i];
3213 SmallVector<SDValue, 4> Ops;
3215 for (unsigned j = 0; j != 2; ++j) {
3216 SDValue SOp = SetCC->getOperand(j);
3217 if (SOp == Trunc)
3218 Ops.push_back(ExtLoad);
3219 else
3220 Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND,
3221 N->getDebugLoc(), VT, SOp));
3224 Ops.push_back(SetCC->getOperand(2));
3225 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3226 SetCC->getValueType(0),
3227 &Ops[0], Ops.size()));
3230 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3234 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3235 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3236 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
3237 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
3238 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3239 EVT EVT = LN0->getMemoryVT();
3240 if ((!LegalOperations && !LN0->isVolatile()) ||
3241 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT)) {
3242 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
3243 LN0->getChain(),
3244 LN0->getBasePtr(), LN0->getSrcValue(),
3245 LN0->getSrcValueOffset(), EVT,
3246 LN0->isVolatile(), LN0->getAlignment());
3247 CombineTo(N, ExtLoad);
3248 CombineTo(N0.getNode(),
3249 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
3250 ExtLoad),
3251 ExtLoad.getValue(1));
3252 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3256 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3257 if (N0.getOpcode() == ISD::SETCC) {
3258 SDValue SCC =
3259 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3260 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3261 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3262 if (SCC.getNode()) return SCC;
3265 return SDValue();
3268 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
3269 SDValue N0 = N->getOperand(0);
3270 EVT VT = N->getValueType(0);
3272 // fold (aext c1) -> c1
3273 if (isa<ConstantSDNode>(N0))
3274 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
3275 // fold (aext (aext x)) -> (aext x)
3276 // fold (aext (zext x)) -> (zext x)
3277 // fold (aext (sext x)) -> (sext x)
3278 if (N0.getOpcode() == ISD::ANY_EXTEND ||
3279 N0.getOpcode() == ISD::ZERO_EXTEND ||
3280 N0.getOpcode() == ISD::SIGN_EXTEND)
3281 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
3283 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3284 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3285 if (N0.getOpcode() == ISD::TRUNCATE) {
3286 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3287 if (NarrowLoad.getNode()) {
3288 if (NarrowLoad.getNode() != N0.getNode())
3289 CombineTo(N0.getNode(), NarrowLoad);
3290 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
3294 // fold (aext (truncate x))
3295 if (N0.getOpcode() == ISD::TRUNCATE) {
3296 SDValue TruncOp = N0.getOperand(0);
3297 if (TruncOp.getValueType() == VT)
3298 return TruncOp; // x iff x size == zext size.
3299 if (TruncOp.getValueType().bitsGT(VT))
3300 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
3301 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
3304 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3305 // if the trunc is not free.
3306 if (N0.getOpcode() == ISD::AND &&
3307 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3308 N0.getOperand(1).getOpcode() == ISD::Constant &&
3309 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
3310 N0.getValueType())) {
3311 SDValue X = N0.getOperand(0).getOperand(0);
3312 if (X.getValueType().bitsLT(VT)) {
3313 X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
3314 } else if (X.getValueType().bitsGT(VT)) {
3315 X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
3317 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3318 Mask.zext(VT.getSizeInBits());
3319 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3320 X, DAG.getConstant(Mask, VT));
3323 // fold (aext (load x)) -> (aext (truncate (extload x)))
3324 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3325 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3326 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
3327 bool DoXform = true;
3328 SmallVector<SDNode*, 4> SetCCs;
3329 if (!N0.hasOneUse())
3330 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
3331 if (DoXform) {
3332 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3333 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
3334 LN0->getChain(),
3335 LN0->getBasePtr(), LN0->getSrcValue(),
3336 LN0->getSrcValueOffset(),
3337 N0.getValueType(),
3338 LN0->isVolatile(), LN0->getAlignment());
3339 CombineTo(N, ExtLoad);
3340 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3341 N0.getValueType(), ExtLoad);
3342 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3344 // Extend SetCC uses if necessary.
3345 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3346 SDNode *SetCC = SetCCs[i];
3347 SmallVector<SDValue, 4> Ops;
3349 for (unsigned j = 0; j != 2; ++j) {
3350 SDValue SOp = SetCC->getOperand(j);
3351 if (SOp == Trunc)
3352 Ops.push_back(ExtLoad);
3353 else
3354 Ops.push_back(DAG.getNode(ISD::ANY_EXTEND,
3355 N->getDebugLoc(), VT, SOp));
3358 Ops.push_back(SetCC->getOperand(2));
3359 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3360 SetCC->getValueType(0),
3361 &Ops[0], Ops.size()));
3364 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3368 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3369 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3370 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3371 if (N0.getOpcode() == ISD::LOAD &&
3372 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3373 N0.hasOneUse()) {
3374 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3375 EVT EVT = LN0->getMemoryVT();
3376 SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
3377 VT, LN0->getChain(), LN0->getBasePtr(),
3378 LN0->getSrcValue(),
3379 LN0->getSrcValueOffset(), EVT,
3380 LN0->isVolatile(), LN0->getAlignment());
3381 CombineTo(N, ExtLoad);
3382 CombineTo(N0.getNode(),
3383 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3384 N0.getValueType(), ExtLoad),
3385 ExtLoad.getValue(1));
3386 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3389 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3390 if (N0.getOpcode() == ISD::SETCC) {
3391 SDValue SCC =
3392 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3393 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3394 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3395 if (SCC.getNode())
3396 return SCC;
3399 return SDValue();
3402 /// GetDemandedBits - See if the specified operand can be simplified with the
3403 /// knowledge that only the bits specified by Mask are used. If so, return the
3404 /// simpler operand, otherwise return a null SDValue.
3405 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
3406 switch (V.getOpcode()) {
3407 default: break;
3408 case ISD::OR:
3409 case ISD::XOR:
3410 // If the LHS or RHS don't contribute bits to the or, drop them.
3411 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3412 return V.getOperand(1);
3413 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3414 return V.getOperand(0);
3415 break;
3416 case ISD::SRL:
3417 // Only look at single-use SRLs.
3418 if (!V.getNode()->hasOneUse())
3419 break;
3420 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3421 // See if we can recursively simplify the LHS.
3422 unsigned Amt = RHSC->getZExtValue();
3424 // Watch out for shift count overflow though.
3425 if (Amt >= Mask.getBitWidth()) break;
3426 APInt NewMask = Mask << Amt;
3427 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3428 if (SimplifyLHS.getNode())
3429 return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
3430 SimplifyLHS, V.getOperand(1));
3433 return SDValue();
3436 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3437 /// bits and then truncated to a narrower type and where N is a multiple
3438 /// of number of bits of the narrower type, transform it to a narrower load
3439 /// from address + N / num of bits of new type. If the result is to be
3440 /// extended, also fold the extension to form a extending load.
3441 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
3442 unsigned Opc = N->getOpcode();
3443 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3444 SDValue N0 = N->getOperand(0);
3445 EVT VT = N->getValueType(0);
3446 EVT ExtVT = VT;
3448 // This transformation isn't valid for vector loads.
3449 if (VT.isVector())
3450 return SDValue();
3452 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3453 // extended to VT.
3454 if (Opc == ISD::SIGN_EXTEND_INREG) {
3455 ExtType = ISD::SEXTLOAD;
3456 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3457 if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, ExtVT))
3458 return SDValue();
3461 unsigned EVTBits = ExtVT.getSizeInBits();
3462 unsigned ShAmt = 0;
3463 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3464 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3465 ShAmt = N01->getZExtValue();
3466 // Is the shift amount a multiple of size of VT?
3467 if ((ShAmt & (EVTBits-1)) == 0) {
3468 N0 = N0.getOperand(0);
3469 if (N0.getValueType().getSizeInBits() <= EVTBits)
3470 return SDValue();
3475 // Do not generate loads of non-round integer types since these can
3476 // be expensive (and would be wrong if the type is not byte sized).
3477 if (isa<LoadSDNode>(N0) && N0.hasOneUse() && ExtVT.isRound() &&
3478 cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits &&
3479 // Do not change the width of a volatile load.
3480 !cast<LoadSDNode>(N0)->isVolatile()) {
3481 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3482 EVT PtrType = N0.getOperand(1).getValueType();
3484 // For big endian targets, we need to adjust the offset to the pointer to
3485 // load the correct bytes.
3486 if (TLI.isBigEndian()) {
3487 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
3488 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
3489 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3492 uint64_t PtrOff = ShAmt / 8;
3493 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3494 SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
3495 PtrType, LN0->getBasePtr(),
3496 DAG.getConstant(PtrOff, PtrType));
3497 AddToWorkList(NewPtr.getNode());
3499 SDValue Load = (ExtType == ISD::NON_EXTLOAD)
3500 ? DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
3501 LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
3502 LN0->isVolatile(), NewAlign)
3503 : DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(), NewPtr,
3504 LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
3505 ExtVT, LN0->isVolatile(), NewAlign);
3507 // Replace the old load's chain with the new load's chain.
3508 WorkListRemover DeadNodes(*this);
3509 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3510 &DeadNodes);
3512 // Return the new loaded value.
3513 return Load;
3516 return SDValue();
3519 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3520 SDValue N0 = N->getOperand(0);
3521 SDValue N1 = N->getOperand(1);
3522 EVT VT = N->getValueType(0);
3523 EVT EVT = cast<VTSDNode>(N1)->getVT();
3524 unsigned VTBits = VT.getSizeInBits();
3525 unsigned EVTBits = EVT.getSizeInBits();
3527 // fold (sext_in_reg c1) -> c1
3528 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3529 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
3531 // If the input is already sign extended, just drop the extension.
3532 if (DAG.ComputeNumSignBits(N0) >= VT.getSizeInBits()-EVTBits+1)
3533 return N0;
3535 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3536 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3537 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
3538 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3539 N0.getOperand(0), N1);
3542 // fold (sext_in_reg (sext x)) -> (sext x)
3543 // fold (sext_in_reg (aext x)) -> (sext x)
3544 // if x is small enough.
3545 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
3546 SDValue N00 = N0.getOperand(0);
3547 if (N00.getValueType().getSizeInBits() < EVTBits)
3548 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
3551 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3552 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3553 return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
3555 // fold operands of sext_in_reg based on knowledge that the top bits are not
3556 // demanded.
3557 if (SimplifyDemandedBits(SDValue(N, 0)))
3558 return SDValue(N, 0);
3560 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3561 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3562 SDValue NarrowLoad = ReduceLoadWidth(N);
3563 if (NarrowLoad.getNode())
3564 return NarrowLoad;
3566 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3567 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3568 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3569 if (N0.getOpcode() == ISD::SRL) {
3570 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3571 if (ShAmt->getZExtValue()+EVTBits <= VT.getSizeInBits()) {
3572 // We can turn this into an SRA iff the input to the SRL is already sign
3573 // extended enough.
3574 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3575 if (VT.getSizeInBits()-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
3576 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
3577 N0.getOperand(0), N0.getOperand(1));
3581 // fold (sext_inreg (extload x)) -> (sextload x)
3582 if (ISD::isEXTLoad(N0.getNode()) &&
3583 ISD::isUNINDEXEDLoad(N0.getNode()) &&
3584 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3585 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3586 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
3587 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3588 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3589 LN0->getChain(),
3590 LN0->getBasePtr(), LN0->getSrcValue(),
3591 LN0->getSrcValueOffset(), EVT,
3592 LN0->isVolatile(), LN0->getAlignment());
3593 CombineTo(N, ExtLoad);
3594 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3595 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3597 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3598 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3599 N0.hasOneUse() &&
3600 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3601 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3602 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
3603 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3604 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3605 LN0->getChain(),
3606 LN0->getBasePtr(), LN0->getSrcValue(),
3607 LN0->getSrcValueOffset(), EVT,
3608 LN0->isVolatile(), LN0->getAlignment());
3609 CombineTo(N, ExtLoad);
3610 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3611 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3613 return SDValue();
3616 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
3617 SDValue N0 = N->getOperand(0);
3618 EVT VT = N->getValueType(0);
3620 // noop truncate
3621 if (N0.getValueType() == N->getValueType(0))
3622 return N0;
3623 // fold (truncate c1) -> c1
3624 if (isa<ConstantSDNode>(N0))
3625 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
3626 // fold (truncate (truncate x)) -> (truncate x)
3627 if (N0.getOpcode() == ISD::TRUNCATE)
3628 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
3629 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3630 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3631 N0.getOpcode() == ISD::ANY_EXTEND) {
3632 if (N0.getOperand(0).getValueType().bitsLT(VT))
3633 // if the source is smaller than the dest, we still need an extend
3634 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
3635 N0.getOperand(0));
3636 else if (N0.getOperand(0).getValueType().bitsGT(VT))
3637 // if the source is larger than the dest, than we just need the truncate
3638 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
3639 else
3640 // if the source and dest are the same type, we can drop both the extend
3641 // and the truncate
3642 return N0.getOperand(0);
3645 // See if we can simplify the input to this truncate through knowledge that
3646 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3647 // -> trunc y
3648 SDValue Shorter =
3649 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3650 VT.getSizeInBits()));
3651 if (Shorter.getNode())
3652 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
3654 // fold (truncate (load x)) -> (smaller load x)
3655 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3656 return ReduceLoadWidth(N);
3659 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
3660 SDValue Elt = N->getOperand(i);
3661 if (Elt.getOpcode() != ISD::MERGE_VALUES)
3662 return Elt.getNode();
3663 return Elt.getOperand(Elt.getResNo()).getNode();
3666 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3667 /// if load locations are consecutive.
3668 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
3669 assert(N->getOpcode() == ISD::BUILD_PAIR);
3671 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
3672 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
3673 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
3674 return SDValue();
3675 EVT LD1VT = LD1->getValueType(0);
3676 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3678 if (ISD::isNON_EXTLoad(LD2) &&
3679 LD2->hasOneUse() &&
3680 // If both are volatile this would reduce the number of volatile loads.
3681 // If one is volatile it might be ok, but play conservative and bail out.
3682 !LD1->isVolatile() &&
3683 !LD2->isVolatile() &&
3684 TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) {
3685 unsigned Align = LD1->getAlignment();
3686 unsigned NewAlign = TLI.getTargetData()->
3687 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
3689 if (NewAlign <= Align &&
3690 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
3691 return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
3692 LD1->getBasePtr(), LD1->getSrcValue(),
3693 LD1->getSrcValueOffset(), false, Align);
3696 return SDValue();
3699 SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3700 SDValue N0 = N->getOperand(0);
3701 EVT VT = N->getValueType(0);
3703 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3704 // Only do this before legalize, since afterward the target may be depending
3705 // on the bitconvert.
3706 // First check to see if this is all constant.
3707 if (!LegalTypes &&
3708 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
3709 VT.isVector()) {
3710 bool isSimple = true;
3711 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3712 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3713 N0.getOperand(i).getOpcode() != ISD::Constant &&
3714 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3715 isSimple = false;
3716 break;
3719 EVT DestEltVT = N->getValueType(0).getVectorElementType();
3720 assert(!DestEltVT.isVector() &&
3721 "Element type of vector ValueType must not be vector!");
3722 if (isSimple)
3723 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT);
3726 // If the input is a constant, let getNode fold it.
3727 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3728 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
3729 if (Res.getNode() != N) {
3730 if (!LegalOperations ||
3731 TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
3732 return Res;
3734 // Folding it resulted in an illegal node, and it's too late to
3735 // do that. Clean up the old node and forego the transformation.
3736 // Ideally this won't happen very often, because instcombine
3737 // and the earlier dagcombine runs (where illegal nodes are
3738 // permitted) should have folded most of them already.
3739 DAG.DeleteNode(Res.getNode());
3743 // (conv (conv x, t1), t2) -> (conv x, t2)
3744 if (N0.getOpcode() == ISD::BIT_CONVERT)
3745 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT,
3746 N0.getOperand(0));
3748 // fold (conv (load x)) -> (load (conv*)x)
3749 // If the resultant load doesn't need a higher alignment than the original!
3750 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
3751 // Do not change the width of a volatile load.
3752 !cast<LoadSDNode>(N0)->isVolatile() &&
3753 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
3754 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3755 unsigned Align = TLI.getTargetData()->
3756 getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
3757 unsigned OrigAlign = LN0->getAlignment();
3759 if (Align <= OrigAlign) {
3760 SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
3761 LN0->getBasePtr(),
3762 LN0->getSrcValue(), LN0->getSrcValueOffset(),
3763 LN0->isVolatile(), OrigAlign);
3764 AddToWorkList(N);
3765 CombineTo(N0.getNode(),
3766 DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3767 N0.getValueType(), Load),
3768 Load.getValue(1));
3769 return Load;
3773 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3774 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3775 // This often reduces constant pool loads.
3776 if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3777 N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
3778 SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT,
3779 N0.getOperand(0));
3780 AddToWorkList(NewConv.getNode());
3782 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
3783 if (N0.getOpcode() == ISD::FNEG)
3784 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3785 NewConv, DAG.getConstant(SignBit, VT));
3786 assert(N0.getOpcode() == ISD::FABS);
3787 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3788 NewConv, DAG.getConstant(~SignBit, VT));
3791 // fold (bitconvert (fcopysign cst, x)) ->
3792 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3793 // Note that we don't handle (copysign x, cst) because this can always be
3794 // folded to an fneg or fabs.
3795 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
3796 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3797 VT.isInteger() && !VT.isVector()) {
3798 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
3799 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
3800 if (TLI.isTypeLegal(IntXVT) || !LegalTypes) {
3801 SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3802 IntXVT, N0.getOperand(1));
3803 AddToWorkList(X.getNode());
3805 // If X has a different width than the result/lhs, sext it or truncate it.
3806 unsigned VTWidth = VT.getSizeInBits();
3807 if (OrigXWidth < VTWidth) {
3808 X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
3809 AddToWorkList(X.getNode());
3810 } else if (OrigXWidth > VTWidth) {
3811 // To get the sign bit in the right place, we have to shift it right
3812 // before truncating.
3813 X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
3814 X.getValueType(), X,
3815 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3816 AddToWorkList(X.getNode());
3817 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
3818 AddToWorkList(X.getNode());
3821 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
3822 X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
3823 X, DAG.getConstant(SignBit, VT));
3824 AddToWorkList(X.getNode());
3826 SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3827 VT, N0.getOperand(0));
3828 Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
3829 Cst, DAG.getConstant(~SignBit, VT));
3830 AddToWorkList(Cst.getNode());
3832 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
3836 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3837 if (N0.getOpcode() == ISD::BUILD_PAIR) {
3838 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
3839 if (CombineLD.getNode())
3840 return CombineLD;
3843 return SDValue();
3846 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
3847 EVT VT = N->getValueType(0);
3848 return CombineConsecutiveLoads(N, VT);
3851 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3852 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3853 /// destination element value type.
3854 SDValue DAGCombiner::
3855 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
3856 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
3858 // If this is already the right type, we're done.
3859 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
3861 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
3862 unsigned DstBitSize = DstEltVT.getSizeInBits();
3864 // If this is a conversion of N elements of one type to N elements of another
3865 // type, convert each element. This handles FP<->INT cases.
3866 if (SrcBitSize == DstBitSize) {
3867 SmallVector<SDValue, 8> Ops;
3868 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3869 SDValue Op = BV->getOperand(i);
3870 // If the vector element type is not legal, the BUILD_VECTOR operands
3871 // are promoted and implicitly truncated. Make that explicit here.
3872 if (Op.getValueType() != SrcEltVT)
3873 Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
3874 Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
3875 DstEltVT, Op));
3876 AddToWorkList(Ops.back().getNode());
3878 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
3879 BV->getValueType(0).getVectorNumElements());
3880 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3881 &Ops[0], Ops.size());
3884 // Otherwise, we're growing or shrinking the elements. To avoid having to
3885 // handle annoying details of growing/shrinking FP values, we convert them to
3886 // int first.
3887 if (SrcEltVT.isFloatingPoint()) {
3888 // Convert the input float vector to a int vector where the elements are the
3889 // same sizes.
3890 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3891 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
3892 BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
3893 SrcEltVT = IntVT;
3896 // Now we know the input is an integer vector. If the output is a FP type,
3897 // convert to integer first, then to FP of the right size.
3898 if (DstEltVT.isFloatingPoint()) {
3899 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3900 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
3901 SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
3903 // Next, convert to FP elements of the same size.
3904 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3907 // Okay, we know the src/dst types are both integers of differing types.
3908 // Handling growing first.
3909 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
3910 if (SrcBitSize < DstBitSize) {
3911 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3913 SmallVector<SDValue, 8> Ops;
3914 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3915 i += NumInputsPerOutput) {
3916 bool isLE = TLI.isLittleEndian();
3917 APInt NewBits = APInt(DstBitSize, 0);
3918 bool EltIsUndef = true;
3919 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3920 // Shift the previously computed bits over.
3921 NewBits <<= SrcBitSize;
3922 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3923 if (Op.getOpcode() == ISD::UNDEF) continue;
3924 EltIsUndef = false;
3926 NewBits |= (APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).
3927 zextOrTrunc(SrcBitSize).zext(DstBitSize));
3930 if (EltIsUndef)
3931 Ops.push_back(DAG.getUNDEF(DstEltVT));
3932 else
3933 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3936 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
3937 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3938 &Ops[0], Ops.size());
3941 // Finally, this must be the case where we are shrinking elements: each input
3942 // turns into multiple outputs.
3943 bool isS2V = ISD::isScalarToVector(BV);
3944 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3945 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
3946 NumOutputsPerInput*BV->getNumOperands());
3947 SmallVector<SDValue, 8> Ops;
3949 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3950 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3951 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3952 Ops.push_back(DAG.getUNDEF(DstEltVT));
3953 continue;
3956 APInt OpVal = APInt(cast<ConstantSDNode>(BV->getOperand(i))->
3957 getAPIntValue()).zextOrTrunc(SrcBitSize);
3959 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3960 APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3961 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3962 if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3963 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3964 return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
3965 Ops[0]);
3966 OpVal = OpVal.lshr(DstBitSize);
3969 // For big endian targets, swap the order of the pieces of each element.
3970 if (TLI.isBigEndian())
3971 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3974 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3975 &Ops[0], Ops.size());
3978 SDValue DAGCombiner::visitFADD(SDNode *N) {
3979 SDValue N0 = N->getOperand(0);
3980 SDValue N1 = N->getOperand(1);
3981 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3982 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3983 EVT VT = N->getValueType(0);
3985 // fold vector ops
3986 if (VT.isVector()) {
3987 SDValue FoldedVOp = SimplifyVBinOp(N);
3988 if (FoldedVOp.getNode()) return FoldedVOp;
3991 // fold (fadd c1, c2) -> (fadd c1, c2)
3992 if (N0CFP && N1CFP && VT != MVT::ppcf128)
3993 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
3994 // canonicalize constant to RHS
3995 if (N0CFP && !N1CFP)
3996 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
3997 // fold (fadd A, 0) -> A
3998 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
3999 return N0;
4000 // fold (fadd A, (fneg B)) -> (fsub A, B)
4001 if (isNegatibleForFree(N1, LegalOperations) == 2)
4002 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
4003 GetNegatedExpression(N1, DAG, LegalOperations));
4004 // fold (fadd (fneg A), B) -> (fsub B, A)
4005 if (isNegatibleForFree(N0, LegalOperations) == 2)
4006 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
4007 GetNegatedExpression(N0, DAG, LegalOperations));
4009 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
4010 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
4011 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
4012 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
4013 DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
4014 N0.getOperand(1), N1));
4016 return SDValue();
4019 SDValue DAGCombiner::visitFSUB(SDNode *N) {
4020 SDValue N0 = N->getOperand(0);
4021 SDValue N1 = N->getOperand(1);
4022 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4023 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4024 EVT VT = N->getValueType(0);
4026 // fold vector ops
4027 if (VT.isVector()) {
4028 SDValue FoldedVOp = SimplifyVBinOp(N);
4029 if (FoldedVOp.getNode()) return FoldedVOp;
4032 // fold (fsub c1, c2) -> c1-c2
4033 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4034 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
4035 // fold (fsub A, 0) -> A
4036 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
4037 return N0;
4038 // fold (fsub 0, B) -> -B
4039 if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
4040 if (isNegatibleForFree(N1, LegalOperations))
4041 return GetNegatedExpression(N1, DAG, LegalOperations);
4042 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
4043 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
4045 // fold (fsub A, (fneg B)) -> (fadd A, B)
4046 if (isNegatibleForFree(N1, LegalOperations))
4047 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
4048 GetNegatedExpression(N1, DAG, LegalOperations));
4050 return SDValue();
4053 SDValue DAGCombiner::visitFMUL(SDNode *N) {
4054 SDValue N0 = N->getOperand(0);
4055 SDValue N1 = N->getOperand(1);
4056 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4057 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4058 EVT VT = N->getValueType(0);
4060 // fold vector ops
4061 if (VT.isVector()) {
4062 SDValue FoldedVOp = SimplifyVBinOp(N);
4063 if (FoldedVOp.getNode()) return FoldedVOp;
4066 // fold (fmul c1, c2) -> c1*c2
4067 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4068 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
4069 // canonicalize constant to RHS
4070 if (N0CFP && !N1CFP)
4071 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
4072 // fold (fmul A, 0) -> 0
4073 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
4074 return N1;
4075 // fold (fmul A, 0) -> 0, vector edition.
4076 if (UnsafeFPMath && ISD::isBuildVectorAllZeros(N1.getNode()))
4077 return N1;
4078 // fold (fmul X, 2.0) -> (fadd X, X)
4079 if (N1CFP && N1CFP->isExactlyValue(+2.0))
4080 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
4081 // fold (fmul X, -1.0) -> (fneg X)
4082 if (N1CFP && N1CFP->isExactlyValue(-1.0))
4083 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
4084 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
4086 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4087 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
4088 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
4089 // Both can be negated for free, check to see if at least one is cheaper
4090 // negated.
4091 if (LHSNeg == 2 || RHSNeg == 2)
4092 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
4093 GetNegatedExpression(N0, DAG, LegalOperations),
4094 GetNegatedExpression(N1, DAG, LegalOperations));
4098 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4099 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
4100 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
4101 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
4102 DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
4103 N0.getOperand(1), N1));
4105 return SDValue();
4108 SDValue DAGCombiner::visitFDIV(SDNode *N) {
4109 SDValue N0 = N->getOperand(0);
4110 SDValue N1 = N->getOperand(1);
4111 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4112 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4113 EVT VT = N->getValueType(0);
4115 // fold vector ops
4116 if (VT.isVector()) {
4117 SDValue FoldedVOp = SimplifyVBinOp(N);
4118 if (FoldedVOp.getNode()) return FoldedVOp;
4121 // fold (fdiv c1, c2) -> c1/c2
4122 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4123 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
4126 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4127 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
4128 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
4129 // Both can be negated for free, check to see if at least one is cheaper
4130 // negated.
4131 if (LHSNeg == 2 || RHSNeg == 2)
4132 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
4133 GetNegatedExpression(N0, DAG, LegalOperations),
4134 GetNegatedExpression(N1, DAG, LegalOperations));
4138 return SDValue();
4141 SDValue DAGCombiner::visitFREM(SDNode *N) {
4142 SDValue N0 = N->getOperand(0);
4143 SDValue N1 = N->getOperand(1);
4144 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4145 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4146 EVT VT = N->getValueType(0);
4148 // fold (frem c1, c2) -> fmod(c1,c2)
4149 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4150 return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
4152 return SDValue();
4155 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
4156 SDValue N0 = N->getOperand(0);
4157 SDValue N1 = N->getOperand(1);
4158 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4159 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4160 EVT VT = N->getValueType(0);
4162 if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
4163 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
4165 if (N1CFP) {
4166 const APFloat& V = N1CFP->getValueAPF();
4167 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4168 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4169 if (!V.isNegative()) {
4170 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
4171 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4172 } else {
4173 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
4174 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
4175 DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
4179 // copysign(fabs(x), y) -> copysign(x, y)
4180 // copysign(fneg(x), y) -> copysign(x, y)
4181 // copysign(copysign(x,z), y) -> copysign(x, y)
4182 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
4183 N0.getOpcode() == ISD::FCOPYSIGN)
4184 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4185 N0.getOperand(0), N1);
4187 // copysign(x, abs(y)) -> abs(x)
4188 if (N1.getOpcode() == ISD::FABS)
4189 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4191 // copysign(x, copysign(y,z)) -> copysign(x, z)
4192 if (N1.getOpcode() == ISD::FCOPYSIGN)
4193 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4194 N0, N1.getOperand(1));
4196 // copysign(x, fp_extend(y)) -> copysign(x, y)
4197 // copysign(x, fp_round(y)) -> copysign(x, y)
4198 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
4199 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4200 N0, N1.getOperand(0));
4202 return SDValue();
4205 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
4206 SDValue N0 = N->getOperand(0);
4207 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4208 EVT VT = N->getValueType(0);
4209 EVT OpVT = N0.getValueType();
4211 // fold (sint_to_fp c1) -> c1fp
4212 if (N0C && OpVT != MVT::ppcf128)
4213 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
4215 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4216 // but UINT_TO_FP is legal on this target, try to convert.
4217 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
4218 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
4219 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4220 if (DAG.SignBitIsZero(N0))
4221 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
4224 return SDValue();
4227 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
4228 SDValue N0 = N->getOperand(0);
4229 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4230 EVT VT = N->getValueType(0);
4231 EVT OpVT = N0.getValueType();
4233 // fold (uint_to_fp c1) -> c1fp
4234 if (N0C && OpVT != MVT::ppcf128)
4235 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
4237 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4238 // but SINT_TO_FP is legal on this target, try to convert.
4239 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
4240 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
4241 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4242 if (DAG.SignBitIsZero(N0))
4243 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
4246 return SDValue();
4249 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
4250 SDValue N0 = N->getOperand(0);
4251 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4252 EVT VT = N->getValueType(0);
4254 // fold (fp_to_sint c1fp) -> c1
4255 if (N0CFP)
4256 return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
4258 return SDValue();
4261 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
4262 SDValue N0 = N->getOperand(0);
4263 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4264 EVT VT = N->getValueType(0);
4266 // fold (fp_to_uint c1fp) -> c1
4267 if (N0CFP && VT != MVT::ppcf128)
4268 return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
4270 return SDValue();
4273 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
4274 SDValue N0 = N->getOperand(0);
4275 SDValue N1 = N->getOperand(1);
4276 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4277 EVT VT = N->getValueType(0);
4279 // fold (fp_round c1fp) -> c1fp
4280 if (N0CFP && N0.getValueType() != MVT::ppcf128)
4281 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
4283 // fold (fp_round (fp_extend x)) -> x
4284 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
4285 return N0.getOperand(0);
4287 // fold (fp_round (fp_round x)) -> (fp_round x)
4288 if (N0.getOpcode() == ISD::FP_ROUND) {
4289 // This is a value preserving truncation if both round's are.
4290 bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
4291 N0.getNode()->getConstantOperandVal(1) == 1;
4292 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
4293 DAG.getIntPtrConstant(IsTrunc));
4296 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4297 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
4298 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
4299 N0.getOperand(0), N1);
4300 AddToWorkList(Tmp.getNode());
4301 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4302 Tmp, N0.getOperand(1));
4305 return SDValue();
4308 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
4309 SDValue N0 = N->getOperand(0);
4310 EVT VT = N->getValueType(0);
4311 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4312 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4314 // fold (fp_round_inreg c1fp) -> c1fp
4315 if (N0CFP && (TLI.isTypeLegal(EVT) || !LegalTypes)) {
4316 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
4317 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
4320 return SDValue();
4323 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
4324 SDValue N0 = N->getOperand(0);
4325 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4326 EVT VT = N->getValueType(0);
4328 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4329 if (N->hasOneUse() &&
4330 N->use_begin()->getOpcode() == ISD::FP_ROUND)
4331 return SDValue();
4333 // fold (fp_extend c1fp) -> c1fp
4334 if (N0CFP && VT != MVT::ppcf128)
4335 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
4337 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4338 // value of X.
4339 if (N0.getOpcode() == ISD::FP_ROUND
4340 && N0.getNode()->getConstantOperandVal(1) == 1) {
4341 SDValue In = N0.getOperand(0);
4342 if (In.getValueType() == VT) return In;
4343 if (VT.bitsLT(In.getValueType()))
4344 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
4345 In, N0.getOperand(1));
4346 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
4349 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4350 if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
4351 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4352 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4353 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4354 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4355 LN0->getChain(),
4356 LN0->getBasePtr(), LN0->getSrcValue(),
4357 LN0->getSrcValueOffset(),
4358 N0.getValueType(),
4359 LN0->isVolatile(), LN0->getAlignment());
4360 CombineTo(N, ExtLoad);
4361 CombineTo(N0.getNode(),
4362 DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
4363 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
4364 ExtLoad.getValue(1));
4365 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4368 return SDValue();
4371 SDValue DAGCombiner::visitFNEG(SDNode *N) {
4372 SDValue N0 = N->getOperand(0);
4374 if (isNegatibleForFree(N0, LegalOperations))
4375 return GetNegatedExpression(N0, DAG, LegalOperations);
4377 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4378 // constant pool values.
4379 if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
4380 N0.getOperand(0).getValueType().isInteger() &&
4381 !N0.getOperand(0).getValueType().isVector()) {
4382 SDValue Int = N0.getOperand(0);
4383 EVT IntVT = Int.getValueType();
4384 if (IntVT.isInteger() && !IntVT.isVector()) {
4385 Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
4386 DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
4387 AddToWorkList(Int.getNode());
4388 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4389 N->getValueType(0), Int);
4393 return SDValue();
4396 SDValue DAGCombiner::visitFABS(SDNode *N) {
4397 SDValue N0 = N->getOperand(0);
4398 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4399 EVT VT = N->getValueType(0);
4401 // fold (fabs c1) -> fabs(c1)
4402 if (N0CFP && VT != MVT::ppcf128)
4403 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4404 // fold (fabs (fabs x)) -> (fabs x)
4405 if (N0.getOpcode() == ISD::FABS)
4406 return N->getOperand(0);
4407 // fold (fabs (fneg x)) -> (fabs x)
4408 // fold (fabs (fcopysign x, y)) -> (fabs x)
4409 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
4410 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
4412 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4413 // constant pool values.
4414 if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
4415 N0.getOperand(0).getValueType().isInteger() &&
4416 !N0.getOperand(0).getValueType().isVector()) {
4417 SDValue Int = N0.getOperand(0);
4418 EVT IntVT = Int.getValueType();
4419 if (IntVT.isInteger() && !IntVT.isVector()) {
4420 Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
4421 DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
4422 AddToWorkList(Int.getNode());
4423 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4424 N->getValueType(0), Int);
4428 return SDValue();
4431 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
4432 SDValue Chain = N->getOperand(0);
4433 SDValue N1 = N->getOperand(1);
4434 SDValue N2 = N->getOperand(2);
4435 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4437 // never taken branch, fold to chain
4438 if (N1C && N1C->isNullValue())
4439 return Chain;
4440 // unconditional branch
4441 if (N1C && N1C->getAPIntValue() == 1)
4442 return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other, Chain, N2);
4443 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4444 // on the target.
4445 if (N1.getOpcode() == ISD::SETCC &&
4446 TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
4447 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
4448 Chain, N1.getOperand(2),
4449 N1.getOperand(0), N1.getOperand(1), N2);
4452 if (N1.hasOneUse() && N1.getOpcode() == ISD::SRL) {
4453 // Match this pattern so that we can generate simpler code:
4455 // %a = ...
4456 // %b = and i32 %a, 2
4457 // %c = srl i32 %b, 1
4458 // brcond i32 %c ...
4460 // into
4462 // %a = ...
4463 // %b = and %a, 2
4464 // %c = setcc eq %b, 0
4465 // brcond %c ...
4467 // This applies only when the AND constant value has one bit set and the
4468 // SRL constant is equal to the log2 of the AND constant. The back-end is
4469 // smart enough to convert the result into a TEST/JMP sequence.
4470 SDValue Op0 = N1.getOperand(0);
4471 SDValue Op1 = N1.getOperand(1);
4473 if (Op0.getOpcode() == ISD::AND &&
4474 Op0.hasOneUse() &&
4475 Op1.getOpcode() == ISD::Constant) {
4476 SDValue AndOp0 = Op0.getOperand(0);
4477 SDValue AndOp1 = Op0.getOperand(1);
4479 if (AndOp1.getOpcode() == ISD::Constant) {
4480 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
4482 if (AndConst.isPowerOf2() &&
4483 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
4484 SDValue SetCC =
4485 DAG.getSetCC(N->getDebugLoc(),
4486 TLI.getSetCCResultType(Op0.getValueType()),
4487 Op0, DAG.getConstant(0, Op0.getValueType()),
4488 ISD::SETNE);
4490 // Replace the uses of SRL with SETCC
4491 DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
4492 removeFromWorkList(N1.getNode());
4493 DAG.DeleteNode(N1.getNode());
4494 return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
4495 MVT::Other, Chain, SetCC, N2);
4501 return SDValue();
4504 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4506 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
4507 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
4508 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
4510 // Use SimplifySetCC to simplify SETCC's.
4511 SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
4512 CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
4513 false);
4514 if (Simp.getNode()) AddToWorkList(Simp.getNode());
4516 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.getNode());
4518 // fold br_cc true, dest -> br dest (unconditional branch)
4519 if (SCCC && !SCCC->isNullValue())
4520 return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other,
4521 N->getOperand(0), N->getOperand(4));
4522 // fold br_cc false, dest -> unconditional fall through
4523 if (SCCC && SCCC->isNullValue())
4524 return N->getOperand(0);
4526 // fold to a simpler setcc
4527 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
4528 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
4529 N->getOperand(0), Simp.getOperand(2),
4530 Simp.getOperand(0), Simp.getOperand(1),
4531 N->getOperand(4));
4533 return SDValue();
4536 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4537 /// pre-indexed load / store when the base pointer is an add or subtract
4538 /// and it has other uses besides the load / store. After the
4539 /// transformation, the new indexed load / store has effectively folded
4540 /// the add / subtract in and all of its other uses are redirected to the
4541 /// new load / store.
4542 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
4543 if (!LegalOperations)
4544 return false;
4546 bool isLoad = true;
4547 SDValue Ptr;
4548 EVT VT;
4549 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4550 if (LD->isIndexed())
4551 return false;
4552 VT = LD->getMemoryVT();
4553 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
4554 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
4555 return false;
4556 Ptr = LD->getBasePtr();
4557 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4558 if (ST->isIndexed())
4559 return false;
4560 VT = ST->getMemoryVT();
4561 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
4562 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4563 return false;
4564 Ptr = ST->getBasePtr();
4565 isLoad = false;
4566 } else {
4567 return false;
4570 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4571 // out. There is no reason to make this a preinc/predec.
4572 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4573 Ptr.getNode()->hasOneUse())
4574 return false;
4576 // Ask the target to do addressing mode selection.
4577 SDValue BasePtr;
4578 SDValue Offset;
4579 ISD::MemIndexedMode AM = ISD::UNINDEXED;
4580 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4581 return false;
4582 // Don't create a indexed load / store with zero offset.
4583 if (isa<ConstantSDNode>(Offset) &&
4584 cast<ConstantSDNode>(Offset)->isNullValue())
4585 return false;
4587 // Try turning it into a pre-indexed load / store except when:
4588 // 1) The new base ptr is a frame index.
4589 // 2) If N is a store and the new base ptr is either the same as or is a
4590 // predecessor of the value being stored.
4591 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4592 // that would create a cycle.
4593 // 4) All uses are load / store ops that use it as old base ptr.
4595 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4596 // (plus the implicit offset) to a register to preinc anyway.
4597 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
4598 return false;
4600 // Check #2.
4601 if (!isLoad) {
4602 SDValue Val = cast<StoreSDNode>(N)->getValue();
4603 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
4604 return false;
4607 // Now check for #3 and #4.
4608 bool RealUse = false;
4609 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
4610 E = Ptr.getNode()->use_end(); I != E; ++I) {
4611 SDNode *Use = *I;
4612 if (Use == N)
4613 continue;
4614 if (Use->isPredecessorOf(N))
4615 return false;
4617 if (!((Use->getOpcode() == ISD::LOAD &&
4618 cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4619 (Use->getOpcode() == ISD::STORE &&
4620 cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4621 RealUse = true;
4624 if (!RealUse)
4625 return false;
4627 SDValue Result;
4628 if (isLoad)
4629 Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
4630 BasePtr, Offset, AM);
4631 else
4632 Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
4633 BasePtr, Offset, AM);
4634 ++PreIndexedNodes;
4635 ++NodesCombined;
4636 DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4637 DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
4638 DOUT << '\n';
4639 WorkListRemover DeadNodes(*this);
4640 if (isLoad) {
4641 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
4642 &DeadNodes);
4643 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
4644 &DeadNodes);
4645 } else {
4646 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
4647 &DeadNodes);
4650 // Finally, since the node is now dead, remove it from the graph.
4651 DAG.DeleteNode(N);
4653 // Replace the uses of Ptr with uses of the updated base value.
4654 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4655 &DeadNodes);
4656 removeFromWorkList(Ptr.getNode());
4657 DAG.DeleteNode(Ptr.getNode());
4659 return true;
4662 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4663 /// add / sub of the base pointer node into a post-indexed load / store.
4664 /// The transformation folded the add / subtract into the new indexed
4665 /// load / store effectively and all of its uses are redirected to the
4666 /// new load / store.
4667 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4668 if (!LegalOperations)
4669 return false;
4671 bool isLoad = true;
4672 SDValue Ptr;
4673 EVT VT;
4674 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4675 if (LD->isIndexed())
4676 return false;
4677 VT = LD->getMemoryVT();
4678 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4679 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4680 return false;
4681 Ptr = LD->getBasePtr();
4682 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4683 if (ST->isIndexed())
4684 return false;
4685 VT = ST->getMemoryVT();
4686 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4687 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4688 return false;
4689 Ptr = ST->getBasePtr();
4690 isLoad = false;
4691 } else {
4692 return false;
4695 if (Ptr.getNode()->hasOneUse())
4696 return false;
4698 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
4699 E = Ptr.getNode()->use_end(); I != E; ++I) {
4700 SDNode *Op = *I;
4701 if (Op == N ||
4702 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4703 continue;
4705 SDValue BasePtr;
4706 SDValue Offset;
4707 ISD::MemIndexedMode AM = ISD::UNINDEXED;
4708 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4709 if (Ptr == Offset)
4710 std::swap(BasePtr, Offset);
4711 if (Ptr != BasePtr)
4712 continue;
4713 // Don't create a indexed load / store with zero offset.
4714 if (isa<ConstantSDNode>(Offset) &&
4715 cast<ConstantSDNode>(Offset)->isNullValue())
4716 continue;
4718 // Try turning it into a post-indexed load / store except when
4719 // 1) All uses are load / store ops that use it as base ptr.
4720 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4721 // nor a successor of N. Otherwise, if Op is folded that would
4722 // create a cycle.
4724 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
4725 continue;
4727 // Check for #1.
4728 bool TryNext = false;
4729 for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
4730 EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
4731 SDNode *Use = *II;
4732 if (Use == Ptr.getNode())
4733 continue;
4735 // If all the uses are load / store addresses, then don't do the
4736 // transformation.
4737 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4738 bool RealUse = false;
4739 for (SDNode::use_iterator III = Use->use_begin(),
4740 EEE = Use->use_end(); III != EEE; ++III) {
4741 SDNode *UseUse = *III;
4742 if (!((UseUse->getOpcode() == ISD::LOAD &&
4743 cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) ||
4744 (UseUse->getOpcode() == ISD::STORE &&
4745 cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use)))
4746 RealUse = true;
4749 if (!RealUse) {
4750 TryNext = true;
4751 break;
4756 if (TryNext)
4757 continue;
4759 // Check for #2
4760 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4761 SDValue Result = isLoad
4762 ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
4763 BasePtr, Offset, AM)
4764 : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
4765 BasePtr, Offset, AM);
4766 ++PostIndexedNodes;
4767 ++NodesCombined;
4768 DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4769 DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
4770 DOUT << '\n';
4771 WorkListRemover DeadNodes(*this);
4772 if (isLoad) {
4773 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
4774 &DeadNodes);
4775 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
4776 &DeadNodes);
4777 } else {
4778 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
4779 &DeadNodes);
4782 // Finally, since the node is now dead, remove it from the graph.
4783 DAG.DeleteNode(N);
4785 // Replace the uses of Use with uses of the updated base value.
4786 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
4787 Result.getValue(isLoad ? 1 : 0),
4788 &DeadNodes);
4789 removeFromWorkList(Op);
4790 DAG.DeleteNode(Op);
4791 return true;
4796 return false;
4799 /// InferAlignment - If we can infer some alignment information from this
4800 /// pointer, return it.
4801 static unsigned InferAlignment(SDValue Ptr, SelectionDAG &DAG) {
4802 // If this is a direct reference to a stack slot, use information about the
4803 // stack slot's alignment.
4804 int FrameIdx = 1 << 31;
4805 int64_t FrameOffset = 0;
4806 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4807 FrameIdx = FI->getIndex();
4808 } else if (Ptr.getOpcode() == ISD::ADD &&
4809 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4810 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4811 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4812 FrameOffset = Ptr.getConstantOperandVal(1);
4815 if (FrameIdx != (1 << 31)) {
4816 // FIXME: Handle FI+CST.
4817 const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4818 if (MFI.isFixedObjectIndex(FrameIdx)) {
4819 int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
4821 // The alignment of the frame index can be determined from its offset from
4822 // the incoming frame position. If the frame object is at offset 32 and
4823 // the stack is guaranteed to be 16-byte aligned, then we know that the
4824 // object is 16-byte aligned.
4825 unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4826 unsigned Align = MinAlign(ObjectOffset, StackAlign);
4828 // Finally, the frame object itself may have a known alignment. Factor
4829 // the alignment + offset into a new alignment. For example, if we know
4830 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4831 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4832 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4833 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4834 FrameOffset);
4835 return std::max(Align, FIInfoAlign);
4839 return 0;
4842 SDValue DAGCombiner::visitLOAD(SDNode *N) {
4843 LoadSDNode *LD = cast<LoadSDNode>(N);
4844 SDValue Chain = LD->getChain();
4845 SDValue Ptr = LD->getBasePtr();
4847 // Try to infer better alignment information than the load already has.
4848 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
4849 if (unsigned Align = InferAlignment(Ptr, DAG)) {
4850 if (Align > LD->getAlignment())
4851 return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
4852 LD->getValueType(0),
4853 Chain, Ptr, LD->getSrcValue(),
4854 LD->getSrcValueOffset(), LD->getMemoryVT(),
4855 LD->isVolatile(), Align);
4859 // If load is not volatile and there are no uses of the loaded value (and
4860 // the updated indexed value in case of indexed loads), change uses of the
4861 // chain value into uses of the chain input (i.e. delete the dead load).
4862 if (!LD->isVolatile()) {
4863 if (N->getValueType(1) == MVT::Other) {
4864 // Unindexed loads.
4865 if (N->hasNUsesOfValue(0, 0)) {
4866 // It's not safe to use the two value CombineTo variant here. e.g.
4867 // v1, chain2 = load chain1, loc
4868 // v2, chain3 = load chain2, loc
4869 // v3 = add v2, c
4870 // Now we replace use of chain2 with chain1. This makes the second load
4871 // isomorphic to the one we are deleting, and thus makes this load live.
4872 DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4873 DOUT << "\nWith chain: "; DEBUG(Chain.getNode()->dump(&DAG));
4874 DOUT << "\n";
4875 WorkListRemover DeadNodes(*this);
4876 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
4878 if (N->use_empty()) {
4879 removeFromWorkList(N);
4880 DAG.DeleteNode(N);
4883 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4885 } else {
4886 // Indexed loads.
4887 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4888 if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4889 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
4890 DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4891 DOUT << "\nWith: "; DEBUG(Undef.getNode()->dump(&DAG));
4892 DOUT << " and 2 other values\n";
4893 WorkListRemover DeadNodes(*this);
4894 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
4895 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
4896 DAG.getUNDEF(N->getValueType(1)),
4897 &DeadNodes);
4898 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes);
4899 removeFromWorkList(N);
4900 DAG.DeleteNode(N);
4901 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4906 // If this load is directly stored, replace the load value with the stored
4907 // value.
4908 // TODO: Handle store large -> read small portion.
4909 // TODO: Handle TRUNCSTORE/LOADEXT
4910 if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
4911 !LD->isVolatile()) {
4912 if (ISD::isNON_TRUNCStore(Chain.getNode())) {
4913 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4914 if (PrevST->getBasePtr() == Ptr &&
4915 PrevST->getValue().getValueType() == N->getValueType(0))
4916 return CombineTo(N, Chain.getOperand(1), Chain);
4920 if (CombinerAA) {
4921 // Walk up chain skipping non-aliasing memory nodes.
4922 SDValue BetterChain = FindBetterChain(N, Chain);
4924 // If there is a better chain.
4925 if (Chain != BetterChain) {
4926 SDValue ReplLoad;
4928 // Replace the chain to void dependency.
4929 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4930 ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
4931 BetterChain, Ptr,
4932 LD->getSrcValue(), LD->getSrcValueOffset(),
4933 LD->isVolatile(), LD->getAlignment());
4934 } else {
4935 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
4936 LD->getValueType(0),
4937 BetterChain, Ptr, LD->getSrcValue(),
4938 LD->getSrcValueOffset(),
4939 LD->getMemoryVT(),
4940 LD->isVolatile(),
4941 LD->getAlignment());
4944 // Create token factor to keep old chain connected.
4945 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
4946 MVT::Other, Chain, ReplLoad.getValue(1));
4948 // Replace uses with load result and token factor. Don't add users
4949 // to work list.
4950 return CombineTo(N, ReplLoad.getValue(0), Token, false);
4954 // Try transforming N to an indexed load.
4955 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4956 return SDValue(N, 0);
4958 return SDValue();
4962 /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
4963 /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
4964 /// of the loaded bits, try narrowing the load and store if it would end up
4965 /// being a win for performance or code size.
4966 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
4967 StoreSDNode *ST = cast<StoreSDNode>(N);
4968 if (ST->isVolatile())
4969 return SDValue();
4971 SDValue Chain = ST->getChain();
4972 SDValue Value = ST->getValue();
4973 SDValue Ptr = ST->getBasePtr();
4974 EVT VT = Value.getValueType();
4976 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
4977 return SDValue();
4979 unsigned Opc = Value.getOpcode();
4980 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
4981 Value.getOperand(1).getOpcode() != ISD::Constant)
4982 return SDValue();
4984 SDValue N0 = Value.getOperand(0);
4985 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
4986 LoadSDNode *LD = cast<LoadSDNode>(N0);
4987 if (LD->getBasePtr() != Ptr)
4988 return SDValue();
4990 // Find the type to narrow it the load / op / store to.
4991 SDValue N1 = Value.getOperand(1);
4992 unsigned BitWidth = N1.getValueSizeInBits();
4993 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
4994 if (Opc == ISD::AND)
4995 Imm ^= APInt::getAllOnesValue(BitWidth);
4996 if (Imm == 0 || Imm.isAllOnesValue())
4997 return SDValue();
4998 unsigned ShAmt = Imm.countTrailingZeros();
4999 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
5000 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
5001 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
5002 while (NewBW < BitWidth &&
5003 !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
5004 TLI.isNarrowingProfitable(VT, NewVT))) {
5005 NewBW = NextPowerOf2(NewBW);
5006 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
5008 if (NewBW >= BitWidth)
5009 return SDValue();
5011 // If the lsb changed does not start at the type bitwidth boundary,
5012 // start at the previous one.
5013 if (ShAmt % NewBW)
5014 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
5015 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
5016 if ((Imm & Mask) == Imm) {
5017 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
5018 if (Opc == ISD::AND)
5019 NewImm ^= APInt::getAllOnesValue(NewBW);
5020 uint64_t PtrOff = ShAmt / 8;
5021 // For big endian targets, we need to adjust the offset to the pointer to
5022 // load the correct bytes.
5023 if (TLI.isBigEndian())
5024 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
5026 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
5027 if (NewAlign <
5028 TLI.getTargetData()->getABITypeAlignment(NewVT.getTypeForEVT(*DAG.getContext())))
5029 return SDValue();
5031 SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
5032 Ptr.getValueType(), Ptr,
5033 DAG.getConstant(PtrOff, Ptr.getValueType()));
5034 SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
5035 LD->getChain(), NewPtr,
5036 LD->getSrcValue(), LD->getSrcValueOffset(),
5037 LD->isVolatile(), NewAlign);
5038 SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
5039 DAG.getConstant(NewImm, NewVT));
5040 SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
5041 NewVal, NewPtr,
5042 ST->getSrcValue(), ST->getSrcValueOffset(),
5043 false, NewAlign);
5045 AddToWorkList(NewPtr.getNode());
5046 AddToWorkList(NewLD.getNode());
5047 AddToWorkList(NewVal.getNode());
5048 WorkListRemover DeadNodes(*this);
5049 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1),
5050 &DeadNodes);
5051 ++OpsNarrowed;
5052 return NewST;
5056 return SDValue();
5059 SDValue DAGCombiner::visitSTORE(SDNode *N) {
5060 StoreSDNode *ST = cast<StoreSDNode>(N);
5061 SDValue Chain = ST->getChain();
5062 SDValue Value = ST->getValue();
5063 SDValue Ptr = ST->getBasePtr();
5065 // Try to infer better alignment information than the store already has.
5066 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
5067 if (unsigned Align = InferAlignment(Ptr, DAG)) {
5068 if (Align > ST->getAlignment())
5069 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
5070 Ptr, ST->getSrcValue(),
5071 ST->getSrcValueOffset(), ST->getMemoryVT(),
5072 ST->isVolatile(), Align);
5076 // If this is a store of a bit convert, store the input value if the
5077 // resultant store does not need a higher alignment than the original.
5078 if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
5079 ST->isUnindexed()) {
5080 unsigned OrigAlign = ST->getAlignment();
5081 EVT SVT = Value.getOperand(0).getValueType();
5082 unsigned Align = TLI.getTargetData()->
5083 getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
5084 if (Align <= OrigAlign &&
5085 ((!LegalOperations && !ST->isVolatile()) ||
5086 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
5087 return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
5088 Ptr, ST->getSrcValue(),
5089 ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign);
5092 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
5093 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
5094 // NOTE: If the original store is volatile, this transform must not increase
5095 // the number of stores. For example, on x86-32 an f64 can be stored in one
5096 // processor operation but an i64 (which is not legal) requires two. So the
5097 // transform should not be done in this case.
5098 if (Value.getOpcode() != ISD::TargetConstantFP) {
5099 SDValue Tmp;
5100 switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
5101 default: llvm_unreachable("Unknown FP type");
5102 case MVT::f80: // We don't do this for these yet.
5103 case MVT::f128:
5104 case MVT::ppcf128:
5105 break;
5106 case MVT::f32:
5107 if (((TLI.isTypeLegal(MVT::i32) || !LegalTypes) && !LegalOperations &&
5108 !ST->isVolatile()) ||
5109 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
5110 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
5111 bitcastToAPInt().getZExtValue(), MVT::i32);
5112 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
5113 Ptr, ST->getSrcValue(),
5114 ST->getSrcValueOffset(), ST->isVolatile(),
5115 ST->getAlignment());
5117 break;
5118 case MVT::f64:
5119 if (((TLI.isTypeLegal(MVT::i64) || !LegalTypes) && !LegalOperations &&
5120 !ST->isVolatile()) ||
5121 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
5122 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
5123 getZExtValue(), MVT::i64);
5124 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
5125 Ptr, ST->getSrcValue(),
5126 ST->getSrcValueOffset(), ST->isVolatile(),
5127 ST->getAlignment());
5128 } else if (!ST->isVolatile() &&
5129 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
5130 // Many FP stores are not made apparent until after legalize, e.g. for
5131 // argument passing. Since this is so common, custom legalize the
5132 // 64-bit integer store into two 32-bit stores.
5133 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
5134 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
5135 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
5136 if (TLI.isBigEndian()) std::swap(Lo, Hi);
5138 int SVOffset = ST->getSrcValueOffset();
5139 unsigned Alignment = ST->getAlignment();
5140 bool isVolatile = ST->isVolatile();
5142 SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
5143 Ptr, ST->getSrcValue(),
5144 ST->getSrcValueOffset(),
5145 isVolatile, ST->getAlignment());
5146 Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
5147 DAG.getConstant(4, Ptr.getValueType()));
5148 SVOffset += 4;
5149 Alignment = MinAlign(Alignment, 4U);
5150 SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
5151 Ptr, ST->getSrcValue(),
5152 SVOffset, isVolatile, Alignment);
5153 return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
5154 St0, St1);
5157 break;
5162 if (CombinerAA) {
5163 // Walk up chain skipping non-aliasing memory nodes.
5164 SDValue BetterChain = FindBetterChain(N, Chain);
5166 // If there is a better chain.
5167 if (Chain != BetterChain) {
5168 // Replace the chain to avoid dependency.
5169 SDValue ReplStore;
5170 if (ST->isTruncatingStore()) {
5171 ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
5172 ST->getSrcValue(),ST->getSrcValueOffset(),
5173 ST->getMemoryVT(),
5174 ST->isVolatile(), ST->getAlignment());
5175 } else {
5176 ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
5177 ST->getSrcValue(), ST->getSrcValueOffset(),
5178 ST->isVolatile(), ST->getAlignment());
5181 // Create token to keep both nodes around.
5182 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
5183 MVT::Other, Chain, ReplStore);
5185 // Don't add users to work list.
5186 return CombineTo(N, Token, false);
5190 // Try transforming N to an indexed store.
5191 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
5192 return SDValue(N, 0);
5194 // FIXME: is there such a thing as a truncating indexed store?
5195 if (ST->isTruncatingStore() && ST->isUnindexed() &&
5196 Value.getValueType().isInteger()) {
5197 // See if we can simplify the input to this truncstore with knowledge that
5198 // only the low bits are being used. For example:
5199 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
5200 SDValue Shorter =
5201 GetDemandedBits(Value,
5202 APInt::getLowBitsSet(Value.getValueSizeInBits(),
5203 ST->getMemoryVT().getSizeInBits()));
5204 AddToWorkList(Value.getNode());
5205 if (Shorter.getNode())
5206 return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
5207 Ptr, ST->getSrcValue(),
5208 ST->getSrcValueOffset(), ST->getMemoryVT(),
5209 ST->isVolatile(), ST->getAlignment());
5211 // Otherwise, see if we can simplify the operation with
5212 // SimplifyDemandedBits, which only works if the value has a single use.
5213 if (SimplifyDemandedBits(Value,
5214 APInt::getLowBitsSet(
5215 Value.getValueSizeInBits(),
5216 ST->getMemoryVT().getSizeInBits())))
5217 return SDValue(N, 0);
5220 // If this is a load followed by a store to the same location, then the store
5221 // is dead/noop.
5222 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
5223 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
5224 ST->isUnindexed() && !ST->isVolatile() &&
5225 // There can't be any side effects between the load and store, such as
5226 // a call or store.
5227 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
5228 // The store is dead, remove it.
5229 return Chain;
5233 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
5234 // truncating store. We can do this even if this is already a truncstore.
5235 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
5236 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
5237 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
5238 ST->getMemoryVT())) {
5239 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
5240 Ptr, ST->getSrcValue(),
5241 ST->getSrcValueOffset(), ST->getMemoryVT(),
5242 ST->isVolatile(), ST->getAlignment());
5245 return ReduceLoadOpStoreWidth(N);
5248 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
5249 SDValue InVec = N->getOperand(0);
5250 SDValue InVal = N->getOperand(1);
5251 SDValue EltNo = N->getOperand(2);
5253 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5254 // vector with the inserted element.
5255 if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
5256 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5257 SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(),
5258 InVec.getNode()->op_end());
5259 if (Elt < Ops.size())
5260 Ops[Elt] = InVal;
5261 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5262 InVec.getValueType(), &Ops[0], Ops.size());
5264 // If the invec is an UNDEF and if EltNo is a constant, create a new
5265 // BUILD_VECTOR with undef elements and the inserted element.
5266 if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF &&
5267 isa<ConstantSDNode>(EltNo)) {
5268 EVT VT = InVec.getValueType();
5269 EVT EVT = VT.getVectorElementType();
5270 unsigned NElts = VT.getVectorNumElements();
5271 SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EVT));
5273 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5274 if (Elt < Ops.size())
5275 Ops[Elt] = InVal;
5276 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5277 InVec.getValueType(), &Ops[0], Ops.size());
5279 return SDValue();
5282 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
5283 // (vextract (scalar_to_vector val, 0) -> val
5284 SDValue InVec = N->getOperand(0);
5286 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5287 // If the operand is wider than the vector element type then it is implicitly
5288 // truncated. Make that explicit here.
5289 EVT EltVT = InVec.getValueType().getVectorElementType();
5290 SDValue InOp = InVec.getOperand(0);
5291 if (InOp.getValueType() != EltVT)
5292 return DAG.getNode(ISD::TRUNCATE, InVec.getDebugLoc(), EltVT, InOp);
5293 return InOp;
5296 // Perform only after legalization to ensure build_vector / vector_shuffle
5297 // optimizations have already been done.
5298 if (!LegalOperations) return SDValue();
5300 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5301 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5302 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5303 SDValue EltNo = N->getOperand(1);
5305 if (isa<ConstantSDNode>(EltNo)) {
5306 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5307 bool NewLoad = false;
5308 bool BCNumEltsChanged = false;
5309 EVT VT = InVec.getValueType();
5310 EVT ExtVT = VT.getVectorElementType();
5311 EVT LVT = ExtVT;
5313 if (InVec.getOpcode() == ISD::BIT_CONVERT) {
5314 EVT BCVT = InVec.getOperand(0).getValueType();
5315 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
5316 return SDValue();
5317 if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
5318 BCNumEltsChanged = true;
5319 InVec = InVec.getOperand(0);
5320 ExtVT = BCVT.getVectorElementType();
5321 NewLoad = true;
5324 LoadSDNode *LN0 = NULL;
5325 const ShuffleVectorSDNode *SVN = NULL;
5326 if (ISD::isNormalLoad(InVec.getNode())) {
5327 LN0 = cast<LoadSDNode>(InVec);
5328 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5329 InVec.getOperand(0).getValueType() == ExtVT &&
5330 ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
5331 LN0 = cast<LoadSDNode>(InVec.getOperand(0));
5332 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
5333 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5334 // =>
5335 // (load $addr+1*size)
5337 // If the bit convert changed the number of elements, it is unsafe
5338 // to examine the mask.
5339 if (BCNumEltsChanged)
5340 return SDValue();
5342 // Select the input vector, guarding against out of range extract vector.
5343 unsigned NumElems = VT.getVectorNumElements();
5344 int Idx = (Elt > NumElems) ? -1 : SVN->getMaskElt(Elt);
5345 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
5347 if (InVec.getOpcode() == ISD::BIT_CONVERT)
5348 InVec = InVec.getOperand(0);
5349 if (ISD::isNormalLoad(InVec.getNode())) {
5350 LN0 = cast<LoadSDNode>(InVec);
5351 Elt = (Idx < (int)NumElems) ? Idx : Idx - NumElems;
5355 if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile())
5356 return SDValue();
5358 unsigned Align = LN0->getAlignment();
5359 if (NewLoad) {
5360 // Check the resultant load doesn't need a higher alignment than the
5361 // original load.
5362 unsigned NewAlign =
5363 TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
5365 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
5366 return SDValue();
5368 Align = NewAlign;
5371 SDValue NewPtr = LN0->getBasePtr();
5372 if (Elt) {
5373 unsigned PtrOff = LVT.getSizeInBits() * Elt / 8;
5374 EVT PtrType = NewPtr.getValueType();
5375 if (TLI.isBigEndian())
5376 PtrOff = VT.getSizeInBits() / 8 - PtrOff;
5377 NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
5378 DAG.getConstant(PtrOff, PtrType));
5381 return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
5382 LN0->getSrcValue(), LN0->getSrcValueOffset(),
5383 LN0->isVolatile(), Align);
5386 return SDValue();
5389 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
5390 unsigned NumInScalars = N->getNumOperands();
5391 EVT VT = N->getValueType(0);
5392 EVT EltType = VT.getVectorElementType();
5394 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5395 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5396 // at most two distinct vectors, turn this into a shuffle node.
5397 SDValue VecIn1, VecIn2;
5398 for (unsigned i = 0; i != NumInScalars; ++i) {
5399 // Ignore undef inputs.
5400 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
5402 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5403 // constant index, bail out.
5404 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5405 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
5406 VecIn1 = VecIn2 = SDValue(0, 0);
5407 break;
5410 // If the input vector type disagrees with the result of the build_vector,
5411 // we can't make a shuffle.
5412 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
5413 if (ExtractedFromVec.getValueType() != VT) {
5414 VecIn1 = VecIn2 = SDValue(0, 0);
5415 break;
5418 // Otherwise, remember this. We allow up to two distinct input vectors.
5419 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
5420 continue;
5422 if (VecIn1.getNode() == 0) {
5423 VecIn1 = ExtractedFromVec;
5424 } else if (VecIn2.getNode() == 0) {
5425 VecIn2 = ExtractedFromVec;
5426 } else {
5427 // Too many inputs.
5428 VecIn1 = VecIn2 = SDValue(0, 0);
5429 break;
5433 // If everything is good, we can make a shuffle operation.
5434 if (VecIn1.getNode()) {
5435 SmallVector<int, 8> Mask;
5436 for (unsigned i = 0; i != NumInScalars; ++i) {
5437 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
5438 Mask.push_back(-1);
5439 continue;
5442 // If extracting from the first vector, just use the index directly.
5443 SDValue Extract = N->getOperand(i);
5444 SDValue ExtVal = Extract.getOperand(1);
5445 if (Extract.getOperand(0) == VecIn1) {
5446 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
5447 if (ExtIndex > VT.getVectorNumElements())
5448 return SDValue();
5450 Mask.push_back(ExtIndex);
5451 continue;
5454 // Otherwise, use InIdx + VecSize
5455 unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
5456 Mask.push_back(Idx+NumInScalars);
5459 // Add count and size info.
5460 if (!TLI.isTypeLegal(VT) && LegalTypes)
5461 return SDValue();
5463 // Return the new VECTOR_SHUFFLE node.
5464 SDValue Ops[2];
5465 Ops[0] = VecIn1;
5466 Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5467 return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
5470 return SDValue();
5473 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
5474 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5475 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5476 // inputs come from at most two distinct vectors, turn this into a shuffle
5477 // node.
5479 // If we only have one input vector, we don't need to do any concatenation.
5480 if (N->getNumOperands() == 1)
5481 return N->getOperand(0);
5483 return SDValue();
5486 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
5487 return SDValue();
5489 EVT VT = N->getValueType(0);
5490 unsigned NumElts = VT.getVectorNumElements();
5492 SDValue N0 = N->getOperand(0);
5493 SDValue N1 = N->getOperand(1);
5495 assert(N0.getValueType().getVectorNumElements() == NumElts &&
5496 "Vector shuffle must be normalized in DAG");
5498 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
5500 // If it is a splat, check if the argument vector is a build_vector with
5501 // all scalar elements the same.
5502 if (cast<ShuffleVectorSDNode>(N)->isSplat()) {
5503 SDNode *V = N0.getNode();
5506 // If this is a bit convert that changes the element type of the vector but
5507 // not the number of vector elements, look through it. Be careful not to
5508 // look though conversions that change things like v4f32 to v2f64.
5509 if (V->getOpcode() == ISD::BIT_CONVERT) {
5510 SDValue ConvInput = V->getOperand(0);
5511 if (ConvInput.getValueType().isVector() &&
5512 ConvInput.getValueType().getVectorNumElements() == NumElts)
5513 V = ConvInput.getNode();
5516 if (V->getOpcode() == ISD::BUILD_VECTOR) {
5517 unsigned NumElems = V->getNumOperands();
5518 unsigned BaseIdx = cast<ShuffleVectorSDNode>(N)->getSplatIndex();
5519 if (NumElems > BaseIdx) {
5520 SDValue Base;
5521 bool AllSame = true;
5522 for (unsigned i = 0; i != NumElems; ++i) {
5523 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
5524 Base = V->getOperand(i);
5525 break;
5528 // Splat of <u, u, u, u>, return <u, u, u, u>
5529 if (!Base.getNode())
5530 return N0;
5531 for (unsigned i = 0; i != NumElems; ++i) {
5532 if (V->getOperand(i) != Base) {
5533 AllSame = false;
5534 break;
5537 // Splat of <x, x, x, x>, return <x, x, x, x>
5538 if (AllSame)
5539 return N0;
5543 return SDValue();
5546 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5547 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5548 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5549 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5550 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
5551 EVT VT = N->getValueType(0);
5552 DebugLoc dl = N->getDebugLoc();
5553 SDValue LHS = N->getOperand(0);
5554 SDValue RHS = N->getOperand(1);
5555 if (N->getOpcode() == ISD::AND) {
5556 if (RHS.getOpcode() == ISD::BIT_CONVERT)
5557 RHS = RHS.getOperand(0);
5558 if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
5559 SmallVector<int, 8> Indices;
5560 unsigned NumElts = RHS.getNumOperands();
5561 for (unsigned i = 0; i != NumElts; ++i) {
5562 SDValue Elt = RHS.getOperand(i);
5563 if (!isa<ConstantSDNode>(Elt))
5564 return SDValue();
5565 else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
5566 Indices.push_back(i);
5567 else if (cast<ConstantSDNode>(Elt)->isNullValue())
5568 Indices.push_back(NumElts);
5569 else
5570 return SDValue();
5573 // Let's see if the target supports this vector_shuffle.
5574 EVT RVT = RHS.getValueType();
5575 if (!TLI.isVectorClearMaskLegal(Indices, RVT))
5576 return SDValue();
5578 // Return the new VECTOR_SHUFFLE node.
5579 EVT EVT = RVT.getVectorElementType();
5580 SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
5581 DAG.getConstant(0, EVT));
5582 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5583 RVT, &ZeroOps[0], ZeroOps.size());
5584 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS);
5585 SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
5586 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuf);
5590 return SDValue();
5593 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5594 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
5595 // After legalize, the target may be depending on adds and other
5596 // binary ops to provide legal ways to construct constants or other
5597 // things. Simplifying them may result in a loss of legality.
5598 if (LegalOperations) return SDValue();
5600 EVT VT = N->getValueType(0);
5601 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
5603 EVT EltType = VT.getVectorElementType();
5604 SDValue LHS = N->getOperand(0);
5605 SDValue RHS = N->getOperand(1);
5606 SDValue Shuffle = XformToShuffleWithZero(N);
5607 if (Shuffle.getNode()) return Shuffle;
5609 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5610 // this operation.
5611 if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
5612 RHS.getOpcode() == ISD::BUILD_VECTOR) {
5613 SmallVector<SDValue, 8> Ops;
5614 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
5615 SDValue LHSOp = LHS.getOperand(i);
5616 SDValue RHSOp = RHS.getOperand(i);
5617 // If these two elements can't be folded, bail out.
5618 if ((LHSOp.getOpcode() != ISD::UNDEF &&
5619 LHSOp.getOpcode() != ISD::Constant &&
5620 LHSOp.getOpcode() != ISD::ConstantFP) ||
5621 (RHSOp.getOpcode() != ISD::UNDEF &&
5622 RHSOp.getOpcode() != ISD::Constant &&
5623 RHSOp.getOpcode() != ISD::ConstantFP))
5624 break;
5626 // Can't fold divide by zero.
5627 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
5628 N->getOpcode() == ISD::FDIV) {
5629 if ((RHSOp.getOpcode() == ISD::Constant &&
5630 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
5631 (RHSOp.getOpcode() == ISD::ConstantFP &&
5632 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
5633 break;
5636 Ops.push_back(DAG.getNode(N->getOpcode(), LHS.getDebugLoc(),
5637 EltType, LHSOp, RHSOp));
5638 AddToWorkList(Ops.back().getNode());
5639 assert((Ops.back().getOpcode() == ISD::UNDEF ||
5640 Ops.back().getOpcode() == ISD::Constant ||
5641 Ops.back().getOpcode() == ISD::ConstantFP) &&
5642 "Scalar binop didn't fold!");
5645 if (Ops.size() == LHS.getNumOperands()) {
5646 EVT VT = LHS.getValueType();
5647 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
5648 &Ops[0], Ops.size());
5652 return SDValue();
5655 SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
5656 SDValue N1, SDValue N2){
5657 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
5659 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
5660 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5662 // If we got a simplified select_cc node back from SimplifySelectCC, then
5663 // break it down into a new SETCC node, and a new SELECT node, and then return
5664 // the SELECT node, since we were called with a SELECT node.
5665 if (SCC.getNode()) {
5666 // Check to see if we got a select_cc back (to turn into setcc/select).
5667 // Otherwise, just return whatever node we got back, like fabs.
5668 if (SCC.getOpcode() == ISD::SELECT_CC) {
5669 SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
5670 N0.getValueType(),
5671 SCC.getOperand(0), SCC.getOperand(1),
5672 SCC.getOperand(4));
5673 AddToWorkList(SETCC.getNode());
5674 return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
5675 SCC.getOperand(2), SCC.getOperand(3), SETCC);
5678 return SCC;
5680 return SDValue();
5683 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5684 /// are the two values being selected between, see if we can simplify the
5685 /// select. Callers of this should assume that TheSelect is deleted if this
5686 /// returns true. As such, they should return the appropriate thing (e.g. the
5687 /// node) back to the top-level of the DAG combiner loop to avoid it being
5688 /// looked at.
5689 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
5690 SDValue RHS) {
5692 // If this is a select from two identical things, try to pull the operation
5693 // through the select.
5694 if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
5695 // If this is a load and the token chain is identical, replace the select
5696 // of two loads with a load through a select of the address to load from.
5697 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5698 // constants have been dropped into the constant pool.
5699 if (LHS.getOpcode() == ISD::LOAD &&
5700 // Do not let this transformation reduce the number of volatile loads.
5701 !cast<LoadSDNode>(LHS)->isVolatile() &&
5702 !cast<LoadSDNode>(RHS)->isVolatile() &&
5703 // Token chains must be identical.
5704 LHS.getOperand(0) == RHS.getOperand(0)) {
5705 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5706 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5708 // If this is an EXTLOAD, the VT's must match.
5709 if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5710 // FIXME: this conflates two src values, discarding one. This is not
5711 // the right thing to do, but nothing uses srcvalues now. When they do,
5712 // turn SrcValue into a list of locations.
5713 SDValue Addr;
5714 if (TheSelect->getOpcode() == ISD::SELECT) {
5715 // Check that the condition doesn't reach either load. If so, folding
5716 // this will induce a cycle into the DAG.
5717 if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5718 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) {
5719 Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
5720 LLD->getBasePtr().getValueType(),
5721 TheSelect->getOperand(0), LLD->getBasePtr(),
5722 RLD->getBasePtr());
5724 } else {
5725 // Check that the condition doesn't reach either load. If so, folding
5726 // this will induce a cycle into the DAG.
5727 if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5728 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5729 !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()) &&
5730 !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())) {
5731 Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
5732 LLD->getBasePtr().getValueType(),
5733 TheSelect->getOperand(0),
5734 TheSelect->getOperand(1),
5735 LLD->getBasePtr(), RLD->getBasePtr(),
5736 TheSelect->getOperand(4));
5740 if (Addr.getNode()) {
5741 SDValue Load;
5742 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
5743 Load = DAG.getLoad(TheSelect->getValueType(0),
5744 TheSelect->getDebugLoc(),
5745 LLD->getChain(),
5746 Addr,LLD->getSrcValue(),
5747 LLD->getSrcValueOffset(),
5748 LLD->isVolatile(),
5749 LLD->getAlignment());
5750 } else {
5751 Load = DAG.getExtLoad(LLD->getExtensionType(),
5752 TheSelect->getDebugLoc(),
5753 TheSelect->getValueType(0),
5754 LLD->getChain(), Addr, LLD->getSrcValue(),
5755 LLD->getSrcValueOffset(),
5756 LLD->getMemoryVT(),
5757 LLD->isVolatile(),
5758 LLD->getAlignment());
5761 // Users of the select now use the result of the load.
5762 CombineTo(TheSelect, Load);
5764 // Users of the old loads now use the new load's chain. We know the
5765 // old-load value is dead now.
5766 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
5767 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
5768 return true;
5774 return false;
5777 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5778 /// where 'cond' is the comparison specified by CC.
5779 SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
5780 SDValue N2, SDValue N3,
5781 ISD::CondCode CC, bool NotExtCompare) {
5782 // (x ? y : y) -> y.
5783 if (N2 == N3) return N2;
5785 EVT VT = N2.getValueType();
5786 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
5787 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
5788 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
5790 // Determine if the condition we're dealing with is constant
5791 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
5792 N0, N1, CC, DL, false);
5793 if (SCC.getNode()) AddToWorkList(SCC.getNode());
5794 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
5796 // fold select_cc true, x, y -> x
5797 if (SCCC && !SCCC->isNullValue())
5798 return N2;
5799 // fold select_cc false, x, y -> y
5800 if (SCCC && SCCC->isNullValue())
5801 return N3;
5803 // Check to see if we can simplify the select into an fabs node
5804 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5805 // Allow either -0.0 or 0.0
5806 if (CFP->getValueAPF().isZero()) {
5807 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5808 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5809 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5810 N2 == N3.getOperand(0))
5811 return DAG.getNode(ISD::FABS, DL, VT, N0);
5813 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5814 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5815 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5816 N2.getOperand(0) == N3)
5817 return DAG.getNode(ISD::FABS, DL, VT, N3);
5821 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5822 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5823 // in it. This is a win when the constant is not otherwise available because
5824 // it replaces two constant pool loads with one. We only do this if the FP
5825 // type is known to be legal, because if it isn't, then we are before legalize
5826 // types an we want the other legalization to happen first (e.g. to avoid
5827 // messing with soft float) and if the ConstantFP is not legal, because if
5828 // it is legal, we may not need to store the FP constant in a constant pool.
5829 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
5830 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
5831 if (TLI.isTypeLegal(N2.getValueType()) &&
5832 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
5833 TargetLowering::Legal) &&
5834 // If both constants have multiple uses, then we won't need to do an
5835 // extra load, they are likely around in registers for other users.
5836 (TV->hasOneUse() || FV->hasOneUse())) {
5837 Constant *Elts[] = {
5838 const_cast<ConstantFP*>(FV->getConstantFPValue()),
5839 const_cast<ConstantFP*>(TV->getConstantFPValue())
5841 const Type *FPTy = Elts[0]->getType();
5842 const TargetData &TD = *TLI.getTargetData();
5844 // Create a ConstantArray of the two constants.
5845 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2);
5846 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
5847 TD.getPrefTypeAlignment(FPTy));
5848 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
5850 // Get the offsets to the 0 and 1 element of the array so that we can
5851 // select between them.
5852 SDValue Zero = DAG.getIntPtrConstant(0);
5853 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
5854 SDValue One = DAG.getIntPtrConstant(EltSize);
5856 SDValue Cond = DAG.getSetCC(DL,
5857 TLI.getSetCCResultType(N0.getValueType()),
5858 N0, N1, CC);
5859 SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
5860 Cond, One, Zero);
5861 CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
5862 CstOffset);
5863 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
5864 PseudoSourceValue::getConstantPool(), 0, false,
5865 Alignment);
5870 // Check to see if we can perform the "gzip trick", transforming
5871 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5872 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5873 N0.getValueType().isInteger() &&
5874 N2.getValueType().isInteger() &&
5875 (N1C->isNullValue() || // (a < 0) ? b : 0
5876 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
5877 EVT XType = N0.getValueType();
5878 EVT AType = N2.getValueType();
5879 if (XType.bitsGE(AType)) {
5880 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5881 // single-bit constant.
5882 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
5883 unsigned ShCtV = N2C->getAPIntValue().logBase2();
5884 ShCtV = XType.getSizeInBits()-ShCtV-1;
5885 SDValue ShCt = DAG.getConstant(ShCtV, getShiftAmountTy());
5886 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
5887 XType, N0, ShCt);
5888 AddToWorkList(Shift.getNode());
5890 if (XType.bitsGT(AType)) {
5891 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
5892 AddToWorkList(Shift.getNode());
5895 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
5898 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
5899 XType, N0,
5900 DAG.getConstant(XType.getSizeInBits()-1,
5901 getShiftAmountTy()));
5902 AddToWorkList(Shift.getNode());
5904 if (XType.bitsGT(AType)) {
5905 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
5906 AddToWorkList(Shift.getNode());
5909 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
5913 // fold select C, 16, 0 -> shl C, 4
5914 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
5915 TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent) {
5917 // If the caller doesn't want us to simplify this into a zext of a compare,
5918 // don't do it.
5919 if (NotExtCompare && N2C->getAPIntValue() == 1)
5920 return SDValue();
5922 // Get a SetCC of the condition
5923 // FIXME: Should probably make sure that setcc is legal if we ever have a
5924 // target where it isn't.
5925 SDValue Temp, SCC;
5926 // cast from setcc result type to select result type
5927 if (LegalTypes) {
5928 SCC = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
5929 N0, N1, CC);
5930 if (N2.getValueType().bitsLT(SCC.getValueType()))
5931 Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
5932 else
5933 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
5934 N2.getValueType(), SCC);
5935 } else {
5936 SCC = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
5937 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
5938 N2.getValueType(), SCC);
5941 AddToWorkList(SCC.getNode());
5942 AddToWorkList(Temp.getNode());
5944 if (N2C->getAPIntValue() == 1)
5945 return Temp;
5947 // shl setcc result by log2 n2c
5948 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
5949 DAG.getConstant(N2C->getAPIntValue().logBase2(),
5950 getShiftAmountTy()));
5953 // Check to see if this is the equivalent of setcc
5954 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5955 // otherwise, go ahead with the folds.
5956 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
5957 EVT XType = N0.getValueType();
5958 if (!LegalOperations ||
5959 TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
5960 SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
5961 if (Res.getValueType() != VT)
5962 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
5963 return Res;
5966 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5967 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5968 (!LegalOperations ||
5969 TLI.isOperationLegal(ISD::CTLZ, XType))) {
5970 SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
5971 return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
5972 DAG.getConstant(Log2_32(XType.getSizeInBits()),
5973 getShiftAmountTy()));
5975 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5976 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5977 SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
5978 XType, DAG.getConstant(0, XType), N0);
5979 SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
5980 return DAG.getNode(ISD::SRL, DL, XType,
5981 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
5982 DAG.getConstant(XType.getSizeInBits()-1,
5983 getShiftAmountTy()));
5985 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5986 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5987 SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
5988 DAG.getConstant(XType.getSizeInBits()-1,
5989 getShiftAmountTy()));
5990 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
5994 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5995 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5996 if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5997 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5998 N2.getOperand(0) == N1 && N0.getValueType().isInteger()) {
5999 EVT XType = N0.getValueType();
6000 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, N0,
6001 DAG.getConstant(XType.getSizeInBits()-1,
6002 getShiftAmountTy()));
6003 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), XType,
6004 N0, Shift);
6005 AddToWorkList(Shift.getNode());
6006 AddToWorkList(Add.getNode());
6007 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
6009 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
6010 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
6011 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
6012 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
6013 if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
6014 EVT XType = N0.getValueType();
6015 if (SubC->isNullValue() && XType.isInteger()) {
6016 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
6018 DAG.getConstant(XType.getSizeInBits()-1,
6019 getShiftAmountTy()));
6020 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
6021 XType, N0, Shift);
6022 AddToWorkList(Shift.getNode());
6023 AddToWorkList(Add.getNode());
6024 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
6029 return SDValue();
6032 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
6033 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
6034 SDValue N1, ISD::CondCode Cond,
6035 DebugLoc DL, bool foldBooleans) {
6036 TargetLowering::DAGCombinerInfo
6037 DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
6038 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
6041 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
6042 /// return a DAG expression to select that will generate the same value by
6043 /// multiplying by a magic number. See:
6044 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6045 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
6046 std::vector<SDNode*> Built;
6047 SDValue S = TLI.BuildSDIV(N, DAG, &Built);
6049 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
6050 ii != ee; ++ii)
6051 AddToWorkList(*ii);
6052 return S;
6055 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
6056 /// return a DAG expression to select that will generate the same value by
6057 /// multiplying by a magic number. See:
6058 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6059 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
6060 std::vector<SDNode*> Built;
6061 SDValue S = TLI.BuildUDIV(N, DAG, &Built);
6063 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
6064 ii != ee; ++ii)
6065 AddToWorkList(*ii);
6066 return S;
6069 /// FindBaseOffset - Return true if base is known not to alias with anything
6070 /// but itself. Provides base object and offset as results.
6071 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) {
6072 // Assume it is a primitive operation.
6073 Base = Ptr; Offset = 0;
6075 // If it's an adding a simple constant then integrate the offset.
6076 if (Base.getOpcode() == ISD::ADD) {
6077 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
6078 Base = Base.getOperand(0);
6079 Offset += C->getZExtValue();
6083 // If it's any of the following then it can't alias with anything but itself.
6084 return isa<FrameIndexSDNode>(Base) ||
6085 isa<ConstantPoolSDNode>(Base) ||
6086 isa<GlobalAddressSDNode>(Base);
6089 /// isAlias - Return true if there is any possibility that the two addresses
6090 /// overlap.
6091 bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
6092 const Value *SrcValue1, int SrcValueOffset1,
6093 SDValue Ptr2, int64_t Size2,
6094 const Value *SrcValue2, int SrcValueOffset2) const {
6095 // If they are the same then they must be aliases.
6096 if (Ptr1 == Ptr2) return true;
6098 // Gather base node and offset information.
6099 SDValue Base1, Base2;
6100 int64_t Offset1, Offset2;
6101 bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
6102 bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
6104 // If they have a same base address then...
6105 if (Base1 == Base2)
6106 // Check to see if the addresses overlap.
6107 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
6109 // If we know both bases then they can't alias.
6110 if (KnownBase1 && KnownBase2) return false;
6112 if (CombinerGlobalAA) {
6113 // Use alias analysis information.
6114 int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
6115 int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
6116 int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
6117 AliasAnalysis::AliasResult AAResult =
6118 AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
6119 if (AAResult == AliasAnalysis::NoAlias)
6120 return false;
6123 // Otherwise we have to assume they alias.
6124 return true;
6127 /// FindAliasInfo - Extracts the relevant alias information from the memory
6128 /// node. Returns true if the operand was a load.
6129 bool DAGCombiner::FindAliasInfo(SDNode *N,
6130 SDValue &Ptr, int64_t &Size,
6131 const Value *&SrcValue, int &SrcValueOffset) const {
6132 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
6133 Ptr = LD->getBasePtr();
6134 Size = LD->getMemoryVT().getSizeInBits() >> 3;
6135 SrcValue = LD->getSrcValue();
6136 SrcValueOffset = LD->getSrcValueOffset();
6137 return true;
6138 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
6139 Ptr = ST->getBasePtr();
6140 Size = ST->getMemoryVT().getSizeInBits() >> 3;
6141 SrcValue = ST->getSrcValue();
6142 SrcValueOffset = ST->getSrcValueOffset();
6143 } else {
6144 llvm_unreachable("FindAliasInfo expected a memory operand");
6147 return false;
6150 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
6151 /// looking for aliasing nodes and adding them to the Aliases vector.
6152 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
6153 SmallVector<SDValue, 8> &Aliases) {
6154 SmallVector<SDValue, 8> Chains; // List of chains to visit.
6155 std::set<SDNode *> Visited; // Visited node set.
6157 // Get alias information for node.
6158 SDValue Ptr;
6159 int64_t Size = 0;
6160 const Value *SrcValue = 0;
6161 int SrcValueOffset = 0;
6162 bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
6164 // Starting off.
6165 Chains.push_back(OriginalChain);
6167 // Look at each chain and determine if it is an alias. If so, add it to the
6168 // aliases list. If not, then continue up the chain looking for the next
6169 // candidate.
6170 while (!Chains.empty()) {
6171 SDValue Chain = Chains.back();
6172 Chains.pop_back();
6174 // Don't bother if we've been before.
6175 if (Visited.find(Chain.getNode()) != Visited.end()) continue;
6176 Visited.insert(Chain.getNode());
6178 switch (Chain.getOpcode()) {
6179 case ISD::EntryToken:
6180 // Entry token is ideal chain operand, but handled in FindBetterChain.
6181 break;
6183 case ISD::LOAD:
6184 case ISD::STORE: {
6185 // Get alias information for Chain.
6186 SDValue OpPtr;
6187 int64_t OpSize = 0;
6188 const Value *OpSrcValue = 0;
6189 int OpSrcValueOffset = 0;
6190 bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
6191 OpSrcValue, OpSrcValueOffset);
6193 // If chain is alias then stop here.
6194 if (!(IsLoad && IsOpLoad) &&
6195 isAlias(Ptr, Size, SrcValue, SrcValueOffset,
6196 OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
6197 Aliases.push_back(Chain);
6198 } else {
6199 // Look further up the chain.
6200 Chains.push_back(Chain.getOperand(0));
6201 // Clean up old chain.
6202 AddToWorkList(Chain.getNode());
6204 break;
6207 case ISD::TokenFactor:
6208 // We have to check each of the operands of the token factor, so we queue
6209 // then up. Adding the operands to the queue (stack) in reverse order
6210 // maintains the original order and increases the likelihood that getNode
6211 // will find a matching token factor (CSE.)
6212 for (unsigned n = Chain.getNumOperands(); n;)
6213 Chains.push_back(Chain.getOperand(--n));
6214 // Eliminate the token factor if we can.
6215 AddToWorkList(Chain.getNode());
6216 break;
6218 default:
6219 // For all other instructions we will just have to take what we can get.
6220 Aliases.push_back(Chain);
6221 break;
6226 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6227 /// for a better chain (aliasing node.)
6228 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
6229 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
6231 // Accumulate all the aliases to this node.
6232 GatherAllAliases(N, OldChain, Aliases);
6234 if (Aliases.size() == 0) {
6235 // If no operands then chain to entry token.
6236 return DAG.getEntryNode();
6237 } else if (Aliases.size() == 1) {
6238 // If a single operand then chain to it. We don't need to revisit it.
6239 return Aliases[0];
6242 // Construct a custom tailored token factor.
6243 SDValue NewChain = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
6244 &Aliases[0], Aliases.size());
6246 // Make sure the old chain gets cleaned up.
6247 if (NewChain != OldChain) AddToWorkList(OldChain.getNode());
6249 return NewChain;
6252 // SelectionDAG::Combine - This is the entry point for the file.
6254 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
6255 CodeGenOpt::Level OptLevel) {
6256 /// run - This is the main entry point to this class.
6258 DAGCombiner(*this, AA, OptLevel).Run(Level);