1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
43 STATISTIC(NodesCombined
, "Number of dag nodes combined");
44 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
45 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
46 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
50 CombinerAA("combiner-alias-analysis", cl::Hidden
,
51 cl::desc("Turn on alias analysis during testing"));
54 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
55 cl::desc("Include global information in alias analysis"));
57 //------------------------------ DAGCombiner ---------------------------------//
59 class VISIBILITY_HIDDEN DAGCombiner
{
61 const TargetLowering
&TLI
;
63 CodeGenOpt::Level OptLevel
;
67 // Worklist of all of the nodes that need to be simplified.
68 std::vector
<SDNode
*> WorkList
;
70 // AA - Used for DAG load/store alias analysis.
73 /// AddUsersToWorkList - When an instruction is simplified, add all users of
74 /// the instruction to the work lists because they might get more simplified
77 void AddUsersToWorkList(SDNode
*N
) {
78 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
83 /// visit - call the node-specific routine that knows how to fold each
84 /// particular type of node.
85 SDValue
visit(SDNode
*N
);
88 /// AddToWorkList - Add to the work list making sure it's instance is at the
89 /// the back (next to be processed.)
90 void AddToWorkList(SDNode
*N
) {
91 removeFromWorkList(N
);
92 WorkList
.push_back(N
);
95 /// removeFromWorkList - remove all instances of N from the worklist.
97 void removeFromWorkList(SDNode
*N
) {
98 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
102 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
105 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
106 return CombineTo(N
, &Res
, 1, AddTo
);
109 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
111 SDValue To
[] = { Res0
, Res1
};
112 return CombineTo(N
, To
, 2, AddTo
);
115 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
119 /// SimplifyDemandedBits - Check the specified integer node value to see if
120 /// it can be simplified or if things it uses can be simplified by bit
121 /// propagation. If so, return true.
122 bool SimplifyDemandedBits(SDValue Op
) {
123 APInt Demanded
= APInt::getAllOnesValue(Op
.getValueSizeInBits());
124 return SimplifyDemandedBits(Op
, Demanded
);
127 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
129 bool CombineToPreIndexedLoadStore(SDNode
*N
);
130 bool CombineToPostIndexedLoadStore(SDNode
*N
);
133 /// combine - call the node-specific routine that knows how to fold each
134 /// particular type of node. If that doesn't do anything, try the
135 /// target-specific DAG combines.
136 SDValue
combine(SDNode
*N
);
138 // Visitation implementation - Implement dag node combining for different
139 // node types. The semantics are as follows:
141 // SDValue.getNode() == 0 - No change was made
142 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
143 // otherwise - N should be replaced by the returned Operand.
145 SDValue
visitTokenFactor(SDNode
*N
);
146 SDValue
visitMERGE_VALUES(SDNode
*N
);
147 SDValue
visitADD(SDNode
*N
);
148 SDValue
visitSUB(SDNode
*N
);
149 SDValue
visitADDC(SDNode
*N
);
150 SDValue
visitADDE(SDNode
*N
);
151 SDValue
visitMUL(SDNode
*N
);
152 SDValue
visitSDIV(SDNode
*N
);
153 SDValue
visitUDIV(SDNode
*N
);
154 SDValue
visitSREM(SDNode
*N
);
155 SDValue
visitUREM(SDNode
*N
);
156 SDValue
visitMULHU(SDNode
*N
);
157 SDValue
visitMULHS(SDNode
*N
);
158 SDValue
visitSMUL_LOHI(SDNode
*N
);
159 SDValue
visitUMUL_LOHI(SDNode
*N
);
160 SDValue
visitSDIVREM(SDNode
*N
);
161 SDValue
visitUDIVREM(SDNode
*N
);
162 SDValue
visitAND(SDNode
*N
);
163 SDValue
visitOR(SDNode
*N
);
164 SDValue
visitXOR(SDNode
*N
);
165 SDValue
SimplifyVBinOp(SDNode
*N
);
166 SDValue
visitSHL(SDNode
*N
);
167 SDValue
visitSRA(SDNode
*N
);
168 SDValue
visitSRL(SDNode
*N
);
169 SDValue
visitCTLZ(SDNode
*N
);
170 SDValue
visitCTTZ(SDNode
*N
);
171 SDValue
visitCTPOP(SDNode
*N
);
172 SDValue
visitSELECT(SDNode
*N
);
173 SDValue
visitSELECT_CC(SDNode
*N
);
174 SDValue
visitSETCC(SDNode
*N
);
175 SDValue
visitSIGN_EXTEND(SDNode
*N
);
176 SDValue
visitZERO_EXTEND(SDNode
*N
);
177 SDValue
visitANY_EXTEND(SDNode
*N
);
178 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
179 SDValue
visitTRUNCATE(SDNode
*N
);
180 SDValue
visitBIT_CONVERT(SDNode
*N
);
181 SDValue
visitBUILD_PAIR(SDNode
*N
);
182 SDValue
visitFADD(SDNode
*N
);
183 SDValue
visitFSUB(SDNode
*N
);
184 SDValue
visitFMUL(SDNode
*N
);
185 SDValue
visitFDIV(SDNode
*N
);
186 SDValue
visitFREM(SDNode
*N
);
187 SDValue
visitFCOPYSIGN(SDNode
*N
);
188 SDValue
visitSINT_TO_FP(SDNode
*N
);
189 SDValue
visitUINT_TO_FP(SDNode
*N
);
190 SDValue
visitFP_TO_SINT(SDNode
*N
);
191 SDValue
visitFP_TO_UINT(SDNode
*N
);
192 SDValue
visitFP_ROUND(SDNode
*N
);
193 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
194 SDValue
visitFP_EXTEND(SDNode
*N
);
195 SDValue
visitFNEG(SDNode
*N
);
196 SDValue
visitFABS(SDNode
*N
);
197 SDValue
visitBRCOND(SDNode
*N
);
198 SDValue
visitBR_CC(SDNode
*N
);
199 SDValue
visitLOAD(SDNode
*N
);
200 SDValue
visitSTORE(SDNode
*N
);
201 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
202 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
203 SDValue
visitBUILD_VECTOR(SDNode
*N
);
204 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
205 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
207 SDValue
XformToShuffleWithZero(SDNode
*N
);
208 SDValue
ReassociateOps(unsigned Opc
, DebugLoc DL
, SDValue LHS
, SDValue RHS
);
210 SDValue
visitShiftByConstant(SDNode
*N
, unsigned Amt
);
212 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
213 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
214 SDValue
SimplifySelect(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
);
215 SDValue
SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
,
216 SDValue N3
, ISD::CondCode CC
,
217 bool NotExtCompare
= false);
218 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
219 DebugLoc DL
, bool foldBooleans
= true);
220 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
222 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
223 SDValue
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*, EVT
);
224 SDValue
BuildSDIV(SDNode
*N
);
225 SDValue
BuildUDIV(SDNode
*N
);
226 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
);
227 SDValue
ReduceLoadWidth(SDNode
*N
);
228 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
230 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
232 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
233 /// looking for aliasing nodes and adding them to the Aliases vector.
234 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
235 SmallVector
<SDValue
, 8> &Aliases
);
237 /// isAlias - Return true if there is any possibility that the two addresses
239 bool isAlias(SDValue Ptr1
, int64_t Size1
,
240 const Value
*SrcValue1
, int SrcValueOffset1
,
241 SDValue Ptr2
, int64_t Size2
,
242 const Value
*SrcValue2
, int SrcValueOffset2
) const;
244 /// FindAliasInfo - Extracts the relevant alias information from the memory
245 /// node. Returns true if the operand was a load.
246 bool FindAliasInfo(SDNode
*N
,
247 SDValue
&Ptr
, int64_t &Size
,
248 const Value
*&SrcValue
, int &SrcValueOffset
) const;
250 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
251 /// looking for a better chain (aliasing node.)
252 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
254 /// getShiftAmountTy - Returns a type large enough to hold any valid
255 /// shift amount - before type legalization these can be huge.
256 EVT
getShiftAmountTy() {
257 return LegalTypes
? TLI
.getShiftAmountTy() : TLI
.getPointerTy();
261 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
, CodeGenOpt::Level OL
)
263 TLI(D
.getTargetLoweringInfo()),
266 LegalOperations(false),
270 /// Run - runs the dag combiner on all nodes in the work list
271 void Run(CombineLevel AtLevel
);
277 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
278 /// nodes from the worklist.
279 class VISIBILITY_HIDDEN WorkListRemover
:
280 public SelectionDAG::DAGUpdateListener
{
283 explicit WorkListRemover(DAGCombiner
&dc
) : DC(dc
) {}
285 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
286 DC
.removeFromWorkList(N
);
289 virtual void NodeUpdated(SDNode
*N
) {
295 //===----------------------------------------------------------------------===//
296 // TargetLowering::DAGCombinerInfo implementation
297 //===----------------------------------------------------------------------===//
299 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
300 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
303 SDValue
TargetLowering::DAGCombinerInfo::
304 CombineTo(SDNode
*N
, const std::vector
<SDValue
> &To
, bool AddTo
) {
305 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
308 SDValue
TargetLowering::DAGCombinerInfo::
309 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
310 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
314 SDValue
TargetLowering::DAGCombinerInfo::
315 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
316 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
319 void TargetLowering::DAGCombinerInfo::
320 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
321 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
324 //===----------------------------------------------------------------------===//
326 //===----------------------------------------------------------------------===//
328 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
329 /// specified expression for the same cost as the expression itself, or 2 if we
330 /// can compute the negated form more cheaply than the expression itself.
331 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
332 unsigned Depth
= 0) {
333 // No compile time optimizations on this type.
334 if (Op
.getValueType() == MVT::ppcf128
)
337 // fneg is removable even if it has multiple uses.
338 if (Op
.getOpcode() == ISD::FNEG
) return 2;
340 // Don't allow anything with multiple uses.
341 if (!Op
.hasOneUse()) return 0;
343 // Don't recurse exponentially.
344 if (Depth
> 6) return 0;
346 switch (Op
.getOpcode()) {
347 default: return false;
348 case ISD::ConstantFP
:
349 // Don't invert constant FP values after legalize. The negated constant
350 // isn't necessarily legal.
351 return LegalOperations
? 0 : 1;
353 // FIXME: determine better conditions for this xform.
354 if (!UnsafeFPMath
) return 0;
356 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
357 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
359 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
360 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
362 // We can't turn -(A-B) into B-A when we honor signed zeros.
363 if (!UnsafeFPMath
) return 0;
365 // fold (fneg (fsub A, B)) -> (fsub B, A)
370 if (HonorSignDependentRoundingFPMath()) return 0;
372 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
373 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
376 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
381 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1);
385 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
386 /// returns the newly negated expression.
387 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
388 bool LegalOperations
, unsigned Depth
= 0) {
389 // fneg is removable even if it has multiple uses.
390 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
392 // Don't allow anything with multiple uses.
393 assert(Op
.hasOneUse() && "Unknown reuse!");
395 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
396 switch (Op
.getOpcode()) {
397 default: llvm_unreachable("Unknown code");
398 case ISD::ConstantFP
: {
399 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
401 return DAG
.getConstantFP(V
, Op
.getValueType());
404 // FIXME: determine better conditions for this xform.
405 assert(UnsafeFPMath
);
407 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
408 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
409 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
410 GetNegatedExpression(Op
.getOperand(0), DAG
,
411 LegalOperations
, Depth
+1),
413 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
414 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
415 GetNegatedExpression(Op
.getOperand(1), DAG
,
416 LegalOperations
, Depth
+1),
419 // We can't turn -(A-B) into B-A when we honor signed zeros.
420 assert(UnsafeFPMath
);
422 // fold (fneg (fsub 0, B)) -> B
423 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
424 if (N0CFP
->getValueAPF().isZero())
425 return Op
.getOperand(1);
427 // fold (fneg (fsub A, B)) -> (fsub B, A)
428 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
429 Op
.getOperand(1), Op
.getOperand(0));
433 assert(!HonorSignDependentRoundingFPMath());
435 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
436 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
437 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
438 GetNegatedExpression(Op
.getOperand(0), DAG
,
439 LegalOperations
, Depth
+1),
442 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
443 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
445 GetNegatedExpression(Op
.getOperand(1), DAG
,
446 LegalOperations
, Depth
+1));
450 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
451 GetNegatedExpression(Op
.getOperand(0), DAG
,
452 LegalOperations
, Depth
+1));
454 return DAG
.getNode(ISD::FP_ROUND
, Op
.getDebugLoc(), Op
.getValueType(),
455 GetNegatedExpression(Op
.getOperand(0), DAG
,
456 LegalOperations
, Depth
+1),
462 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
463 // that selects between the values 1 and 0, making it equivalent to a setcc.
464 // Also, set the incoming LHS, RHS, and CC references to the appropriate
465 // nodes based on the type of node we are checking. This simplifies life a
466 // bit for the callers.
467 static bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
469 if (N
.getOpcode() == ISD::SETCC
) {
470 LHS
= N
.getOperand(0);
471 RHS
= N
.getOperand(1);
472 CC
= N
.getOperand(2);
475 if (N
.getOpcode() == ISD::SELECT_CC
&&
476 N
.getOperand(2).getOpcode() == ISD::Constant
&&
477 N
.getOperand(3).getOpcode() == ISD::Constant
&&
478 cast
<ConstantSDNode
>(N
.getOperand(2))->getAPIntValue() == 1 &&
479 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
480 LHS
= N
.getOperand(0);
481 RHS
= N
.getOperand(1);
482 CC
= N
.getOperand(4);
488 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
489 // one use. If this is true, it allows the users to invert the operation for
490 // free when it is profitable to do so.
491 static bool isOneUseSetCC(SDValue N
) {
493 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
498 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, DebugLoc DL
,
499 SDValue N0
, SDValue N1
) {
500 EVT VT
= N0
.getValueType();
501 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
502 if (isa
<ConstantSDNode
>(N1
)) {
503 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
505 DAG
.FoldConstantArithmetic(Opc
, VT
,
506 cast
<ConstantSDNode
>(N0
.getOperand(1)),
507 cast
<ConstantSDNode
>(N1
));
508 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
509 } else if (N0
.hasOneUse()) {
510 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
511 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
512 N0
.getOperand(0), N1
);
513 AddToWorkList(OpNode
.getNode());
514 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
518 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
519 if (isa
<ConstantSDNode
>(N0
)) {
520 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
522 DAG
.FoldConstantArithmetic(Opc
, VT
,
523 cast
<ConstantSDNode
>(N1
.getOperand(1)),
524 cast
<ConstantSDNode
>(N0
));
525 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
526 } else if (N1
.hasOneUse()) {
527 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
528 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
529 N1
.getOperand(0), N0
);
530 AddToWorkList(OpNode
.getNode());
531 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
538 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
540 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
542 DOUT
<< "\nReplacing.1 "; DEBUG(N
->dump(&DAG
));
543 DOUT
<< "\nWith: "; DEBUG(To
[0].getNode()->dump(&DAG
));
544 DOUT
<< " and " << NumTo
-1 << " other values\n";
545 DEBUG(for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
546 assert(N
->getValueType(i
) == To
[i
].getValueType() &&
547 "Cannot combine value to value of different type!"));
548 WorkListRemover
DeadNodes(*this);
549 DAG
.ReplaceAllUsesWith(N
, To
, &DeadNodes
);
552 // Push the new nodes and any users onto the worklist
553 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
554 if (To
[i
].getNode()) {
555 AddToWorkList(To
[i
].getNode());
556 AddUsersToWorkList(To
[i
].getNode());
561 // Finally, if the node is now dead, remove it from the graph. The node
562 // may not be dead if the replacement process recursively simplified to
563 // something else needing this node.
564 if (N
->use_empty()) {
565 // Nodes can be reintroduced into the worklist. Make sure we do not
566 // process a node that has been replaced.
567 removeFromWorkList(N
);
569 // Finally, since the node is now dead, remove it from the graph.
572 return SDValue(N
, 0);
576 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&
578 // Replace all uses. If any nodes become isomorphic to other nodes and
579 // are deleted, make sure to remove them from our worklist.
580 WorkListRemover
DeadNodes(*this);
581 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, &DeadNodes
);
583 // Push the new node and any (possibly new) users onto the worklist.
584 AddToWorkList(TLO
.New
.getNode());
585 AddUsersToWorkList(TLO
.New
.getNode());
587 // Finally, if the node is now dead, remove it from the graph. The node
588 // may not be dead if the replacement process recursively simplified to
589 // something else needing this node.
590 if (TLO
.Old
.getNode()->use_empty()) {
591 removeFromWorkList(TLO
.Old
.getNode());
593 // If the operands of this node are only used by the node, they will now
594 // be dead. Make sure to visit them first to delete dead nodes early.
595 for (unsigned i
= 0, e
= TLO
.Old
.getNode()->getNumOperands(); i
!= e
; ++i
)
596 if (TLO
.Old
.getNode()->getOperand(i
).getNode()->hasOneUse())
597 AddToWorkList(TLO
.Old
.getNode()->getOperand(i
).getNode());
599 DAG
.DeleteNode(TLO
.Old
.getNode());
603 /// SimplifyDemandedBits - Check the specified integer node value to see if
604 /// it can be simplified or if things it uses can be simplified by bit
605 /// propagation. If so, return true.
606 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
607 TargetLowering::TargetLoweringOpt
TLO(DAG
);
608 APInt KnownZero
, KnownOne
;
609 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
613 AddToWorkList(Op
.getNode());
615 // Replace the old value with the new one.
617 DOUT
<< "\nReplacing.2 "; DEBUG(TLO
.Old
.getNode()->dump(&DAG
));
618 DOUT
<< "\nWith: "; DEBUG(TLO
.New
.getNode()->dump(&DAG
));
621 CommitTargetLoweringOpt(TLO
);
625 //===----------------------------------------------------------------------===//
626 // Main DAG Combiner implementation
627 //===----------------------------------------------------------------------===//
629 void DAGCombiner::Run(CombineLevel AtLevel
) {
630 // set the instance variables, so that the various visit routines may use it.
632 LegalOperations
= Level
>= NoIllegalOperations
;
633 LegalTypes
= Level
>= NoIllegalTypes
;
635 // Add all the dag nodes to the worklist.
636 WorkList
.reserve(DAG
.allnodes_size());
637 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
638 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
639 WorkList
.push_back(I
);
641 // Create a dummy node (which is not added to allnodes), that adds a reference
642 // to the root node, preventing it from being deleted, and tracking any
643 // changes of the root.
644 HandleSDNode
Dummy(DAG
.getRoot());
646 // The root of the dag may dangle to deleted nodes until the dag combiner is
647 // done. Set it to null to avoid confusion.
648 DAG
.setRoot(SDValue());
650 // while the worklist isn't empty, inspect the node on the end of it and
651 // try and combine it.
652 while (!WorkList
.empty()) {
653 SDNode
*N
= WorkList
.back();
656 // If N has no uses, it is dead. Make sure to revisit all N's operands once
657 // N is deleted from the DAG, since they too may now be dead or may have a
658 // reduced number of uses, allowing other xforms.
659 if (N
->use_empty() && N
!= &Dummy
) {
660 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
661 AddToWorkList(N
->getOperand(i
).getNode());
667 SDValue RV
= combine(N
);
669 if (RV
.getNode() == 0)
674 // If we get back the same node we passed in, rather than a new node or
675 // zero, we know that the node must have defined multiple values and
676 // CombineTo was used. Since CombineTo takes care of the worklist
677 // mechanics for us, we have no work to do in this case.
678 if (RV
.getNode() == N
)
681 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
682 RV
.getNode()->getOpcode() != ISD::DELETED_NODE
&&
683 "Node was deleted but visit returned new node!");
685 DOUT
<< "\nReplacing.3 "; DEBUG(N
->dump(&DAG
));
686 DOUT
<< "\nWith: "; DEBUG(RV
.getNode()->dump(&DAG
));
688 WorkListRemover
DeadNodes(*this);
689 if (N
->getNumValues() == RV
.getNode()->getNumValues())
690 DAG
.ReplaceAllUsesWith(N
, RV
.getNode(), &DeadNodes
);
692 assert(N
->getValueType(0) == RV
.getValueType() &&
693 N
->getNumValues() == 1 && "Type mismatch");
695 DAG
.ReplaceAllUsesWith(N
, &OpV
, &DeadNodes
);
698 // Push the new node and any users onto the worklist
699 AddToWorkList(RV
.getNode());
700 AddUsersToWorkList(RV
.getNode());
702 // Add any uses of the old node to the worklist in case this node is the
703 // last one that uses them. They may become dead after this node is
705 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
706 AddToWorkList(N
->getOperand(i
).getNode());
708 // Finally, if the node is now dead, remove it from the graph. The node
709 // may not be dead if the replacement process recursively simplified to
710 // something else needing this node.
711 if (N
->use_empty()) {
712 // Nodes can be reintroduced into the worklist. Make sure we do not
713 // process a node that has been replaced.
714 removeFromWorkList(N
);
716 // Finally, since the node is now dead, remove it from the graph.
721 // If the root changed (e.g. it was a dead load, update the root).
722 DAG
.setRoot(Dummy
.getValue());
725 SDValue
DAGCombiner::visit(SDNode
*N
) {
726 switch(N
->getOpcode()) {
728 case ISD::TokenFactor
: return visitTokenFactor(N
);
729 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
730 case ISD::ADD
: return visitADD(N
);
731 case ISD::SUB
: return visitSUB(N
);
732 case ISD::ADDC
: return visitADDC(N
);
733 case ISD::ADDE
: return visitADDE(N
);
734 case ISD::MUL
: return visitMUL(N
);
735 case ISD::SDIV
: return visitSDIV(N
);
736 case ISD::UDIV
: return visitUDIV(N
);
737 case ISD::SREM
: return visitSREM(N
);
738 case ISD::UREM
: return visitUREM(N
);
739 case ISD::MULHU
: return visitMULHU(N
);
740 case ISD::MULHS
: return visitMULHS(N
);
741 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
742 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
743 case ISD::SDIVREM
: return visitSDIVREM(N
);
744 case ISD::UDIVREM
: return visitUDIVREM(N
);
745 case ISD::AND
: return visitAND(N
);
746 case ISD::OR
: return visitOR(N
);
747 case ISD::XOR
: return visitXOR(N
);
748 case ISD::SHL
: return visitSHL(N
);
749 case ISD::SRA
: return visitSRA(N
);
750 case ISD::SRL
: return visitSRL(N
);
751 case ISD::CTLZ
: return visitCTLZ(N
);
752 case ISD::CTTZ
: return visitCTTZ(N
);
753 case ISD::CTPOP
: return visitCTPOP(N
);
754 case ISD::SELECT
: return visitSELECT(N
);
755 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
756 case ISD::SETCC
: return visitSETCC(N
);
757 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
758 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
759 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
760 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
761 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
762 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
763 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
764 case ISD::FADD
: return visitFADD(N
);
765 case ISD::FSUB
: return visitFSUB(N
);
766 case ISD::FMUL
: return visitFMUL(N
);
767 case ISD::FDIV
: return visitFDIV(N
);
768 case ISD::FREM
: return visitFREM(N
);
769 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
770 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
771 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
772 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
773 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
774 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
775 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
776 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
777 case ISD::FNEG
: return visitFNEG(N
);
778 case ISD::FABS
: return visitFABS(N
);
779 case ISD::BRCOND
: return visitBRCOND(N
);
780 case ISD::BR_CC
: return visitBR_CC(N
);
781 case ISD::LOAD
: return visitLOAD(N
);
782 case ISD::STORE
: return visitSTORE(N
);
783 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
784 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
785 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
786 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
787 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
792 SDValue
DAGCombiner::combine(SDNode
*N
) {
793 SDValue RV
= visit(N
);
795 // If nothing happened, try a target-specific DAG combine.
796 if (RV
.getNode() == 0) {
797 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
798 "Node was deleted but visit returned NULL!");
800 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
801 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
803 // Expose the DAG combiner to the target combiner impls.
804 TargetLowering::DAGCombinerInfo
805 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
807 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
811 // If N is a commutative binary node, try commuting it to enable more
813 if (RV
.getNode() == 0 &&
814 SelectionDAG::isCommutativeBinOp(N
->getOpcode()) &&
815 N
->getNumValues() == 1) {
816 SDValue N0
= N
->getOperand(0);
817 SDValue N1
= N
->getOperand(1);
819 // Constant operands are canonicalized to RHS.
820 if (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
)) {
821 SDValue Ops
[] = { N1
, N0
};
822 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(),
825 return SDValue(CSENode
, 0);
832 /// getInputChainForNode - Given a node, return its input chain if it has one,
833 /// otherwise return a null sd operand.
834 static SDValue
getInputChainForNode(SDNode
*N
) {
835 if (unsigned NumOps
= N
->getNumOperands()) {
836 if (N
->getOperand(0).getValueType() == MVT::Other
)
837 return N
->getOperand(0);
838 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
839 return N
->getOperand(NumOps
-1);
840 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
841 if (N
->getOperand(i
).getValueType() == MVT::Other
)
842 return N
->getOperand(i
);
847 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
848 // If N has two operands, where one has an input chain equal to the other,
849 // the 'other' chain is redundant.
850 if (N
->getNumOperands() == 2) {
851 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
852 return N
->getOperand(0);
853 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
854 return N
->getOperand(1);
857 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
858 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
859 SmallPtrSet
<SDNode
*, 16> SeenOps
;
860 bool Changed
= false; // If we should replace this token factor.
862 // Start out with this token factor.
865 // Iterate through token factors. The TFs grows when new token factors are
867 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
870 // Check each of the operands.
871 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
872 SDValue Op
= TF
->getOperand(i
);
874 switch (Op
.getOpcode()) {
875 case ISD::EntryToken
:
876 // Entry tokens don't need to be added to the list. They are
881 case ISD::TokenFactor
:
882 if ((CombinerAA
|| Op
.hasOneUse()) &&
883 std::find(TFs
.begin(), TFs
.end(), Op
.getNode()) == TFs
.end()) {
884 // Queue up for processing.
885 TFs
.push_back(Op
.getNode());
886 // Clean up in case the token factor is removed.
887 AddToWorkList(Op
.getNode());
894 // Only add if it isn't already in the list.
895 if (SeenOps
.insert(Op
.getNode()))
906 // If we've change things around then replace token factor.
909 // The entry token is the only possible outcome.
910 Result
= DAG
.getEntryNode();
912 // New and improved token factor.
913 Result
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
914 MVT::Other
, &Ops
[0], Ops
.size());
917 // Don't add users to work list.
918 return CombineTo(N
, Result
, false);
924 /// MERGE_VALUES can always be eliminated.
925 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
926 WorkListRemover
DeadNodes(*this);
927 // Replacing results may cause a different MERGE_VALUES to suddenly
928 // be CSE'd with N, and carry its uses with it. Iterate until no
929 // uses remain, to ensure that the node can be safely deleted.
931 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
932 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
),
934 } while (!N
->use_empty());
935 removeFromWorkList(N
);
937 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
941 SDValue
combineShlAddConstant(DebugLoc DL
, SDValue N0
, SDValue N1
,
943 EVT VT
= N0
.getValueType();
944 SDValue N00
= N0
.getOperand(0);
945 SDValue N01
= N0
.getOperand(1);
946 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
948 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.getNode()->hasOneUse() &&
949 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
950 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
951 N0
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
,
952 DAG
.getNode(ISD::SHL
, N00
.getDebugLoc(), VT
,
953 N00
.getOperand(0), N01
),
954 DAG
.getNode(ISD::SHL
, N01
.getDebugLoc(), VT
,
955 N00
.getOperand(1), N01
));
956 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
962 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
963 SDValue N0
= N
->getOperand(0);
964 SDValue N1
= N
->getOperand(1);
965 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
966 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
967 EVT VT
= N0
.getValueType();
971 SDValue FoldedVOp
= SimplifyVBinOp(N
);
972 if (FoldedVOp
.getNode()) return FoldedVOp
;
975 // fold (add x, undef) -> undef
976 if (N0
.getOpcode() == ISD::UNDEF
)
978 if (N1
.getOpcode() == ISD::UNDEF
)
980 // fold (add c1, c2) -> c1+c2
982 return DAG
.FoldConstantArithmetic(ISD::ADD
, VT
, N0C
, N1C
);
983 // canonicalize constant to RHS
985 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
);
986 // fold (add x, 0) -> x
987 if (N1C
&& N1C
->isNullValue())
989 // fold (add Sym, c) -> Sym+c
990 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
991 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
) && N1C
&&
992 GA
->getOpcode() == ISD::GlobalAddress
)
993 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
995 (uint64_t)N1C
->getSExtValue());
996 // fold ((c1-A)+c2) -> (c1+c2)-A
997 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
998 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
999 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1000 DAG
.getConstant(N1C
->getAPIntValue()+
1001 N0C
->getAPIntValue(), VT
),
1004 SDValue RADD
= ReassociateOps(ISD::ADD
, N
->getDebugLoc(), N0
, N1
);
1005 if (RADD
.getNode() != 0)
1007 // fold ((0-A) + B) -> B-A
1008 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
1009 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
1010 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
, N0
.getOperand(1));
1011 // fold (A + (0-B)) -> A-B
1012 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
1013 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
1014 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, N1
.getOperand(1));
1015 // fold (A+(B-A)) -> B
1016 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
1017 return N1
.getOperand(0);
1018 // fold ((B-A)+A) -> B
1019 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
1020 return N0
.getOperand(0);
1021 // fold (A+(B-(A+C))) to (B-C)
1022 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1023 N0
== N1
.getOperand(1).getOperand(0))
1024 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1025 N1
.getOperand(1).getOperand(1));
1026 // fold (A+(B-(C+A))) to (B-C)
1027 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1028 N0
== N1
.getOperand(1).getOperand(1))
1029 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1030 N1
.getOperand(1).getOperand(0));
1031 // fold (A+((B-A)+or-C)) to (B+or-C)
1032 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
1033 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
1034 N0
== N1
.getOperand(0).getOperand(1))
1035 return DAG
.getNode(N1
.getOpcode(), N
->getDebugLoc(), VT
,
1036 N1
.getOperand(0).getOperand(0), N1
.getOperand(1));
1038 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1039 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
1040 SDValue N00
= N0
.getOperand(0);
1041 SDValue N01
= N0
.getOperand(1);
1042 SDValue N10
= N1
.getOperand(0);
1043 SDValue N11
= N1
.getOperand(1);
1045 if (isa
<ConstantSDNode
>(N00
) || isa
<ConstantSDNode
>(N10
))
1046 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1047 DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
, N00
, N10
),
1048 DAG
.getNode(ISD::ADD
, N1
.getDebugLoc(), VT
, N01
, N11
));
1051 if (!VT
.isVector() && SimplifyDemandedBits(SDValue(N
, 0)))
1052 return SDValue(N
, 0);
1054 // fold (a+b) -> (a|b) iff a and b share no bits.
1055 if (VT
.isInteger() && !VT
.isVector()) {
1056 APInt LHSZero
, LHSOne
;
1057 APInt RHSZero
, RHSOne
;
1058 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1059 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1061 if (LHSZero
.getBoolValue()) {
1062 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1064 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1065 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1066 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1067 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1068 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
);
1072 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1073 if (N0
.getOpcode() == ISD::SHL
&& N0
.getNode()->hasOneUse()) {
1074 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N0
, N1
, DAG
);
1075 if (Result
.getNode()) return Result
;
1077 if (N1
.getOpcode() == ISD::SHL
&& N1
.getNode()->hasOneUse()) {
1078 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N1
, N0
, DAG
);
1079 if (Result
.getNode()) return Result
;
1085 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
1086 SDValue N0
= N
->getOperand(0);
1087 SDValue N1
= N
->getOperand(1);
1088 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1089 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1090 EVT VT
= N0
.getValueType();
1092 // If the flag result is dead, turn this into an ADD.
1093 if (N
->hasNUsesOfValue(0, 1))
1094 return CombineTo(N
, DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
),
1095 DAG
.getNode(ISD::CARRY_FALSE
,
1096 N
->getDebugLoc(), MVT::Flag
));
1098 // canonicalize constant to RHS.
1100 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1102 // fold (addc x, 0) -> x + no carry out
1103 if (N1C
&& N1C
->isNullValue())
1104 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
1105 N
->getDebugLoc(), MVT::Flag
));
1107 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1108 APInt LHSZero
, LHSOne
;
1109 APInt RHSZero
, RHSOne
;
1110 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1111 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1113 if (LHSZero
.getBoolValue()) {
1114 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1116 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1117 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1118 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1119 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1120 return CombineTo(N
, DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
),
1121 DAG
.getNode(ISD::CARRY_FALSE
,
1122 N
->getDebugLoc(), MVT::Flag
));
1128 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
1129 SDValue N0
= N
->getOperand(0);
1130 SDValue N1
= N
->getOperand(1);
1131 SDValue CarryIn
= N
->getOperand(2);
1132 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1133 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1135 // canonicalize constant to RHS
1137 return DAG
.getNode(ISD::ADDE
, N
->getDebugLoc(), N
->getVTList(),
1140 // fold (adde x, y, false) -> (addc x, y)
1141 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
1142 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1147 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
1148 SDValue N0
= N
->getOperand(0);
1149 SDValue N1
= N
->getOperand(1);
1150 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1151 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1152 EVT VT
= N0
.getValueType();
1155 if (VT
.isVector()) {
1156 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1157 if (FoldedVOp
.getNode()) return FoldedVOp
;
1160 // fold (sub x, x) -> 0
1162 return DAG
.getConstant(0, N
->getValueType(0));
1163 // fold (sub c1, c2) -> c1-c2
1165 return DAG
.FoldConstantArithmetic(ISD::SUB
, VT
, N0C
, N1C
);
1166 // fold (sub x, c) -> (add x, -c)
1168 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
,
1169 DAG
.getConstant(-N1C
->getAPIntValue(), VT
));
1170 // fold (A+B)-A -> B
1171 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
1172 return N0
.getOperand(1);
1173 // fold (A+B)-B -> A
1174 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
1175 return N0
.getOperand(0);
1176 // fold ((A+(B+or-C))-B) -> A+or-C
1177 if (N0
.getOpcode() == ISD::ADD
&&
1178 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
1179 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
1180 N0
.getOperand(1).getOperand(0) == N1
)
1181 return DAG
.getNode(N0
.getOperand(1).getOpcode(), N
->getDebugLoc(), VT
,
1182 N0
.getOperand(0), N0
.getOperand(1).getOperand(1));
1183 // fold ((A+(C+B))-B) -> A+C
1184 if (N0
.getOpcode() == ISD::ADD
&&
1185 N0
.getOperand(1).getOpcode() == ISD::ADD
&&
1186 N0
.getOperand(1).getOperand(1) == N1
)
1187 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1188 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1189 // fold ((A-(B-C))-C) -> A-B
1190 if (N0
.getOpcode() == ISD::SUB
&&
1191 N0
.getOperand(1).getOpcode() == ISD::SUB
&&
1192 N0
.getOperand(1).getOperand(1) == N1
)
1193 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1194 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1196 // If either operand of a sub is undef, the result is undef
1197 if (N0
.getOpcode() == ISD::UNDEF
)
1199 if (N1
.getOpcode() == ISD::UNDEF
)
1202 // If the relocation model supports it, consider symbol offsets.
1203 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1204 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
1205 // fold (sub Sym, c) -> Sym-c
1206 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
1207 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
1209 (uint64_t)N1C
->getSExtValue());
1210 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1211 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
1212 if (GA
->getGlobal() == GB
->getGlobal())
1213 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
1220 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
1221 SDValue N0
= N
->getOperand(0);
1222 SDValue N1
= N
->getOperand(1);
1223 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1224 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1225 EVT VT
= N0
.getValueType();
1228 if (VT
.isVector()) {
1229 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1230 if (FoldedVOp
.getNode()) return FoldedVOp
;
1233 // fold (mul x, undef) -> 0
1234 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1235 return DAG
.getConstant(0, VT
);
1236 // fold (mul c1, c2) -> c1*c2
1238 return DAG
.FoldConstantArithmetic(ISD::MUL
, VT
, N0C
, N1C
);
1239 // canonicalize constant to RHS
1241 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
, N1
, N0
);
1242 // fold (mul x, 0) -> 0
1243 if (N1C
&& N1C
->isNullValue())
1245 // fold (mul x, -1) -> 0-x
1246 if (N1C
&& N1C
->isAllOnesValue())
1247 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1248 DAG
.getConstant(0, VT
), N0
);
1249 // fold (mul x, (1 << c)) -> x << c
1250 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1251 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1252 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1253 getShiftAmountTy()));
1254 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1255 if (N1C
&& (-N1C
->getAPIntValue()).isPowerOf2()) {
1256 unsigned Log2Val
= (-N1C
->getAPIntValue()).logBase2();
1257 // FIXME: If the input is something that is easily negated (e.g. a
1258 // single-use add), we should put the negate there.
1259 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1260 DAG
.getConstant(0, VT
),
1261 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1262 DAG
.getConstant(Log2Val
, getShiftAmountTy())));
1264 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1265 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1266 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1267 SDValue C3
= DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1268 N1
, N0
.getOperand(1));
1269 AddToWorkList(C3
.getNode());
1270 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1271 N0
.getOperand(0), C3
);
1274 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1277 SDValue
Sh(0,0), Y(0,0);
1278 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1279 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1280 N0
.getNode()->hasOneUse()) {
1282 } else if (N1
.getOpcode() == ISD::SHL
&&
1283 isa
<ConstantSDNode
>(N1
.getOperand(1)) &&
1284 N1
.getNode()->hasOneUse()) {
1289 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1290 Sh
.getOperand(0), Y
);
1291 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1292 Mul
, Sh
.getOperand(1));
1296 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1297 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse() &&
1298 isa
<ConstantSDNode
>(N0
.getOperand(1)))
1299 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1300 DAG
.getNode(ISD::MUL
, N0
.getDebugLoc(), VT
,
1301 N0
.getOperand(0), N1
),
1302 DAG
.getNode(ISD::MUL
, N1
.getDebugLoc(), VT
,
1303 N0
.getOperand(1), N1
));
1306 SDValue RMUL
= ReassociateOps(ISD::MUL
, N
->getDebugLoc(), N0
, N1
);
1307 if (RMUL
.getNode() != 0)
1313 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
1314 SDValue N0
= N
->getOperand(0);
1315 SDValue N1
= N
->getOperand(1);
1316 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1317 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1318 EVT VT
= N
->getValueType(0);
1321 if (VT
.isVector()) {
1322 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1323 if (FoldedVOp
.getNode()) return FoldedVOp
;
1326 // fold (sdiv c1, c2) -> c1/c2
1327 if (N0C
&& N1C
&& !N1C
->isNullValue())
1328 return DAG
.FoldConstantArithmetic(ISD::SDIV
, VT
, N0C
, N1C
);
1329 // fold (sdiv X, 1) -> X
1330 if (N1C
&& N1C
->getSExtValue() == 1LL)
1332 // fold (sdiv X, -1) -> 0-X
1333 if (N1C
&& N1C
->isAllOnesValue())
1334 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1335 DAG
.getConstant(0, VT
), N0
);
1336 // If we know the sign bits of both operands are zero, strength reduce to a
1337 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1338 if (!VT
.isVector()) {
1339 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1340 return DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), N1
.getValueType(),
1343 // fold (sdiv X, pow2) -> simple ops after legalize
1344 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap() &&
1345 (isPowerOf2_64(N1C
->getSExtValue()) ||
1346 isPowerOf2_64(-N1C
->getSExtValue()))) {
1347 // If dividing by powers of two is cheap, then don't perform the following
1349 if (TLI
.isPow2DivCheap())
1352 int64_t pow2
= N1C
->getSExtValue();
1353 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1354 unsigned lg2
= Log2_64(abs2
);
1356 // Splat the sign bit into the register
1357 SDValue SGN
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
1358 DAG
.getConstant(VT
.getSizeInBits()-1,
1359 getShiftAmountTy()));
1360 AddToWorkList(SGN
.getNode());
1362 // Add (N0 < 0) ? abs2 - 1 : 0;
1363 SDValue SRL
= DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, SGN
,
1364 DAG
.getConstant(VT
.getSizeInBits() - lg2
,
1365 getShiftAmountTy()));
1366 SDValue ADD
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
, SRL
);
1367 AddToWorkList(SRL
.getNode());
1368 AddToWorkList(ADD
.getNode()); // Divide by pow2
1369 SDValue SRA
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, ADD
,
1370 DAG
.getConstant(lg2
, getShiftAmountTy()));
1372 // If we're dividing by a positive value, we're done. Otherwise, we must
1373 // negate the result.
1377 AddToWorkList(SRA
.getNode());
1378 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1379 DAG
.getConstant(0, VT
), SRA
);
1382 // if integer divide is expensive and we satisfy the requirements, emit an
1383 // alternate sequence.
1384 if (N1C
&& (N1C
->getSExtValue() < -1 || N1C
->getSExtValue() > 1) &&
1385 !TLI
.isIntDivCheap()) {
1386 SDValue Op
= BuildSDIV(N
);
1387 if (Op
.getNode()) return Op
;
1391 if (N0
.getOpcode() == ISD::UNDEF
)
1392 return DAG
.getConstant(0, VT
);
1393 // X / undef -> undef
1394 if (N1
.getOpcode() == ISD::UNDEF
)
1400 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
1401 SDValue N0
= N
->getOperand(0);
1402 SDValue N1
= N
->getOperand(1);
1403 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1404 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1405 EVT VT
= N
->getValueType(0);
1408 if (VT
.isVector()) {
1409 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1410 if (FoldedVOp
.getNode()) return FoldedVOp
;
1413 // fold (udiv c1, c2) -> c1/c2
1414 if (N0C
&& N1C
&& !N1C
->isNullValue())
1415 return DAG
.FoldConstantArithmetic(ISD::UDIV
, VT
, N0C
, N1C
);
1416 // fold (udiv x, (1 << c)) -> x >>u c
1417 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1418 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
1419 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1420 getShiftAmountTy()));
1421 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1422 if (N1
.getOpcode() == ISD::SHL
) {
1423 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1424 if (SHC
->getAPIntValue().isPowerOf2()) {
1425 EVT ADDVT
= N1
.getOperand(1).getValueType();
1426 SDValue Add
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), ADDVT
,
1428 DAG
.getConstant(SHC
->getAPIntValue()
1431 AddToWorkList(Add
.getNode());
1432 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, Add
);
1436 // fold (udiv x, c) -> alternate
1437 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap()) {
1438 SDValue Op
= BuildUDIV(N
);
1439 if (Op
.getNode()) return Op
;
1443 if (N0
.getOpcode() == ISD::UNDEF
)
1444 return DAG
.getConstant(0, VT
);
1445 // X / undef -> undef
1446 if (N1
.getOpcode() == ISD::UNDEF
)
1452 SDValue
DAGCombiner::visitSREM(SDNode
*N
) {
1453 SDValue N0
= N
->getOperand(0);
1454 SDValue N1
= N
->getOperand(1);
1455 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1456 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1457 EVT VT
= N
->getValueType(0);
1459 // fold (srem c1, c2) -> c1%c2
1460 if (N0C
&& N1C
&& !N1C
->isNullValue())
1461 return DAG
.FoldConstantArithmetic(ISD::SREM
, VT
, N0C
, N1C
);
1462 // If we know the sign bits of both operands are zero, strength reduce to a
1463 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1464 if (!VT
.isVector()) {
1465 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1466 return DAG
.getNode(ISD::UREM
, N
->getDebugLoc(), VT
, N0
, N1
);
1469 // If X/C can be simplified by the division-by-constant logic, lower
1470 // X%C to the equivalent of X-X/C*C.
1471 if (N1C
&& !N1C
->isNullValue()) {
1472 SDValue Div
= DAG
.getNode(ISD::SDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1473 AddToWorkList(Div
.getNode());
1474 SDValue OptimizedDiv
= combine(Div
.getNode());
1475 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1476 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1478 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1479 AddToWorkList(Mul
.getNode());
1485 if (N0
.getOpcode() == ISD::UNDEF
)
1486 return DAG
.getConstant(0, VT
);
1487 // X % undef -> undef
1488 if (N1
.getOpcode() == ISD::UNDEF
)
1494 SDValue
DAGCombiner::visitUREM(SDNode
*N
) {
1495 SDValue N0
= N
->getOperand(0);
1496 SDValue N1
= N
->getOperand(1);
1497 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1498 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1499 EVT VT
= N
->getValueType(0);
1501 // fold (urem c1, c2) -> c1%c2
1502 if (N0C
&& N1C
&& !N1C
->isNullValue())
1503 return DAG
.FoldConstantArithmetic(ISD::UREM
, VT
, N0C
, N1C
);
1504 // fold (urem x, pow2) -> (and x, pow2-1)
1505 if (N1C
&& !N1C
->isNullValue() && N1C
->getAPIntValue().isPowerOf2())
1506 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
,
1507 DAG
.getConstant(N1C
->getAPIntValue()-1,VT
));
1508 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1509 if (N1
.getOpcode() == ISD::SHL
) {
1510 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1511 if (SHC
->getAPIntValue().isPowerOf2()) {
1513 DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
,
1514 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()),
1516 AddToWorkList(Add
.getNode());
1517 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, Add
);
1522 // If X/C can be simplified by the division-by-constant logic, lower
1523 // X%C to the equivalent of X-X/C*C.
1524 if (N1C
&& !N1C
->isNullValue()) {
1525 SDValue Div
= DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1526 AddToWorkList(Div
.getNode());
1527 SDValue OptimizedDiv
= combine(Div
.getNode());
1528 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1529 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1531 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1532 AddToWorkList(Mul
.getNode());
1538 if (N0
.getOpcode() == ISD::UNDEF
)
1539 return DAG
.getConstant(0, VT
);
1540 // X % undef -> undef
1541 if (N1
.getOpcode() == ISD::UNDEF
)
1547 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
1548 SDValue N0
= N
->getOperand(0);
1549 SDValue N1
= N
->getOperand(1);
1550 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1551 EVT VT
= N
->getValueType(0);
1553 // fold (mulhs x, 0) -> 0
1554 if (N1C
&& N1C
->isNullValue())
1556 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1557 if (N1C
&& N1C
->getAPIntValue() == 1)
1558 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), N0
.getValueType(), N0
,
1559 DAG
.getConstant(N0
.getValueType().getSizeInBits() - 1,
1560 getShiftAmountTy()));
1561 // fold (mulhs x, undef) -> 0
1562 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1563 return DAG
.getConstant(0, VT
);
1568 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
1569 SDValue N0
= N
->getOperand(0);
1570 SDValue N1
= N
->getOperand(1);
1571 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1572 EVT VT
= N
->getValueType(0);
1574 // fold (mulhu x, 0) -> 0
1575 if (N1C
&& N1C
->isNullValue())
1577 // fold (mulhu x, 1) -> 0
1578 if (N1C
&& N1C
->getAPIntValue() == 1)
1579 return DAG
.getConstant(0, N0
.getValueType());
1580 // fold (mulhu x, undef) -> 0
1581 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1582 return DAG
.getConstant(0, VT
);
1587 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1588 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1589 /// that are being performed. Return true if a simplification was made.
1591 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
1593 // If the high half is not needed, just compute the low half.
1594 bool HiExists
= N
->hasAnyUseOfValue(1);
1596 (!LegalOperations
||
1597 TLI
.isOperationLegal(LoOp
, N
->getValueType(0)))) {
1598 SDValue Res
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1599 N
->op_begin(), N
->getNumOperands());
1600 return CombineTo(N
, Res
, Res
);
1603 // If the low half is not needed, just compute the high half.
1604 bool LoExists
= N
->hasAnyUseOfValue(0);
1606 (!LegalOperations
||
1607 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
1608 SDValue Res
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1609 N
->op_begin(), N
->getNumOperands());
1610 return CombineTo(N
, Res
, Res
);
1613 // If both halves are used, return as it is.
1614 if (LoExists
&& HiExists
)
1617 // If the two computed results can be simplified separately, separate them.
1619 SDValue Lo
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1620 N
->op_begin(), N
->getNumOperands());
1621 AddToWorkList(Lo
.getNode());
1622 SDValue LoOpt
= combine(Lo
.getNode());
1623 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
1624 (!LegalOperations
||
1625 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
1626 return CombineTo(N
, LoOpt
, LoOpt
);
1630 SDValue Hi
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1631 N
->op_begin(), N
->getNumOperands());
1632 AddToWorkList(Hi
.getNode());
1633 SDValue HiOpt
= combine(Hi
.getNode());
1634 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
1635 (!LegalOperations
||
1636 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
1637 return CombineTo(N
, HiOpt
, HiOpt
);
1643 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
1644 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
);
1645 if (Res
.getNode()) return Res
;
1650 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
1651 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
);
1652 if (Res
.getNode()) return Res
;
1657 SDValue
DAGCombiner::visitSDIVREM(SDNode
*N
) {
1658 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::SDIV
, ISD::SREM
);
1659 if (Res
.getNode()) return Res
;
1664 SDValue
DAGCombiner::visitUDIVREM(SDNode
*N
) {
1665 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::UDIV
, ISD::UREM
);
1666 if (Res
.getNode()) return Res
;
1671 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1672 /// two operands of the same opcode, try to simplify it.
1673 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
1674 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
1675 EVT VT
= N0
.getValueType();
1676 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
1678 // For each of OP in AND/OR/XOR:
1679 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1680 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1681 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1682 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
1683 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
||
1684 N0
.getOpcode() == ISD::SIGN_EXTEND
||
1685 (N0
.getOpcode() == ISD::TRUNCATE
&&
1686 !TLI
.isTruncateFree(N0
.getOperand(0).getValueType(), VT
))) &&
1687 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType() &&
1688 (!LegalOperations
||
1689 TLI
.isOperationLegal(N
->getOpcode(), N0
.getOperand(0).getValueType()))) {
1690 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1691 N0
.getOperand(0).getValueType(),
1692 N0
.getOperand(0), N1
.getOperand(0));
1693 AddToWorkList(ORNode
.getNode());
1694 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, ORNode
);
1697 // For each of OP in SHL/SRL/SRA/AND...
1698 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1699 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1700 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1701 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
1702 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
1703 N0
.getOperand(1) == N1
.getOperand(1)) {
1704 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1705 N0
.getOperand(0).getValueType(),
1706 N0
.getOperand(0), N1
.getOperand(0));
1707 AddToWorkList(ORNode
.getNode());
1708 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
1709 ORNode
, N0
.getOperand(1));
1715 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
1716 SDValue N0
= N
->getOperand(0);
1717 SDValue N1
= N
->getOperand(1);
1718 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1719 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1720 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1721 EVT VT
= N1
.getValueType();
1722 unsigned BitWidth
= VT
.getSizeInBits();
1725 if (VT
.isVector()) {
1726 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1727 if (FoldedVOp
.getNode()) return FoldedVOp
;
1730 // fold (and x, undef) -> 0
1731 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1732 return DAG
.getConstant(0, VT
);
1733 // fold (and c1, c2) -> c1&c2
1735 return DAG
.FoldConstantArithmetic(ISD::AND
, VT
, N0C
, N1C
);
1736 // canonicalize constant to RHS
1738 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N1
, N0
);
1739 // fold (and x, -1) -> x
1740 if (N1C
&& N1C
->isAllOnesValue())
1742 // if (and x, c) is known to be zero, return 0
1743 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
1744 APInt::getAllOnesValue(BitWidth
)))
1745 return DAG
.getConstant(0, VT
);
1747 SDValue RAND
= ReassociateOps(ISD::AND
, N
->getDebugLoc(), N0
, N1
);
1748 if (RAND
.getNode() != 0)
1750 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1751 if (N1C
&& N0
.getOpcode() == ISD::OR
)
1752 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
1753 if ((ORI
->getAPIntValue() & N1C
->getAPIntValue()) == N1C
->getAPIntValue())
1755 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1756 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1757 SDValue N0Op0
= N0
.getOperand(0);
1758 APInt Mask
= ~N1C
->getAPIntValue();
1759 Mask
.trunc(N0Op0
.getValueSizeInBits());
1760 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
1761 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(),
1762 N0
.getValueType(), N0Op0
);
1764 // Replace uses of the AND with uses of the Zero extend node.
1767 // We actually want to replace all uses of the any_extend with the
1768 // zero_extend, to avoid duplicating things. This will later cause this
1769 // AND to be folded.
1770 CombineTo(N0
.getNode(), Zext
);
1771 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1774 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1775 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1776 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1777 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1779 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1780 LL
.getValueType().isInteger()) {
1781 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1782 if (cast
<ConstantSDNode
>(LR
)->isNullValue() && Op1
== ISD::SETEQ
) {
1783 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1784 LR
.getValueType(), LL
, RL
);
1785 AddToWorkList(ORNode
.getNode());
1786 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1788 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1789 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
1790 SDValue ANDNode
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(),
1791 LR
.getValueType(), LL
, RL
);
1792 AddToWorkList(ANDNode
.getNode());
1793 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1795 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1796 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
1797 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1798 LR
.getValueType(), LL
, RL
);
1799 AddToWorkList(ORNode
.getNode());
1800 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1803 // canonicalize equivalent to ll == rl
1804 if (LL
== RR
&& LR
== RL
) {
1805 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1808 if (LL
== RL
&& LR
== RR
) {
1809 bool isInteger
= LL
.getValueType().isInteger();
1810 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
1811 if (Result
!= ISD::SETCC_INVALID
&&
1812 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1813 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1818 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1819 if (N0
.getOpcode() == N1
.getOpcode()) {
1820 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1821 if (Tmp
.getNode()) return Tmp
;
1824 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1825 // fold (and (sra)) -> (and (srl)) when possible.
1826 if (!VT
.isVector() &&
1827 SimplifyDemandedBits(SDValue(N
, 0)))
1828 return SDValue(N
, 0);
1829 // fold (zext_inreg (extload x)) -> (zextload x)
1830 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
1831 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1832 EVT EVT
= LN0
->getMemoryVT();
1833 // If we zero all the possible extended bits, then we can turn this into
1834 // a zextload if we are running before legalize or the operation is legal.
1835 unsigned BitWidth
= N1
.getValueSizeInBits();
1836 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1837 BitWidth
- EVT
.getSizeInBits())) &&
1838 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1839 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1840 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1841 LN0
->getChain(), LN0
->getBasePtr(),
1843 LN0
->getSrcValueOffset(), EVT
,
1844 LN0
->isVolatile(), LN0
->getAlignment());
1846 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1847 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1850 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1851 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
1853 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1854 EVT EVT
= LN0
->getMemoryVT();
1855 // If we zero all the possible extended bits, then we can turn this into
1856 // a zextload if we are running before legalize or the operation is legal.
1857 unsigned BitWidth
= N1
.getValueSizeInBits();
1858 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1859 BitWidth
- EVT
.getSizeInBits())) &&
1860 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1861 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1862 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1864 LN0
->getBasePtr(), LN0
->getSrcValue(),
1865 LN0
->getSrcValueOffset(), EVT
,
1866 LN0
->isVolatile(), LN0
->getAlignment());
1868 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1869 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1873 // fold (and (load x), 255) -> (zextload x, i8)
1874 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1875 if (N1C
&& N0
.getOpcode() == ISD::LOAD
) {
1876 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1877 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
1878 LN0
->isUnindexed() && N0
.hasOneUse() &&
1879 // Do not change the width of a volatile load.
1880 !LN0
->isVolatile()) {
1881 EVT ExtVT
= MVT::Other
;
1882 uint32_t ActiveBits
= N1C
->getAPIntValue().getActiveBits();
1883 if (ActiveBits
> 0 && APIntOps::isMask(ActiveBits
, N1C
->getAPIntValue()))
1884 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
1886 EVT LoadedVT
= LN0
->getMemoryVT();
1888 // Do not generate loads of non-round integer types since these can
1889 // be expensive (and would be wrong if the type is not byte sized).
1890 if (ExtVT
!= MVT::Other
&& LoadedVT
.bitsGT(ExtVT
) && ExtVT
.isRound() &&
1891 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
))) {
1892 EVT PtrType
= N0
.getOperand(1).getValueType();
1894 // For big endian targets, we need to add an offset to the pointer to
1895 // load the correct bytes. For little endian systems, we merely need to
1896 // read fewer bytes from the same pointer.
1897 unsigned LVTStoreBytes
= LoadedVT
.getStoreSizeInBits()/8;
1898 unsigned EVTStoreBytes
= ExtVT
.getStoreSizeInBits()/8;
1899 unsigned PtrOff
= LVTStoreBytes
- EVTStoreBytes
;
1900 unsigned Alignment
= LN0
->getAlignment();
1901 SDValue NewPtr
= LN0
->getBasePtr();
1903 if (TLI
.isBigEndian()) {
1904 NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(), PtrType
,
1905 NewPtr
, DAG
.getConstant(PtrOff
, PtrType
));
1906 Alignment
= MinAlign(Alignment
, PtrOff
);
1909 AddToWorkList(NewPtr
.getNode());
1911 DAG
.getExtLoad(ISD::ZEXTLOAD
, LN0
->getDebugLoc(), VT
, LN0
->getChain(),
1912 NewPtr
, LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
1913 ExtVT
, LN0
->isVolatile(), Alignment
);
1915 CombineTo(N0
.getNode(), Load
, Load
.getValue(1));
1916 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1924 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
1925 SDValue N0
= N
->getOperand(0);
1926 SDValue N1
= N
->getOperand(1);
1927 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1928 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1929 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1930 EVT VT
= N1
.getValueType();
1933 if (VT
.isVector()) {
1934 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1935 if (FoldedVOp
.getNode()) return FoldedVOp
;
1938 // fold (or x, undef) -> -1
1939 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1940 return DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
1941 // fold (or c1, c2) -> c1|c2
1943 return DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N0C
, N1C
);
1944 // canonicalize constant to RHS
1946 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N1
, N0
);
1947 // fold (or x, 0) -> x
1948 if (N1C
&& N1C
->isNullValue())
1950 // fold (or x, -1) -> -1
1951 if (N1C
&& N1C
->isAllOnesValue())
1953 // fold (or x, c) -> c iff (x & ~c) == 0
1954 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
1957 SDValue ROR
= ReassociateOps(ISD::OR
, N
->getDebugLoc(), N0
, N1
);
1958 if (ROR
.getNode() != 0)
1960 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1961 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
1962 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1963 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
1964 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
1965 DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
1966 N0
.getOperand(0), N1
),
1967 DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N1C
, C1
));
1969 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1970 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1971 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1972 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1974 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1975 LL
.getValueType().isInteger()) {
1976 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1977 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1978 if (cast
<ConstantSDNode
>(LR
)->isNullValue() &&
1979 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
1980 SDValue ORNode
= DAG
.getNode(ISD::OR
, LR
.getDebugLoc(),
1981 LR
.getValueType(), LL
, RL
);
1982 AddToWorkList(ORNode
.getNode());
1983 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1985 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1986 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1987 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
1988 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
1989 SDValue ANDNode
= DAG
.getNode(ISD::AND
, LR
.getDebugLoc(),
1990 LR
.getValueType(), LL
, RL
);
1991 AddToWorkList(ANDNode
.getNode());
1992 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1995 // canonicalize equivalent to ll == rl
1996 if (LL
== RR
&& LR
== RL
) {
1997 Op1
= ISD::getSetCCSwappedOperands(Op1
);
2000 if (LL
== RL
&& LR
== RR
) {
2001 bool isInteger
= LL
.getValueType().isInteger();
2002 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
2003 if (Result
!= ISD::SETCC_INVALID
&&
2004 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
2005 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
2010 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2011 if (N0
.getOpcode() == N1
.getOpcode()) {
2012 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2013 if (Tmp
.getNode()) return Tmp
;
2016 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2017 if (N0
.getOpcode() == ISD::AND
&&
2018 N1
.getOpcode() == ISD::AND
&&
2019 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
2020 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
2021 // Don't increase # computations.
2022 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
2023 // We can only do this xform if we know that bits from X that are set in C2
2024 // but not in C1 are already zero. Likewise for Y.
2025 const APInt
&LHSMask
=
2026 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2027 const APInt
&RHSMask
=
2028 cast
<ConstantSDNode
>(N1
.getOperand(1))->getAPIntValue();
2030 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
2031 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
2032 SDValue X
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2033 N0
.getOperand(0), N1
.getOperand(0));
2034 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, X
,
2035 DAG
.getConstant(LHSMask
| RHSMask
, VT
));
2039 // See if this is some rotate idiom.
2040 if (SDNode
*Rot
= MatchRotate(N0
, N1
, N
->getDebugLoc()))
2041 return SDValue(Rot
, 0);
2046 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2047 static bool MatchRotateHalf(SDValue Op
, SDValue
&Shift
, SDValue
&Mask
) {
2048 if (Op
.getOpcode() == ISD::AND
) {
2049 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
2050 Mask
= Op
.getOperand(1);
2051 Op
= Op
.getOperand(0);
2057 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
2065 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2066 // idioms for rotate, and if the target supports rotation instructions, generate
2068 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
) {
2069 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2070 EVT VT
= LHS
.getValueType();
2071 if (!TLI
.isTypeLegal(VT
)) return 0;
2073 // The target must have at least one rotate flavor.
2074 bool HasROTL
= TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
);
2075 bool HasROTR
= TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
);
2076 if (!HasROTL
&& !HasROTR
) return 0;
2078 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2079 SDValue LHSShift
; // The shift.
2080 SDValue LHSMask
; // AND value if any.
2081 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
2082 return 0; // Not part of a rotate.
2084 SDValue RHSShift
; // The shift.
2085 SDValue RHSMask
; // AND value if any.
2086 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
2087 return 0; // Not part of a rotate.
2089 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
2090 return 0; // Not shifting the same value.
2092 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
2093 return 0; // Shifts must disagree.
2095 // Canonicalize shl to left side in a shl/srl pair.
2096 if (RHSShift
.getOpcode() == ISD::SHL
) {
2097 std::swap(LHS
, RHS
);
2098 std::swap(LHSShift
, RHSShift
);
2099 std::swap(LHSMask
, RHSMask
);
2102 unsigned OpSizeInBits
= VT
.getSizeInBits();
2103 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
2104 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
2105 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
2107 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2108 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2109 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
2110 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
2111 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getZExtValue();
2112 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getZExtValue();
2113 if ((LShVal
+ RShVal
) != OpSizeInBits
)
2118 Rot
= DAG
.getNode(ISD::ROTL
, DL
, VT
, LHSShiftArg
, LHSShiftAmt
);
2120 Rot
= DAG
.getNode(ISD::ROTR
, DL
, VT
, LHSShiftArg
, RHSShiftAmt
);
2122 // If there is an AND of either shifted operand, apply it to the result.
2123 if (LHSMask
.getNode() || RHSMask
.getNode()) {
2124 APInt Mask
= APInt::getAllOnesValue(OpSizeInBits
);
2126 if (LHSMask
.getNode()) {
2127 APInt RHSBits
= APInt::getLowBitsSet(OpSizeInBits
, LShVal
);
2128 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getAPIntValue() | RHSBits
;
2130 if (RHSMask
.getNode()) {
2131 APInt LHSBits
= APInt::getHighBitsSet(OpSizeInBits
, RShVal
);
2132 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getAPIntValue() | LHSBits
;
2135 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
2138 return Rot
.getNode();
2141 // If there is a mask here, and we have a variable shift, we can't be sure
2142 // that we're masking out the right stuff.
2143 if (LHSMask
.getNode() || RHSMask
.getNode())
2146 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2147 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2148 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
2149 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
2150 if (ConstantSDNode
*SUBC
=
2151 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
2152 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2154 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2155 LHSShiftArg
, LHSShiftAmt
).getNode();
2157 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2158 LHSShiftArg
, RHSShiftAmt
).getNode();
2163 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2164 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2165 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
2166 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
2167 if (ConstantSDNode
*SUBC
=
2168 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
2169 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2171 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2172 LHSShiftArg
, RHSShiftAmt
).getNode();
2174 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2175 LHSShiftArg
, LHSShiftAmt
).getNode();
2180 // Look for sign/zext/any-extended or truncate cases:
2181 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2182 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2183 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2184 || LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
2185 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2186 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2187 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2188 || RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
2189 SDValue LExtOp0
= LHSShiftAmt
.getOperand(0);
2190 SDValue RExtOp0
= RHSShiftAmt
.getOperand(0);
2191 if (RExtOp0
.getOpcode() == ISD::SUB
&&
2192 RExtOp0
.getOperand(1) == LExtOp0
) {
2193 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2195 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2196 // (rotr x, (sub 32, y))
2197 if (ConstantSDNode
*SUBC
=
2198 dyn_cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
2199 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2200 return DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
2202 HasROTL
? LHSShiftAmt
: RHSShiftAmt
).getNode();
2205 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
2206 RExtOp0
== LExtOp0
.getOperand(1)) {
2207 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2209 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2210 // (rotl x, (sub 32, y))
2211 if (ConstantSDNode
*SUBC
=
2212 dyn_cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
2213 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2214 return DAG
.getNode(HasROTR
? ISD::ROTR
: ISD::ROTL
, DL
, VT
,
2216 HasROTR
? RHSShiftAmt
: LHSShiftAmt
).getNode();
2225 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
2226 SDValue N0
= N
->getOperand(0);
2227 SDValue N1
= N
->getOperand(1);
2228 SDValue LHS
, RHS
, CC
;
2229 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2230 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2231 EVT VT
= N0
.getValueType();
2234 if (VT
.isVector()) {
2235 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2236 if (FoldedVOp
.getNode()) return FoldedVOp
;
2239 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2240 if (N0
.getOpcode() == ISD::UNDEF
&& N1
.getOpcode() == ISD::UNDEF
)
2241 return DAG
.getConstant(0, VT
);
2242 // fold (xor x, undef) -> undef
2243 if (N0
.getOpcode() == ISD::UNDEF
)
2245 if (N1
.getOpcode() == ISD::UNDEF
)
2247 // fold (xor c1, c2) -> c1^c2
2249 return DAG
.FoldConstantArithmetic(ISD::XOR
, VT
, N0C
, N1C
);
2250 // canonicalize constant to RHS
2252 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
2253 // fold (xor x, 0) -> x
2254 if (N1C
&& N1C
->isNullValue())
2257 SDValue RXOR
= ReassociateOps(ISD::XOR
, N
->getDebugLoc(), N0
, N1
);
2258 if (RXOR
.getNode() != 0)
2261 // fold !(x cc y) -> (x !cc y)
2262 if (N1C
&& N1C
->getAPIntValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
2263 bool isInt
= LHS
.getValueType().isInteger();
2264 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
2267 if (!LegalOperations
|| TLI
.isCondCodeLegal(NotCC
, LHS
.getValueType())) {
2268 switch (N0
.getOpcode()) {
2270 llvm_unreachable("Unhandled SetCC Equivalent!");
2272 return DAG
.getSetCC(N
->getDebugLoc(), VT
, LHS
, RHS
, NotCC
);
2273 case ISD::SELECT_CC
:
2274 return DAG
.getSelectCC(N
->getDebugLoc(), LHS
, RHS
, N0
.getOperand(2),
2275 N0
.getOperand(3), NotCC
);
2280 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2281 if (N1C
&& N1C
->getAPIntValue() == 1 && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
2282 N0
.getNode()->hasOneUse() &&
2283 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
2284 SDValue V
= N0
.getOperand(0);
2285 V
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), V
.getValueType(), V
,
2286 DAG
.getConstant(1, V
.getValueType()));
2287 AddToWorkList(V
.getNode());
2288 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, V
);
2291 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2292 if (N1C
&& N1C
->getAPIntValue() == 1 && VT
== MVT::i1
&&
2293 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2294 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2295 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
2296 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2297 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2298 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2299 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2300 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2303 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2304 if (N1C
&& N1C
->isAllOnesValue() &&
2305 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2306 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2307 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
2308 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2309 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2310 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2311 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2312 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2315 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2316 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
2317 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
2318 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2320 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(1),
2321 DAG
.getConstant(N1C
->getAPIntValue() ^
2322 N00C
->getAPIntValue(), VT
));
2324 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2325 DAG
.getConstant(N1C
->getAPIntValue() ^
2326 N01C
->getAPIntValue(), VT
));
2328 // fold (xor x, x) -> 0
2330 if (!VT
.isVector()) {
2331 return DAG
.getConstant(0, VT
);
2332 } else if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)){
2333 // Produce a vector of zeros.
2334 SDValue El
= DAG
.getConstant(0, VT
.getVectorElementType());
2335 std::vector
<SDValue
> Ops(VT
.getVectorNumElements(), El
);
2336 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
2337 &Ops
[0], Ops
.size());
2341 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2342 if (N0
.getOpcode() == N1
.getOpcode()) {
2343 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2344 if (Tmp
.getNode()) return Tmp
;
2347 // Simplify the expression using non-local knowledge.
2348 if (!VT
.isVector() &&
2349 SimplifyDemandedBits(SDValue(N
, 0)))
2350 return SDValue(N
, 0);
2355 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2356 /// the shift amount is a constant.
2357 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, unsigned Amt
) {
2358 SDNode
*LHS
= N
->getOperand(0).getNode();
2359 if (!LHS
->hasOneUse()) return SDValue();
2361 // We want to pull some binops through shifts, so that we have (and (shift))
2362 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2363 // thing happens with address calculations, so it's important to canonicalize
2365 bool HighBitSet
= false; // Can we transform this if the high bit is set?
2367 switch (LHS
->getOpcode()) {
2368 default: return SDValue();
2371 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2374 HighBitSet
= true; // We can only transform sra if the high bit is set.
2377 if (N
->getOpcode() != ISD::SHL
)
2378 return SDValue(); // only shl(add) not sr[al](add).
2379 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2383 // We require the RHS of the binop to be a constant as well.
2384 ConstantSDNode
*BinOpCst
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
2385 if (!BinOpCst
) return SDValue();
2387 // FIXME: disable this unless the input to the binop is a shift by a constant.
2388 // If it is not a shift, it pessimizes some common cases like:
2390 // void foo(int *X, int i) { X[i & 1235] = 1; }
2391 // int bar(int *X, int i) { return X[i & 255]; }
2392 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
2393 if ((BinOpLHSVal
->getOpcode() != ISD::SHL
&&
2394 BinOpLHSVal
->getOpcode() != ISD::SRA
&&
2395 BinOpLHSVal
->getOpcode() != ISD::SRL
) ||
2396 !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1)))
2399 EVT VT
= N
->getValueType(0);
2401 // If this is a signed shift right, and the high bit is modified by the
2402 // logical operation, do not perform the transformation. The highBitSet
2403 // boolean indicates the value of the high bit of the constant which would
2404 // cause it to be modified for this operation.
2405 if (N
->getOpcode() == ISD::SRA
) {
2406 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
2407 if (BinOpRHSSignSet
!= HighBitSet
)
2411 // Fold the constants, shifting the binop RHS by the shift amount.
2412 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(1).getDebugLoc(),
2414 LHS
->getOperand(1), N
->getOperand(1));
2416 // Create the new shift.
2417 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(0).getDebugLoc(),
2418 VT
, LHS
->getOperand(0), N
->getOperand(1));
2420 // Create the new binop.
2421 return DAG
.getNode(LHS
->getOpcode(), N
->getDebugLoc(), VT
, NewShift
, NewRHS
);
2424 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
2425 SDValue N0
= N
->getOperand(0);
2426 SDValue N1
= N
->getOperand(1);
2427 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2428 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2429 EVT VT
= N0
.getValueType();
2430 unsigned OpSizeInBits
= VT
.getSizeInBits();
2432 // fold (shl c1, c2) -> c1<<c2
2434 return DAG
.FoldConstantArithmetic(ISD::SHL
, VT
, N0C
, N1C
);
2435 // fold (shl 0, x) -> 0
2436 if (N0C
&& N0C
->isNullValue())
2438 // fold (shl x, c >= size(x)) -> undef
2439 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2440 return DAG
.getUNDEF(VT
);
2441 // fold (shl x, 0) -> x
2442 if (N1C
&& N1C
->isNullValue())
2444 // if (shl x, c) is known to be zero, return 0
2445 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
2446 APInt::getAllOnesValue(VT
.getSizeInBits())))
2447 return DAG
.getConstant(0, VT
);
2448 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2449 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2450 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2451 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2452 SDValue N101
= N1
.getOperand(0).getOperand(1);
2453 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2454 EVT TruncVT
= N1
.getValueType();
2455 SDValue N100
= N1
.getOperand(0).getOperand(0);
2456 APInt TruncC
= N101C
->getAPIntValue();
2457 TruncC
.trunc(TruncVT
.getSizeInBits());
2458 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
2459 DAG
.getNode(ISD::AND
, N
->getDebugLoc(), TruncVT
,
2460 DAG
.getNode(ISD::TRUNCATE
,
2463 DAG
.getConstant(TruncC
, TruncVT
)));
2467 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2468 return SDValue(N
, 0);
2470 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2471 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
2472 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2473 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2474 uint64_t c2
= N1C
->getZExtValue();
2475 if (c1
+ c2
> OpSizeInBits
)
2476 return DAG
.getConstant(0, VT
);
2477 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2478 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2480 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2481 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2482 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2483 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2484 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2485 if (c1
< VT
.getSizeInBits()) {
2486 uint64_t c2
= N1C
->getZExtValue();
2487 SDValue HiBitsMask
=
2488 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2489 VT
.getSizeInBits() - c1
),
2491 SDValue Mask
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), VT
,
2495 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, Mask
,
2496 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
2498 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, Mask
,
2499 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
2502 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2503 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1)) {
2504 SDValue HiBitsMask
=
2505 DAG
.getConstant(APInt::getHighBitsSet(VT
.getSizeInBits(),
2506 VT
.getSizeInBits() -
2507 N1C
->getZExtValue()),
2509 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2513 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2516 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
2517 SDValue N0
= N
->getOperand(0);
2518 SDValue N1
= N
->getOperand(1);
2519 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2520 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2521 EVT VT
= N0
.getValueType();
2523 // fold (sra c1, c2) -> (sra c1, c2)
2525 return DAG
.FoldConstantArithmetic(ISD::SRA
, VT
, N0C
, N1C
);
2526 // fold (sra 0, x) -> 0
2527 if (N0C
&& N0C
->isNullValue())
2529 // fold (sra -1, x) -> -1
2530 if (N0C
&& N0C
->isAllOnesValue())
2532 // fold (sra x, (setge c, size(x))) -> undef
2533 if (N1C
&& N1C
->getZExtValue() >= VT
.getSizeInBits())
2534 return DAG
.getUNDEF(VT
);
2535 // fold (sra x, 0) -> x
2536 if (N1C
&& N1C
->isNullValue())
2538 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2540 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
2541 unsigned LowBits
= VT
.getSizeInBits() - (unsigned)N1C
->getZExtValue();
2542 EVT EVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
2543 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, EVT
)))
2544 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
2545 N0
.getOperand(0), DAG
.getValueType(EVT
));
2548 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2549 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
2550 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2551 unsigned Sum
= N1C
->getZExtValue() + C1
->getZExtValue();
2552 if (Sum
>= VT
.getSizeInBits()) Sum
= VT
.getSizeInBits()-1;
2553 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2554 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
2558 // fold (sra (shl X, m), (sub result_size, n))
2559 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2560 // result_size - n != m.
2561 // If truncate is free for the target sext(shl) is likely to result in better
2563 if (N0
.getOpcode() == ISD::SHL
) {
2564 // Get the two constanst of the shifts, CN0 = m, CN = n.
2565 const ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2567 // Determine what the truncate's result bitsize and type would be.
2568 unsigned VTValSize
= VT
.getSizeInBits();
2570 EVT::getIntegerVT(*DAG
.getContext(), VTValSize
- N1C
->getZExtValue());
2571 // Determine the residual right-shift amount.
2572 signed ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
2574 // If the shift is not a no-op (in which case this should be just a sign
2575 // extend already), the truncated to type is legal, sign_extend is legal
2576 // on that type, and the the truncate to that type is both legal and free,
2577 // perform the transform.
2578 if ((ShiftAmt
> 0) &&
2579 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
2580 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
2581 TLI
.isTruncateFree(VT
, TruncVT
)) {
2583 SDValue Amt
= DAG
.getConstant(ShiftAmt
, getShiftAmountTy());
2584 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
,
2585 N0
.getOperand(0), Amt
);
2586 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), TruncVT
,
2588 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
2589 N
->getValueType(0), Trunc
);
2594 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2595 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2596 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2597 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2598 SDValue N101
= N1
.getOperand(0).getOperand(1);
2599 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2600 EVT TruncVT
= N1
.getValueType();
2601 SDValue N100
= N1
.getOperand(0).getOperand(0);
2602 APInt TruncC
= N101C
->getAPIntValue();
2603 TruncC
.trunc(TruncVT
.getSizeInBits());
2604 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
2605 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2607 DAG
.getNode(ISD::TRUNCATE
,
2610 DAG
.getConstant(TruncC
, TruncVT
)));
2614 // Simplify, based on bits shifted out of the LHS.
2615 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2616 return SDValue(N
, 0);
2619 // If the sign bit is known to be zero, switch this to a SRL.
2620 if (DAG
.SignBitIsZero(N0
))
2621 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, N1
);
2623 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2626 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
2627 SDValue N0
= N
->getOperand(0);
2628 SDValue N1
= N
->getOperand(1);
2629 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2630 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2631 EVT VT
= N0
.getValueType();
2632 unsigned OpSizeInBits
= VT
.getSizeInBits();
2634 // fold (srl c1, c2) -> c1 >>u c2
2636 return DAG
.FoldConstantArithmetic(ISD::SRL
, VT
, N0C
, N1C
);
2637 // fold (srl 0, x) -> 0
2638 if (N0C
&& N0C
->isNullValue())
2640 // fold (srl x, c >= size(x)) -> undef
2641 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2642 return DAG
.getUNDEF(VT
);
2643 // fold (srl x, 0) -> x
2644 if (N1C
&& N1C
->isNullValue())
2646 // if (srl x, c) is known to be zero, return 0
2647 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
2648 APInt::getAllOnesValue(OpSizeInBits
)))
2649 return DAG
.getConstant(0, VT
);
2651 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2652 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2653 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2654 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2655 uint64_t c2
= N1C
->getZExtValue();
2656 if (c1
+ c2
> OpSizeInBits
)
2657 return DAG
.getConstant(0, VT
);
2658 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2659 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2662 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2663 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
2664 // Shifting in all undef bits?
2665 EVT SmallVT
= N0
.getOperand(0).getValueType();
2666 if (N1C
->getZExtValue() >= SmallVT
.getSizeInBits())
2667 return DAG
.getUNDEF(VT
);
2669 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), SmallVT
,
2670 N0
.getOperand(0), N1
);
2671 AddToWorkList(SmallShift
.getNode());
2672 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, SmallShift
);
2675 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2676 // bit, which is unmodified by sra.
2677 if (N1C
&& N1C
->getZExtValue() + 1 == VT
.getSizeInBits()) {
2678 if (N0
.getOpcode() == ISD::SRA
)
2679 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0), N1
);
2682 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2683 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
2684 N1C
->getAPIntValue() == Log2_32(VT
.getSizeInBits())) {
2685 APInt KnownZero
, KnownOne
;
2686 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
2687 DAG
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
2689 // If any of the input bits are KnownOne, then the input couldn't be all
2690 // zeros, thus the result of the srl will always be zero.
2691 if (KnownOne
.getBoolValue()) return DAG
.getConstant(0, VT
);
2693 // If all of the bits input the to ctlz node are known to be zero, then
2694 // the result of the ctlz is "32" and the result of the shift is one.
2695 APInt UnknownBits
= ~KnownZero
& Mask
;
2696 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
2698 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2699 if ((UnknownBits
& (UnknownBits
- 1)) == 0) {
2700 // Okay, we know that only that the single bit specified by UnknownBits
2701 // could be set on input to the CTLZ node. If this bit is set, the SRL
2702 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2703 // to an SRL/XOR pair, which is likely to simplify more.
2704 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
2705 SDValue Op
= N0
.getOperand(0);
2708 Op
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
, Op
,
2709 DAG
.getConstant(ShAmt
, getShiftAmountTy()));
2710 AddToWorkList(Op
.getNode());
2713 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
2714 Op
, DAG
.getConstant(1, VT
));
2718 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2719 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2720 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2721 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2722 SDValue N101
= N1
.getOperand(0).getOperand(1);
2723 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2724 EVT TruncVT
= N1
.getValueType();
2725 SDValue N100
= N1
.getOperand(0).getOperand(0);
2726 APInt TruncC
= N101C
->getAPIntValue();
2727 TruncC
.trunc(TruncVT
.getSizeInBits());
2728 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
2729 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2731 DAG
.getNode(ISD::TRUNCATE
,
2734 DAG
.getConstant(TruncC
, TruncVT
)));
2738 // fold operands of srl based on knowledge that the low bits are not
2740 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2741 return SDValue(N
, 0);
2743 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2746 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
2747 SDValue N0
= N
->getOperand(0);
2748 EVT VT
= N
->getValueType(0);
2750 // fold (ctlz c1) -> c2
2751 if (isa
<ConstantSDNode
>(N0
))
2752 return DAG
.getNode(ISD::CTLZ
, N
->getDebugLoc(), VT
, N0
);
2756 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
2757 SDValue N0
= N
->getOperand(0);
2758 EVT VT
= N
->getValueType(0);
2760 // fold (cttz c1) -> c2
2761 if (isa
<ConstantSDNode
>(N0
))
2762 return DAG
.getNode(ISD::CTTZ
, N
->getDebugLoc(), VT
, N0
);
2766 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
2767 SDValue N0
= N
->getOperand(0);
2768 EVT VT
= N
->getValueType(0);
2770 // fold (ctpop c1) -> c2
2771 if (isa
<ConstantSDNode
>(N0
))
2772 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), VT
, N0
);
2776 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
2777 SDValue N0
= N
->getOperand(0);
2778 SDValue N1
= N
->getOperand(1);
2779 SDValue N2
= N
->getOperand(2);
2780 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2781 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2782 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2783 EVT VT
= N
->getValueType(0);
2784 EVT VT0
= N0
.getValueType();
2786 // fold (select C, X, X) -> X
2789 // fold (select true, X, Y) -> X
2790 if (N0C
&& !N0C
->isNullValue())
2792 // fold (select false, X, Y) -> Y
2793 if (N0C
&& N0C
->isNullValue())
2795 // fold (select C, 1, X) -> (or C, X)
2796 if (VT
== MVT::i1
&& N1C
&& N1C
->getAPIntValue() == 1)
2797 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2798 // fold (select C, 0, 1) -> (xor C, 1)
2799 if (VT
.isInteger() &&
2802 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
)) &&
2803 N1C
&& N2C
&& N1C
->isNullValue() && N2C
->getAPIntValue() == 1) {
2806 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT0
,
2807 N0
, DAG
.getConstant(1, VT0
));
2808 XORNode
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), VT0
,
2809 N0
, DAG
.getConstant(1, VT0
));
2810 AddToWorkList(XORNode
.getNode());
2812 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, XORNode
);
2813 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, XORNode
);
2815 // fold (select C, 0, X) -> (and (not C), X)
2816 if (VT
== VT0
&& VT
== MVT::i1
&& N1C
&& N1C
->isNullValue()) {
2817 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2818 AddToWorkList(NOTNode
.getNode());
2819 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, NOTNode
, N2
);
2821 // fold (select C, X, 1) -> (or (not C), X)
2822 if (VT
== VT0
&& VT
== MVT::i1
&& N2C
&& N2C
->getAPIntValue() == 1) {
2823 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2824 AddToWorkList(NOTNode
.getNode());
2825 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, NOTNode
, N1
);
2827 // fold (select C, X, 0) -> (and C, X)
2828 if (VT
== MVT::i1
&& N2C
&& N2C
->isNullValue())
2829 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2830 // fold (select X, X, Y) -> (or X, Y)
2831 // fold (select X, 1, Y) -> (or X, Y)
2832 if (VT
== MVT::i1
&& (N0
== N1
|| (N1C
&& N1C
->getAPIntValue() == 1)))
2833 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2834 // fold (select X, Y, X) -> (and X, Y)
2835 // fold (select X, Y, 0) -> (and X, Y)
2836 if (VT
== MVT::i1
&& (N0
== N2
|| (N2C
&& N2C
->getAPIntValue() == 0)))
2837 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2839 // If we can fold this based on the true/false value, do so.
2840 if (SimplifySelectOps(N
, N1
, N2
))
2841 return SDValue(N
, 0); // Don't revisit N.
2843 // fold selects based on a setcc into other things, such as min/max/abs
2844 if (N0
.getOpcode() == ISD::SETCC
) {
2846 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2847 // having to say they don't support SELECT_CC on every type the DAG knows
2848 // about, since there is no way to mark an opcode illegal at all value types
2849 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, MVT::Other
) &&
2850 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))
2851 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), VT
,
2852 N0
.getOperand(0), N0
.getOperand(1),
2853 N1
, N2
, N0
.getOperand(2));
2854 return SimplifySelect(N
->getDebugLoc(), N0
, N1
, N2
);
2860 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
2861 SDValue N0
= N
->getOperand(0);
2862 SDValue N1
= N
->getOperand(1);
2863 SDValue N2
= N
->getOperand(2);
2864 SDValue N3
= N
->getOperand(3);
2865 SDValue N4
= N
->getOperand(4);
2866 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
2868 // fold select_cc lhs, rhs, x, x, cc -> x
2872 // Determine if the condition we're dealing with is constant
2873 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
2874 N0
, N1
, CC
, N
->getDebugLoc(), false);
2875 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
2877 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
2878 if (!SCCC
->isNullValue())
2879 return N2
; // cond always true -> true val
2881 return N3
; // cond always false -> false val
2884 // Fold to a simpler select_cc
2885 if (SCC
.getNode() && SCC
.getOpcode() == ISD::SETCC
)
2886 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), N2
.getValueType(),
2887 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
2890 // If we can fold this based on the true/false value, do so.
2891 if (SimplifySelectOps(N
, N2
, N3
))
2892 return SDValue(N
, 0); // Don't revisit N.
2894 // fold select_cc into other things, such as min/max/abs
2895 return SimplifySelectCC(N
->getDebugLoc(), N0
, N1
, N2
, N3
, CC
);
2898 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
2899 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
2900 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(),
2904 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2905 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
2906 // transformation. Returns true if extension are possible and the above
2907 // mentioned transformation is profitable.
2908 static bool ExtendUsesToFormExtLoad(SDNode
*N
, SDValue N0
,
2910 SmallVector
<SDNode
*, 4> &ExtendNodes
,
2911 const TargetLowering
&TLI
) {
2912 bool HasCopyToRegUses
= false;
2913 bool isTruncFree
= TLI
.isTruncateFree(N
->getValueType(0), N0
.getValueType());
2914 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
2915 UE
= N0
.getNode()->use_end();
2920 if (UI
.getUse().getResNo() != N0
.getResNo())
2922 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2923 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
2924 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
2925 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
2926 // Sign bits will be lost after a zext.
2929 for (unsigned i
= 0; i
!= 2; ++i
) {
2930 SDValue UseOp
= User
->getOperand(i
);
2933 if (!isa
<ConstantSDNode
>(UseOp
))
2938 ExtendNodes
.push_back(User
);
2941 // If truncates aren't free and there are users we can't
2942 // extend, it isn't worthwhile.
2945 // Remember if this value is live-out.
2946 if (User
->getOpcode() == ISD::CopyToReg
)
2947 HasCopyToRegUses
= true;
2950 if (HasCopyToRegUses
) {
2951 bool BothLiveOut
= false;
2952 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
2954 SDUse
&Use
= UI
.getUse();
2955 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
2961 // Both unextended and extended values are live out. There had better be
2962 // good a reason for the transformation.
2963 return ExtendNodes
.size();
2968 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
2969 SDValue N0
= N
->getOperand(0);
2970 EVT VT
= N
->getValueType(0);
2972 // fold (sext c1) -> c1
2973 if (isa
<ConstantSDNode
>(N0
))
2974 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N0
);
2976 // fold (sext (sext x)) -> (sext x)
2977 // fold (sext (aext x)) -> (sext x)
2978 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2979 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
,
2982 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2983 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2984 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2985 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
2986 if (NarrowLoad
.getNode()) {
2987 if (NarrowLoad
.getNode() != N0
.getNode())
2988 CombineTo(N0
.getNode(), NarrowLoad
);
2989 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2992 // See if the value being truncated is already sign extended. If so, just
2993 // eliminate the trunc/sext pair.
2994 SDValue Op
= N0
.getOperand(0);
2995 unsigned OpBits
= Op
.getValueType().getSizeInBits();
2996 unsigned MidBits
= N0
.getValueType().getSizeInBits();
2997 unsigned DestBits
= VT
.getSizeInBits();
2998 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
3000 if (OpBits
== DestBits
) {
3001 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
3002 // bits, it is already ready.
3003 if (NumSignBits
> DestBits
-MidBits
)
3005 } else if (OpBits
< DestBits
) {
3006 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
3007 // bits, just sext from i32.
3008 if (NumSignBits
> OpBits
-MidBits
)
3009 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3011 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
3012 // bits, just truncate to i32.
3013 if (NumSignBits
> OpBits
-MidBits
)
3014 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3017 // fold (sext (truncate x)) -> (sextinreg x).
3018 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
3019 N0
.getValueType())) {
3020 if (Op
.getValueType().bitsLT(VT
))
3021 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N0
.getDebugLoc(), VT
, Op
);
3022 else if (Op
.getValueType().bitsGT(VT
))
3023 Op
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), VT
, Op
);
3024 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, Op
,
3025 DAG
.getValueType(N0
.getValueType()));
3029 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3030 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3031 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3032 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, N0
.getValueType()))) {
3033 bool DoXform
= true;
3034 SmallVector
<SDNode
*, 4> SetCCs
;
3035 if (!N0
.hasOneUse())
3036 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::SIGN_EXTEND
, SetCCs
, TLI
);
3038 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3039 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3041 LN0
->getBasePtr(), LN0
->getSrcValue(),
3042 LN0
->getSrcValueOffset(),
3044 LN0
->isVolatile(), LN0
->getAlignment());
3045 CombineTo(N
, ExtLoad
);
3046 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3047 N0
.getValueType(), ExtLoad
);
3048 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3050 // Extend SetCC uses if necessary.
3051 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3052 SDNode
*SetCC
= SetCCs
[i
];
3053 SmallVector
<SDValue
, 4> Ops
;
3055 for (unsigned j
= 0; j
!= 2; ++j
) {
3056 SDValue SOp
= SetCC
->getOperand(j
);
3058 Ops
.push_back(ExtLoad
);
3060 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
,
3061 N
->getDebugLoc(), VT
, SOp
));
3064 Ops
.push_back(SetCC
->getOperand(2));
3065 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3066 SetCC
->getValueType(0),
3067 &Ops
[0], Ops
.size()));
3070 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3074 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3075 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3076 if ((ISD::isSEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3077 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3078 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3079 EVT EVT
= LN0
->getMemoryVT();
3080 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3081 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
)) {
3082 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3084 LN0
->getBasePtr(), LN0
->getSrcValue(),
3085 LN0
->getSrcValueOffset(), EVT
,
3086 LN0
->isVolatile(), LN0
->getAlignment());
3087 CombineTo(N
, ExtLoad
);
3088 CombineTo(N0
.getNode(),
3089 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3090 N0
.getValueType(), ExtLoad
),
3091 ExtLoad
.getValue(1));
3092 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3096 if (N0
.getOpcode() == ISD::SETCC
) {
3097 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
3098 if (VT
.isVector() &&
3099 // We know that the # elements of the results is the same as the
3100 // # elements of the compare (and the # elements of the compare result
3101 // for that matter). Check to see that they are the same size. If so,
3102 // we know that the element size of the sext'd result matches the
3103 // element size of the compare operands.
3104 VT
.getSizeInBits() == N0
.getOperand(0).getValueType().getSizeInBits() &&
3106 // Only do this before legalize for now.
3108 return DAG
.getVSetCC(N
->getDebugLoc(), VT
, N0
.getOperand(0),
3110 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
3113 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3115 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
3117 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3118 NegOne
, DAG
.getConstant(0, VT
),
3119 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3120 if (SCC
.getNode()) return SCC
;
3125 // fold (sext x) -> (zext x) if the sign bit is known zero.
3126 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
3127 DAG
.SignBitIsZero(N0
))
3128 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3133 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
3134 SDValue N0
= N
->getOperand(0);
3135 EVT VT
= N
->getValueType(0);
3137 // fold (zext c1) -> c1
3138 if (isa
<ConstantSDNode
>(N0
))
3139 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3140 // fold (zext (zext x)) -> (zext x)
3141 // fold (zext (aext x)) -> (zext x)
3142 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3143 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
,
3146 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3147 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3148 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3149 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3150 if (NarrowLoad
.getNode()) {
3151 if (NarrowLoad
.getNode() != N0
.getNode())
3152 CombineTo(N0
.getNode(), NarrowLoad
);
3153 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3157 // fold (zext (truncate x)) -> (and x, mask)
3158 if (N0
.getOpcode() == ISD::TRUNCATE
&&
3159 (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
3160 SDValue Op
= N0
.getOperand(0);
3161 if (Op
.getValueType().bitsLT(VT
)) {
3162 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3163 } else if (Op
.getValueType().bitsGT(VT
)) {
3164 Op
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3166 return DAG
.getZeroExtendInReg(Op
, N
->getDebugLoc(), N0
.getValueType());
3169 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3170 // if either of the casts is not free.
3171 if (N0
.getOpcode() == ISD::AND
&&
3172 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3173 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3174 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3175 N0
.getValueType()) ||
3176 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
3177 SDValue X
= N0
.getOperand(0).getOperand(0);
3178 if (X
.getValueType().bitsLT(VT
)) {
3179 X
= DAG
.getNode(ISD::ANY_EXTEND
, X
.getDebugLoc(), VT
, X
);
3180 } else if (X
.getValueType().bitsGT(VT
)) {
3181 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3183 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3184 Mask
.zext(VT
.getSizeInBits());
3185 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3186 X
, DAG
.getConstant(Mask
, VT
));
3189 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3190 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3191 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3192 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
3193 bool DoXform
= true;
3194 SmallVector
<SDNode
*, 4> SetCCs
;
3195 if (!N0
.hasOneUse())
3196 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ZERO_EXTEND
, SetCCs
, TLI
);
3198 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3199 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3201 LN0
->getBasePtr(), LN0
->getSrcValue(),
3202 LN0
->getSrcValueOffset(),
3204 LN0
->isVolatile(), LN0
->getAlignment());
3205 CombineTo(N
, ExtLoad
);
3206 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3207 N0
.getValueType(), ExtLoad
);
3208 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3210 // Extend SetCC uses if necessary.
3211 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3212 SDNode
*SetCC
= SetCCs
[i
];
3213 SmallVector
<SDValue
, 4> Ops
;
3215 for (unsigned j
= 0; j
!= 2; ++j
) {
3216 SDValue SOp
= SetCC
->getOperand(j
);
3218 Ops
.push_back(ExtLoad
);
3220 Ops
.push_back(DAG
.getNode(ISD::ZERO_EXTEND
,
3221 N
->getDebugLoc(), VT
, SOp
));
3224 Ops
.push_back(SetCC
->getOperand(2));
3225 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3226 SetCC
->getValueType(0),
3227 &Ops
[0], Ops
.size()));
3230 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3234 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3235 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3236 if ((ISD::isZEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3237 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3238 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3239 EVT EVT
= LN0
->getMemoryVT();
3240 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3241 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
)) {
3242 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3244 LN0
->getBasePtr(), LN0
->getSrcValue(),
3245 LN0
->getSrcValueOffset(), EVT
,
3246 LN0
->isVolatile(), LN0
->getAlignment());
3247 CombineTo(N
, ExtLoad
);
3248 CombineTo(N0
.getNode(),
3249 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), N0
.getValueType(),
3251 ExtLoad
.getValue(1));
3252 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3256 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3257 if (N0
.getOpcode() == ISD::SETCC
) {
3259 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3260 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3261 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3262 if (SCC
.getNode()) return SCC
;
3268 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
3269 SDValue N0
= N
->getOperand(0);
3270 EVT VT
= N
->getValueType(0);
3272 // fold (aext c1) -> c1
3273 if (isa
<ConstantSDNode
>(N0
))
3274 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3275 // fold (aext (aext x)) -> (aext x)
3276 // fold (aext (zext x)) -> (zext x)
3277 // fold (aext (sext x)) -> (sext x)
3278 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
3279 N0
.getOpcode() == ISD::ZERO_EXTEND
||
3280 N0
.getOpcode() == ISD::SIGN_EXTEND
)
3281 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, N0
.getOperand(0));
3283 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3284 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3285 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3286 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3287 if (NarrowLoad
.getNode()) {
3288 if (NarrowLoad
.getNode() != N0
.getNode())
3289 CombineTo(N0
.getNode(), NarrowLoad
);
3290 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3294 // fold (aext (truncate x))
3295 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3296 SDValue TruncOp
= N0
.getOperand(0);
3297 if (TruncOp
.getValueType() == VT
)
3298 return TruncOp
; // x iff x size == zext size.
3299 if (TruncOp
.getValueType().bitsGT(VT
))
3300 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, TruncOp
);
3301 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, TruncOp
);
3304 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3305 // if the trunc is not free.
3306 if (N0
.getOpcode() == ISD::AND
&&
3307 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3308 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3309 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3310 N0
.getValueType())) {
3311 SDValue X
= N0
.getOperand(0).getOperand(0);
3312 if (X
.getValueType().bitsLT(VT
)) {
3313 X
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, X
);
3314 } else if (X
.getValueType().bitsGT(VT
)) {
3315 X
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, X
);
3317 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3318 Mask
.zext(VT
.getSizeInBits());
3319 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3320 X
, DAG
.getConstant(Mask
, VT
));
3323 // fold (aext (load x)) -> (aext (truncate (extload x)))
3324 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3325 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3326 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3327 bool DoXform
= true;
3328 SmallVector
<SDNode
*, 4> SetCCs
;
3329 if (!N0
.hasOneUse())
3330 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
3332 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3333 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
3335 LN0
->getBasePtr(), LN0
->getSrcValue(),
3336 LN0
->getSrcValueOffset(),
3338 LN0
->isVolatile(), LN0
->getAlignment());
3339 CombineTo(N
, ExtLoad
);
3340 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3341 N0
.getValueType(), ExtLoad
);
3342 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3344 // Extend SetCC uses if necessary.
3345 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3346 SDNode
*SetCC
= SetCCs
[i
];
3347 SmallVector
<SDValue
, 4> Ops
;
3349 for (unsigned j
= 0; j
!= 2; ++j
) {
3350 SDValue SOp
= SetCC
->getOperand(j
);
3352 Ops
.push_back(ExtLoad
);
3354 Ops
.push_back(DAG
.getNode(ISD::ANY_EXTEND
,
3355 N
->getDebugLoc(), VT
, SOp
));
3358 Ops
.push_back(SetCC
->getOperand(2));
3359 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3360 SetCC
->getValueType(0),
3361 &Ops
[0], Ops
.size()));
3364 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3368 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3369 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3370 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3371 if (N0
.getOpcode() == ISD::LOAD
&&
3372 !ISD::isNON_EXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3374 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3375 EVT EVT
= LN0
->getMemoryVT();
3376 SDValue ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), N
->getDebugLoc(),
3377 VT
, LN0
->getChain(), LN0
->getBasePtr(),
3379 LN0
->getSrcValueOffset(), EVT
,
3380 LN0
->isVolatile(), LN0
->getAlignment());
3381 CombineTo(N
, ExtLoad
);
3382 CombineTo(N0
.getNode(),
3383 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3384 N0
.getValueType(), ExtLoad
),
3385 ExtLoad
.getValue(1));
3386 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3389 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3390 if (N0
.getOpcode() == ISD::SETCC
) {
3392 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3393 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3394 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3402 /// GetDemandedBits - See if the specified operand can be simplified with the
3403 /// knowledge that only the bits specified by Mask are used. If so, return the
3404 /// simpler operand, otherwise return a null SDValue.
3405 SDValue
DAGCombiner::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
3406 switch (V
.getOpcode()) {
3410 // If the LHS or RHS don't contribute bits to the or, drop them.
3411 if (DAG
.MaskedValueIsZero(V
.getOperand(0), Mask
))
3412 return V
.getOperand(1);
3413 if (DAG
.MaskedValueIsZero(V
.getOperand(1), Mask
))
3414 return V
.getOperand(0);
3417 // Only look at single-use SRLs.
3418 if (!V
.getNode()->hasOneUse())
3420 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
3421 // See if we can recursively simplify the LHS.
3422 unsigned Amt
= RHSC
->getZExtValue();
3424 // Watch out for shift count overflow though.
3425 if (Amt
>= Mask
.getBitWidth()) break;
3426 APInt NewMask
= Mask
<< Amt
;
3427 SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
);
3428 if (SimplifyLHS
.getNode())
3429 return DAG
.getNode(ISD::SRL
, V
.getDebugLoc(), V
.getValueType(),
3430 SimplifyLHS
, V
.getOperand(1));
3436 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3437 /// bits and then truncated to a narrower type and where N is a multiple
3438 /// of number of bits of the narrower type, transform it to a narrower load
3439 /// from address + N / num of bits of new type. If the result is to be
3440 /// extended, also fold the extension to form a extending load.
3441 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
3442 unsigned Opc
= N
->getOpcode();
3443 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3444 SDValue N0
= N
->getOperand(0);
3445 EVT VT
= N
->getValueType(0);
3448 // This transformation isn't valid for vector loads.
3452 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3454 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
3455 ExtType
= ISD::SEXTLOAD
;
3456 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
3457 if (LegalOperations
&& !TLI
.isLoadExtLegal(ISD::SEXTLOAD
, ExtVT
))
3461 unsigned EVTBits
= ExtVT
.getSizeInBits();
3463 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
3464 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3465 ShAmt
= N01
->getZExtValue();
3466 // Is the shift amount a multiple of size of VT?
3467 if ((ShAmt
& (EVTBits
-1)) == 0) {
3468 N0
= N0
.getOperand(0);
3469 if (N0
.getValueType().getSizeInBits() <= EVTBits
)
3475 // Do not generate loads of non-round integer types since these can
3476 // be expensive (and would be wrong if the type is not byte sized).
3477 if (isa
<LoadSDNode
>(N0
) && N0
.hasOneUse() && ExtVT
.isRound() &&
3478 cast
<LoadSDNode
>(N0
)->getMemoryVT().getSizeInBits() > EVTBits
&&
3479 // Do not change the width of a volatile load.
3480 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
3481 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3482 EVT PtrType
= N0
.getOperand(1).getValueType();
3484 // For big endian targets, we need to adjust the offset to the pointer to
3485 // load the correct bytes.
3486 if (TLI
.isBigEndian()) {
3487 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
3488 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
3489 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
3492 uint64_t PtrOff
= ShAmt
/ 8;
3493 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
3494 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(),
3495 PtrType
, LN0
->getBasePtr(),
3496 DAG
.getConstant(PtrOff
, PtrType
));
3497 AddToWorkList(NewPtr
.getNode());
3499 SDValue Load
= (ExtType
== ISD::NON_EXTLOAD
)
3500 ? DAG
.getLoad(VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
3501 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3502 LN0
->isVolatile(), NewAlign
)
3503 : DAG
.getExtLoad(ExtType
, N0
.getDebugLoc(), VT
, LN0
->getChain(), NewPtr
,
3504 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3505 ExtVT
, LN0
->isVolatile(), NewAlign
);
3507 // Replace the old load's chain with the new load's chain.
3508 WorkListRemover
DeadNodes(*this);
3509 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1),
3512 // Return the new loaded value.
3519 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
3520 SDValue N0
= N
->getOperand(0);
3521 SDValue N1
= N
->getOperand(1);
3522 EVT VT
= N
->getValueType(0);
3523 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
3524 unsigned VTBits
= VT
.getSizeInBits();
3525 unsigned EVTBits
= EVT
.getSizeInBits();
3527 // fold (sext_in_reg c1) -> c1
3528 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
3529 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, N0
, N1
);
3531 // If the input is already sign extended, just drop the extension.
3532 if (DAG
.ComputeNumSignBits(N0
) >= VT
.getSizeInBits()-EVTBits
+1)
3535 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3536 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3537 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT())) {
3538 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
3539 N0
.getOperand(0), N1
);
3542 // fold (sext_in_reg (sext x)) -> (sext x)
3543 // fold (sext_in_reg (aext x)) -> (sext x)
3544 // if x is small enough.
3545 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
3546 SDValue N00
= N0
.getOperand(0);
3547 if (N00
.getValueType().getSizeInBits() < EVTBits
)
3548 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N00
, N1
);
3551 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3552 if (DAG
.MaskedValueIsZero(N0
, APInt::getBitsSet(VTBits
, EVTBits
-1, EVTBits
)))
3553 return DAG
.getZeroExtendInReg(N0
, N
->getDebugLoc(), EVT
);
3555 // fold operands of sext_in_reg based on knowledge that the top bits are not
3557 if (SimplifyDemandedBits(SDValue(N
, 0)))
3558 return SDValue(N
, 0);
3560 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3561 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3562 SDValue NarrowLoad
= ReduceLoadWidth(N
);
3563 if (NarrowLoad
.getNode())
3566 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3567 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3568 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3569 if (N0
.getOpcode() == ISD::SRL
) {
3570 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
3571 if (ShAmt
->getZExtValue()+EVTBits
<= VT
.getSizeInBits()) {
3572 // We can turn this into an SRA iff the input to the SRL is already sign
3574 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
3575 if (VT
.getSizeInBits()-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
3576 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
,
3577 N0
.getOperand(0), N0
.getOperand(1));
3581 // fold (sext_inreg (extload x)) -> (sextload x)
3582 if (ISD::isEXTLoad(N0
.getNode()) &&
3583 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3584 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3585 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3586 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3587 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3588 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3590 LN0
->getBasePtr(), LN0
->getSrcValue(),
3591 LN0
->getSrcValueOffset(), EVT
,
3592 LN0
->isVolatile(), LN0
->getAlignment());
3593 CombineTo(N
, ExtLoad
);
3594 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3595 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3597 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3598 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3600 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3601 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3602 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3603 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3604 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3606 LN0
->getBasePtr(), LN0
->getSrcValue(),
3607 LN0
->getSrcValueOffset(), EVT
,
3608 LN0
->isVolatile(), LN0
->getAlignment());
3609 CombineTo(N
, ExtLoad
);
3610 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3611 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3616 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
3617 SDValue N0
= N
->getOperand(0);
3618 EVT VT
= N
->getValueType(0);
3621 if (N0
.getValueType() == N
->getValueType(0))
3623 // fold (truncate c1) -> c1
3624 if (isa
<ConstantSDNode
>(N0
))
3625 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
);
3626 // fold (truncate (truncate x)) -> (truncate x)
3627 if (N0
.getOpcode() == ISD::TRUNCATE
)
3628 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3629 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3630 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::SIGN_EXTEND
||
3631 N0
.getOpcode() == ISD::ANY_EXTEND
) {
3632 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
3633 // if the source is smaller than the dest, we still need an extend
3634 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
3636 else if (N0
.getOperand(0).getValueType().bitsGT(VT
))
3637 // if the source is larger than the dest, than we just need the truncate
3638 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3640 // if the source and dest are the same type, we can drop both the extend
3642 return N0
.getOperand(0);
3645 // See if we can simplify the input to this truncate through knowledge that
3646 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3649 GetDemandedBits(N0
, APInt::getLowBitsSet(N0
.getValueSizeInBits(),
3650 VT
.getSizeInBits()));
3651 if (Shorter
.getNode())
3652 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Shorter
);
3654 // fold (truncate (load x)) -> (smaller load x)
3655 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3656 return ReduceLoadWidth(N
);
3659 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
3660 SDValue Elt
= N
->getOperand(i
);
3661 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
3662 return Elt
.getNode();
3663 return Elt
.getOperand(Elt
.getResNo()).getNode();
3666 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3667 /// if load locations are consecutive.
3668 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
3669 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
3671 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
3672 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
3673 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse())
3675 EVT LD1VT
= LD1
->getValueType(0);
3676 const MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3678 if (ISD::isNON_EXTLoad(LD2
) &&
3680 // If both are volatile this would reduce the number of volatile loads.
3681 // If one is volatile it might be ok, but play conservative and bail out.
3682 !LD1
->isVolatile() &&
3683 !LD2
->isVolatile() &&
3684 TLI
.isConsecutiveLoad(LD2
, LD1
, LD1VT
.getSizeInBits()/8, 1, MFI
)) {
3685 unsigned Align
= LD1
->getAlignment();
3686 unsigned NewAlign
= TLI
.getTargetData()->
3687 getABITypeAlignment(VT
.getTypeForEVT(*DAG
.getContext()));
3689 if (NewAlign
<= Align
&&
3690 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
3691 return DAG
.getLoad(VT
, N
->getDebugLoc(), LD1
->getChain(),
3692 LD1
->getBasePtr(), LD1
->getSrcValue(),
3693 LD1
->getSrcValueOffset(), false, Align
);
3699 SDValue
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
3700 SDValue N0
= N
->getOperand(0);
3701 EVT VT
= N
->getValueType(0);
3703 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3704 // Only do this before legalize, since afterward the target may be depending
3705 // on the bitconvert.
3706 // First check to see if this is all constant.
3708 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
3710 bool isSimple
= true;
3711 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
)
3712 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3713 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
3714 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
3719 EVT DestEltVT
= N
->getValueType(0).getVectorElementType();
3720 assert(!DestEltVT
.isVector() &&
3721 "Element type of vector ValueType must not be vector!");
3723 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
3726 // If the input is a constant, let getNode fold it.
3727 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
3728 SDValue Res
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, N0
);
3729 if (Res
.getNode() != N
) {
3730 if (!LegalOperations
||
3731 TLI
.isOperationLegal(Res
.getNode()->getOpcode(), VT
))
3734 // Folding it resulted in an illegal node, and it's too late to
3735 // do that. Clean up the old node and forego the transformation.
3736 // Ideally this won't happen very often, because instcombine
3737 // and the earlier dagcombine runs (where illegal nodes are
3738 // permitted) should have folded most of them already.
3739 DAG
.DeleteNode(Res
.getNode());
3743 // (conv (conv x, t1), t2) -> (conv x, t2)
3744 if (N0
.getOpcode() == ISD::BIT_CONVERT
)
3745 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
,
3748 // fold (conv (load x)) -> (load (conv*)x)
3749 // If the resultant load doesn't need a higher alignment than the original!
3750 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
3751 // Do not change the width of a volatile load.
3752 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
3753 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
3754 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3755 unsigned Align
= TLI
.getTargetData()->
3756 getABITypeAlignment(VT
.getTypeForEVT(*DAG
.getContext()));
3757 unsigned OrigAlign
= LN0
->getAlignment();
3759 if (Align
<= OrigAlign
) {
3760 SDValue Load
= DAG
.getLoad(VT
, N
->getDebugLoc(), LN0
->getChain(),
3762 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
3763 LN0
->isVolatile(), OrigAlign
);
3765 CombineTo(N0
.getNode(),
3766 DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3767 N0
.getValueType(), Load
),
3773 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3774 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3775 // This often reduces constant pool loads.
3776 if ((N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FABS
) &&
3777 N0
.getNode()->hasOneUse() && VT
.isInteger() && !VT
.isVector()) {
3778 SDValue NewConv
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(), VT
,
3780 AddToWorkList(NewConv
.getNode());
3782 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3783 if (N0
.getOpcode() == ISD::FNEG
)
3784 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
3785 NewConv
, DAG
.getConstant(SignBit
, VT
));
3786 assert(N0
.getOpcode() == ISD::FABS
);
3787 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3788 NewConv
, DAG
.getConstant(~SignBit
, VT
));
3791 // fold (bitconvert (fcopysign cst, x)) ->
3792 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3793 // Note that we don't handle (copysign x, cst) because this can always be
3794 // folded to an fneg or fabs.
3795 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
3796 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
3797 VT
.isInteger() && !VT
.isVector()) {
3798 unsigned OrigXWidth
= N0
.getOperand(1).getValueType().getSizeInBits();
3799 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
3800 if (TLI
.isTypeLegal(IntXVT
) || !LegalTypes
) {
3801 SDValue X
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3802 IntXVT
, N0
.getOperand(1));
3803 AddToWorkList(X
.getNode());
3805 // If X has a different width than the result/lhs, sext it or truncate it.
3806 unsigned VTWidth
= VT
.getSizeInBits();
3807 if (OrigXWidth
< VTWidth
) {
3808 X
= DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, X
);
3809 AddToWorkList(X
.getNode());
3810 } else if (OrigXWidth
> VTWidth
) {
3811 // To get the sign bit in the right place, we have to shift it right
3812 // before truncating.
3813 X
= DAG
.getNode(ISD::SRL
, X
.getDebugLoc(),
3814 X
.getValueType(), X
,
3815 DAG
.getConstant(OrigXWidth
-VTWidth
, X
.getValueType()));
3816 AddToWorkList(X
.getNode());
3817 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3818 AddToWorkList(X
.getNode());
3821 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3822 X
= DAG
.getNode(ISD::AND
, X
.getDebugLoc(), VT
,
3823 X
, DAG
.getConstant(SignBit
, VT
));
3824 AddToWorkList(X
.getNode());
3826 SDValue Cst
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3827 VT
, N0
.getOperand(0));
3828 Cst
= DAG
.getNode(ISD::AND
, Cst
.getDebugLoc(), VT
,
3829 Cst
, DAG
.getConstant(~SignBit
, VT
));
3830 AddToWorkList(Cst
.getNode());
3832 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, X
, Cst
);
3836 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3837 if (N0
.getOpcode() == ISD::BUILD_PAIR
) {
3838 SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
);
3839 if (CombineLD
.getNode())
3846 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
3847 EVT VT
= N
->getValueType(0);
3848 return CombineConsecutiveLoads(N
, VT
);
3851 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3852 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3853 /// destination element value type.
3854 SDValue
DAGCombiner::
3855 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
3856 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
3858 // If this is already the right type, we're done.
3859 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
3861 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
3862 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
3864 // If this is a conversion of N elements of one type to N elements of another
3865 // type, convert each element. This handles FP<->INT cases.
3866 if (SrcBitSize
== DstBitSize
) {
3867 SmallVector
<SDValue
, 8> Ops
;
3868 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3869 SDValue Op
= BV
->getOperand(i
);
3870 // If the vector element type is not legal, the BUILD_VECTOR operands
3871 // are promoted and implicitly truncated. Make that explicit here.
3872 if (Op
.getValueType() != SrcEltVT
)
3873 Op
= DAG
.getNode(ISD::TRUNCATE
, BV
->getDebugLoc(), SrcEltVT
, Op
);
3874 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
3876 AddToWorkList(Ops
.back().getNode());
3878 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
3879 BV
->getValueType(0).getVectorNumElements());
3880 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3881 &Ops
[0], Ops
.size());
3884 // Otherwise, we're growing or shrinking the elements. To avoid having to
3885 // handle annoying details of growing/shrinking FP values, we convert them to
3887 if (SrcEltVT
.isFloatingPoint()) {
3888 // Convert the input float vector to a int vector where the elements are the
3890 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
3891 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
3892 BV
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, IntVT
).getNode();
3896 // Now we know the input is an integer vector. If the output is a FP type,
3897 // convert to integer first, then to FP of the right size.
3898 if (DstEltVT
.isFloatingPoint()) {
3899 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
3900 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
3901 SDNode
*Tmp
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, TmpVT
).getNode();
3903 // Next, convert to FP elements of the same size.
3904 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp
, DstEltVT
);
3907 // Okay, we know the src/dst types are both integers of differing types.
3908 // Handling growing first.
3909 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
3910 if (SrcBitSize
< DstBitSize
) {
3911 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
3913 SmallVector
<SDValue
, 8> Ops
;
3914 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
3915 i
+= NumInputsPerOutput
) {
3916 bool isLE
= TLI
.isLittleEndian();
3917 APInt NewBits
= APInt(DstBitSize
, 0);
3918 bool EltIsUndef
= true;
3919 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
3920 // Shift the previously computed bits over.
3921 NewBits
<<= SrcBitSize
;
3922 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
3923 if (Op
.getOpcode() == ISD::UNDEF
) continue;
3926 NewBits
|= (APInt(cast
<ConstantSDNode
>(Op
)->getAPIntValue()).
3927 zextOrTrunc(SrcBitSize
).zext(DstBitSize
));
3931 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3933 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
3936 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
3937 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3938 &Ops
[0], Ops
.size());
3941 // Finally, this must be the case where we are shrinking elements: each input
3942 // turns into multiple outputs.
3943 bool isS2V
= ISD::isScalarToVector(BV
);
3944 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
3945 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
3946 NumOutputsPerInput
*BV
->getNumOperands());
3947 SmallVector
<SDValue
, 8> Ops
;
3949 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3950 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
3951 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
3952 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3956 APInt OpVal
= APInt(cast
<ConstantSDNode
>(BV
->getOperand(i
))->
3957 getAPIntValue()).zextOrTrunc(SrcBitSize
);
3959 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
3960 APInt ThisVal
= APInt(OpVal
).trunc(DstBitSize
);
3961 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
3962 if (isS2V
&& i
== 0 && j
== 0 && APInt(ThisVal
).zext(SrcBitSize
) == OpVal
)
3963 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3964 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
3966 OpVal
= OpVal
.lshr(DstBitSize
);
3969 // For big endian targets, swap the order of the pieces of each element.
3970 if (TLI
.isBigEndian())
3971 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
3974 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3975 &Ops
[0], Ops
.size());
3978 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
3979 SDValue N0
= N
->getOperand(0);
3980 SDValue N1
= N
->getOperand(1);
3981 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3982 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3983 EVT VT
= N
->getValueType(0);
3986 if (VT
.isVector()) {
3987 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3988 if (FoldedVOp
.getNode()) return FoldedVOp
;
3991 // fold (fadd c1, c2) -> (fadd c1, c2)
3992 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3993 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N1
);
3994 // canonicalize constant to RHS
3995 if (N0CFP
&& !N1CFP
)
3996 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N1
, N0
);
3997 // fold (fadd A, 0) -> A
3998 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4000 // fold (fadd A, (fneg B)) -> (fsub A, B)
4001 if (isNegatibleForFree(N1
, LegalOperations
) == 2)
4002 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
,
4003 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4004 // fold (fadd (fneg A), B) -> (fsub B, A)
4005 if (isNegatibleForFree(N0
, LegalOperations
) == 2)
4006 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N1
,
4007 GetNegatedExpression(N0
, DAG
, LegalOperations
));
4009 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
4010 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
4011 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4012 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4013 DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
,
4014 N0
.getOperand(1), N1
));
4019 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
4020 SDValue N0
= N
->getOperand(0);
4021 SDValue N1
= N
->getOperand(1);
4022 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4023 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4024 EVT VT
= N
->getValueType(0);
4027 if (VT
.isVector()) {
4028 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4029 if (FoldedVOp
.getNode()) return FoldedVOp
;
4032 // fold (fsub c1, c2) -> c1-c2
4033 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4034 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
, N1
);
4035 // fold (fsub A, 0) -> A
4036 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4038 // fold (fsub 0, B) -> -B
4039 if (UnsafeFPMath
&& N0CFP
&& N0CFP
->getValueAPF().isZero()) {
4040 if (isNegatibleForFree(N1
, LegalOperations
))
4041 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
4042 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4043 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N1
);
4045 // fold (fsub A, (fneg B)) -> (fadd A, B)
4046 if (isNegatibleForFree(N1
, LegalOperations
))
4047 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
,
4048 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4053 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
4054 SDValue N0
= N
->getOperand(0);
4055 SDValue N1
= N
->getOperand(1);
4056 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4057 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4058 EVT VT
= N
->getValueType(0);
4061 if (VT
.isVector()) {
4062 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4063 if (FoldedVOp
.getNode()) return FoldedVOp
;
4066 // fold (fmul c1, c2) -> c1*c2
4067 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4068 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
, N1
);
4069 // canonicalize constant to RHS
4070 if (N0CFP
&& !N1CFP
)
4071 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N1
, N0
);
4072 // fold (fmul A, 0) -> 0
4073 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4075 // fold (fmul A, 0) -> 0, vector edition.
4076 if (UnsafeFPMath
&& ISD::isBuildVectorAllZeros(N1
.getNode()))
4078 // fold (fmul X, 2.0) -> (fadd X, X)
4079 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
4080 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N0
);
4081 // fold (fmul X, -1.0) -> (fneg X)
4082 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
4083 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4084 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N0
);
4086 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4087 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4088 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4089 // Both can be negated for free, check to see if at least one is cheaper
4091 if (LHSNeg
== 2 || RHSNeg
== 2)
4092 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4093 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4094 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4098 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4099 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
4100 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4101 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4102 DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4103 N0
.getOperand(1), N1
));
4108 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
4109 SDValue N0
= N
->getOperand(0);
4110 SDValue N1
= N
->getOperand(1);
4111 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4112 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4113 EVT VT
= N
->getValueType(0);
4116 if (VT
.isVector()) {
4117 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4118 if (FoldedVOp
.getNode()) return FoldedVOp
;
4121 // fold (fdiv c1, c2) -> c1/c2
4122 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4123 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
4126 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4127 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4128 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4129 // Both can be negated for free, check to see if at least one is cheaper
4131 if (LHSNeg
== 2 || RHSNeg
== 2)
4132 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
,
4133 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4134 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4141 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
4142 SDValue N0
= N
->getOperand(0);
4143 SDValue N1
= N
->getOperand(1);
4144 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4145 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4146 EVT VT
= N
->getValueType(0);
4148 // fold (frem c1, c2) -> fmod(c1,c2)
4149 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4150 return DAG
.getNode(ISD::FREM
, N
->getDebugLoc(), VT
, N0
, N1
);
4155 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
4156 SDValue N0
= N
->getOperand(0);
4157 SDValue N1
= N
->getOperand(1);
4158 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4159 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4160 EVT VT
= N
->getValueType(0);
4162 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
) // Constant fold
4163 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
, N0
, N1
);
4166 const APFloat
& V
= N1CFP
->getValueAPF();
4167 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4168 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4169 if (!V
.isNegative()) {
4170 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
4171 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4173 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4174 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
,
4175 DAG
.getNode(ISD::FABS
, N0
.getDebugLoc(), VT
, N0
));
4179 // copysign(fabs(x), y) -> copysign(x, y)
4180 // copysign(fneg(x), y) -> copysign(x, y)
4181 // copysign(copysign(x,z), y) -> copysign(x, y)
4182 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
4183 N0
.getOpcode() == ISD::FCOPYSIGN
)
4184 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4185 N0
.getOperand(0), N1
);
4187 // copysign(x, abs(y)) -> abs(x)
4188 if (N1
.getOpcode() == ISD::FABS
)
4189 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4191 // copysign(x, copysign(y,z)) -> copysign(x, z)
4192 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
4193 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4194 N0
, N1
.getOperand(1));
4196 // copysign(x, fp_extend(y)) -> copysign(x, y)
4197 // copysign(x, fp_round(y)) -> copysign(x, y)
4198 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
4199 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4200 N0
, N1
.getOperand(0));
4205 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
4206 SDValue N0
= N
->getOperand(0);
4207 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4208 EVT VT
= N
->getValueType(0);
4209 EVT OpVT
= N0
.getValueType();
4211 // fold (sint_to_fp c1) -> c1fp
4212 if (N0C
&& OpVT
!= MVT::ppcf128
)
4213 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4215 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4216 // but UINT_TO_FP is legal on this target, try to convert.
4217 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
4218 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
4219 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4220 if (DAG
.SignBitIsZero(N0
))
4221 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4227 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
4228 SDValue N0
= N
->getOperand(0);
4229 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4230 EVT VT
= N
->getValueType(0);
4231 EVT OpVT
= N0
.getValueType();
4233 // fold (uint_to_fp c1) -> c1fp
4234 if (N0C
&& OpVT
!= MVT::ppcf128
)
4235 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4237 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4238 // but SINT_TO_FP is legal on this target, try to convert.
4239 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
4240 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
4241 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4242 if (DAG
.SignBitIsZero(N0
))
4243 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4249 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
4250 SDValue N0
= N
->getOperand(0);
4251 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4252 EVT VT
= N
->getValueType(0);
4254 // fold (fp_to_sint c1fp) -> c1
4256 return DAG
.getNode(ISD::FP_TO_SINT
, N
->getDebugLoc(), VT
, N0
);
4261 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
4262 SDValue N0
= N
->getOperand(0);
4263 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4264 EVT VT
= N
->getValueType(0);
4266 // fold (fp_to_uint c1fp) -> c1
4267 if (N0CFP
&& VT
!= MVT::ppcf128
)
4268 return DAG
.getNode(ISD::FP_TO_UINT
, N
->getDebugLoc(), VT
, N0
);
4273 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
4274 SDValue N0
= N
->getOperand(0);
4275 SDValue N1
= N
->getOperand(1);
4276 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4277 EVT VT
= N
->getValueType(0);
4279 // fold (fp_round c1fp) -> c1fp
4280 if (N0CFP
&& N0
.getValueType() != MVT::ppcf128
)
4281 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
, N1
);
4283 // fold (fp_round (fp_extend x)) -> x
4284 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
4285 return N0
.getOperand(0);
4287 // fold (fp_round (fp_round x)) -> (fp_round x)
4288 if (N0
.getOpcode() == ISD::FP_ROUND
) {
4289 // This is a value preserving truncation if both round's are.
4290 bool IsTrunc
= N
->getConstantOperandVal(1) == 1 &&
4291 N0
.getNode()->getConstantOperandVal(1) == 1;
4292 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4293 DAG
.getIntPtrConstant(IsTrunc
));
4296 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4297 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
4298 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(), VT
,
4299 N0
.getOperand(0), N1
);
4300 AddToWorkList(Tmp
.getNode());
4301 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4302 Tmp
, N0
.getOperand(1));
4308 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
4309 SDValue N0
= N
->getOperand(0);
4310 EVT VT
= N
->getValueType(0);
4311 EVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
4312 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4314 // fold (fp_round_inreg c1fp) -> c1fp
4315 if (N0CFP
&& (TLI
.isTypeLegal(EVT
) || !LegalTypes
)) {
4316 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), EVT
);
4317 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, Round
);
4323 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
4324 SDValue N0
= N
->getOperand(0);
4325 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4326 EVT VT
= N
->getValueType(0);
4328 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4329 if (N
->hasOneUse() &&
4330 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
4333 // fold (fp_extend c1fp) -> c1fp
4334 if (N0CFP
&& VT
!= MVT::ppcf128
)
4335 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, N0
);
4337 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4339 if (N0
.getOpcode() == ISD::FP_ROUND
4340 && N0
.getNode()->getConstantOperandVal(1) == 1) {
4341 SDValue In
= N0
.getOperand(0);
4342 if (In
.getValueType() == VT
) return In
;
4343 if (VT
.bitsLT(In
.getValueType()))
4344 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
,
4345 In
, N0
.getOperand(1));
4346 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, In
);
4349 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4350 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
4351 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4352 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
4353 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4354 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
4356 LN0
->getBasePtr(), LN0
->getSrcValue(),
4357 LN0
->getSrcValueOffset(),
4359 LN0
->isVolatile(), LN0
->getAlignment());
4360 CombineTo(N
, ExtLoad
);
4361 CombineTo(N0
.getNode(),
4362 DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(),
4363 N0
.getValueType(), ExtLoad
, DAG
.getIntPtrConstant(1)),
4364 ExtLoad
.getValue(1));
4365 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4371 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
4372 SDValue N0
= N
->getOperand(0);
4374 if (isNegatibleForFree(N0
, LegalOperations
))
4375 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
4377 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4378 // constant pool values.
4379 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4380 N0
.getOperand(0).getValueType().isInteger() &&
4381 !N0
.getOperand(0).getValueType().isVector()) {
4382 SDValue Int
= N0
.getOperand(0);
4383 EVT IntVT
= Int
.getValueType();
4384 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4385 Int
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), IntVT
, Int
,
4386 DAG
.getConstant(APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4387 AddToWorkList(Int
.getNode());
4388 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4389 N
->getValueType(0), Int
);
4396 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
4397 SDValue N0
= N
->getOperand(0);
4398 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4399 EVT VT
= N
->getValueType(0);
4401 // fold (fabs c1) -> fabs(c1)
4402 if (N0CFP
&& VT
!= MVT::ppcf128
)
4403 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4404 // fold (fabs (fabs x)) -> (fabs x)
4405 if (N0
.getOpcode() == ISD::FABS
)
4406 return N
->getOperand(0);
4407 // fold (fabs (fneg x)) -> (fabs x)
4408 // fold (fabs (fcopysign x, y)) -> (fabs x)
4409 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
4410 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4412 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4413 // constant pool values.
4414 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4415 N0
.getOperand(0).getValueType().isInteger() &&
4416 !N0
.getOperand(0).getValueType().isVector()) {
4417 SDValue Int
= N0
.getOperand(0);
4418 EVT IntVT
= Int
.getValueType();
4419 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4420 Int
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), IntVT
, Int
,
4421 DAG
.getConstant(~APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4422 AddToWorkList(Int
.getNode());
4423 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4424 N
->getValueType(0), Int
);
4431 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
4432 SDValue Chain
= N
->getOperand(0);
4433 SDValue N1
= N
->getOperand(1);
4434 SDValue N2
= N
->getOperand(2);
4435 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
4437 // never taken branch, fold to chain
4438 if (N1C
&& N1C
->isNullValue())
4440 // unconditional branch
4441 if (N1C
&& N1C
->getAPIntValue() == 1)
4442 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
, Chain
, N2
);
4443 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4445 if (N1
.getOpcode() == ISD::SETCC
&&
4446 TLI
.isOperationLegalOrCustom(ISD::BR_CC
, MVT::Other
)) {
4447 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4448 Chain
, N1
.getOperand(2),
4449 N1
.getOperand(0), N1
.getOperand(1), N2
);
4452 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::SRL
) {
4453 // Match this pattern so that we can generate simpler code:
4456 // %b = and i32 %a, 2
4457 // %c = srl i32 %b, 1
4458 // brcond i32 %c ...
4464 // %c = setcc eq %b, 0
4467 // This applies only when the AND constant value has one bit set and the
4468 // SRL constant is equal to the log2 of the AND constant. The back-end is
4469 // smart enough to convert the result into a TEST/JMP sequence.
4470 SDValue Op0
= N1
.getOperand(0);
4471 SDValue Op1
= N1
.getOperand(1);
4473 if (Op0
.getOpcode() == ISD::AND
&&
4475 Op1
.getOpcode() == ISD::Constant
) {
4476 SDValue AndOp0
= Op0
.getOperand(0);
4477 SDValue AndOp1
= Op0
.getOperand(1);
4479 if (AndOp1
.getOpcode() == ISD::Constant
) {
4480 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
4482 if (AndConst
.isPowerOf2() &&
4483 cast
<ConstantSDNode
>(Op1
)->getAPIntValue()==AndConst
.logBase2()) {
4485 DAG
.getSetCC(N
->getDebugLoc(),
4486 TLI
.getSetCCResultType(Op0
.getValueType()),
4487 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
4490 // Replace the uses of SRL with SETCC
4491 DAG
.ReplaceAllUsesOfValueWith(N1
, SetCC
);
4492 removeFromWorkList(N1
.getNode());
4493 DAG
.DeleteNode(N1
.getNode());
4494 return DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
4495 MVT::Other
, Chain
, SetCC
, N2
);
4504 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4506 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
4507 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
4508 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
4510 // Use SimplifySetCC to simplify SETCC's.
4511 SDValue Simp
= SimplifySetCC(TLI
.getSetCCResultType(CondLHS
.getValueType()),
4512 CondLHS
, CondRHS
, CC
->get(), N
->getDebugLoc(),
4514 if (Simp
.getNode()) AddToWorkList(Simp
.getNode());
4516 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(Simp
.getNode());
4518 // fold br_cc true, dest -> br dest (unconditional branch)
4519 if (SCCC
&& !SCCC
->isNullValue())
4520 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
,
4521 N
->getOperand(0), N
->getOperand(4));
4522 // fold br_cc false, dest -> unconditional fall through
4523 if (SCCC
&& SCCC
->isNullValue())
4524 return N
->getOperand(0);
4526 // fold to a simpler setcc
4527 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
4528 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4529 N
->getOperand(0), Simp
.getOperand(2),
4530 Simp
.getOperand(0), Simp
.getOperand(1),
4536 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4537 /// pre-indexed load / store when the base pointer is an add or subtract
4538 /// and it has other uses besides the load / store. After the
4539 /// transformation, the new indexed load / store has effectively folded
4540 /// the add / subtract in and all of its other uses are redirected to the
4541 /// new load / store.
4542 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
4543 if (!LegalOperations
)
4549 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4550 if (LD
->isIndexed())
4552 VT
= LD
->getMemoryVT();
4553 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
4554 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
4556 Ptr
= LD
->getBasePtr();
4557 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4558 if (ST
->isIndexed())
4560 VT
= ST
->getMemoryVT();
4561 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
4562 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
4564 Ptr
= ST
->getBasePtr();
4570 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4571 // out. There is no reason to make this a preinc/predec.
4572 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
4573 Ptr
.getNode()->hasOneUse())
4576 // Ask the target to do addressing mode selection.
4579 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4580 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
4582 // Don't create a indexed load / store with zero offset.
4583 if (isa
<ConstantSDNode
>(Offset
) &&
4584 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4587 // Try turning it into a pre-indexed load / store except when:
4588 // 1) The new base ptr is a frame index.
4589 // 2) If N is a store and the new base ptr is either the same as or is a
4590 // predecessor of the value being stored.
4591 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4592 // that would create a cycle.
4593 // 4) All uses are load / store ops that use it as old base ptr.
4595 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4596 // (plus the implicit offset) to a register to preinc anyway.
4597 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
4602 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
4603 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
4607 // Now check for #3 and #4.
4608 bool RealUse
= false;
4609 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4610 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4614 if (Use
->isPredecessorOf(N
))
4617 if (!((Use
->getOpcode() == ISD::LOAD
&&
4618 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
4619 (Use
->getOpcode() == ISD::STORE
&&
4620 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
)))
4629 Result
= DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4630 BasePtr
, Offset
, AM
);
4632 Result
= DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4633 BasePtr
, Offset
, AM
);
4636 DOUT
<< "\nReplacing.4 "; DEBUG(N
->dump(&DAG
));
4637 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4639 WorkListRemover
DeadNodes(*this);
4641 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4643 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4646 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4650 // Finally, since the node is now dead, remove it from the graph.
4653 // Replace the uses of Ptr with uses of the updated base value.
4654 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
4656 removeFromWorkList(Ptr
.getNode());
4657 DAG
.DeleteNode(Ptr
.getNode());
4662 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4663 /// add / sub of the base pointer node into a post-indexed load / store.
4664 /// The transformation folded the add / subtract into the new indexed
4665 /// load / store effectively and all of its uses are redirected to the
4666 /// new load / store.
4667 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
4668 if (!LegalOperations
)
4674 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4675 if (LD
->isIndexed())
4677 VT
= LD
->getMemoryVT();
4678 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
4679 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
4681 Ptr
= LD
->getBasePtr();
4682 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4683 if (ST
->isIndexed())
4685 VT
= ST
->getMemoryVT();
4686 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
4687 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
4689 Ptr
= ST
->getBasePtr();
4695 if (Ptr
.getNode()->hasOneUse())
4698 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4699 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4702 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
4707 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4708 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
4710 std::swap(BasePtr
, Offset
);
4713 // Don't create a indexed load / store with zero offset.
4714 if (isa
<ConstantSDNode
>(Offset
) &&
4715 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4718 // Try turning it into a post-indexed load / store except when
4719 // 1) All uses are load / store ops that use it as base ptr.
4720 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4721 // nor a successor of N. Otherwise, if Op is folded that would
4724 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
4728 bool TryNext
= false;
4729 for (SDNode::use_iterator II
= BasePtr
.getNode()->use_begin(),
4730 EE
= BasePtr
.getNode()->use_end(); II
!= EE
; ++II
) {
4732 if (Use
== Ptr
.getNode())
4735 // If all the uses are load / store addresses, then don't do the
4737 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
4738 bool RealUse
= false;
4739 for (SDNode::use_iterator III
= Use
->use_begin(),
4740 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
4741 SDNode
*UseUse
= *III
;
4742 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
4743 cast
<LoadSDNode
>(UseUse
)->getBasePtr().getNode() == Use
) ||
4744 (UseUse
->getOpcode() == ISD::STORE
&&
4745 cast
<StoreSDNode
>(UseUse
)->getBasePtr().getNode() == Use
)))
4760 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
4761 SDValue Result
= isLoad
4762 ? DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4763 BasePtr
, Offset
, AM
)
4764 : DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4765 BasePtr
, Offset
, AM
);
4768 DOUT
<< "\nReplacing.5 "; DEBUG(N
->dump(&DAG
));
4769 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4771 WorkListRemover
DeadNodes(*this);
4773 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4775 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4778 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4782 // Finally, since the node is now dead, remove it from the graph.
4785 // Replace the uses of Use with uses of the updated base value.
4786 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
4787 Result
.getValue(isLoad
? 1 : 0),
4789 removeFromWorkList(Op
);
4799 /// InferAlignment - If we can infer some alignment information from this
4800 /// pointer, return it.
4801 static unsigned InferAlignment(SDValue Ptr
, SelectionDAG
&DAG
) {
4802 // If this is a direct reference to a stack slot, use information about the
4803 // stack slot's alignment.
4804 int FrameIdx
= 1 << 31;
4805 int64_t FrameOffset
= 0;
4806 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
4807 FrameIdx
= FI
->getIndex();
4808 } else if (Ptr
.getOpcode() == ISD::ADD
&&
4809 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
4810 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
4811 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
4812 FrameOffset
= Ptr
.getConstantOperandVal(1);
4815 if (FrameIdx
!= (1 << 31)) {
4816 // FIXME: Handle FI+CST.
4817 const MachineFrameInfo
&MFI
= *DAG
.getMachineFunction().getFrameInfo();
4818 if (MFI
.isFixedObjectIndex(FrameIdx
)) {
4819 int64_t ObjectOffset
= MFI
.getObjectOffset(FrameIdx
) + FrameOffset
;
4821 // The alignment of the frame index can be determined from its offset from
4822 // the incoming frame position. If the frame object is at offset 32 and
4823 // the stack is guaranteed to be 16-byte aligned, then we know that the
4824 // object is 16-byte aligned.
4825 unsigned StackAlign
= DAG
.getTarget().getFrameInfo()->getStackAlignment();
4826 unsigned Align
= MinAlign(ObjectOffset
, StackAlign
);
4828 // Finally, the frame object itself may have a known alignment. Factor
4829 // the alignment + offset into a new alignment. For example, if we know
4830 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4831 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4832 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4833 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
4835 return std::max(Align
, FIInfoAlign
);
4842 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
4843 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
4844 SDValue Chain
= LD
->getChain();
4845 SDValue Ptr
= LD
->getBasePtr();
4847 // Try to infer better alignment information than the load already has.
4848 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
4849 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4850 if (Align
> LD
->getAlignment())
4851 return DAG
.getExtLoad(LD
->getExtensionType(), N
->getDebugLoc(),
4852 LD
->getValueType(0),
4853 Chain
, Ptr
, LD
->getSrcValue(),
4854 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
4855 LD
->isVolatile(), Align
);
4859 // If load is not volatile and there are no uses of the loaded value (and
4860 // the updated indexed value in case of indexed loads), change uses of the
4861 // chain value into uses of the chain input (i.e. delete the dead load).
4862 if (!LD
->isVolatile()) {
4863 if (N
->getValueType(1) == MVT::Other
) {
4865 if (N
->hasNUsesOfValue(0, 0)) {
4866 // It's not safe to use the two value CombineTo variant here. e.g.
4867 // v1, chain2 = load chain1, loc
4868 // v2, chain3 = load chain2, loc
4870 // Now we replace use of chain2 with chain1. This makes the second load
4871 // isomorphic to the one we are deleting, and thus makes this load live.
4872 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4873 DOUT
<< "\nWith chain: "; DEBUG(Chain
.getNode()->dump(&DAG
));
4875 WorkListRemover
DeadNodes(*this);
4876 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
, &DeadNodes
);
4878 if (N
->use_empty()) {
4879 removeFromWorkList(N
);
4883 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4887 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
4888 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
4889 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
4890 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4891 DOUT
<< "\nWith: "; DEBUG(Undef
.getNode()->dump(&DAG
));
4892 DOUT
<< " and 2 other values\n";
4893 WorkListRemover
DeadNodes(*this);
4894 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
, &DeadNodes
);
4895 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1),
4896 DAG
.getUNDEF(N
->getValueType(1)),
4898 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
, &DeadNodes
);
4899 removeFromWorkList(N
);
4901 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4906 // If this load is directly stored, replace the load value with the stored
4908 // TODO: Handle store large -> read small portion.
4909 // TODO: Handle TRUNCSTORE/LOADEXT
4910 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
4911 !LD
->isVolatile()) {
4912 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
4913 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
4914 if (PrevST
->getBasePtr() == Ptr
&&
4915 PrevST
->getValue().getValueType() == N
->getValueType(0))
4916 return CombineTo(N
, Chain
.getOperand(1), Chain
);
4921 // Walk up chain skipping non-aliasing memory nodes.
4922 SDValue BetterChain
= FindBetterChain(N
, Chain
);
4924 // If there is a better chain.
4925 if (Chain
!= BetterChain
) {
4928 // Replace the chain to void dependency.
4929 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
4930 ReplLoad
= DAG
.getLoad(N
->getValueType(0), LD
->getDebugLoc(),
4932 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4933 LD
->isVolatile(), LD
->getAlignment());
4935 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), LD
->getDebugLoc(),
4936 LD
->getValueType(0),
4937 BetterChain
, Ptr
, LD
->getSrcValue(),
4938 LD
->getSrcValueOffset(),
4941 LD
->getAlignment());
4944 // Create token factor to keep old chain connected.
4945 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
4946 MVT::Other
, Chain
, ReplLoad
.getValue(1));
4948 // Replace uses with load result and token factor. Don't add users
4950 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
4954 // Try transforming N to an indexed load.
4955 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
4956 return SDValue(N
, 0);
4962 /// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
4963 /// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
4964 /// of the loaded bits, try narrowing the load and store if it would end up
4965 /// being a win for performance or code size.
4966 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
4967 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
4968 if (ST
->isVolatile())
4971 SDValue Chain
= ST
->getChain();
4972 SDValue Value
= ST
->getValue();
4973 SDValue Ptr
= ST
->getBasePtr();
4974 EVT VT
= Value
.getValueType();
4976 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
4979 unsigned Opc
= Value
.getOpcode();
4980 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
4981 Value
.getOperand(1).getOpcode() != ISD::Constant
)
4984 SDValue N0
= Value
.getOperand(0);
4985 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse()) {
4986 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
4987 if (LD
->getBasePtr() != Ptr
)
4990 // Find the type to narrow it the load / op / store to.
4991 SDValue N1
= Value
.getOperand(1);
4992 unsigned BitWidth
= N1
.getValueSizeInBits();
4993 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
4994 if (Opc
== ISD::AND
)
4995 Imm
^= APInt::getAllOnesValue(BitWidth
);
4996 if (Imm
== 0 || Imm
.isAllOnesValue())
4998 unsigned ShAmt
= Imm
.countTrailingZeros();
4999 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
5000 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
5001 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
5002 while (NewBW
< BitWidth
&&
5003 !(TLI
.isOperationLegalOrCustom(Opc
, NewVT
) &&
5004 TLI
.isNarrowingProfitable(VT
, NewVT
))) {
5005 NewBW
= NextPowerOf2(NewBW
);
5006 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
5008 if (NewBW
>= BitWidth
)
5011 // If the lsb changed does not start at the type bitwidth boundary,
5012 // start at the previous one.
5014 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
5015 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
, ShAmt
+ NewBW
);
5016 if ((Imm
& Mask
) == Imm
) {
5017 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
5018 if (Opc
== ISD::AND
)
5019 NewImm
^= APInt::getAllOnesValue(NewBW
);
5020 uint64_t PtrOff
= ShAmt
/ 8;
5021 // For big endian targets, we need to adjust the offset to the pointer to
5022 // load the correct bytes.
5023 if (TLI
.isBigEndian())
5024 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
5026 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
5028 TLI
.getTargetData()->getABITypeAlignment(NewVT
.getTypeForEVT(*DAG
.getContext())))
5031 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LD
->getDebugLoc(),
5032 Ptr
.getValueType(), Ptr
,
5033 DAG
.getConstant(PtrOff
, Ptr
.getValueType()));
5034 SDValue NewLD
= DAG
.getLoad(NewVT
, N0
.getDebugLoc(),
5035 LD
->getChain(), NewPtr
,
5036 LD
->getSrcValue(), LD
->getSrcValueOffset(),
5037 LD
->isVolatile(), NewAlign
);
5038 SDValue NewVal
= DAG
.getNode(Opc
, Value
.getDebugLoc(), NewVT
, NewLD
,
5039 DAG
.getConstant(NewImm
, NewVT
));
5040 SDValue NewST
= DAG
.getStore(Chain
, N
->getDebugLoc(),
5042 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5045 AddToWorkList(NewPtr
.getNode());
5046 AddToWorkList(NewLD
.getNode());
5047 AddToWorkList(NewVal
.getNode());
5048 WorkListRemover
DeadNodes(*this);
5049 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1),
5059 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
5060 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
5061 SDValue Chain
= ST
->getChain();
5062 SDValue Value
= ST
->getValue();
5063 SDValue Ptr
= ST
->getBasePtr();
5065 // Try to infer better alignment information than the store already has.
5066 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
5067 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
5068 if (Align
> ST
->getAlignment())
5069 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
,
5070 Ptr
, ST
->getSrcValue(),
5071 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5072 ST
->isVolatile(), Align
);
5076 // If this is a store of a bit convert, store the input value if the
5077 // resultant store does not need a higher alignment than the original.
5078 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
5079 ST
->isUnindexed()) {
5080 unsigned OrigAlign
= ST
->getAlignment();
5081 EVT SVT
= Value
.getOperand(0).getValueType();
5082 unsigned Align
= TLI
.getTargetData()->
5083 getABITypeAlignment(SVT
.getTypeForEVT(*DAG
.getContext()));
5084 if (Align
<= OrigAlign
&&
5085 ((!LegalOperations
&& !ST
->isVolatile()) ||
5086 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)))
5087 return DAG
.getStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5088 Ptr
, ST
->getSrcValue(),
5089 ST
->getSrcValueOffset(), ST
->isVolatile(), OrigAlign
);
5092 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
5093 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
5094 // NOTE: If the original store is volatile, this transform must not increase
5095 // the number of stores. For example, on x86-32 an f64 can be stored in one
5096 // processor operation but an i64 (which is not legal) requires two. So the
5097 // transform should not be done in this case.
5098 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
5100 switch (CFP
->getValueType(0).getSimpleVT().SimpleTy
) {
5101 default: llvm_unreachable("Unknown FP type");
5102 case MVT::f80
: // We don't do this for these yet.
5107 if (((TLI
.isTypeLegal(MVT::i32
) || !LegalTypes
) && !LegalOperations
&&
5108 !ST
->isVolatile()) ||
5109 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5110 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
5111 bitcastToAPInt().getZExtValue(), MVT::i32
);
5112 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5113 Ptr
, ST
->getSrcValue(),
5114 ST
->getSrcValueOffset(), ST
->isVolatile(),
5115 ST
->getAlignment());
5119 if (((TLI
.isTypeLegal(MVT::i64
) || !LegalTypes
) && !LegalOperations
&&
5120 !ST
->isVolatile()) ||
5121 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
5122 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
5123 getZExtValue(), MVT::i64
);
5124 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
5125 Ptr
, ST
->getSrcValue(),
5126 ST
->getSrcValueOffset(), ST
->isVolatile(),
5127 ST
->getAlignment());
5128 } else if (!ST
->isVolatile() &&
5129 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
5130 // Many FP stores are not made apparent until after legalize, e.g. for
5131 // argument passing. Since this is so common, custom legalize the
5132 // 64-bit integer store into two 32-bit stores.
5133 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
5134 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
5135 SDValue Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
5136 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
5138 int SVOffset
= ST
->getSrcValueOffset();
5139 unsigned Alignment
= ST
->getAlignment();
5140 bool isVolatile
= ST
->isVolatile();
5142 SDValue St0
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Lo
,
5143 Ptr
, ST
->getSrcValue(),
5144 ST
->getSrcValueOffset(),
5145 isVolatile
, ST
->getAlignment());
5146 Ptr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), Ptr
.getValueType(), Ptr
,
5147 DAG
.getConstant(4, Ptr
.getValueType()));
5149 Alignment
= MinAlign(Alignment
, 4U);
5150 SDValue St1
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Hi
,
5151 Ptr
, ST
->getSrcValue(),
5152 SVOffset
, isVolatile
, Alignment
);
5153 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
5163 // Walk up chain skipping non-aliasing memory nodes.
5164 SDValue BetterChain
= FindBetterChain(N
, Chain
);
5166 // If there is a better chain.
5167 if (Chain
!= BetterChain
) {
5168 // Replace the chain to avoid dependency.
5170 if (ST
->isTruncatingStore()) {
5171 ReplStore
= DAG
.getTruncStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5172 ST
->getSrcValue(),ST
->getSrcValueOffset(),
5174 ST
->isVolatile(), ST
->getAlignment());
5176 ReplStore
= DAG
.getStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5177 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5178 ST
->isVolatile(), ST
->getAlignment());
5181 // Create token to keep both nodes around.
5182 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
5183 MVT::Other
, Chain
, ReplStore
);
5185 // Don't add users to work list.
5186 return CombineTo(N
, Token
, false);
5190 // Try transforming N to an indexed store.
5191 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
5192 return SDValue(N
, 0);
5194 // FIXME: is there such a thing as a truncating indexed store?
5195 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
5196 Value
.getValueType().isInteger()) {
5197 // See if we can simplify the input to this truncstore with knowledge that
5198 // only the low bits are being used. For example:
5199 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
5201 GetDemandedBits(Value
,
5202 APInt::getLowBitsSet(Value
.getValueSizeInBits(),
5203 ST
->getMemoryVT().getSizeInBits()));
5204 AddToWorkList(Value
.getNode());
5205 if (Shorter
.getNode())
5206 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Shorter
,
5207 Ptr
, ST
->getSrcValue(),
5208 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5209 ST
->isVolatile(), ST
->getAlignment());
5211 // Otherwise, see if we can simplify the operation with
5212 // SimplifyDemandedBits, which only works if the value has a single use.
5213 if (SimplifyDemandedBits(Value
,
5214 APInt::getLowBitsSet(
5215 Value
.getValueSizeInBits(),
5216 ST
->getMemoryVT().getSizeInBits())))
5217 return SDValue(N
, 0);
5220 // If this is a load followed by a store to the same location, then the store
5222 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
5223 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
5224 ST
->isUnindexed() && !ST
->isVolatile() &&
5225 // There can't be any side effects between the load and store, such as
5227 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
5228 // The store is dead, remove it.
5233 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
5234 // truncating store. We can do this even if this is already a truncstore.
5235 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
5236 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
5237 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
5238 ST
->getMemoryVT())) {
5239 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5240 Ptr
, ST
->getSrcValue(),
5241 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5242 ST
->isVolatile(), ST
->getAlignment());
5245 return ReduceLoadOpStoreWidth(N
);
5248 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
5249 SDValue InVec
= N
->getOperand(0);
5250 SDValue InVal
= N
->getOperand(1);
5251 SDValue EltNo
= N
->getOperand(2);
5253 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5254 // vector with the inserted element.
5255 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
5256 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5257 SmallVector
<SDValue
, 8> Ops(InVec
.getNode()->op_begin(),
5258 InVec
.getNode()->op_end());
5259 if (Elt
< Ops
.size())
5261 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5262 InVec
.getValueType(), &Ops
[0], Ops
.size());
5264 // If the invec is an UNDEF and if EltNo is a constant, create a new
5265 // BUILD_VECTOR with undef elements and the inserted element.
5266 if (!LegalOperations
&& InVec
.getOpcode() == ISD::UNDEF
&&
5267 isa
<ConstantSDNode
>(EltNo
)) {
5268 EVT VT
= InVec
.getValueType();
5269 EVT EVT
= VT
.getVectorElementType();
5270 unsigned NElts
= VT
.getVectorNumElements();
5271 SmallVector
<SDValue
, 8> Ops(NElts
, DAG
.getUNDEF(EVT
));
5273 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5274 if (Elt
< Ops
.size())
5276 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5277 InVec
.getValueType(), &Ops
[0], Ops
.size());
5282 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
5283 // (vextract (scalar_to_vector val, 0) -> val
5284 SDValue InVec
= N
->getOperand(0);
5286 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
5287 // If the operand is wider than the vector element type then it is implicitly
5288 // truncated. Make that explicit here.
5289 EVT EltVT
= InVec
.getValueType().getVectorElementType();
5290 SDValue InOp
= InVec
.getOperand(0);
5291 if (InOp
.getValueType() != EltVT
)
5292 return DAG
.getNode(ISD::TRUNCATE
, InVec
.getDebugLoc(), EltVT
, InOp
);
5296 // Perform only after legalization to ensure build_vector / vector_shuffle
5297 // optimizations have already been done.
5298 if (!LegalOperations
) return SDValue();
5300 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5301 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5302 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5303 SDValue EltNo
= N
->getOperand(1);
5305 if (isa
<ConstantSDNode
>(EltNo
)) {
5306 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5307 bool NewLoad
= false;
5308 bool BCNumEltsChanged
= false;
5309 EVT VT
= InVec
.getValueType();
5310 EVT ExtVT
= VT
.getVectorElementType();
5313 if (InVec
.getOpcode() == ISD::BIT_CONVERT
) {
5314 EVT BCVT
= InVec
.getOperand(0).getValueType();
5315 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
5317 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
5318 BCNumEltsChanged
= true;
5319 InVec
= InVec
.getOperand(0);
5320 ExtVT
= BCVT
.getVectorElementType();
5324 LoadSDNode
*LN0
= NULL
;
5325 const ShuffleVectorSDNode
*SVN
= NULL
;
5326 if (ISD::isNormalLoad(InVec
.getNode())) {
5327 LN0
= cast
<LoadSDNode
>(InVec
);
5328 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
5329 InVec
.getOperand(0).getValueType() == ExtVT
&&
5330 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
5331 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
5332 } else if ((SVN
= dyn_cast
<ShuffleVectorSDNode
>(InVec
))) {
5333 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5335 // (load $addr+1*size)
5337 // If the bit convert changed the number of elements, it is unsafe
5338 // to examine the mask.
5339 if (BCNumEltsChanged
)
5342 // Select the input vector, guarding against out of range extract vector.
5343 unsigned NumElems
= VT
.getVectorNumElements();
5344 int Idx
= (Elt
> NumElems
) ? -1 : SVN
->getMaskElt(Elt
);
5345 InVec
= (Idx
< (int)NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
5347 if (InVec
.getOpcode() == ISD::BIT_CONVERT
)
5348 InVec
= InVec
.getOperand(0);
5349 if (ISD::isNormalLoad(InVec
.getNode())) {
5350 LN0
= cast
<LoadSDNode
>(InVec
);
5351 Elt
= (Idx
< (int)NumElems
) ? Idx
: Idx
- NumElems
;
5355 if (!LN0
|| !LN0
->hasOneUse() || LN0
->isVolatile())
5358 unsigned Align
= LN0
->getAlignment();
5360 // Check the resultant load doesn't need a higher alignment than the
5363 TLI
.getTargetData()->getABITypeAlignment(LVT
.getTypeForEVT(*DAG
.getContext()));
5365 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, LVT
))
5371 SDValue NewPtr
= LN0
->getBasePtr();
5373 unsigned PtrOff
= LVT
.getSizeInBits() * Elt
/ 8;
5374 EVT PtrType
= NewPtr
.getValueType();
5375 if (TLI
.isBigEndian())
5376 PtrOff
= VT
.getSizeInBits() / 8 - PtrOff
;
5377 NewPtr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), PtrType
, NewPtr
,
5378 DAG
.getConstant(PtrOff
, PtrType
));
5381 return DAG
.getLoad(LVT
, N
->getDebugLoc(), LN0
->getChain(), NewPtr
,
5382 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
5383 LN0
->isVolatile(), Align
);
5389 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
5390 unsigned NumInScalars
= N
->getNumOperands();
5391 EVT VT
= N
->getValueType(0);
5392 EVT EltType
= VT
.getVectorElementType();
5394 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5395 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5396 // at most two distinct vectors, turn this into a shuffle node.
5397 SDValue VecIn1
, VecIn2
;
5398 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5399 // Ignore undef inputs.
5400 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5402 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5403 // constant index, bail out.
5404 if (N
->getOperand(i
).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5405 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
5406 VecIn1
= VecIn2
= SDValue(0, 0);
5410 // If the input vector type disagrees with the result of the build_vector,
5411 // we can't make a shuffle.
5412 SDValue ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
5413 if (ExtractedFromVec
.getValueType() != VT
) {
5414 VecIn1
= VecIn2
= SDValue(0, 0);
5418 // Otherwise, remember this. We allow up to two distinct input vectors.
5419 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
5422 if (VecIn1
.getNode() == 0) {
5423 VecIn1
= ExtractedFromVec
;
5424 } else if (VecIn2
.getNode() == 0) {
5425 VecIn2
= ExtractedFromVec
;
5428 VecIn1
= VecIn2
= SDValue(0, 0);
5433 // If everything is good, we can make a shuffle operation.
5434 if (VecIn1
.getNode()) {
5435 SmallVector
<int, 8> Mask
;
5436 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5437 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
5442 // If extracting from the first vector, just use the index directly.
5443 SDValue Extract
= N
->getOperand(i
);
5444 SDValue ExtVal
= Extract
.getOperand(1);
5445 if (Extract
.getOperand(0) == VecIn1
) {
5446 unsigned ExtIndex
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5447 if (ExtIndex
> VT
.getVectorNumElements())
5450 Mask
.push_back(ExtIndex
);
5454 // Otherwise, use InIdx + VecSize
5455 unsigned Idx
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5456 Mask
.push_back(Idx
+NumInScalars
);
5459 // Add count and size info.
5460 if (!TLI
.isTypeLegal(VT
) && LegalTypes
)
5463 // Return the new VECTOR_SHUFFLE node.
5466 Ops
[1] = VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(VT
);
5467 return DAG
.getVectorShuffle(VT
, N
->getDebugLoc(), Ops
[0], Ops
[1], &Mask
[0]);
5473 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
5474 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5475 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5476 // inputs come from at most two distinct vectors, turn this into a shuffle
5479 // If we only have one input vector, we don't need to do any concatenation.
5480 if (N
->getNumOperands() == 1)
5481 return N
->getOperand(0);
5486 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
5489 EVT VT
= N
->getValueType(0);
5490 unsigned NumElts
= VT
.getVectorNumElements();
5492 SDValue N0
= N
->getOperand(0);
5493 SDValue N1
= N
->getOperand(1);
5495 assert(N0
.getValueType().getVectorNumElements() == NumElts
&&
5496 "Vector shuffle must be normalized in DAG");
5498 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
5500 // If it is a splat, check if the argument vector is a build_vector with
5501 // all scalar elements the same.
5502 if (cast
<ShuffleVectorSDNode
>(N
)->isSplat()) {
5503 SDNode
*V
= N0
.getNode();
5506 // If this is a bit convert that changes the element type of the vector but
5507 // not the number of vector elements, look through it. Be careful not to
5508 // look though conversions that change things like v4f32 to v2f64.
5509 if (V
->getOpcode() == ISD::BIT_CONVERT
) {
5510 SDValue ConvInput
= V
->getOperand(0);
5511 if (ConvInput
.getValueType().isVector() &&
5512 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
5513 V
= ConvInput
.getNode();
5516 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
5517 unsigned NumElems
= V
->getNumOperands();
5518 unsigned BaseIdx
= cast
<ShuffleVectorSDNode
>(N
)->getSplatIndex();
5519 if (NumElems
> BaseIdx
) {
5521 bool AllSame
= true;
5522 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5523 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
5524 Base
= V
->getOperand(i
);
5528 // Splat of <u, u, u, u>, return <u, u, u, u>
5529 if (!Base
.getNode())
5531 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5532 if (V
->getOperand(i
) != Base
) {
5537 // Splat of <x, x, x, x>, return <x, x, x, x>
5546 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5547 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5548 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5549 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5550 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
5551 EVT VT
= N
->getValueType(0);
5552 DebugLoc dl
= N
->getDebugLoc();
5553 SDValue LHS
= N
->getOperand(0);
5554 SDValue RHS
= N
->getOperand(1);
5555 if (N
->getOpcode() == ISD::AND
) {
5556 if (RHS
.getOpcode() == ISD::BIT_CONVERT
)
5557 RHS
= RHS
.getOperand(0);
5558 if (RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5559 SmallVector
<int, 8> Indices
;
5560 unsigned NumElts
= RHS
.getNumOperands();
5561 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5562 SDValue Elt
= RHS
.getOperand(i
);
5563 if (!isa
<ConstantSDNode
>(Elt
))
5565 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
5566 Indices
.push_back(i
);
5567 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
5568 Indices
.push_back(NumElts
);
5573 // Let's see if the target supports this vector_shuffle.
5574 EVT RVT
= RHS
.getValueType();
5575 if (!TLI
.isVectorClearMaskLegal(Indices
, RVT
))
5578 // Return the new VECTOR_SHUFFLE node.
5579 EVT EVT
= RVT
.getVectorElementType();
5580 SmallVector
<SDValue
,8> ZeroOps(RVT
.getVectorNumElements(),
5581 DAG
.getConstant(0, EVT
));
5582 SDValue Zero
= DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5583 RVT
, &ZeroOps
[0], ZeroOps
.size());
5584 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RVT
, LHS
);
5585 SDValue Shuf
= DAG
.getVectorShuffle(RVT
, dl
, LHS
, Zero
, &Indices
[0]);
5586 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Shuf
);
5593 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5594 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
5595 // After legalize, the target may be depending on adds and other
5596 // binary ops to provide legal ways to construct constants or other
5597 // things. Simplifying them may result in a loss of legality.
5598 if (LegalOperations
) return SDValue();
5600 EVT VT
= N
->getValueType(0);
5601 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
5603 EVT EltType
= VT
.getVectorElementType();
5604 SDValue LHS
= N
->getOperand(0);
5605 SDValue RHS
= N
->getOperand(1);
5606 SDValue Shuffle
= XformToShuffleWithZero(N
);
5607 if (Shuffle
.getNode()) return Shuffle
;
5609 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5611 if (LHS
.getOpcode() == ISD::BUILD_VECTOR
&&
5612 RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5613 SmallVector
<SDValue
, 8> Ops
;
5614 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
5615 SDValue LHSOp
= LHS
.getOperand(i
);
5616 SDValue RHSOp
= RHS
.getOperand(i
);
5617 // If these two elements can't be folded, bail out.
5618 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
5619 LHSOp
.getOpcode() != ISD::Constant
&&
5620 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
5621 (RHSOp
.getOpcode() != ISD::UNDEF
&&
5622 RHSOp
.getOpcode() != ISD::Constant
&&
5623 RHSOp
.getOpcode() != ISD::ConstantFP
))
5626 // Can't fold divide by zero.
5627 if (N
->getOpcode() == ISD::SDIV
|| N
->getOpcode() == ISD::UDIV
||
5628 N
->getOpcode() == ISD::FDIV
) {
5629 if ((RHSOp
.getOpcode() == ISD::Constant
&&
5630 cast
<ConstantSDNode
>(RHSOp
.getNode())->isNullValue()) ||
5631 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
5632 cast
<ConstantFPSDNode
>(RHSOp
.getNode())->getValueAPF().isZero()))
5636 Ops
.push_back(DAG
.getNode(N
->getOpcode(), LHS
.getDebugLoc(),
5637 EltType
, LHSOp
, RHSOp
));
5638 AddToWorkList(Ops
.back().getNode());
5639 assert((Ops
.back().getOpcode() == ISD::UNDEF
||
5640 Ops
.back().getOpcode() == ISD::Constant
||
5641 Ops
.back().getOpcode() == ISD::ConstantFP
) &&
5642 "Scalar binop didn't fold!");
5645 if (Ops
.size() == LHS
.getNumOperands()) {
5646 EVT VT
= LHS
.getValueType();
5647 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
5648 &Ops
[0], Ops
.size());
5655 SDValue
DAGCombiner::SimplifySelect(DebugLoc DL
, SDValue N0
,
5656 SDValue N1
, SDValue N2
){
5657 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
5659 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
5660 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
5662 // If we got a simplified select_cc node back from SimplifySelectCC, then
5663 // break it down into a new SETCC node, and a new SELECT node, and then return
5664 // the SELECT node, since we were called with a SELECT node.
5665 if (SCC
.getNode()) {
5666 // Check to see if we got a select_cc back (to turn into setcc/select).
5667 // Otherwise, just return whatever node we got back, like fabs.
5668 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
5669 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getDebugLoc(),
5671 SCC
.getOperand(0), SCC
.getOperand(1),
5673 AddToWorkList(SETCC
.getNode());
5674 return DAG
.getNode(ISD::SELECT
, SCC
.getDebugLoc(), SCC
.getValueType(),
5675 SCC
.getOperand(2), SCC
.getOperand(3), SETCC
);
5683 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5684 /// are the two values being selected between, see if we can simplify the
5685 /// select. Callers of this should assume that TheSelect is deleted if this
5686 /// returns true. As such, they should return the appropriate thing (e.g. the
5687 /// node) back to the top-level of the DAG combiner loop to avoid it being
5689 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
5692 // If this is a select from two identical things, try to pull the operation
5693 // through the select.
5694 if (LHS
.getOpcode() == RHS
.getOpcode() && LHS
.hasOneUse() && RHS
.hasOneUse()){
5695 // If this is a load and the token chain is identical, replace the select
5696 // of two loads with a load through a select of the address to load from.
5697 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5698 // constants have been dropped into the constant pool.
5699 if (LHS
.getOpcode() == ISD::LOAD
&&
5700 // Do not let this transformation reduce the number of volatile loads.
5701 !cast
<LoadSDNode
>(LHS
)->isVolatile() &&
5702 !cast
<LoadSDNode
>(RHS
)->isVolatile() &&
5703 // Token chains must be identical.
5704 LHS
.getOperand(0) == RHS
.getOperand(0)) {
5705 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
5706 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
5708 // If this is an EXTLOAD, the VT's must match.
5709 if (LLD
->getMemoryVT() == RLD
->getMemoryVT()) {
5710 // FIXME: this conflates two src values, discarding one. This is not
5711 // the right thing to do, but nothing uses srcvalues now. When they do,
5712 // turn SrcValue into a list of locations.
5714 if (TheSelect
->getOpcode() == ISD::SELECT
) {
5715 // Check that the condition doesn't reach either load. If so, folding
5716 // this will induce a cycle into the DAG.
5717 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5718 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode())) {
5719 Addr
= DAG
.getNode(ISD::SELECT
, TheSelect
->getDebugLoc(),
5720 LLD
->getBasePtr().getValueType(),
5721 TheSelect
->getOperand(0), LLD
->getBasePtr(),
5725 // Check that the condition doesn't reach either load. If so, folding
5726 // this will induce a cycle into the DAG.
5727 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5728 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5729 !LLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode()) &&
5730 !RLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode())) {
5731 Addr
= DAG
.getNode(ISD::SELECT_CC
, TheSelect
->getDebugLoc(),
5732 LLD
->getBasePtr().getValueType(),
5733 TheSelect
->getOperand(0),
5734 TheSelect
->getOperand(1),
5735 LLD
->getBasePtr(), RLD
->getBasePtr(),
5736 TheSelect
->getOperand(4));
5740 if (Addr
.getNode()) {
5742 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
5743 Load
= DAG
.getLoad(TheSelect
->getValueType(0),
5744 TheSelect
->getDebugLoc(),
5746 Addr
,LLD
->getSrcValue(),
5747 LLD
->getSrcValueOffset(),
5749 LLD
->getAlignment());
5751 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
5752 TheSelect
->getDebugLoc(),
5753 TheSelect
->getValueType(0),
5754 LLD
->getChain(), Addr
, LLD
->getSrcValue(),
5755 LLD
->getSrcValueOffset(),
5758 LLD
->getAlignment());
5761 // Users of the select now use the result of the load.
5762 CombineTo(TheSelect
, Load
);
5764 // Users of the old loads now use the new load's chain. We know the
5765 // old-load value is dead now.
5766 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5767 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5777 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5778 /// where 'cond' is the comparison specified by CC.
5779 SDValue
DAGCombiner::SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
,
5780 SDValue N2
, SDValue N3
,
5781 ISD::CondCode CC
, bool NotExtCompare
) {
5782 // (x ? y : y) -> y.
5783 if (N2
== N3
) return N2
;
5785 EVT VT
= N2
.getValueType();
5786 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
5787 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
5788 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
5790 // Determine if the condition we're dealing with is constant
5791 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
5792 N0
, N1
, CC
, DL
, false);
5793 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
5794 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode());
5796 // fold select_cc true, x, y -> x
5797 if (SCCC
&& !SCCC
->isNullValue())
5799 // fold select_cc false, x, y -> y
5800 if (SCCC
&& SCCC
->isNullValue())
5803 // Check to see if we can simplify the select into an fabs node
5804 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
5805 // Allow either -0.0 or 0.0
5806 if (CFP
->getValueAPF().isZero()) {
5807 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5808 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
5809 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
5810 N2
== N3
.getOperand(0))
5811 return DAG
.getNode(ISD::FABS
, DL
, VT
, N0
);
5813 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5814 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5815 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
5816 N2
.getOperand(0) == N3
)
5817 return DAG
.getNode(ISD::FABS
, DL
, VT
, N3
);
5821 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5822 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5823 // in it. This is a win when the constant is not otherwise available because
5824 // it replaces two constant pool loads with one. We only do this if the FP
5825 // type is known to be legal, because if it isn't, then we are before legalize
5826 // types an we want the other legalization to happen first (e.g. to avoid
5827 // messing with soft float) and if the ConstantFP is not legal, because if
5828 // it is legal, we may not need to store the FP constant in a constant pool.
5829 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
5830 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
5831 if (TLI
.isTypeLegal(N2
.getValueType()) &&
5832 (TLI
.getOperationAction(ISD::ConstantFP
, N2
.getValueType()) !=
5833 TargetLowering::Legal
) &&
5834 // If both constants have multiple uses, then we won't need to do an
5835 // extra load, they are likely around in registers for other users.
5836 (TV
->hasOneUse() || FV
->hasOneUse())) {
5837 Constant
*Elts
[] = {
5838 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
5839 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
5841 const Type
*FPTy
= Elts
[0]->getType();
5842 const TargetData
&TD
= *TLI
.getTargetData();
5844 // Create a ConstantArray of the two constants.
5845 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
, 2);
5846 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(),
5847 TD
.getPrefTypeAlignment(FPTy
));
5848 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5850 // Get the offsets to the 0 and 1 element of the array so that we can
5851 // select between them.
5852 SDValue Zero
= DAG
.getIntPtrConstant(0);
5853 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
5854 SDValue One
= DAG
.getIntPtrConstant(EltSize
);
5856 SDValue Cond
= DAG
.getSetCC(DL
,
5857 TLI
.getSetCCResultType(N0
.getValueType()),
5859 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, DL
, Zero
.getValueType(),
5861 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, TLI
.getPointerTy(), CPIdx
,
5863 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
5864 PseudoSourceValue::getConstantPool(), 0, false,
5870 // Check to see if we can perform the "gzip trick", transforming
5871 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5872 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
5873 N0
.getValueType().isInteger() &&
5874 N2
.getValueType().isInteger() &&
5875 (N1C
->isNullValue() || // (a < 0) ? b : 0
5876 (N1C
->getAPIntValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
5877 EVT XType
= N0
.getValueType();
5878 EVT AType
= N2
.getValueType();
5879 if (XType
.bitsGE(AType
)) {
5880 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5881 // single-bit constant.
5882 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue()-1)) == 0)) {
5883 unsigned ShCtV
= N2C
->getAPIntValue().logBase2();
5884 ShCtV
= XType
.getSizeInBits()-ShCtV
-1;
5885 SDValue ShCt
= DAG
.getConstant(ShCtV
, getShiftAmountTy());
5886 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(),
5888 AddToWorkList(Shift
.getNode());
5890 if (XType
.bitsGT(AType
)) {
5891 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5892 AddToWorkList(Shift
.getNode());
5895 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5898 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(),
5900 DAG
.getConstant(XType
.getSizeInBits()-1,
5901 getShiftAmountTy()));
5902 AddToWorkList(Shift
.getNode());
5904 if (XType
.bitsGT(AType
)) {
5905 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5906 AddToWorkList(Shift
.getNode());
5909 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5913 // fold select C, 16, 0 -> shl C, 4
5914 if (N2C
&& N3C
&& N3C
->isNullValue() && N2C
->getAPIntValue().isPowerOf2() &&
5915 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
) {
5917 // If the caller doesn't want us to simplify this into a zext of a compare,
5919 if (NotExtCompare
&& N2C
->getAPIntValue() == 1)
5922 // Get a SetCC of the condition
5923 // FIXME: Should probably make sure that setcc is legal if we ever have a
5924 // target where it isn't.
5926 // cast from setcc result type to select result type
5928 SCC
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(N0
.getValueType()),
5930 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
5931 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getDebugLoc(), N2
.getValueType());
5933 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5934 N2
.getValueType(), SCC
);
5936 SCC
= DAG
.getSetCC(N0
.getDebugLoc(), MVT::i1
, N0
, N1
, CC
);
5937 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5938 N2
.getValueType(), SCC
);
5941 AddToWorkList(SCC
.getNode());
5942 AddToWorkList(Temp
.getNode());
5944 if (N2C
->getAPIntValue() == 1)
5947 // shl setcc result by log2 n2c
5948 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
5949 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
5950 getShiftAmountTy()));
5953 // Check to see if this is the equivalent of setcc
5954 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5955 // otherwise, go ahead with the folds.
5956 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getAPIntValue() == 1ULL)) {
5957 EVT XType
= N0
.getValueType();
5958 if (!LegalOperations
||
5959 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(XType
))) {
5960 SDValue Res
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(XType
), N0
, N1
, CC
);
5961 if (Res
.getValueType() != VT
)
5962 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Res
);
5966 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5967 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
5968 (!LegalOperations
||
5969 TLI
.isOperationLegal(ISD::CTLZ
, XType
))) {
5970 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, N0
.getDebugLoc(), XType
, N0
);
5971 return DAG
.getNode(ISD::SRL
, DL
, XType
, Ctlz
,
5972 DAG
.getConstant(Log2_32(XType
.getSizeInBits()),
5973 getShiftAmountTy()));
5975 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5976 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
5977 SDValue NegN0
= DAG
.getNode(ISD::SUB
, N0
.getDebugLoc(),
5978 XType
, DAG
.getConstant(0, XType
), N0
);
5979 SDValue NotN0
= DAG
.getNOT(N0
.getDebugLoc(), N0
, XType
);
5980 return DAG
.getNode(ISD::SRL
, DL
, XType
,
5981 DAG
.getNode(ISD::AND
, DL
, XType
, NegN0
, NotN0
),
5982 DAG
.getConstant(XType
.getSizeInBits()-1,
5983 getShiftAmountTy()));
5985 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5986 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
5987 SDValue Sign
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), XType
, N0
,
5988 DAG
.getConstant(XType
.getSizeInBits()-1,
5989 getShiftAmountTy()));
5990 return DAG
.getNode(ISD::XOR
, DL
, XType
, Sign
, DAG
.getConstant(1, XType
));
5994 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5995 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5996 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5997 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1) &&
5998 N2
.getOperand(0) == N1
&& N0
.getValueType().isInteger()) {
5999 EVT XType
= N0
.getValueType();
6000 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
, N0
,
6001 DAG
.getConstant(XType
.getSizeInBits()-1,
6002 getShiftAmountTy()));
6003 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), XType
,
6005 AddToWorkList(Shift
.getNode());
6006 AddToWorkList(Add
.getNode());
6007 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
6009 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
6010 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
6011 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
&&
6012 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1)) {
6013 if (ConstantSDNode
*SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0))) {
6014 EVT XType
= N0
.getValueType();
6015 if (SubC
->isNullValue() && XType
.isInteger()) {
6016 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
,
6018 DAG
.getConstant(XType
.getSizeInBits()-1,
6019 getShiftAmountTy()));
6020 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(),
6022 AddToWorkList(Shift
.getNode());
6023 AddToWorkList(Add
.getNode());
6024 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
6032 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
6033 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
,
6034 SDValue N1
, ISD::CondCode Cond
,
6035 DebugLoc DL
, bool foldBooleans
) {
6036 TargetLowering::DAGCombinerInfo
6037 DagCombineInfo(DAG
, !LegalTypes
, !LegalOperations
, false, this);
6038 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
6041 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
6042 /// return a DAG expression to select that will generate the same value by
6043 /// multiplying by a magic number. See:
6044 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6045 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
6046 std::vector
<SDNode
*> Built
;
6047 SDValue S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
6049 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
6055 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
6056 /// return a DAG expression to select that will generate the same value by
6057 /// multiplying by a magic number. See:
6058 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
6059 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
6060 std::vector
<SDNode
*> Built
;
6061 SDValue S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
6063 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
6069 /// FindBaseOffset - Return true if base is known not to alias with anything
6070 /// but itself. Provides base object and offset as results.
6071 static bool FindBaseOffset(SDValue Ptr
, SDValue
&Base
, int64_t &Offset
) {
6072 // Assume it is a primitive operation.
6073 Base
= Ptr
; Offset
= 0;
6075 // If it's an adding a simple constant then integrate the offset.
6076 if (Base
.getOpcode() == ISD::ADD
) {
6077 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
6078 Base
= Base
.getOperand(0);
6079 Offset
+= C
->getZExtValue();
6083 // If it's any of the following then it can't alias with anything but itself.
6084 return isa
<FrameIndexSDNode
>(Base
) ||
6085 isa
<ConstantPoolSDNode
>(Base
) ||
6086 isa
<GlobalAddressSDNode
>(Base
);
6089 /// isAlias - Return true if there is any possibility that the two addresses
6091 bool DAGCombiner::isAlias(SDValue Ptr1
, int64_t Size1
,
6092 const Value
*SrcValue1
, int SrcValueOffset1
,
6093 SDValue Ptr2
, int64_t Size2
,
6094 const Value
*SrcValue2
, int SrcValueOffset2
) const {
6095 // If they are the same then they must be aliases.
6096 if (Ptr1
== Ptr2
) return true;
6098 // Gather base node and offset information.
6099 SDValue Base1
, Base2
;
6100 int64_t Offset1
, Offset2
;
6101 bool KnownBase1
= FindBaseOffset(Ptr1
, Base1
, Offset1
);
6102 bool KnownBase2
= FindBaseOffset(Ptr2
, Base2
, Offset2
);
6104 // If they have a same base address then...
6106 // Check to see if the addresses overlap.
6107 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
6109 // If we know both bases then they can't alias.
6110 if (KnownBase1
&& KnownBase2
) return false;
6112 if (CombinerGlobalAA
) {
6113 // Use alias analysis information.
6114 int64_t MinOffset
= std::min(SrcValueOffset1
, SrcValueOffset2
);
6115 int64_t Overlap1
= Size1
+ SrcValueOffset1
- MinOffset
;
6116 int64_t Overlap2
= Size2
+ SrcValueOffset2
- MinOffset
;
6117 AliasAnalysis::AliasResult AAResult
=
6118 AA
.alias(SrcValue1
, Overlap1
, SrcValue2
, Overlap2
);
6119 if (AAResult
== AliasAnalysis::NoAlias
)
6123 // Otherwise we have to assume they alias.
6127 /// FindAliasInfo - Extracts the relevant alias information from the memory
6128 /// node. Returns true if the operand was a load.
6129 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
6130 SDValue
&Ptr
, int64_t &Size
,
6131 const Value
*&SrcValue
, int &SrcValueOffset
) const {
6132 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
6133 Ptr
= LD
->getBasePtr();
6134 Size
= LD
->getMemoryVT().getSizeInBits() >> 3;
6135 SrcValue
= LD
->getSrcValue();
6136 SrcValueOffset
= LD
->getSrcValueOffset();
6138 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
6139 Ptr
= ST
->getBasePtr();
6140 Size
= ST
->getMemoryVT().getSizeInBits() >> 3;
6141 SrcValue
= ST
->getSrcValue();
6142 SrcValueOffset
= ST
->getSrcValueOffset();
6144 llvm_unreachable("FindAliasInfo expected a memory operand");
6150 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
6151 /// looking for aliasing nodes and adding them to the Aliases vector.
6152 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
6153 SmallVector
<SDValue
, 8> &Aliases
) {
6154 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
6155 std::set
<SDNode
*> Visited
; // Visited node set.
6157 // Get alias information for node.
6160 const Value
*SrcValue
= 0;
6161 int SrcValueOffset
= 0;
6162 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
);
6165 Chains
.push_back(OriginalChain
);
6167 // Look at each chain and determine if it is an alias. If so, add it to the
6168 // aliases list. If not, then continue up the chain looking for the next
6170 while (!Chains
.empty()) {
6171 SDValue Chain
= Chains
.back();
6174 // Don't bother if we've been before.
6175 if (Visited
.find(Chain
.getNode()) != Visited
.end()) continue;
6176 Visited
.insert(Chain
.getNode());
6178 switch (Chain
.getOpcode()) {
6179 case ISD::EntryToken
:
6180 // Entry token is ideal chain operand, but handled in FindBetterChain.
6185 // Get alias information for Chain.
6188 const Value
*OpSrcValue
= 0;
6189 int OpSrcValueOffset
= 0;
6190 bool IsOpLoad
= FindAliasInfo(Chain
.getNode(), OpPtr
, OpSize
,
6191 OpSrcValue
, OpSrcValueOffset
);
6193 // If chain is alias then stop here.
6194 if (!(IsLoad
&& IsOpLoad
) &&
6195 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
,
6196 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
)) {
6197 Aliases
.push_back(Chain
);
6199 // Look further up the chain.
6200 Chains
.push_back(Chain
.getOperand(0));
6201 // Clean up old chain.
6202 AddToWorkList(Chain
.getNode());
6207 case ISD::TokenFactor
:
6208 // We have to check each of the operands of the token factor, so we queue
6209 // then up. Adding the operands to the queue (stack) in reverse order
6210 // maintains the original order and increases the likelihood that getNode
6211 // will find a matching token factor (CSE.)
6212 for (unsigned n
= Chain
.getNumOperands(); n
;)
6213 Chains
.push_back(Chain
.getOperand(--n
));
6214 // Eliminate the token factor if we can.
6215 AddToWorkList(Chain
.getNode());
6219 // For all other instructions we will just have to take what we can get.
6220 Aliases
.push_back(Chain
);
6226 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6227 /// for a better chain (aliasing node.)
6228 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
6229 SmallVector
<SDValue
, 8> Aliases
; // Ops for replacing token factor.
6231 // Accumulate all the aliases to this node.
6232 GatherAllAliases(N
, OldChain
, Aliases
);
6234 if (Aliases
.size() == 0) {
6235 // If no operands then chain to entry token.
6236 return DAG
.getEntryNode();
6237 } else if (Aliases
.size() == 1) {
6238 // If a single operand then chain to it. We don't need to revisit it.
6242 // Construct a custom tailored token factor.
6243 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
6244 &Aliases
[0], Aliases
.size());
6246 // Make sure the old chain gets cleaned up.
6247 if (NewChain
!= OldChain
) AddToWorkList(OldChain
.getNode());
6252 // SelectionDAG::Combine - This is the entry point for the file.
6254 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
&AA
,
6255 CodeGenOpt::Level OptLevel
) {
6256 /// run - This is the main entry point to this class.
6258 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);