Indentation.
[llvm/avr.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blobab4ebefa30bf60e156428e3b6ac49da9bf7a05d7
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include <map>
42 using namespace llvm;
44 //===----------------------------------------------------------------------===//
45 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46 /// hacks on it until the target machine can handle it. This involves
47 /// eliminating value sizes the machine cannot handle (promoting small sizes to
48 /// large sizes or splitting up large values into small values) as well as
49 /// eliminating operations the machine cannot handle.
50 ///
51 /// This code also does a small amount of optimization and recognition of idioms
52 /// as part of its processing. For example, if a target does not support a
53 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54 /// will attempt merge setcc and brc instructions into brcc's.
55 ///
56 namespace {
57 class VISIBILITY_HIDDEN SelectionDAGLegalize {
58 TargetLowering &TLI;
59 SelectionDAG &DAG;
60 CodeGenOpt::Level OptLevel;
62 // Libcall insertion helpers.
64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65 /// legalized. We use this to ensure that calls are properly serialized
66 /// against each other, including inserted libcalls.
67 SDValue LastCALLSEQ_END;
69 /// IsLegalizingCall - This member is used *only* for purposes of providing
70 /// helpful assertions that a libcall isn't created while another call is
71 /// being legalized (which could lead to non-serialized call sequences).
72 bool IsLegalizingCall;
74 enum LegalizeAction {
75 Legal, // The target natively supports this operation.
76 Promote, // This operation should be executed in a larger type.
77 Expand // Try to expand this to other ops, otherwise use a libcall.
80 /// ValueTypeActions - This is a bitvector that contains two bits for each
81 /// value type, where the two bits correspond to the LegalizeAction enum.
82 /// This can be queried with "getTypeAction(VT)".
83 TargetLowering::ValueTypeActionImpl ValueTypeActions;
85 /// LegalizedNodes - For nodes that are of legal width, and that have more
86 /// than one use, this map indicates what regularized operand to use. This
87 /// allows us to avoid legalizing the same thing more than once.
88 DenseMap<SDValue, SDValue> LegalizedNodes;
90 void AddLegalizedOperand(SDValue From, SDValue To) {
91 LegalizedNodes.insert(std::make_pair(From, To));
92 // If someone requests legalization of the new node, return itself.
93 if (From != To)
94 LegalizedNodes.insert(std::make_pair(To, To));
97 public:
98 SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100 /// getTypeAction - Return how we should legalize values of this type, either
101 /// it is already legal or we need to expand it into multiple registers of
102 /// smaller integer type, or we need to promote it to a larger type.
103 LegalizeAction getTypeAction(EVT VT) const {
104 return
105 (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
108 /// isTypeLegal - Return true if this type is legal on this target.
110 bool isTypeLegal(EVT VT) const {
111 return getTypeAction(VT) == Legal;
114 void LegalizeDAG();
116 private:
117 /// LegalizeOp - We know that the specified value has a legal type.
118 /// Recursively ensure that the operands have legal types, then return the
119 /// result.
120 SDValue LegalizeOp(SDValue O);
122 SDValue OptimizeFloatStore(StoreSDNode *ST);
124 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
125 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
126 /// is necessary to spill the vector being inserted into to memory, perform
127 /// the insert there, and then read the result back.
128 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
129 SDValue Idx, DebugLoc dl);
130 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
131 SDValue Idx, DebugLoc dl);
133 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
134 /// performs the same shuffe in terms of order or result bytes, but on a type
135 /// whose vector element type is narrower than the original shuffle type.
136 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
137 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
138 SDValue N1, SDValue N2,
139 SmallVectorImpl<int> &Mask) const;
141 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
142 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
144 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
145 DebugLoc dl);
147 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
148 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150 RTLIB::Libcall Call_PPCF128);
151 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
152 RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
153 RTLIB::Libcall Call_I128);
155 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
156 SDValue ExpandBUILD_VECTOR(SDNode *Node);
157 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
158 SDValue ExpandDBG_STOPPOINT(SDNode *Node);
159 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160 SmallVectorImpl<SDValue> &Results);
161 SDValue ExpandFCOPYSIGN(SDNode *Node);
162 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163 DebugLoc dl);
164 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165 DebugLoc dl);
166 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167 DebugLoc dl);
169 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
172 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
175 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181 /// performs the same shuffe in terms of order or result bytes, but on a type
182 /// whose vector element type is narrower than the original shuffle type.
183 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184 SDValue
185 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
186 SDValue N1, SDValue N2,
187 SmallVectorImpl<int> &Mask) const {
188 EVT EltVT = NVT.getVectorElementType();
189 unsigned NumMaskElts = VT.getVectorNumElements();
190 unsigned NumDestElts = NVT.getVectorNumElements();
191 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
193 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
195 if (NumEltsGrowth == 1)
196 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
198 SmallVector<int, 8> NewMask;
199 for (unsigned i = 0; i != NumMaskElts; ++i) {
200 int Idx = Mask[i];
201 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
202 if (Idx < 0)
203 NewMask.push_back(-1);
204 else
205 NewMask.push_back(Idx * NumEltsGrowth + j);
208 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
209 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
210 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
214 CodeGenOpt::Level ol)
215 : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
216 ValueTypeActions(TLI.getValueTypeActions()) {
217 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
218 "Too many value types for ValueTypeActions to hold!");
221 void SelectionDAGLegalize::LegalizeDAG() {
222 LastCALLSEQ_END = DAG.getEntryNode();
223 IsLegalizingCall = false;
225 // The legalize process is inherently a bottom-up recursive process (users
226 // legalize their uses before themselves). Given infinite stack space, we
227 // could just start legalizing on the root and traverse the whole graph. In
228 // practice however, this causes us to run out of stack space on large basic
229 // blocks. To avoid this problem, compute an ordering of the nodes where each
230 // node is only legalized after all of its operands are legalized.
231 DAG.AssignTopologicalOrder();
232 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
233 E = prior(DAG.allnodes_end()); I != next(E); ++I)
234 LegalizeOp(SDValue(I, 0));
236 // Finally, it's possible the root changed. Get the new root.
237 SDValue OldRoot = DAG.getRoot();
238 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
239 DAG.setRoot(LegalizedNodes[OldRoot]);
241 LegalizedNodes.clear();
243 // Remove dead nodes now.
244 DAG.RemoveDeadNodes();
248 /// FindCallEndFromCallStart - Given a chained node that is part of a call
249 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
250 static SDNode *FindCallEndFromCallStart(SDNode *Node) {
251 if (Node->getOpcode() == ISD::CALLSEQ_END)
252 return Node;
253 if (Node->use_empty())
254 return 0; // No CallSeqEnd
256 // The chain is usually at the end.
257 SDValue TheChain(Node, Node->getNumValues()-1);
258 if (TheChain.getValueType() != MVT::Other) {
259 // Sometimes it's at the beginning.
260 TheChain = SDValue(Node, 0);
261 if (TheChain.getValueType() != MVT::Other) {
262 // Otherwise, hunt for it.
263 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
264 if (Node->getValueType(i) == MVT::Other) {
265 TheChain = SDValue(Node, i);
266 break;
269 // Otherwise, we walked into a node without a chain.
270 if (TheChain.getValueType() != MVT::Other)
271 return 0;
275 for (SDNode::use_iterator UI = Node->use_begin(),
276 E = Node->use_end(); UI != E; ++UI) {
278 // Make sure to only follow users of our token chain.
279 SDNode *User = *UI;
280 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
281 if (User->getOperand(i) == TheChain)
282 if (SDNode *Result = FindCallEndFromCallStart(User))
283 return Result;
285 return 0;
288 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
289 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
290 static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
291 assert(Node && "Didn't find callseq_start for a call??");
292 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
294 assert(Node->getOperand(0).getValueType() == MVT::Other &&
295 "Node doesn't have a token chain argument!");
296 return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
299 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
300 /// see if any uses can reach Dest. If no dest operands can get to dest,
301 /// legalize them, legalize ourself, and return false, otherwise, return true.
303 /// Keep track of the nodes we fine that actually do lead to Dest in
304 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
306 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
307 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
308 if (N == Dest) return true; // N certainly leads to Dest :)
310 // If we've already processed this node and it does lead to Dest, there is no
311 // need to reprocess it.
312 if (NodesLeadingTo.count(N)) return true;
314 // If the first result of this node has been already legalized, then it cannot
315 // reach N.
316 if (LegalizedNodes.count(SDValue(N, 0))) return false;
318 // Okay, this node has not already been legalized. Check and legalize all
319 // operands. If none lead to Dest, then we can legalize this node.
320 bool OperandsLeadToDest = false;
321 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
322 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
323 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
325 if (OperandsLeadToDest) {
326 NodesLeadingTo.insert(N);
327 return true;
330 // Okay, this node looks safe, legalize it and return false.
331 LegalizeOp(SDValue(N, 0));
332 return false;
335 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
336 /// a load from the constant pool.
337 static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
338 SelectionDAG &DAG, const TargetLowering &TLI) {
339 bool Extend = false;
340 DebugLoc dl = CFP->getDebugLoc();
342 // If a FP immediate is precise when represented as a float and if the
343 // target can do an extending load from float to double, we put it into
344 // the constant pool as a float, even if it's is statically typed as a
345 // double. This shrinks FP constants and canonicalizes them for targets where
346 // an FP extending load is the same cost as a normal load (such as on the x87
347 // fp stack or PPC FP unit).
348 EVT VT = CFP->getValueType(0);
349 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350 if (!UseCP) {
351 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
356 EVT OrigVT = VT;
357 EVT SVT = VT;
358 while (SVT != MVT::f32) {
359 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
360 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
361 // Only do this if the target has a native EXTLOAD instruction from
362 // smaller type.
363 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364 TLI.ShouldShrinkFPConstant(OrigVT)) {
365 const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
366 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
367 VT = SVT;
368 Extend = true;
372 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374 if (Extend)
375 return DAG.getExtLoad(ISD::EXTLOAD, dl,
376 OrigVT, DAG.getEntryNode(),
377 CPIdx, PseudoSourceValue::getConstantPool(),
378 0, VT, false, Alignment);
379 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380 PseudoSourceValue::getConstantPool(), 0, false, Alignment);
383 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384 static
385 SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
386 const TargetLowering &TLI) {
387 SDValue Chain = ST->getChain();
388 SDValue Ptr = ST->getBasePtr();
389 SDValue Val = ST->getValue();
390 EVT VT = Val.getValueType();
391 int Alignment = ST->getAlignment();
392 int SVOffset = ST->getSrcValueOffset();
393 DebugLoc dl = ST->getDebugLoc();
394 if (ST->getMemoryVT().isFloatingPoint() ||
395 ST->getMemoryVT().isVector()) {
396 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
397 if (TLI.isTypeLegal(intVT)) {
398 // Expand to a bitconvert of the value to the integer type of the
399 // same size, then a (misaligned) int store.
400 // FIXME: Does not handle truncating floating point stores!
401 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
402 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
403 SVOffset, ST->isVolatile(), Alignment);
404 } else {
405 // Do a (aligned) store to a stack slot, then copy from the stack slot
406 // to the final destination using (unaligned) integer loads and stores.
407 EVT StoredVT = ST->getMemoryVT();
408 EVT RegVT =
409 TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
410 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411 unsigned RegBytes = RegVT.getSizeInBits() / 8;
412 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
414 // Make sure the stack slot is also aligned for the register type.
415 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
417 // Perform the original store, only redirected to the stack slot.
418 SDValue Store = DAG.getTruncStore(Chain, dl,
419 Val, StackPtr, NULL, 0, StoredVT);
420 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
421 SmallVector<SDValue, 8> Stores;
422 unsigned Offset = 0;
424 // Do all but one copies using the full register width.
425 for (unsigned i = 1; i < NumRegs; i++) {
426 // Load one integer register's worth from the stack slot.
427 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
428 // Store it to the final location. Remember the store.
429 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
430 ST->getSrcValue(), SVOffset + Offset,
431 ST->isVolatile(),
432 MinAlign(ST->getAlignment(), Offset)));
433 // Increment the pointers.
434 Offset += RegBytes;
435 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
436 Increment);
437 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
440 // The last store may be partial. Do a truncating store. On big-endian
441 // machines this requires an extending load from the stack slot to ensure
442 // that the bits are in the right place.
443 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
445 // Load from the stack slot.
446 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
447 NULL, 0, MemVT);
449 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
450 ST->getSrcValue(), SVOffset + Offset,
451 MemVT, ST->isVolatile(),
452 MinAlign(ST->getAlignment(), Offset)));
453 // The order of the stores doesn't matter - say it with a TokenFactor.
454 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
455 Stores.size());
458 assert(ST->getMemoryVT().isInteger() &&
459 !ST->getMemoryVT().isVector() &&
460 "Unaligned store of unknown type.");
461 // Get the half-size VT
462 EVT NewStoredVT =
463 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
464 int NumBits = NewStoredVT.getSizeInBits();
465 int IncrementSize = NumBits / 8;
467 // Divide the stored value in two parts.
468 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
469 SDValue Lo = Val;
470 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
472 // Store the two parts
473 SDValue Store1, Store2;
474 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
475 ST->getSrcValue(), SVOffset, NewStoredVT,
476 ST->isVolatile(), Alignment);
477 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
478 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
479 Alignment = MinAlign(Alignment, IncrementSize);
480 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
481 ST->getSrcValue(), SVOffset + IncrementSize,
482 NewStoredVT, ST->isVolatile(), Alignment);
484 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
487 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
488 static
489 SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
490 const TargetLowering &TLI) {
491 int SVOffset = LD->getSrcValueOffset();
492 SDValue Chain = LD->getChain();
493 SDValue Ptr = LD->getBasePtr();
494 EVT VT = LD->getValueType(0);
495 EVT LoadedVT = LD->getMemoryVT();
496 DebugLoc dl = LD->getDebugLoc();
497 if (VT.isFloatingPoint() || VT.isVector()) {
498 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
499 if (TLI.isTypeLegal(intVT)) {
500 // Expand to a (misaligned) integer load of the same size,
501 // then bitconvert to floating point or vector.
502 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
503 SVOffset, LD->isVolatile(),
504 LD->getAlignment());
505 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
506 if (VT.isFloatingPoint() && LoadedVT != VT)
507 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
509 SDValue Ops[] = { Result, Chain };
510 return DAG.getMergeValues(Ops, 2, dl);
511 } else {
512 // Copy the value to a (aligned) stack slot using (unaligned) integer
513 // loads and stores, then do a (aligned) load from the stack slot.
514 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
515 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
516 unsigned RegBytes = RegVT.getSizeInBits() / 8;
517 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
519 // Make sure the stack slot is also aligned for the register type.
520 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
522 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
523 SmallVector<SDValue, 8> Stores;
524 SDValue StackPtr = StackBase;
525 unsigned Offset = 0;
527 // Do all but one copies using the full register width.
528 for (unsigned i = 1; i < NumRegs; i++) {
529 // Load one integer register's worth from the original location.
530 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
531 SVOffset + Offset, LD->isVolatile(),
532 MinAlign(LD->getAlignment(), Offset));
533 // Follow the load with a store to the stack slot. Remember the store.
534 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
535 NULL, 0));
536 // Increment the pointers.
537 Offset += RegBytes;
538 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
539 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
540 Increment);
543 // The last copy may be partial. Do an extending load.
544 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
545 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
546 LD->getSrcValue(), SVOffset + Offset,
547 MemVT, LD->isVolatile(),
548 MinAlign(LD->getAlignment(), Offset));
549 // Follow the load with a store to the stack slot. Remember the store.
550 // On big-endian machines this requires a truncating store to ensure
551 // that the bits end up in the right place.
552 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
553 NULL, 0, MemVT));
555 // The order of the stores doesn't matter - say it with a TokenFactor.
556 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
557 Stores.size());
559 // Finally, perform the original load only redirected to the stack slot.
560 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
561 NULL, 0, LoadedVT);
563 // Callers expect a MERGE_VALUES node.
564 SDValue Ops[] = { Load, TF };
565 return DAG.getMergeValues(Ops, 2, dl);
568 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
569 "Unaligned load of unsupported type.");
571 // Compute the new VT that is half the size of the old one. This is an
572 // integer MVT.
573 unsigned NumBits = LoadedVT.getSizeInBits();
574 EVT NewLoadedVT;
575 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
576 NumBits >>= 1;
578 unsigned Alignment = LD->getAlignment();
579 unsigned IncrementSize = NumBits / 8;
580 ISD::LoadExtType HiExtType = LD->getExtensionType();
582 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
583 if (HiExtType == ISD::NON_EXTLOAD)
584 HiExtType = ISD::ZEXTLOAD;
586 // Load the value in two parts
587 SDValue Lo, Hi;
588 if (TLI.isLittleEndian()) {
589 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
590 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
591 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
592 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
593 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
594 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
595 MinAlign(Alignment, IncrementSize));
596 } else {
597 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
598 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
599 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
600 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
601 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
602 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
603 MinAlign(Alignment, IncrementSize));
606 // aggregate the two parts
607 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
608 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
609 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
611 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
612 Hi.getValue(1));
614 SDValue Ops[] = { Result, TF };
615 return DAG.getMergeValues(Ops, 2, dl);
618 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
619 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
620 /// is necessary to spill the vector being inserted into to memory, perform
621 /// the insert there, and then read the result back.
622 SDValue SelectionDAGLegalize::
623 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
624 DebugLoc dl) {
625 SDValue Tmp1 = Vec;
626 SDValue Tmp2 = Val;
627 SDValue Tmp3 = Idx;
629 // If the target doesn't support this, we have to spill the input vector
630 // to a temporary stack slot, update the element, then reload it. This is
631 // badness. We could also load the value into a vector register (either
632 // with a "move to register" or "extload into register" instruction, then
633 // permute it into place, if the idx is a constant and if the idx is
634 // supported by the target.
635 EVT VT = Tmp1.getValueType();
636 EVT EltVT = VT.getVectorElementType();
637 EVT IdxVT = Tmp3.getValueType();
638 EVT PtrVT = TLI.getPointerTy();
639 SDValue StackPtr = DAG.CreateStackTemporary(VT);
641 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
643 // Store the vector.
644 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
645 PseudoSourceValue::getFixedStack(SPFI), 0);
647 // Truncate or zero extend offset to target pointer type.
648 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
649 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
650 // Add the offset to the index.
651 unsigned EltSize = EltVT.getSizeInBits()/8;
652 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
653 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
654 // Store the scalar value.
655 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
656 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
657 // Load the updated vector.
658 return DAG.getLoad(VT, dl, Ch, StackPtr,
659 PseudoSourceValue::getFixedStack(SPFI), 0);
663 SDValue SelectionDAGLegalize::
664 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
665 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
666 // SCALAR_TO_VECTOR requires that the type of the value being inserted
667 // match the element type of the vector being created, except for
668 // integers in which case the inserted value can be over width.
669 EVT EltVT = Vec.getValueType().getVectorElementType();
670 if (Val.getValueType() == EltVT ||
671 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
672 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
673 Vec.getValueType(), Val);
675 unsigned NumElts = Vec.getValueType().getVectorNumElements();
676 // We generate a shuffle of InVec and ScVec, so the shuffle mask
677 // should be 0,1,2,3,4,5... with the appropriate element replaced with
678 // elt 0 of the RHS.
679 SmallVector<int, 8> ShufOps;
680 for (unsigned i = 0; i != NumElts; ++i)
681 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
683 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
684 &ShufOps[0]);
687 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
690 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
691 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
692 // FIXME: We shouldn't do this for TargetConstantFP's.
693 // FIXME: move this to the DAG Combiner! Note that we can't regress due
694 // to phase ordering between legalized code and the dag combiner. This
695 // probably means that we need to integrate dag combiner and legalizer
696 // together.
697 // We generally can't do this one for long doubles.
698 SDValue Tmp1 = ST->getChain();
699 SDValue Tmp2 = ST->getBasePtr();
700 SDValue Tmp3;
701 int SVOffset = ST->getSrcValueOffset();
702 unsigned Alignment = ST->getAlignment();
703 bool isVolatile = ST->isVolatile();
704 DebugLoc dl = ST->getDebugLoc();
705 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
706 if (CFP->getValueType(0) == MVT::f32 &&
707 getTypeAction(MVT::i32) == Legal) {
708 Tmp3 = DAG.getConstant(CFP->getValueAPF().
709 bitcastToAPInt().zextOrTrunc(32),
710 MVT::i32);
711 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
712 SVOffset, isVolatile, Alignment);
713 } else if (CFP->getValueType(0) == MVT::f64) {
714 // If this target supports 64-bit registers, do a single 64-bit store.
715 if (getTypeAction(MVT::i64) == Legal) {
716 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
717 zextOrTrunc(64), MVT::i64);
718 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
719 SVOffset, isVolatile, Alignment);
720 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
721 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
722 // stores. If the target supports neither 32- nor 64-bits, this
723 // xform is certainly not worth it.
724 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
725 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
726 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
727 if (TLI.isBigEndian()) std::swap(Lo, Hi);
729 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
730 SVOffset, isVolatile, Alignment);
731 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
732 DAG.getIntPtrConstant(4));
733 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
734 isVolatile, MinAlign(Alignment, 4U));
736 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
740 return SDValue();
743 /// LegalizeOp - We know that the specified value has a legal type, and
744 /// that its operands are legal. Now ensure that the operation itself
745 /// is legal, recursively ensuring that the operands' operations remain
746 /// legal.
747 SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
748 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
749 return Op;
751 SDNode *Node = Op.getNode();
752 DebugLoc dl = Node->getDebugLoc();
754 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
755 assert(getTypeAction(Node->getValueType(i)) == Legal &&
756 "Unexpected illegal type!");
758 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
759 assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
760 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
761 "Unexpected illegal type!");
763 // Note that LegalizeOp may be reentered even from single-use nodes, which
764 // means that we always must cache transformed nodes.
765 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
766 if (I != LegalizedNodes.end()) return I->second;
768 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
769 SDValue Result = Op;
770 bool isCustom = false;
772 // Figure out the correct action; the way to query this varies by opcode
773 TargetLowering::LegalizeAction Action;
774 bool SimpleFinishLegalizing = true;
775 switch (Node->getOpcode()) {
776 case ISD::INTRINSIC_W_CHAIN:
777 case ISD::INTRINSIC_WO_CHAIN:
778 case ISD::INTRINSIC_VOID:
779 case ISD::VAARG:
780 case ISD::STACKSAVE:
781 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
782 break;
783 case ISD::SINT_TO_FP:
784 case ISD::UINT_TO_FP:
785 case ISD::EXTRACT_VECTOR_ELT:
786 Action = TLI.getOperationAction(Node->getOpcode(),
787 Node->getOperand(0).getValueType());
788 break;
789 case ISD::FP_ROUND_INREG:
790 case ISD::SIGN_EXTEND_INREG: {
791 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
792 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
793 break;
795 case ISD::SELECT_CC:
796 case ISD::SETCC:
797 case ISD::BR_CC: {
798 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
799 Node->getOpcode() == ISD::SETCC ? 2 : 1;
800 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
801 EVT OpVT = Node->getOperand(CompareOperand).getValueType();
802 ISD::CondCode CCCode =
803 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
804 Action = TLI.getCondCodeAction(CCCode, OpVT);
805 if (Action == TargetLowering::Legal) {
806 if (Node->getOpcode() == ISD::SELECT_CC)
807 Action = TLI.getOperationAction(Node->getOpcode(),
808 Node->getValueType(0));
809 else
810 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
812 break;
814 case ISD::LOAD:
815 case ISD::STORE:
816 // FIXME: Model these properly. LOAD and STORE are complicated, and
817 // STORE expects the unlegalized operand in some cases.
818 SimpleFinishLegalizing = false;
819 break;
820 case ISD::CALLSEQ_START:
821 case ISD::CALLSEQ_END:
822 // FIXME: This shouldn't be necessary. These nodes have special properties
823 // dealing with the recursive nature of legalization. Removing this
824 // special case should be done as part of making LegalizeDAG non-recursive.
825 SimpleFinishLegalizing = false;
826 break;
827 case ISD::EXTRACT_ELEMENT:
828 case ISD::FLT_ROUNDS_:
829 case ISD::SADDO:
830 case ISD::SSUBO:
831 case ISD::UADDO:
832 case ISD::USUBO:
833 case ISD::SMULO:
834 case ISD::UMULO:
835 case ISD::FPOWI:
836 case ISD::MERGE_VALUES:
837 case ISD::EH_RETURN:
838 case ISD::FRAME_TO_ARGS_OFFSET:
839 // These operations lie about being legal: when they claim to be legal,
840 // they should actually be expanded.
841 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
842 if (Action == TargetLowering::Legal)
843 Action = TargetLowering::Expand;
844 break;
845 case ISD::TRAMPOLINE:
846 case ISD::FRAMEADDR:
847 case ISD::RETURNADDR:
848 // These operations lie about being legal: when they claim to be legal,
849 // they should actually be custom-lowered.
850 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
851 if (Action == TargetLowering::Legal)
852 Action = TargetLowering::Custom;
853 break;
854 case ISD::BUILD_VECTOR:
855 // A weird case: legalization for BUILD_VECTOR never legalizes the
856 // operands!
857 // FIXME: This really sucks... changing it isn't semantically incorrect,
858 // but it massively pessimizes the code for floating-point BUILD_VECTORs
859 // because ConstantFP operands get legalized into constant pool loads
860 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
861 // though, because BUILD_VECTORS usually get lowered into other nodes
862 // which get legalized properly.
863 SimpleFinishLegalizing = false;
864 break;
865 default:
866 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
867 Action = TargetLowering::Legal;
868 } else {
869 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
871 break;
874 if (SimpleFinishLegalizing) {
875 SmallVector<SDValue, 8> Ops, ResultVals;
876 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
877 Ops.push_back(LegalizeOp(Node->getOperand(i)));
878 switch (Node->getOpcode()) {
879 default: break;
880 case ISD::BR:
881 case ISD::BRIND:
882 case ISD::BR_JT:
883 case ISD::BR_CC:
884 case ISD::BRCOND:
885 // Branches tweak the chain to include LastCALLSEQ_END
886 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
887 LastCALLSEQ_END);
888 Ops[0] = LegalizeOp(Ops[0]);
889 LastCALLSEQ_END = DAG.getEntryNode();
890 break;
891 case ISD::SHL:
892 case ISD::SRL:
893 case ISD::SRA:
894 case ISD::ROTL:
895 case ISD::ROTR:
896 // Legalizing shifts/rotates requires adjusting the shift amount
897 // to the appropriate width.
898 if (!Ops[1].getValueType().isVector())
899 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
900 break;
903 Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
904 Ops.size());
905 switch (Action) {
906 case TargetLowering::Legal:
907 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
908 ResultVals.push_back(Result.getValue(i));
909 break;
910 case TargetLowering::Custom:
911 // FIXME: The handling for custom lowering with multiple results is
912 // a complete mess.
913 Tmp1 = TLI.LowerOperation(Result, DAG);
914 if (Tmp1.getNode()) {
915 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
916 if (e == 1)
917 ResultVals.push_back(Tmp1);
918 else
919 ResultVals.push_back(Tmp1.getValue(i));
921 break;
924 // FALL THROUGH
925 case TargetLowering::Expand:
926 ExpandNode(Result.getNode(), ResultVals);
927 break;
928 case TargetLowering::Promote:
929 PromoteNode(Result.getNode(), ResultVals);
930 break;
932 if (!ResultVals.empty()) {
933 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
934 if (ResultVals[i] != SDValue(Node, i))
935 ResultVals[i] = LegalizeOp(ResultVals[i]);
936 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
938 return ResultVals[Op.getResNo()];
942 switch (Node->getOpcode()) {
943 default:
944 #ifndef NDEBUG
945 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
946 #endif
947 llvm_unreachable("Do not know how to legalize this operator!");
949 case ISD::BUILD_VECTOR:
950 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
951 default: llvm_unreachable("This action is not supported yet!");
952 case TargetLowering::Custom:
953 Tmp3 = TLI.LowerOperation(Result, DAG);
954 if (Tmp3.getNode()) {
955 Result = Tmp3;
956 break;
958 // FALLTHROUGH
959 case TargetLowering::Expand:
960 Result = ExpandBUILD_VECTOR(Result.getNode());
961 break;
963 break;
964 case ISD::CALLSEQ_START: {
965 SDNode *CallEnd = FindCallEndFromCallStart(Node);
967 // Recursively Legalize all of the inputs of the call end that do not lead
968 // to this call start. This ensures that any libcalls that need be inserted
969 // are inserted *before* the CALLSEQ_START.
970 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
971 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
972 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
973 NodesLeadingTo);
976 // Now that we legalized all of the inputs (which may have inserted
977 // libcalls) create the new CALLSEQ_START node.
978 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
980 // Merge in the last call, to ensure that this call start after the last
981 // call ended.
982 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
983 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
984 Tmp1, LastCALLSEQ_END);
985 Tmp1 = LegalizeOp(Tmp1);
988 // Do not try to legalize the target-specific arguments (#1+).
989 if (Tmp1 != Node->getOperand(0)) {
990 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
991 Ops[0] = Tmp1;
992 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
995 // Remember that the CALLSEQ_START is legalized.
996 AddLegalizedOperand(Op.getValue(0), Result);
997 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
998 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1000 // Now that the callseq_start and all of the non-call nodes above this call
1001 // sequence have been legalized, legalize the call itself. During this
1002 // process, no libcalls can/will be inserted, guaranteeing that no calls
1003 // can overlap.
1004 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1005 // Note that we are selecting this call!
1006 LastCALLSEQ_END = SDValue(CallEnd, 0);
1007 IsLegalizingCall = true;
1009 // Legalize the call, starting from the CALLSEQ_END.
1010 LegalizeOp(LastCALLSEQ_END);
1011 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1012 return Result;
1014 case ISD::CALLSEQ_END:
1015 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1016 // will cause this node to be legalized as well as handling libcalls right.
1017 if (LastCALLSEQ_END.getNode() != Node) {
1018 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1019 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1020 assert(I != LegalizedNodes.end() &&
1021 "Legalizing the call start should have legalized this node!");
1022 return I->second;
1025 // Otherwise, the call start has been legalized and everything is going
1026 // according to plan. Just legalize ourselves normally here.
1027 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1028 // Do not try to legalize the target-specific arguments (#1+), except for
1029 // an optional flag input.
1030 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1031 if (Tmp1 != Node->getOperand(0)) {
1032 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1033 Ops[0] = Tmp1;
1034 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1036 } else {
1037 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1038 if (Tmp1 != Node->getOperand(0) ||
1039 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1040 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1041 Ops[0] = Tmp1;
1042 Ops.back() = Tmp2;
1043 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1046 assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1047 // This finishes up call legalization.
1048 IsLegalizingCall = false;
1050 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1051 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1052 if (Node->getNumValues() == 2)
1053 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1054 return Result.getValue(Op.getResNo());
1055 case ISD::LOAD: {
1056 LoadSDNode *LD = cast<LoadSDNode>(Node);
1057 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
1058 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1060 ISD::LoadExtType ExtType = LD->getExtensionType();
1061 if (ExtType == ISD::NON_EXTLOAD) {
1062 EVT VT = Node->getValueType(0);
1063 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1064 Tmp3 = Result.getValue(0);
1065 Tmp4 = Result.getValue(1);
1067 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1068 default: llvm_unreachable("This action is not supported yet!");
1069 case TargetLowering::Legal:
1070 // If this is an unaligned load and the target doesn't support it,
1071 // expand it.
1072 if (!TLI.allowsUnalignedMemoryAccesses()) {
1073 unsigned ABIAlignment = TLI.getTargetData()->
1074 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
1075 if (LD->getAlignment() < ABIAlignment){
1076 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1077 DAG, TLI);
1078 Tmp3 = Result.getOperand(0);
1079 Tmp4 = Result.getOperand(1);
1080 Tmp3 = LegalizeOp(Tmp3);
1081 Tmp4 = LegalizeOp(Tmp4);
1084 break;
1085 case TargetLowering::Custom:
1086 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1087 if (Tmp1.getNode()) {
1088 Tmp3 = LegalizeOp(Tmp1);
1089 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1091 break;
1092 case TargetLowering::Promote: {
1093 // Only promote a load of vector type to another.
1094 assert(VT.isVector() && "Cannot promote this load!");
1095 // Change base type to a different vector type.
1096 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1098 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1099 LD->getSrcValueOffset(),
1100 LD->isVolatile(), LD->getAlignment());
1101 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1102 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1103 break;
1106 // Since loads produce two values, make sure to remember that we
1107 // legalized both of them.
1108 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1109 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1110 return Op.getResNo() ? Tmp4 : Tmp3;
1111 } else {
1112 EVT SrcVT = LD->getMemoryVT();
1113 unsigned SrcWidth = SrcVT.getSizeInBits();
1114 int SVOffset = LD->getSrcValueOffset();
1115 unsigned Alignment = LD->getAlignment();
1116 bool isVolatile = LD->isVolatile();
1118 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1119 // Some targets pretend to have an i1 loading operation, and actually
1120 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1121 // bits are guaranteed to be zero; it helps the optimizers understand
1122 // that these bits are zero. It is also useful for EXTLOAD, since it
1123 // tells the optimizers that those bits are undefined. It would be
1124 // nice to have an effective generic way of getting these benefits...
1125 // Until such a way is found, don't insist on promoting i1 here.
1126 (SrcVT != MVT::i1 ||
1127 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1128 // Promote to a byte-sized load if not loading an integral number of
1129 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1130 unsigned NewWidth = SrcVT.getStoreSizeInBits();
1131 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1132 SDValue Ch;
1134 // The extra bits are guaranteed to be zero, since we stored them that
1135 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1137 ISD::LoadExtType NewExtType =
1138 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1140 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1141 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1142 NVT, isVolatile, Alignment);
1144 Ch = Result.getValue(1); // The chain.
1146 if (ExtType == ISD::SEXTLOAD)
1147 // Having the top bits zero doesn't help when sign extending.
1148 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1149 Result.getValueType(),
1150 Result, DAG.getValueType(SrcVT));
1151 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1152 // All the top bits are guaranteed to be zero - inform the optimizers.
1153 Result = DAG.getNode(ISD::AssertZext, dl,
1154 Result.getValueType(), Result,
1155 DAG.getValueType(SrcVT));
1157 Tmp1 = LegalizeOp(Result);
1158 Tmp2 = LegalizeOp(Ch);
1159 } else if (SrcWidth & (SrcWidth - 1)) {
1160 // If not loading a power-of-2 number of bits, expand as two loads.
1161 assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1162 "Unsupported extload!");
1163 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1164 assert(RoundWidth < SrcWidth);
1165 unsigned ExtraWidth = SrcWidth - RoundWidth;
1166 assert(ExtraWidth < RoundWidth);
1167 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1168 "Load size not an integral number of bytes!");
1169 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1170 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1171 SDValue Lo, Hi, Ch;
1172 unsigned IncrementSize;
1174 if (TLI.isLittleEndian()) {
1175 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1176 // Load the bottom RoundWidth bits.
1177 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1178 Node->getValueType(0), Tmp1, Tmp2,
1179 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1180 Alignment);
1182 // Load the remaining ExtraWidth bits.
1183 IncrementSize = RoundWidth / 8;
1184 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1185 DAG.getIntPtrConstant(IncrementSize));
1186 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1187 LD->getSrcValue(), SVOffset + IncrementSize,
1188 ExtraVT, isVolatile,
1189 MinAlign(Alignment, IncrementSize));
1191 // Build a factor node to remember that this load is independent of the
1192 // other one.
1193 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1194 Hi.getValue(1));
1196 // Move the top bits to the right place.
1197 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1198 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1200 // Join the hi and lo parts.
1201 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1202 } else {
1203 // Big endian - avoid unaligned loads.
1204 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1205 // Load the top RoundWidth bits.
1206 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1207 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1208 Alignment);
1210 // Load the remaining ExtraWidth bits.
1211 IncrementSize = RoundWidth / 8;
1212 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1213 DAG.getIntPtrConstant(IncrementSize));
1214 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1215 Node->getValueType(0), Tmp1, Tmp2,
1216 LD->getSrcValue(), SVOffset + IncrementSize,
1217 ExtraVT, isVolatile,
1218 MinAlign(Alignment, IncrementSize));
1220 // Build a factor node to remember that this load is independent of the
1221 // other one.
1222 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1223 Hi.getValue(1));
1225 // Move the top bits to the right place.
1226 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1227 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1229 // Join the hi and lo parts.
1230 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1233 Tmp1 = LegalizeOp(Result);
1234 Tmp2 = LegalizeOp(Ch);
1235 } else {
1236 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1237 default: llvm_unreachable("This action is not supported yet!");
1238 case TargetLowering::Custom:
1239 isCustom = true;
1240 // FALLTHROUGH
1241 case TargetLowering::Legal:
1242 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1243 Tmp1 = Result.getValue(0);
1244 Tmp2 = Result.getValue(1);
1246 if (isCustom) {
1247 Tmp3 = TLI.LowerOperation(Result, DAG);
1248 if (Tmp3.getNode()) {
1249 Tmp1 = LegalizeOp(Tmp3);
1250 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1252 } else {
1253 // If this is an unaligned load and the target doesn't support it,
1254 // expand it.
1255 if (!TLI.allowsUnalignedMemoryAccesses()) {
1256 unsigned ABIAlignment = TLI.getTargetData()->
1257 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
1258 if (LD->getAlignment() < ABIAlignment){
1259 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1260 DAG, TLI);
1261 Tmp1 = Result.getOperand(0);
1262 Tmp2 = Result.getOperand(1);
1263 Tmp1 = LegalizeOp(Tmp1);
1264 Tmp2 = LegalizeOp(Tmp2);
1268 break;
1269 case TargetLowering::Expand:
1270 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1271 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1272 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1273 LD->getSrcValueOffset(),
1274 LD->isVolatile(), LD->getAlignment());
1275 Result = DAG.getNode(ISD::FP_EXTEND, dl,
1276 Node->getValueType(0), Load);
1277 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
1278 Tmp2 = LegalizeOp(Load.getValue(1));
1279 break;
1281 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1282 // Turn the unsupported load into an EXTLOAD followed by an explicit
1283 // zero/sign extend inreg.
1284 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1285 Tmp1, Tmp2, LD->getSrcValue(),
1286 LD->getSrcValueOffset(), SrcVT,
1287 LD->isVolatile(), LD->getAlignment());
1288 SDValue ValRes;
1289 if (ExtType == ISD::SEXTLOAD)
1290 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1291 Result.getValueType(),
1292 Result, DAG.getValueType(SrcVT));
1293 else
1294 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1295 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1296 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
1297 break;
1301 // Since loads produce two values, make sure to remember that we legalized
1302 // both of them.
1303 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1304 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1305 return Op.getResNo() ? Tmp2 : Tmp1;
1308 case ISD::STORE: {
1309 StoreSDNode *ST = cast<StoreSDNode>(Node);
1310 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
1311 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
1312 int SVOffset = ST->getSrcValueOffset();
1313 unsigned Alignment = ST->getAlignment();
1314 bool isVolatile = ST->isVolatile();
1316 if (!ST->isTruncatingStore()) {
1317 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1318 Result = SDValue(OptStore, 0);
1319 break;
1323 Tmp3 = LegalizeOp(ST->getValue());
1324 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1325 ST->getOffset());
1327 EVT VT = Tmp3.getValueType();
1328 switch (TLI.getOperationAction(ISD::STORE, VT)) {
1329 default: llvm_unreachable("This action is not supported yet!");
1330 case TargetLowering::Legal:
1331 // If this is an unaligned store and the target doesn't support it,
1332 // expand it.
1333 if (!TLI.allowsUnalignedMemoryAccesses()) {
1334 unsigned ABIAlignment = TLI.getTargetData()->
1335 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
1336 if (ST->getAlignment() < ABIAlignment)
1337 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1338 TLI);
1340 break;
1341 case TargetLowering::Custom:
1342 Tmp1 = TLI.LowerOperation(Result, DAG);
1343 if (Tmp1.getNode()) Result = Tmp1;
1344 break;
1345 case TargetLowering::Promote:
1346 assert(VT.isVector() && "Unknown legal promote case!");
1347 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1348 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1349 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1350 ST->getSrcValue(), SVOffset, isVolatile,
1351 Alignment);
1352 break;
1354 break;
1356 } else {
1357 Tmp3 = LegalizeOp(ST->getValue());
1359 EVT StVT = ST->getMemoryVT();
1360 unsigned StWidth = StVT.getSizeInBits();
1362 if (StWidth != StVT.getStoreSizeInBits()) {
1363 // Promote to a byte-sized store with upper bits zero if not
1364 // storing an integral number of bytes. For example, promote
1365 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1366 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1367 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1368 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1369 SVOffset, NVT, isVolatile, Alignment);
1370 } else if (StWidth & (StWidth - 1)) {
1371 // If not storing a power-of-2 number of bits, expand as two stores.
1372 assert(StVT.isExtended() && !StVT.isVector() &&
1373 "Unsupported truncstore!");
1374 unsigned RoundWidth = 1 << Log2_32(StWidth);
1375 assert(RoundWidth < StWidth);
1376 unsigned ExtraWidth = StWidth - RoundWidth;
1377 assert(ExtraWidth < RoundWidth);
1378 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1379 "Store size not an integral number of bytes!");
1380 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1381 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1382 SDValue Lo, Hi;
1383 unsigned IncrementSize;
1385 if (TLI.isLittleEndian()) {
1386 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1387 // Store the bottom RoundWidth bits.
1388 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1389 SVOffset, RoundVT,
1390 isVolatile, Alignment);
1392 // Store the remaining ExtraWidth bits.
1393 IncrementSize = RoundWidth / 8;
1394 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1395 DAG.getIntPtrConstant(IncrementSize));
1396 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1397 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1398 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1399 SVOffset + IncrementSize, ExtraVT, isVolatile,
1400 MinAlign(Alignment, IncrementSize));
1401 } else {
1402 // Big endian - avoid unaligned stores.
1403 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1404 // Store the top RoundWidth bits.
1405 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1406 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1407 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1408 SVOffset, RoundVT, isVolatile, Alignment);
1410 // Store the remaining ExtraWidth bits.
1411 IncrementSize = RoundWidth / 8;
1412 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1413 DAG.getIntPtrConstant(IncrementSize));
1414 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1415 SVOffset + IncrementSize, ExtraVT, isVolatile,
1416 MinAlign(Alignment, IncrementSize));
1419 // The order of the stores doesn't matter.
1420 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1421 } else {
1422 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1423 Tmp2 != ST->getBasePtr())
1424 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1425 ST->getOffset());
1427 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1428 default: llvm_unreachable("This action is not supported yet!");
1429 case TargetLowering::Legal:
1430 // If this is an unaligned store and the target doesn't support it,
1431 // expand it.
1432 if (!TLI.allowsUnalignedMemoryAccesses()) {
1433 unsigned ABIAlignment = TLI.getTargetData()->
1434 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
1435 if (ST->getAlignment() < ABIAlignment)
1436 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1437 TLI);
1439 break;
1440 case TargetLowering::Custom:
1441 Result = TLI.LowerOperation(Result, DAG);
1442 break;
1443 case Expand:
1444 // TRUNCSTORE:i16 i32 -> STORE i16
1445 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1446 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1447 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1448 SVOffset, isVolatile, Alignment);
1449 break;
1453 break;
1456 assert(Result.getValueType() == Op.getValueType() &&
1457 "Bad legalization!");
1459 // Make sure that the generated code is itself legal.
1460 if (Result != Op)
1461 Result = LegalizeOp(Result);
1463 // Note that LegalizeOp may be reentered even from single-use nodes, which
1464 // means that we always must cache transformed nodes.
1465 AddLegalizedOperand(Op, Result);
1466 return Result;
1469 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1470 SDValue Vec = Op.getOperand(0);
1471 SDValue Idx = Op.getOperand(1);
1472 DebugLoc dl = Op.getDebugLoc();
1473 // Store the value to a temporary stack slot, then LOAD the returned part.
1474 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1475 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1477 // Add the offset to the index.
1478 unsigned EltSize =
1479 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1480 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1481 DAG.getConstant(EltSize, Idx.getValueType()));
1483 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1484 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1485 else
1486 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1488 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1490 if (Op.getValueType().isVector())
1491 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1492 else
1493 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1494 NULL, 0, Vec.getValueType().getVectorElementType());
1497 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1498 // We can't handle this case efficiently. Allocate a sufficiently
1499 // aligned object on the stack, store each element into it, then load
1500 // the result as a vector.
1501 // Create the stack frame object.
1502 EVT VT = Node->getValueType(0);
1503 EVT OpVT = Node->getOperand(0).getValueType();
1504 DebugLoc dl = Node->getDebugLoc();
1505 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1506 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1507 const Value *SV = PseudoSourceValue::getFixedStack(FI);
1509 // Emit a store of each element to the stack slot.
1510 SmallVector<SDValue, 8> Stores;
1511 unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1512 // Store (in the right endianness) the elements to memory.
1513 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1514 // Ignore undef elements.
1515 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1517 unsigned Offset = TypeByteSize*i;
1519 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1520 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1522 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1523 Idx, SV, Offset));
1526 SDValue StoreChain;
1527 if (!Stores.empty()) // Not all undef elements?
1528 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1529 &Stores[0], Stores.size());
1530 else
1531 StoreChain = DAG.getEntryNode();
1533 // Result is a load from the stack slot.
1534 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1537 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1538 DebugLoc dl = Node->getDebugLoc();
1539 SDValue Tmp1 = Node->getOperand(0);
1540 SDValue Tmp2 = Node->getOperand(1);
1541 assert((Tmp2.getValueType() == MVT::f32 ||
1542 Tmp2.getValueType() == MVT::f64) &&
1543 "Ugly special-cased code!");
1544 // Get the sign bit of the RHS.
1545 SDValue SignBit;
1546 EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1547 if (isTypeLegal(IVT)) {
1548 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1549 } else {
1550 assert(isTypeLegal(TLI.getPointerTy()) &&
1551 (TLI.getPointerTy() == MVT::i32 ||
1552 TLI.getPointerTy() == MVT::i64) &&
1553 "Legal type for load?!");
1554 SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1555 SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1556 SDValue Ch =
1557 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1558 if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1559 LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1560 LoadPtr, DAG.getIntPtrConstant(4));
1561 SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1562 Ch, LoadPtr, NULL, 0, MVT::i32);
1564 SignBit =
1565 DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1566 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1567 ISD::SETLT);
1568 // Get the absolute value of the result.
1569 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1570 // Select between the nabs and abs value based on the sign bit of
1571 // the input.
1572 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1573 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1574 AbsVal);
1577 SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1578 DebugLoc dl = Node->getDebugLoc();
1579 DwarfWriter *DW = DAG.getDwarfWriter();
1580 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1581 MVT::Other);
1582 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1584 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1585 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1586 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1587 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1589 unsigned Line = DSP->getLine();
1590 unsigned Col = DSP->getColumn();
1592 if (OptLevel == CodeGenOpt::None) {
1593 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1594 // won't hurt anything.
1595 if (useDEBUG_LOC) {
1596 return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1597 DAG.getConstant(Line, MVT::i32),
1598 DAG.getConstant(Col, MVT::i32),
1599 DAG.getSrcValue(CU.getGV()));
1600 } else {
1601 unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1602 return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1606 return Node->getOperand(0);
1609 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1610 SmallVectorImpl<SDValue> &Results) {
1611 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1612 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1613 " not tell us which reg is the stack pointer!");
1614 DebugLoc dl = Node->getDebugLoc();
1615 EVT VT = Node->getValueType(0);
1616 SDValue Tmp1 = SDValue(Node, 0);
1617 SDValue Tmp2 = SDValue(Node, 1);
1618 SDValue Tmp3 = Node->getOperand(2);
1619 SDValue Chain = Tmp1.getOperand(0);
1621 // Chain the dynamic stack allocation so that it doesn't modify the stack
1622 // pointer when other instructions are using the stack.
1623 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1625 SDValue Size = Tmp2.getOperand(1);
1626 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1627 Chain = SP.getValue(1);
1628 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1629 unsigned StackAlign =
1630 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1631 if (Align > StackAlign)
1632 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1633 DAG.getConstant(-(uint64_t)Align, VT));
1634 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1635 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1637 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1638 DAG.getIntPtrConstant(0, true), SDValue());
1640 Results.push_back(Tmp1);
1641 Results.push_back(Tmp2);
1644 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1645 /// condition code CC on the current target. This routine assumes LHS and rHS
1646 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1647 /// illegal condition code into AND / OR of multiple SETCC values.
1648 void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1649 SDValue &LHS, SDValue &RHS,
1650 SDValue &CC,
1651 DebugLoc dl) {
1652 EVT OpVT = LHS.getValueType();
1653 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1654 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1655 default: llvm_unreachable("Unknown condition code action!");
1656 case TargetLowering::Legal:
1657 // Nothing to do.
1658 break;
1659 case TargetLowering::Expand: {
1660 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1661 unsigned Opc = 0;
1662 switch (CCCode) {
1663 default: llvm_unreachable("Don't know how to expand this condition!");
1664 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
1665 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1666 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1667 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1668 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1669 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1670 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1671 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1672 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1673 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1674 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1675 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1676 // FIXME: Implement more expansions.
1679 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1680 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1681 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1682 RHS = SDValue();
1683 CC = SDValue();
1684 break;
1689 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
1690 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1691 /// a load from the stack slot to DestVT, extending it if needed.
1692 /// The resultant code need not be legal.
1693 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1694 EVT SlotVT,
1695 EVT DestVT,
1696 DebugLoc dl) {
1697 // Create the stack frame object.
1698 unsigned SrcAlign =
1699 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1700 getTypeForEVT(*DAG.getContext()));
1701 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1703 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1704 int SPFI = StackPtrFI->getIndex();
1705 const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1707 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1708 unsigned SlotSize = SlotVT.getSizeInBits();
1709 unsigned DestSize = DestVT.getSizeInBits();
1710 unsigned DestAlign =
1711 TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1713 // Emit a store to the stack slot. Use a truncstore if the input value is
1714 // later than DestVT.
1715 SDValue Store;
1717 if (SrcSize > SlotSize)
1718 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1719 SV, 0, SlotVT, false, SrcAlign);
1720 else {
1721 assert(SrcSize == SlotSize && "Invalid store");
1722 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1723 SV, 0, false, SrcAlign);
1726 // Result is a load from the stack slot.
1727 if (SlotSize == DestSize)
1728 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1730 assert(SlotSize < DestSize && "Unknown extension!");
1731 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1732 false, DestAlign);
1735 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1736 DebugLoc dl = Node->getDebugLoc();
1737 // Create a vector sized/aligned stack slot, store the value to element #0,
1738 // then load the whole vector back out.
1739 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1741 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1742 int SPFI = StackPtrFI->getIndex();
1744 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1745 StackPtr,
1746 PseudoSourceValue::getFixedStack(SPFI), 0,
1747 Node->getValueType(0).getVectorElementType());
1748 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1749 PseudoSourceValue::getFixedStack(SPFI), 0);
1753 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1754 /// support the operation, but do support the resultant vector type.
1755 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1756 unsigned NumElems = Node->getNumOperands();
1757 SDValue Value1, Value2;
1758 DebugLoc dl = Node->getDebugLoc();
1759 EVT VT = Node->getValueType(0);
1760 EVT OpVT = Node->getOperand(0).getValueType();
1761 EVT EltVT = VT.getVectorElementType();
1763 // If the only non-undef value is the low element, turn this into a
1764 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1765 bool isOnlyLowElement = true;
1766 bool MoreThanTwoValues = false;
1767 bool isConstant = true;
1768 for (unsigned i = 0; i < NumElems; ++i) {
1769 SDValue V = Node->getOperand(i);
1770 if (V.getOpcode() == ISD::UNDEF)
1771 continue;
1772 if (i > 0)
1773 isOnlyLowElement = false;
1774 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1775 isConstant = false;
1777 if (!Value1.getNode()) {
1778 Value1 = V;
1779 } else if (!Value2.getNode()) {
1780 if (V != Value1)
1781 Value2 = V;
1782 } else if (V != Value1 && V != Value2) {
1783 MoreThanTwoValues = true;
1787 if (!Value1.getNode())
1788 return DAG.getUNDEF(VT);
1790 if (isOnlyLowElement)
1791 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1793 // If all elements are constants, create a load from the constant pool.
1794 if (isConstant) {
1795 std::vector<Constant*> CV;
1796 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1797 if (ConstantFPSDNode *V =
1798 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1799 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1800 } else if (ConstantSDNode *V =
1801 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1802 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1803 } else {
1804 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1805 const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext());
1806 CV.push_back(UndefValue::get(OpNTy));
1809 Constant *CP = ConstantVector::get(CV);
1810 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1811 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1812 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1813 PseudoSourceValue::getConstantPool(), 0,
1814 false, Alignment);
1817 if (!MoreThanTwoValues) {
1818 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1819 for (unsigned i = 0; i < NumElems; ++i) {
1820 SDValue V = Node->getOperand(i);
1821 if (V.getOpcode() == ISD::UNDEF)
1822 continue;
1823 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1825 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1826 // Get the splatted value into the low element of a vector register.
1827 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1828 SDValue Vec2;
1829 if (Value2.getNode())
1830 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1831 else
1832 Vec2 = DAG.getUNDEF(VT);
1834 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1835 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1839 // Otherwise, we can't handle this case efficiently.
1840 return ExpandVectorBuildThroughStack(Node);
1843 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
1844 // does not fit into a register, return the lo part and set the hi part to the
1845 // by-reg argument. If it does fit into a single register, return the result
1846 // and leave the Hi part unset.
1847 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1848 bool isSigned) {
1849 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1850 // The input chain to this libcall is the entry node of the function.
1851 // Legalizing the call will automatically add the previous call to the
1852 // dependence.
1853 SDValue InChain = DAG.getEntryNode();
1855 TargetLowering::ArgListTy Args;
1856 TargetLowering::ArgListEntry Entry;
1857 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1858 EVT ArgVT = Node->getOperand(i).getValueType();
1859 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1860 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1861 Entry.isSExt = isSigned;
1862 Entry.isZExt = !isSigned;
1863 Args.push_back(Entry);
1865 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1866 TLI.getPointerTy());
1868 // Splice the libcall in wherever FindInputOutputChains tells us to.
1869 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1870 std::pair<SDValue, SDValue> CallInfo =
1871 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1872 0, CallingConv::C, false,
1873 /*isReturnValueUsed=*/true,
1874 Callee, Args, DAG,
1875 Node->getDebugLoc());
1877 // Legalize the call sequence, starting with the chain. This will advance
1878 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1879 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1880 LegalizeOp(CallInfo.second);
1881 return CallInfo.first;
1884 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1885 RTLIB::Libcall Call_F32,
1886 RTLIB::Libcall Call_F64,
1887 RTLIB::Libcall Call_F80,
1888 RTLIB::Libcall Call_PPCF128) {
1889 RTLIB::Libcall LC;
1890 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1891 default: llvm_unreachable("Unexpected request for libcall!");
1892 case MVT::f32: LC = Call_F32; break;
1893 case MVT::f64: LC = Call_F64; break;
1894 case MVT::f80: LC = Call_F80; break;
1895 case MVT::ppcf128: LC = Call_PPCF128; break;
1897 return ExpandLibCall(LC, Node, false);
1900 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1901 RTLIB::Libcall Call_I16,
1902 RTLIB::Libcall Call_I32,
1903 RTLIB::Libcall Call_I64,
1904 RTLIB::Libcall Call_I128) {
1905 RTLIB::Libcall LC;
1906 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1907 default: llvm_unreachable("Unexpected request for libcall!");
1908 case MVT::i16: LC = Call_I16; break;
1909 case MVT::i32: LC = Call_I32; break;
1910 case MVT::i64: LC = Call_I64; break;
1911 case MVT::i128: LC = Call_I128; break;
1913 return ExpandLibCall(LC, Node, isSigned);
1916 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1917 /// INT_TO_FP operation of the specified operand when the target requests that
1918 /// we expand it. At this point, we know that the result and operand types are
1919 /// legal for the target.
1920 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1921 SDValue Op0,
1922 EVT DestVT,
1923 DebugLoc dl) {
1924 if (Op0.getValueType() == MVT::i32) {
1925 // simple 32-bit [signed|unsigned] integer to float/double expansion
1927 // Get the stack frame index of a 8 byte buffer.
1928 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1930 // word offset constant for Hi/Lo address computation
1931 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1932 // set up Hi and Lo (into buffer) address based on endian
1933 SDValue Hi = StackSlot;
1934 SDValue Lo = DAG.getNode(ISD::ADD, dl,
1935 TLI.getPointerTy(), StackSlot, WordOff);
1936 if (TLI.isLittleEndian())
1937 std::swap(Hi, Lo);
1939 // if signed map to unsigned space
1940 SDValue Op0Mapped;
1941 if (isSigned) {
1942 // constant used to invert sign bit (signed to unsigned mapping)
1943 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1944 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1945 } else {
1946 Op0Mapped = Op0;
1948 // store the lo of the constructed double - based on integer input
1949 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1950 Op0Mapped, Lo, NULL, 0);
1951 // initial hi portion of constructed double
1952 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1953 // store the hi of the constructed double - biased exponent
1954 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1955 // load the constructed double
1956 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1957 // FP constant to bias correct the final result
1958 SDValue Bias = DAG.getConstantFP(isSigned ?
1959 BitsToDouble(0x4330000080000000ULL) :
1960 BitsToDouble(0x4330000000000000ULL),
1961 MVT::f64);
1962 // subtract the bias
1963 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1964 // final result
1965 SDValue Result;
1966 // handle final rounding
1967 if (DestVT == MVT::f64) {
1968 // do nothing
1969 Result = Sub;
1970 } else if (DestVT.bitsLT(MVT::f64)) {
1971 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1972 DAG.getIntPtrConstant(0));
1973 } else if (DestVT.bitsGT(MVT::f64)) {
1974 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1976 return Result;
1978 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1979 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1981 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1982 Op0, DAG.getConstant(0, Op0.getValueType()),
1983 ISD::SETLT);
1984 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1985 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1986 SignSet, Four, Zero);
1988 // If the sign bit of the integer is set, the large number will be treated
1989 // as a negative number. To counteract this, the dynamic code adds an
1990 // offset depending on the data type.
1991 uint64_t FF;
1992 switch (Op0.getValueType().getSimpleVT().SimpleTy) {
1993 default: llvm_unreachable("Unsupported integer type!");
1994 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
1995 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
1996 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
1997 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
1999 if (TLI.isLittleEndian()) FF <<= 32;
2000 Constant *FudgeFactor = ConstantInt::get(
2001 Type::getInt64Ty(*DAG.getContext()), FF);
2003 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2004 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2005 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2006 Alignment = std::min(Alignment, 4u);
2007 SDValue FudgeInReg;
2008 if (DestVT == MVT::f32)
2009 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2010 PseudoSourceValue::getConstantPool(), 0,
2011 false, Alignment);
2012 else {
2013 FudgeInReg =
2014 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2015 DAG.getEntryNode(), CPIdx,
2016 PseudoSourceValue::getConstantPool(), 0,
2017 MVT::f32, false, Alignment));
2020 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2023 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2024 /// *INT_TO_FP operation of the specified operand when the target requests that
2025 /// we promote it. At this point, we know that the result and operand types are
2026 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2027 /// operation that takes a larger input.
2028 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2029 EVT DestVT,
2030 bool isSigned,
2031 DebugLoc dl) {
2032 // First step, figure out the appropriate *INT_TO_FP operation to use.
2033 EVT NewInTy = LegalOp.getValueType();
2035 unsigned OpToUse = 0;
2037 // Scan for the appropriate larger type to use.
2038 while (1) {
2039 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2040 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2042 // If the target supports SINT_TO_FP of this type, use it.
2043 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2044 OpToUse = ISD::SINT_TO_FP;
2045 break;
2047 if (isSigned) continue;
2049 // If the target supports UINT_TO_FP of this type, use it.
2050 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2051 OpToUse = ISD::UINT_TO_FP;
2052 break;
2055 // Otherwise, try a larger type.
2058 // Okay, we found the operation and type to use. Zero extend our input to the
2059 // desired type then run the operation on it.
2060 return DAG.getNode(OpToUse, dl, DestVT,
2061 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2062 dl, NewInTy, LegalOp));
2065 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2066 /// FP_TO_*INT operation of the specified operand when the target requests that
2067 /// we promote it. At this point, we know that the result and operand types are
2068 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2069 /// operation that returns a larger result.
2070 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2071 EVT DestVT,
2072 bool isSigned,
2073 DebugLoc dl) {
2074 // First step, figure out the appropriate FP_TO*INT operation to use.
2075 EVT NewOutTy = DestVT;
2077 unsigned OpToUse = 0;
2079 // Scan for the appropriate larger type to use.
2080 while (1) {
2081 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2082 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2084 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2085 OpToUse = ISD::FP_TO_SINT;
2086 break;
2089 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2090 OpToUse = ISD::FP_TO_UINT;
2091 break;
2094 // Otherwise, try a larger type.
2098 // Okay, we found the operation and type to use.
2099 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2101 // Truncate the result of the extended FP_TO_*INT operation to the desired
2102 // size.
2103 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2106 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2108 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2109 EVT VT = Op.getValueType();
2110 EVT SHVT = TLI.getShiftAmountTy();
2111 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2112 switch (VT.getSimpleVT().SimpleTy) {
2113 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2114 case MVT::i16:
2115 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2116 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2117 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2118 case MVT::i32:
2119 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2120 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2121 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2122 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2123 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2124 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2125 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2126 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2127 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2128 case MVT::i64:
2129 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2130 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2131 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2132 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2133 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2134 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2135 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2136 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2137 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2138 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2139 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2140 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2141 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2142 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2143 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2144 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2145 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2146 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2147 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2148 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2149 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2153 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2155 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2156 DebugLoc dl) {
2157 switch (Opc) {
2158 default: llvm_unreachable("Cannot expand this yet!");
2159 case ISD::CTPOP: {
2160 static const uint64_t mask[6] = {
2161 0x5555555555555555ULL, 0x3333333333333333ULL,
2162 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2163 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2165 EVT VT = Op.getValueType();
2166 EVT ShVT = TLI.getShiftAmountTy();
2167 unsigned len = VT.getSizeInBits();
2168 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2169 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2170 unsigned EltSize = VT.isVector() ?
2171 VT.getVectorElementType().getSizeInBits() : len;
2172 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2173 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2174 Op = DAG.getNode(ISD::ADD, dl, VT,
2175 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2176 DAG.getNode(ISD::AND, dl, VT,
2177 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2178 Tmp2));
2180 return Op;
2182 case ISD::CTLZ: {
2183 // for now, we do this:
2184 // x = x | (x >> 1);
2185 // x = x | (x >> 2);
2186 // ...
2187 // x = x | (x >>16);
2188 // x = x | (x >>32); // for 64-bit input
2189 // return popcount(~x);
2191 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2192 EVT VT = Op.getValueType();
2193 EVT ShVT = TLI.getShiftAmountTy();
2194 unsigned len = VT.getSizeInBits();
2195 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2196 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2197 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2198 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2200 Op = DAG.getNOT(dl, Op, VT);
2201 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2203 case ISD::CTTZ: {
2204 // for now, we use: { return popcount(~x & (x - 1)); }
2205 // unless the target has ctlz but not ctpop, in which case we use:
2206 // { return 32 - nlz(~x & (x-1)); }
2207 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2208 EVT VT = Op.getValueType();
2209 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2210 DAG.getNOT(dl, Op, VT),
2211 DAG.getNode(ISD::SUB, dl, VT, Op,
2212 DAG.getConstant(1, VT)));
2213 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2214 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2215 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2216 return DAG.getNode(ISD::SUB, dl, VT,
2217 DAG.getConstant(VT.getSizeInBits(), VT),
2218 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2219 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2224 void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2225 SmallVectorImpl<SDValue> &Results) {
2226 DebugLoc dl = Node->getDebugLoc();
2227 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2228 switch (Node->getOpcode()) {
2229 case ISD::CTPOP:
2230 case ISD::CTLZ:
2231 case ISD::CTTZ:
2232 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2233 Results.push_back(Tmp1);
2234 break;
2235 case ISD::BSWAP:
2236 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2237 break;
2238 case ISD::FRAMEADDR:
2239 case ISD::RETURNADDR:
2240 case ISD::FRAME_TO_ARGS_OFFSET:
2241 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2242 break;
2243 case ISD::FLT_ROUNDS_:
2244 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2245 break;
2246 case ISD::EH_RETURN:
2247 case ISD::DECLARE:
2248 case ISD::DBG_LABEL:
2249 case ISD::EH_LABEL:
2250 case ISD::PREFETCH:
2251 case ISD::MEMBARRIER:
2252 case ISD::VAEND:
2253 Results.push_back(Node->getOperand(0));
2254 break;
2255 case ISD::DBG_STOPPOINT:
2256 Results.push_back(ExpandDBG_STOPPOINT(Node));
2257 break;
2258 case ISD::DYNAMIC_STACKALLOC:
2259 ExpandDYNAMIC_STACKALLOC(Node, Results);
2260 break;
2261 case ISD::MERGE_VALUES:
2262 for (unsigned i = 0; i < Node->getNumValues(); i++)
2263 Results.push_back(Node->getOperand(i));
2264 break;
2265 case ISD::UNDEF: {
2266 EVT VT = Node->getValueType(0);
2267 if (VT.isInteger())
2268 Results.push_back(DAG.getConstant(0, VT));
2269 else if (VT.isFloatingPoint())
2270 Results.push_back(DAG.getConstantFP(0, VT));
2271 else
2272 llvm_unreachable("Unknown value type!");
2273 break;
2275 case ISD::TRAP: {
2276 // If this operation is not supported, lower it to 'abort()' call
2277 TargetLowering::ArgListTy Args;
2278 std::pair<SDValue, SDValue> CallResult =
2279 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2280 false, false, false, false, 0, CallingConv::C, false,
2281 /*isReturnValueUsed=*/true,
2282 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2283 Args, DAG, dl);
2284 Results.push_back(CallResult.second);
2285 break;
2287 case ISD::FP_ROUND:
2288 case ISD::BIT_CONVERT:
2289 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2290 Node->getValueType(0), dl);
2291 Results.push_back(Tmp1);
2292 break;
2293 case ISD::FP_EXTEND:
2294 Tmp1 = EmitStackConvert(Node->getOperand(0),
2295 Node->getOperand(0).getValueType(),
2296 Node->getValueType(0), dl);
2297 Results.push_back(Tmp1);
2298 break;
2299 case ISD::SIGN_EXTEND_INREG: {
2300 // NOTE: we could fall back on load/store here too for targets without
2301 // SAR. However, it is doubtful that any exist.
2302 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2303 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2304 ExtraVT.getSizeInBits();
2305 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2306 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2307 Node->getOperand(0), ShiftCst);
2308 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2309 Results.push_back(Tmp1);
2310 break;
2312 case ISD::FP_ROUND_INREG: {
2313 // The only way we can lower this is to turn it into a TRUNCSTORE,
2314 // EXTLOAD pair, targetting a temporary location (a stack slot).
2316 // NOTE: there is a choice here between constantly creating new stack
2317 // slots and always reusing the same one. We currently always create
2318 // new ones, as reuse may inhibit scheduling.
2319 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2320 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2321 Node->getValueType(0), dl);
2322 Results.push_back(Tmp1);
2323 break;
2325 case ISD::SINT_TO_FP:
2326 case ISD::UINT_TO_FP:
2327 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2328 Node->getOperand(0), Node->getValueType(0), dl);
2329 Results.push_back(Tmp1);
2330 break;
2331 case ISD::FP_TO_UINT: {
2332 SDValue True, False;
2333 EVT VT = Node->getOperand(0).getValueType();
2334 EVT NVT = Node->getValueType(0);
2335 const uint64_t zero[] = {0, 0};
2336 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2337 APInt x = APInt::getSignBit(NVT.getSizeInBits());
2338 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2339 Tmp1 = DAG.getConstantFP(apf, VT);
2340 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2341 Node->getOperand(0),
2342 Tmp1, ISD::SETLT);
2343 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2344 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2345 DAG.getNode(ISD::FSUB, dl, VT,
2346 Node->getOperand(0), Tmp1));
2347 False = DAG.getNode(ISD::XOR, dl, NVT, False,
2348 DAG.getConstant(x, NVT));
2349 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2350 Results.push_back(Tmp1);
2351 break;
2353 case ISD::VAARG: {
2354 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2355 EVT VT = Node->getValueType(0);
2356 Tmp1 = Node->getOperand(0);
2357 Tmp2 = Node->getOperand(1);
2358 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2359 // Increment the pointer, VAList, to the next vaarg
2360 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2361 DAG.getConstant(TLI.getTargetData()->
2362 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2363 TLI.getPointerTy()));
2364 // Store the incremented VAList to the legalized pointer
2365 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2366 // Load the actual argument out of the pointer VAList
2367 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2368 Results.push_back(Results[0].getValue(1));
2369 break;
2371 case ISD::VACOPY: {
2372 // This defaults to loading a pointer from the input and storing it to the
2373 // output, returning the chain.
2374 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2375 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2376 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2377 Node->getOperand(2), VS, 0);
2378 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2379 Results.push_back(Tmp1);
2380 break;
2382 case ISD::EXTRACT_VECTOR_ELT:
2383 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2384 // This must be an access of the only element. Return it.
2385 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2386 Node->getOperand(0));
2387 else
2388 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2389 Results.push_back(Tmp1);
2390 break;
2391 case ISD::EXTRACT_SUBVECTOR:
2392 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2393 break;
2394 case ISD::CONCAT_VECTORS: {
2395 Results.push_back(ExpandVectorBuildThroughStack(Node));
2396 break;
2398 case ISD::SCALAR_TO_VECTOR:
2399 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2400 break;
2401 case ISD::INSERT_VECTOR_ELT:
2402 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2403 Node->getOperand(1),
2404 Node->getOperand(2), dl));
2405 break;
2406 case ISD::VECTOR_SHUFFLE: {
2407 SmallVector<int, 8> Mask;
2408 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2410 EVT VT = Node->getValueType(0);
2411 EVT EltVT = VT.getVectorElementType();
2412 unsigned NumElems = VT.getVectorNumElements();
2413 SmallVector<SDValue, 8> Ops;
2414 for (unsigned i = 0; i != NumElems; ++i) {
2415 if (Mask[i] < 0) {
2416 Ops.push_back(DAG.getUNDEF(EltVT));
2417 continue;
2419 unsigned Idx = Mask[i];
2420 if (Idx < NumElems)
2421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2422 Node->getOperand(0),
2423 DAG.getIntPtrConstant(Idx)));
2424 else
2425 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2426 Node->getOperand(1),
2427 DAG.getIntPtrConstant(Idx - NumElems)));
2429 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2430 Results.push_back(Tmp1);
2431 break;
2433 case ISD::EXTRACT_ELEMENT: {
2434 EVT OpTy = Node->getOperand(0).getValueType();
2435 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2436 // 1 -> Hi
2437 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2438 DAG.getConstant(OpTy.getSizeInBits()/2,
2439 TLI.getShiftAmountTy()));
2440 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2441 } else {
2442 // 0 -> Lo
2443 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2444 Node->getOperand(0));
2446 Results.push_back(Tmp1);
2447 break;
2449 case ISD::STACKSAVE:
2450 // Expand to CopyFromReg if the target set
2451 // StackPointerRegisterToSaveRestore.
2452 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2453 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2454 Node->getValueType(0)));
2455 Results.push_back(Results[0].getValue(1));
2456 } else {
2457 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2458 Results.push_back(Node->getOperand(0));
2460 break;
2461 case ISD::STACKRESTORE:
2462 // Expand to CopyToReg if the target set
2463 // StackPointerRegisterToSaveRestore.
2464 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2465 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2466 Node->getOperand(1)));
2467 } else {
2468 Results.push_back(Node->getOperand(0));
2470 break;
2471 case ISD::FCOPYSIGN:
2472 Results.push_back(ExpandFCOPYSIGN(Node));
2473 break;
2474 case ISD::FNEG:
2475 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2476 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2477 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2478 Node->getOperand(0));
2479 Results.push_back(Tmp1);
2480 break;
2481 case ISD::FABS: {
2482 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2483 EVT VT = Node->getValueType(0);
2484 Tmp1 = Node->getOperand(0);
2485 Tmp2 = DAG.getConstantFP(0.0, VT);
2486 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2487 Tmp1, Tmp2, ISD::SETUGT);
2488 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2489 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2490 Results.push_back(Tmp1);
2491 break;
2493 case ISD::FSQRT:
2494 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2495 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2496 break;
2497 case ISD::FSIN:
2498 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2499 RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2500 break;
2501 case ISD::FCOS:
2502 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2503 RTLIB::COS_F80, RTLIB::COS_PPCF128));
2504 break;
2505 case ISD::FLOG:
2506 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2507 RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2508 break;
2509 case ISD::FLOG2:
2510 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2511 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2512 break;
2513 case ISD::FLOG10:
2514 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2515 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2516 break;
2517 case ISD::FEXP:
2518 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2519 RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2520 break;
2521 case ISD::FEXP2:
2522 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2523 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2524 break;
2525 case ISD::FTRUNC:
2526 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2527 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2528 break;
2529 case ISD::FFLOOR:
2530 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2531 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2532 break;
2533 case ISD::FCEIL:
2534 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2535 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2536 break;
2537 case ISD::FRINT:
2538 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2539 RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2540 break;
2541 case ISD::FNEARBYINT:
2542 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2543 RTLIB::NEARBYINT_F64,
2544 RTLIB::NEARBYINT_F80,
2545 RTLIB::NEARBYINT_PPCF128));
2546 break;
2547 case ISD::FPOWI:
2548 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2549 RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2550 break;
2551 case ISD::FPOW:
2552 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2553 RTLIB::POW_F80, RTLIB::POW_PPCF128));
2554 break;
2555 case ISD::FDIV:
2556 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2557 RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2558 break;
2559 case ISD::FREM:
2560 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2561 RTLIB::REM_F80, RTLIB::REM_PPCF128));
2562 break;
2563 case ISD::ConstantFP: {
2564 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2565 // Check to see if this FP immediate is already legal.
2566 bool isLegal = false;
2567 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2568 E = TLI.legal_fpimm_end(); I != E; ++I) {
2569 if (CFP->isExactlyValue(*I)) {
2570 isLegal = true;
2571 break;
2574 // If this is a legal constant, turn it into a TargetConstantFP node.
2575 if (isLegal)
2576 Results.push_back(SDValue(Node, 0));
2577 else
2578 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2579 break;
2581 case ISD::EHSELECTION: {
2582 unsigned Reg = TLI.getExceptionSelectorRegister();
2583 assert(Reg && "Can't expand to unknown register!");
2584 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2585 Node->getValueType(0)));
2586 Results.push_back(Results[0].getValue(1));
2587 break;
2589 case ISD::EXCEPTIONADDR: {
2590 unsigned Reg = TLI.getExceptionAddressRegister();
2591 assert(Reg && "Can't expand to unknown register!");
2592 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2593 Node->getValueType(0)));
2594 Results.push_back(Results[0].getValue(1));
2595 break;
2597 case ISD::SUB: {
2598 EVT VT = Node->getValueType(0);
2599 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2600 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2601 "Don't know how to expand this subtraction!");
2602 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2603 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2604 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2605 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2606 break;
2608 case ISD::UREM:
2609 case ISD::SREM: {
2610 EVT VT = Node->getValueType(0);
2611 SDVTList VTs = DAG.getVTList(VT, VT);
2612 bool isSigned = Node->getOpcode() == ISD::SREM;
2613 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2614 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2615 Tmp2 = Node->getOperand(0);
2616 Tmp3 = Node->getOperand(1);
2617 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2618 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2619 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2620 // X % Y -> X-X/Y*Y
2621 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2622 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2623 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2624 } else if (isSigned) {
2625 Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2626 RTLIB::SREM_I64, RTLIB::SREM_I128);
2627 } else {
2628 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2629 RTLIB::UREM_I64, RTLIB::UREM_I128);
2631 Results.push_back(Tmp1);
2632 break;
2634 case ISD::UDIV:
2635 case ISD::SDIV: {
2636 bool isSigned = Node->getOpcode() == ISD::SDIV;
2637 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2638 EVT VT = Node->getValueType(0);
2639 SDVTList VTs = DAG.getVTList(VT, VT);
2640 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2641 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2642 Node->getOperand(1));
2643 else if (isSigned)
2644 Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2645 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2646 else
2647 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2648 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2649 Results.push_back(Tmp1);
2650 break;
2652 case ISD::MULHU:
2653 case ISD::MULHS: {
2654 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2655 ISD::SMUL_LOHI;
2656 EVT VT = Node->getValueType(0);
2657 SDVTList VTs = DAG.getVTList(VT, VT);
2658 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2659 "If this wasn't legal, it shouldn't have been created!");
2660 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2661 Node->getOperand(1));
2662 Results.push_back(Tmp1.getValue(1));
2663 break;
2665 case ISD::MUL: {
2666 EVT VT = Node->getValueType(0);
2667 SDVTList VTs = DAG.getVTList(VT, VT);
2668 // See if multiply or divide can be lowered using two-result operations.
2669 // We just need the low half of the multiply; try both the signed
2670 // and unsigned forms. If the target supports both SMUL_LOHI and
2671 // UMUL_LOHI, form a preference by checking which forms of plain
2672 // MULH it supports.
2673 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2674 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2675 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2676 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2677 unsigned OpToUse = 0;
2678 if (HasSMUL_LOHI && !HasMULHS) {
2679 OpToUse = ISD::SMUL_LOHI;
2680 } else if (HasUMUL_LOHI && !HasMULHU) {
2681 OpToUse = ISD::UMUL_LOHI;
2682 } else if (HasSMUL_LOHI) {
2683 OpToUse = ISD::SMUL_LOHI;
2684 } else if (HasUMUL_LOHI) {
2685 OpToUse = ISD::UMUL_LOHI;
2687 if (OpToUse) {
2688 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2689 Node->getOperand(1)));
2690 break;
2692 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2693 RTLIB::MUL_I64, RTLIB::MUL_I128);
2694 Results.push_back(Tmp1);
2695 break;
2697 case ISD::SADDO:
2698 case ISD::SSUBO: {
2699 SDValue LHS = Node->getOperand(0);
2700 SDValue RHS = Node->getOperand(1);
2701 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2702 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2703 LHS, RHS);
2704 Results.push_back(Sum);
2705 EVT OType = Node->getValueType(1);
2707 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2709 // LHSSign -> LHS >= 0
2710 // RHSSign -> RHS >= 0
2711 // SumSign -> Sum >= 0
2713 // Add:
2714 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2715 // Sub:
2716 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2718 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2719 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2720 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2721 Node->getOpcode() == ISD::SADDO ?
2722 ISD::SETEQ : ISD::SETNE);
2724 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2725 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2727 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2728 Results.push_back(Cmp);
2729 break;
2731 case ISD::UADDO:
2732 case ISD::USUBO: {
2733 SDValue LHS = Node->getOperand(0);
2734 SDValue RHS = Node->getOperand(1);
2735 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2736 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2737 LHS, RHS);
2738 Results.push_back(Sum);
2739 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2740 Node->getOpcode () == ISD::UADDO ?
2741 ISD::SETULT : ISD::SETUGT));
2742 break;
2744 case ISD::UMULO:
2745 case ISD::SMULO: {
2746 EVT VT = Node->getValueType(0);
2747 SDValue LHS = Node->getOperand(0);
2748 SDValue RHS = Node->getOperand(1);
2749 SDValue BottomHalf;
2750 SDValue TopHalf;
2751 static unsigned Ops[2][3] =
2752 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2753 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2754 bool isSigned = Node->getOpcode() == ISD::SMULO;
2755 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2756 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2757 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2758 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2759 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2760 RHS);
2761 TopHalf = BottomHalf.getValue(1);
2762 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2763 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2764 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2765 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2766 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2767 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2768 DAG.getIntPtrConstant(0));
2769 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2770 DAG.getIntPtrConstant(1));
2771 } else {
2772 // FIXME: We should be able to fall back to a libcall with an illegal
2773 // type in some cases cases.
2774 // Also, we can fall back to a division in some cases, but that's a big
2775 // performance hit in the general case.
2776 llvm_unreachable("Don't know how to expand this operation yet!");
2778 if (isSigned) {
2779 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2780 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2781 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2782 ISD::SETNE);
2783 } else {
2784 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2785 DAG.getConstant(0, VT), ISD::SETNE);
2787 Results.push_back(BottomHalf);
2788 Results.push_back(TopHalf);
2789 break;
2791 case ISD::BUILD_PAIR: {
2792 EVT PairTy = Node->getValueType(0);
2793 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2794 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2795 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2796 DAG.getConstant(PairTy.getSizeInBits()/2,
2797 TLI.getShiftAmountTy()));
2798 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2799 break;
2801 case ISD::SELECT:
2802 Tmp1 = Node->getOperand(0);
2803 Tmp2 = Node->getOperand(1);
2804 Tmp3 = Node->getOperand(2);
2805 if (Tmp1.getOpcode() == ISD::SETCC) {
2806 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2807 Tmp2, Tmp3,
2808 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2809 } else {
2810 Tmp1 = DAG.getSelectCC(dl, Tmp1,
2811 DAG.getConstant(0, Tmp1.getValueType()),
2812 Tmp2, Tmp3, ISD::SETNE);
2814 Results.push_back(Tmp1);
2815 break;
2816 case ISD::BR_JT: {
2817 SDValue Chain = Node->getOperand(0);
2818 SDValue Table = Node->getOperand(1);
2819 SDValue Index = Node->getOperand(2);
2821 EVT PTy = TLI.getPointerTy();
2822 MachineFunction &MF = DAG.getMachineFunction();
2823 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2824 Index= DAG.getNode(ISD::MUL, dl, PTy,
2825 Index, DAG.getConstant(EntrySize, PTy));
2826 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2828 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2829 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2830 PseudoSourceValue::getJumpTable(), 0, MemVT);
2831 Addr = LD;
2832 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2833 // For PIC, the sequence is:
2834 // BRIND(load(Jumptable + index) + RelocBase)
2835 // RelocBase can be JumpTable, GOT or some sort of global base.
2836 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2837 TLI.getPICJumpTableRelocBase(Table, DAG));
2839 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2840 Results.push_back(Tmp1);
2841 break;
2843 case ISD::BRCOND:
2844 // Expand brcond's setcc into its constituent parts and create a BR_CC
2845 // Node.
2846 Tmp1 = Node->getOperand(0);
2847 Tmp2 = Node->getOperand(1);
2848 if (Tmp2.getOpcode() == ISD::SETCC) {
2849 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2850 Tmp1, Tmp2.getOperand(2),
2851 Tmp2.getOperand(0), Tmp2.getOperand(1),
2852 Node->getOperand(2));
2853 } else {
2854 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2855 DAG.getCondCode(ISD::SETNE), Tmp2,
2856 DAG.getConstant(0, Tmp2.getValueType()),
2857 Node->getOperand(2));
2859 Results.push_back(Tmp1);
2860 break;
2861 case ISD::SETCC: {
2862 Tmp1 = Node->getOperand(0);
2863 Tmp2 = Node->getOperand(1);
2864 Tmp3 = Node->getOperand(2);
2865 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2867 // If we expanded the SETCC into an AND/OR, return the new node
2868 if (Tmp2.getNode() == 0) {
2869 Results.push_back(Tmp1);
2870 break;
2873 // Otherwise, SETCC for the given comparison type must be completely
2874 // illegal; expand it into a SELECT_CC.
2875 EVT VT = Node->getValueType(0);
2876 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2877 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2878 Results.push_back(Tmp1);
2879 break;
2881 case ISD::SELECT_CC: {
2882 Tmp1 = Node->getOperand(0); // LHS
2883 Tmp2 = Node->getOperand(1); // RHS
2884 Tmp3 = Node->getOperand(2); // True
2885 Tmp4 = Node->getOperand(3); // False
2886 SDValue CC = Node->getOperand(4);
2888 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2889 Tmp1, Tmp2, CC, dl);
2891 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2892 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2893 CC = DAG.getCondCode(ISD::SETNE);
2894 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2895 Tmp3, Tmp4, CC);
2896 Results.push_back(Tmp1);
2897 break;
2899 case ISD::BR_CC: {
2900 Tmp1 = Node->getOperand(0); // Chain
2901 Tmp2 = Node->getOperand(2); // LHS
2902 Tmp3 = Node->getOperand(3); // RHS
2903 Tmp4 = Node->getOperand(1); // CC
2905 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2906 Tmp2, Tmp3, Tmp4, dl);
2907 LastCALLSEQ_END = DAG.getEntryNode();
2909 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2910 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2911 Tmp4 = DAG.getCondCode(ISD::SETNE);
2912 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2913 Tmp3, Node->getOperand(4));
2914 Results.push_back(Tmp1);
2915 break;
2917 case ISD::GLOBAL_OFFSET_TABLE:
2918 case ISD::GlobalAddress:
2919 case ISD::GlobalTLSAddress:
2920 case ISD::ExternalSymbol:
2921 case ISD::ConstantPool:
2922 case ISD::JumpTable:
2923 case ISD::INTRINSIC_W_CHAIN:
2924 case ISD::INTRINSIC_WO_CHAIN:
2925 case ISD::INTRINSIC_VOID:
2926 // FIXME: Custom lowering for these operations shouldn't return null!
2927 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2928 Results.push_back(SDValue(Node, i));
2929 break;
2932 void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2933 SmallVectorImpl<SDValue> &Results) {
2934 EVT OVT = Node->getValueType(0);
2935 if (Node->getOpcode() == ISD::UINT_TO_FP ||
2936 Node->getOpcode() == ISD::SINT_TO_FP ||
2937 Node->getOpcode() == ISD::SETCC) {
2938 OVT = Node->getOperand(0).getValueType();
2940 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2941 DebugLoc dl = Node->getDebugLoc();
2942 SDValue Tmp1, Tmp2, Tmp3;
2943 switch (Node->getOpcode()) {
2944 case ISD::CTTZ:
2945 case ISD::CTLZ:
2946 case ISD::CTPOP:
2947 // Zero extend the argument.
2948 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2949 // Perform the larger operation.
2950 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2951 if (Node->getOpcode() == ISD::CTTZ) {
2952 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2953 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2954 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2955 ISD::SETEQ);
2956 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2957 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2958 } else if (Node->getOpcode() == ISD::CTLZ) {
2959 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2960 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2961 DAG.getConstant(NVT.getSizeInBits() -
2962 OVT.getSizeInBits(), NVT));
2964 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2965 break;
2966 case ISD::BSWAP: {
2967 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2968 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2969 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2970 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2971 DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2972 Results.push_back(Tmp1);
2973 break;
2975 case ISD::FP_TO_UINT:
2976 case ISD::FP_TO_SINT:
2977 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2978 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2979 Results.push_back(Tmp1);
2980 break;
2981 case ISD::UINT_TO_FP:
2982 case ISD::SINT_TO_FP:
2983 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2984 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2985 Results.push_back(Tmp1);
2986 break;
2987 case ISD::AND:
2988 case ISD::OR:
2989 case ISD::XOR: {
2990 unsigned ExtOp, TruncOp;
2991 if (OVT.isVector()) {
2992 ExtOp = ISD::BIT_CONVERT;
2993 TruncOp = ISD::BIT_CONVERT;
2994 } else if (OVT.isInteger()) {
2995 ExtOp = ISD::ANY_EXTEND;
2996 TruncOp = ISD::TRUNCATE;
2997 } else {
2998 llvm_report_error("Cannot promote logic operation");
3000 // Promote each of the values to the new type.
3001 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3002 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3003 // Perform the larger operation, then convert back
3004 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3005 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3006 break;
3008 case ISD::SELECT: {
3009 unsigned ExtOp, TruncOp;
3010 if (Node->getValueType(0).isVector()) {
3011 ExtOp = ISD::BIT_CONVERT;
3012 TruncOp = ISD::BIT_CONVERT;
3013 } else if (Node->getValueType(0).isInteger()) {
3014 ExtOp = ISD::ANY_EXTEND;
3015 TruncOp = ISD::TRUNCATE;
3016 } else {
3017 ExtOp = ISD::FP_EXTEND;
3018 TruncOp = ISD::FP_ROUND;
3020 Tmp1 = Node->getOperand(0);
3021 // Promote each of the values to the new type.
3022 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3023 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3024 // Perform the larger operation, then round down.
3025 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3026 if (TruncOp != ISD::FP_ROUND)
3027 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3028 else
3029 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3030 DAG.getIntPtrConstant(0));
3031 Results.push_back(Tmp1);
3032 break;
3034 case ISD::VECTOR_SHUFFLE: {
3035 SmallVector<int, 8> Mask;
3036 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3038 // Cast the two input vectors.
3039 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3040 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3042 // Convert the shuffle mask to the right # elements.
3043 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3044 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3045 Results.push_back(Tmp1);
3046 break;
3048 case ISD::SETCC: {
3049 unsigned ExtOp = ISD::FP_EXTEND;
3050 if (NVT.isInteger()) {
3051 ISD::CondCode CCCode =
3052 cast<CondCodeSDNode>(Node->getOperand(2))->get();
3053 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3055 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3056 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3057 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3058 Tmp1, Tmp2, Node->getOperand(2)));
3059 break;
3064 // SelectionDAG::Legalize - This is the entry point for the file.
3066 void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3067 CodeGenOpt::Level OptLevel) {
3068 /// run - This is the main entry point to this class.
3070 SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();