Indentation.
[llvm/avr.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
blob0b4a180746e522273fc8435f815309babf816815
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
14 // A = B op C
16 // to:
18 // A = B
19 // A op= C
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/ADT/BitVector.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 using namespace llvm;
50 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
52 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
53 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
55 STATISTIC(NumReMats, "Number of instructions re-materialized");
56 STATISTIC(NumDeletes, "Number of dead instructions deleted");
58 namespace {
59 class VISIBILITY_HIDDEN TwoAddressInstructionPass
60 : public MachineFunctionPass {
61 const TargetInstrInfo *TII;
62 const TargetRegisterInfo *TRI;
63 MachineRegisterInfo *MRI;
64 LiveVariables *LV;
66 // DistanceMap - Keep track the distance of a MI from the start of the
67 // current basic block.
68 DenseMap<MachineInstr*, unsigned> DistanceMap;
70 // SrcRegMap - A map from virtual registers to physical registers which
71 // are likely targets to be coalesced to due to copies from physical
72 // registers to virtual registers. e.g. v1024 = move r0.
73 DenseMap<unsigned, unsigned> SrcRegMap;
75 // DstRegMap - A map from virtual registers to physical registers which
76 // are likely targets to be coalesced to due to copies to physical
77 // registers from virtual registers. e.g. r1 = move v1024.
78 DenseMap<unsigned, unsigned> DstRegMap;
80 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81 unsigned Reg,
82 MachineBasicBlock::iterator OldPos);
84 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85 MachineInstr *MI, MachineInstr *DefMI,
86 MachineBasicBlock *MBB, unsigned Loc);
88 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89 unsigned &LastDef);
91 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92 unsigned Dist);
94 bool isProfitableToCommute(unsigned regB, unsigned regC,
95 MachineInstr *MI, MachineBasicBlock *MBB,
96 unsigned Dist);
98 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99 MachineFunction::iterator &mbbi,
100 unsigned RegB, unsigned RegC, unsigned Dist);
102 bool isProfitableToConv3Addr(unsigned RegA);
104 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105 MachineBasicBlock::iterator &nmi,
106 MachineFunction::iterator &mbbi,
107 unsigned RegB, unsigned Dist);
109 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
110 SmallPtrSet<MachineInstr*, 8> &Processed);
112 public:
113 static char ID; // Pass identification, replacement for typeid
114 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
116 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
117 AU.setPreservesCFG();
118 AU.addPreserved<LiveVariables>();
119 AU.addPreservedID(MachineLoopInfoID);
120 AU.addPreservedID(MachineDominatorsID);
121 if (StrongPHIElim)
122 AU.addPreservedID(StrongPHIEliminationID);
123 else
124 AU.addPreservedID(PHIEliminationID);
125 MachineFunctionPass::getAnalysisUsage(AU);
128 /// runOnMachineFunction - Pass entry point.
129 bool runOnMachineFunction(MachineFunction&);
133 char TwoAddressInstructionPass::ID = 0;
134 static RegisterPass<TwoAddressInstructionPass>
135 X("twoaddressinstruction", "Two-Address instruction pass");
137 const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
139 /// Sink3AddrInstruction - A two-address instruction has been converted to a
140 /// three-address instruction to avoid clobbering a register. Try to sink it
141 /// past the instruction that would kill the above mentioned register to reduce
142 /// register pressure.
143 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
144 MachineInstr *MI, unsigned SavedReg,
145 MachineBasicBlock::iterator OldPos) {
146 // Check if it's safe to move this instruction.
147 bool SeenStore = true; // Be conservative.
148 if (!MI->isSafeToMove(TII, SeenStore))
149 return false;
151 unsigned DefReg = 0;
152 SmallSet<unsigned, 4> UseRegs;
154 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
155 const MachineOperand &MO = MI->getOperand(i);
156 if (!MO.isReg())
157 continue;
158 unsigned MOReg = MO.getReg();
159 if (!MOReg)
160 continue;
161 if (MO.isUse() && MOReg != SavedReg)
162 UseRegs.insert(MO.getReg());
163 if (!MO.isDef())
164 continue;
165 if (MO.isImplicit())
166 // Don't try to move it if it implicitly defines a register.
167 return false;
168 if (DefReg)
169 // For now, don't move any instructions that define multiple registers.
170 return false;
171 DefReg = MO.getReg();
174 // Find the instruction that kills SavedReg.
175 MachineInstr *KillMI = NULL;
176 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
177 UE = MRI->use_end(); UI != UE; ++UI) {
178 MachineOperand &UseMO = UI.getOperand();
179 if (!UseMO.isKill())
180 continue;
181 KillMI = UseMO.getParent();
182 break;
185 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
186 return false;
188 // If any of the definitions are used by another instruction between the
189 // position and the kill use, then it's not safe to sink it.
191 // FIXME: This can be sped up if there is an easy way to query whether an
192 // instruction is before or after another instruction. Then we can use
193 // MachineRegisterInfo def / use instead.
194 MachineOperand *KillMO = NULL;
195 MachineBasicBlock::iterator KillPos = KillMI;
196 ++KillPos;
198 unsigned NumVisited = 0;
199 for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
200 MachineInstr *OtherMI = I;
201 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
202 return false;
203 ++NumVisited;
204 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
205 MachineOperand &MO = OtherMI->getOperand(i);
206 if (!MO.isReg())
207 continue;
208 unsigned MOReg = MO.getReg();
209 if (!MOReg)
210 continue;
211 if (DefReg == MOReg)
212 return false;
214 if (MO.isKill()) {
215 if (OtherMI == KillMI && MOReg == SavedReg)
216 // Save the operand that kills the register. We want to unset the kill
217 // marker if we can sink MI past it.
218 KillMO = &MO;
219 else if (UseRegs.count(MOReg))
220 // One of the uses is killed before the destination.
221 return false;
226 // Update kill and LV information.
227 KillMO->setIsKill(false);
228 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
229 KillMO->setIsKill(true);
231 if (LV)
232 LV->replaceKillInstruction(SavedReg, KillMI, MI);
234 // Move instruction to its destination.
235 MBB->remove(MI);
236 MBB->insert(KillPos, MI);
238 ++Num3AddrSunk;
239 return true;
242 /// isTwoAddrUse - Return true if the specified MI is using the specified
243 /// register as a two-address operand.
244 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
245 const TargetInstrDesc &TID = UseMI->getDesc();
246 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
247 MachineOperand &MO = UseMI->getOperand(i);
248 if (MO.isReg() && MO.getReg() == Reg &&
249 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
250 // Earlier use is a two-address one.
251 return true;
253 return false;
256 /// isProfitableToReMat - Return true if the heuristics determines it is likely
257 /// to be profitable to re-materialize the definition of Reg rather than copy
258 /// the register.
259 bool
260 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
261 const TargetRegisterClass *RC,
262 MachineInstr *MI, MachineInstr *DefMI,
263 MachineBasicBlock *MBB, unsigned Loc) {
264 bool OtherUse = false;
265 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
266 UE = MRI->use_end(); UI != UE; ++UI) {
267 MachineOperand &UseMO = UI.getOperand();
268 MachineInstr *UseMI = UseMO.getParent();
269 MachineBasicBlock *UseMBB = UseMI->getParent();
270 if (UseMBB == MBB) {
271 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
272 if (DI != DistanceMap.end() && DI->second == Loc)
273 continue; // Current use.
274 OtherUse = true;
275 // There is at least one other use in the MBB that will clobber the
276 // register.
277 if (isTwoAddrUse(UseMI, Reg))
278 return true;
282 // If other uses in MBB are not two-address uses, then don't remat.
283 if (OtherUse)
284 return false;
286 // No other uses in the same block, remat if it's defined in the same
287 // block so it does not unnecessarily extend the live range.
288 return MBB == DefMI->getParent();
291 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
292 /// last instruction in the MBB that defines the specified register and the
293 /// two-address instruction which is being processed. It also returns the last
294 /// def location by reference
295 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
296 MachineBasicBlock *MBB, unsigned Dist,
297 unsigned &LastDef) {
298 LastDef = 0;
299 unsigned LastUse = Dist;
300 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
301 E = MRI->reg_end(); I != E; ++I) {
302 MachineOperand &MO = I.getOperand();
303 MachineInstr *MI = MO.getParent();
304 if (MI->getParent() != MBB)
305 continue;
306 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
307 if (DI == DistanceMap.end())
308 continue;
309 if (MO.isUse() && DI->second < LastUse)
310 LastUse = DI->second;
311 if (MO.isDef() && DI->second > LastDef)
312 LastDef = DI->second;
315 return !(LastUse > LastDef && LastUse < Dist);
318 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
319 MachineBasicBlock *MBB,
320 unsigned Dist) {
321 unsigned LastUseDist = 0;
322 MachineInstr *LastUse = 0;
323 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
324 E = MRI->reg_end(); I != E; ++I) {
325 MachineOperand &MO = I.getOperand();
326 MachineInstr *MI = MO.getParent();
327 if (MI->getParent() != MBB)
328 continue;
329 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
330 if (DI == DistanceMap.end())
331 continue;
332 if (DI->second >= Dist)
333 continue;
335 if (MO.isUse() && DI->second > LastUseDist) {
336 LastUse = DI->first;
337 LastUseDist = DI->second;
340 return LastUse;
343 /// isCopyToReg - Return true if the specified MI is a copy instruction or
344 /// a extract_subreg instruction. It also returns the source and destination
345 /// registers and whether they are physical registers by reference.
346 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
347 unsigned &SrcReg, unsigned &DstReg,
348 bool &IsSrcPhys, bool &IsDstPhys) {
349 SrcReg = 0;
350 DstReg = 0;
351 unsigned SrcSubIdx, DstSubIdx;
352 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
353 if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
354 DstReg = MI.getOperand(0).getReg();
355 SrcReg = MI.getOperand(1).getReg();
356 } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
357 DstReg = MI.getOperand(0).getReg();
358 SrcReg = MI.getOperand(2).getReg();
359 } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
360 DstReg = MI.getOperand(0).getReg();
361 SrcReg = MI.getOperand(2).getReg();
365 if (DstReg) {
366 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
367 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
368 return true;
370 return false;
373 /// isKilled - Test if the given register value, which is used by the given
374 /// instruction, is killed by the given instruction. This looks through
375 /// coalescable copies to see if the original value is potentially not killed.
377 /// For example, in this code:
379 /// %reg1034 = copy %reg1024
380 /// %reg1035 = copy %reg1025<kill>
381 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
383 /// %reg1034 is not considered to be killed, since it is copied from a
384 /// register which is not killed. Treating it as not killed lets the
385 /// normal heuristics commute the (two-address) add, which lets
386 /// coalescing eliminate the extra copy.
388 static bool isKilled(MachineInstr &MI, unsigned Reg,
389 const MachineRegisterInfo *MRI,
390 const TargetInstrInfo *TII) {
391 MachineInstr *DefMI = &MI;
392 for (;;) {
393 if (!DefMI->killsRegister(Reg))
394 return false;
395 if (TargetRegisterInfo::isPhysicalRegister(Reg))
396 return true;
397 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
398 // If there are multiple defs, we can't do a simple analysis, so just
399 // go with what the kill flag says.
400 if (next(Begin) != MRI->def_end())
401 return true;
402 DefMI = &*Begin;
403 bool IsSrcPhys, IsDstPhys;
404 unsigned SrcReg, DstReg;
405 // If the def is something other than a copy, then it isn't going to
406 // be coalesced, so follow the kill flag.
407 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
408 return true;
409 Reg = SrcReg;
413 /// isTwoAddrUse - Return true if the specified MI uses the specified register
414 /// as a two-address use. If so, return the destination register by reference.
415 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
416 const TargetInstrDesc &TID = MI.getDesc();
417 unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
418 ? MI.getNumOperands() : TID.getNumOperands();
419 for (unsigned i = 0; i != NumOps; ++i) {
420 const MachineOperand &MO = MI.getOperand(i);
421 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
422 continue;
423 unsigned ti;
424 if (MI.isRegTiedToDefOperand(i, &ti)) {
425 DstReg = MI.getOperand(ti).getReg();
426 return true;
429 return false;
432 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
433 /// use, return the use instruction if it's a copy or a two-address use.
434 static
435 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
436 MachineRegisterInfo *MRI,
437 const TargetInstrInfo *TII,
438 bool &IsCopy,
439 unsigned &DstReg, bool &IsDstPhys) {
440 MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
441 if (UI == MRI->use_end())
442 return 0;
443 MachineInstr &UseMI = *UI;
444 if (++UI != MRI->use_end())
445 // More than one use.
446 return 0;
447 if (UseMI.getParent() != MBB)
448 return 0;
449 unsigned SrcReg;
450 bool IsSrcPhys;
451 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
452 IsCopy = true;
453 return &UseMI;
455 IsDstPhys = false;
456 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
457 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
458 return &UseMI;
460 return 0;
463 /// getMappedReg - Return the physical register the specified virtual register
464 /// might be mapped to.
465 static unsigned
466 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
467 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
468 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
469 if (SI == RegMap.end())
470 return 0;
471 Reg = SI->second;
473 if (TargetRegisterInfo::isPhysicalRegister(Reg))
474 return Reg;
475 return 0;
478 /// regsAreCompatible - Return true if the two registers are equal or aliased.
480 static bool
481 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
482 if (RegA == RegB)
483 return true;
484 if (!RegA || !RegB)
485 return false;
486 return TRI->regsOverlap(RegA, RegB);
490 /// isProfitableToReMat - Return true if it's potentially profitable to commute
491 /// the two-address instruction that's being processed.
492 bool
493 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
494 MachineInstr *MI, MachineBasicBlock *MBB,
495 unsigned Dist) {
496 // Determine if it's profitable to commute this two address instruction. In
497 // general, we want no uses between this instruction and the definition of
498 // the two-address register.
499 // e.g.
500 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
501 // %reg1029<def> = MOV8rr %reg1028
502 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
503 // insert => %reg1030<def> = MOV8rr %reg1028
504 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
505 // In this case, it might not be possible to coalesce the second MOV8rr
506 // instruction if the first one is coalesced. So it would be profitable to
507 // commute it:
508 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
509 // %reg1029<def> = MOV8rr %reg1028
510 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
511 // insert => %reg1030<def> = MOV8rr %reg1029
512 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
514 if (!MI->killsRegister(regC))
515 return false;
517 // Ok, we have something like:
518 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
519 // let's see if it's worth commuting it.
521 // Look for situations like this:
522 // %reg1024<def> = MOV r1
523 // %reg1025<def> = MOV r0
524 // %reg1026<def> = ADD %reg1024, %reg1025
525 // r0 = MOV %reg1026
526 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
527 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
528 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
529 unsigned ToRegB = getMappedReg(regB, DstRegMap);
530 unsigned ToRegC = getMappedReg(regC, DstRegMap);
531 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
532 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
533 regsAreCompatible(FromRegC, ToRegB, TRI)))
534 return true;
536 // If there is a use of regC between its last def (could be livein) and this
537 // instruction, then bail.
538 unsigned LastDefC = 0;
539 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
540 return false;
542 // If there is a use of regB between its last def (could be livein) and this
543 // instruction, then go ahead and make this transformation.
544 unsigned LastDefB = 0;
545 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
546 return true;
548 // Since there are no intervening uses for both registers, then commute
549 // if the def of regC is closer. Its live interval is shorter.
550 return LastDefB && LastDefC && LastDefC > LastDefB;
553 /// CommuteInstruction - Commute a two-address instruction and update the basic
554 /// block, distance map, and live variables if needed. Return true if it is
555 /// successful.
556 bool
557 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
558 MachineFunction::iterator &mbbi,
559 unsigned RegB, unsigned RegC, unsigned Dist) {
560 MachineInstr *MI = mi;
561 DOUT << "2addr: COMMUTING : " << *MI;
562 MachineInstr *NewMI = TII->commuteInstruction(MI);
564 if (NewMI == 0) {
565 DOUT << "2addr: COMMUTING FAILED!\n";
566 return false;
569 DOUT << "2addr: COMMUTED TO: " << *NewMI;
570 // If the instruction changed to commute it, update livevar.
571 if (NewMI != MI) {
572 if (LV)
573 // Update live variables
574 LV->replaceKillInstruction(RegC, MI, NewMI);
576 mbbi->insert(mi, NewMI); // Insert the new inst
577 mbbi->erase(mi); // Nuke the old inst.
578 mi = NewMI;
579 DistanceMap.insert(std::make_pair(NewMI, Dist));
582 // Update source register map.
583 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
584 if (FromRegC) {
585 unsigned RegA = MI->getOperand(0).getReg();
586 SrcRegMap[RegA] = FromRegC;
589 return true;
592 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
593 /// given 2-address instruction to a 3-address one.
594 bool
595 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
596 // Look for situations like this:
597 // %reg1024<def> = MOV r1
598 // %reg1025<def> = MOV r0
599 // %reg1026<def> = ADD %reg1024, %reg1025
600 // r2 = MOV %reg1026
601 // Turn ADD into a 3-address instruction to avoid a copy.
602 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
603 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
604 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
607 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
608 /// three address one. Return true if this transformation was successful.
609 bool
610 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
611 MachineBasicBlock::iterator &nmi,
612 MachineFunction::iterator &mbbi,
613 unsigned RegB, unsigned Dist) {
614 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
615 if (NewMI) {
616 DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
617 DOUT << "2addr: TO 3-ADDR: " << *NewMI;
618 bool Sunk = false;
620 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
621 // FIXME: Temporary workaround. If the new instruction doesn't
622 // uses RegB, convertToThreeAddress must have created more
623 // then one instruction.
624 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
626 mbbi->erase(mi); // Nuke the old inst.
628 if (!Sunk) {
629 DistanceMap.insert(std::make_pair(NewMI, Dist));
630 mi = NewMI;
631 nmi = next(mi);
633 return true;
636 return false;
639 /// ProcessCopy - If the specified instruction is not yet processed, process it
640 /// if it's a copy. For a copy instruction, we find the physical registers the
641 /// source and destination registers might be mapped to. These are kept in
642 /// point-to maps used to determine future optimizations. e.g.
643 /// v1024 = mov r0
644 /// v1025 = mov r1
645 /// v1026 = add v1024, v1025
646 /// r1 = mov r1026
647 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
648 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
649 /// potentially joined with r1 on the output side. It's worthwhile to commute
650 /// 'add' to eliminate a copy.
651 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
652 MachineBasicBlock *MBB,
653 SmallPtrSet<MachineInstr*, 8> &Processed) {
654 if (Processed.count(MI))
655 return;
657 bool IsSrcPhys, IsDstPhys;
658 unsigned SrcReg, DstReg;
659 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
660 return;
662 if (IsDstPhys && !IsSrcPhys)
663 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
664 else if (!IsDstPhys && IsSrcPhys) {
665 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
666 if (!isNew)
667 assert(SrcRegMap[DstReg] == SrcReg &&
668 "Can't map to two src physical registers!");
670 SmallVector<unsigned, 4> VirtRegPairs;
671 bool IsCopy = false;
672 unsigned NewReg = 0;
673 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
674 IsCopy, NewReg, IsDstPhys)) {
675 if (IsCopy) {
676 if (!Processed.insert(UseMI))
677 break;
680 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
681 if (DI != DistanceMap.end())
682 // Earlier in the same MBB.Reached via a back edge.
683 break;
685 if (IsDstPhys) {
686 VirtRegPairs.push_back(NewReg);
687 break;
689 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
690 if (!isNew)
691 assert(SrcRegMap[NewReg] == DstReg &&
692 "Can't map to two src physical registers!");
693 VirtRegPairs.push_back(NewReg);
694 DstReg = NewReg;
697 if (!VirtRegPairs.empty()) {
698 unsigned ToReg = VirtRegPairs.back();
699 VirtRegPairs.pop_back();
700 while (!VirtRegPairs.empty()) {
701 unsigned FromReg = VirtRegPairs.back();
702 VirtRegPairs.pop_back();
703 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
704 if (!isNew)
705 assert(DstRegMap[FromReg] == ToReg &&
706 "Can't map to two dst physical registers!");
707 ToReg = FromReg;
712 Processed.insert(MI);
715 /// isSafeToDelete - If the specified instruction does not produce any side
716 /// effects and all of its defs are dead, then it's safe to delete.
717 static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
718 const TargetInstrInfo *TII,
719 SmallVector<unsigned, 4> &Kills) {
720 const TargetInstrDesc &TID = MI->getDesc();
721 if (TID.mayStore() || TID.isCall())
722 return false;
723 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
724 return false;
726 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
727 MachineOperand &MO = MI->getOperand(i);
728 if (!MO.isReg())
729 continue;
730 if (MO.isDef() && !MO.isDead())
731 return false;
732 if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
733 Kills.push_back(MO.getReg());
736 return true;
739 /// runOnMachineFunction - Reduce two-address instructions to two operands.
741 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
742 DOUT << "Machine Function\n";
743 const TargetMachine &TM = MF.getTarget();
744 MRI = &MF.getRegInfo();
745 TII = TM.getInstrInfo();
746 TRI = TM.getRegisterInfo();
747 LV = getAnalysisIfAvailable<LiveVariables>();
749 bool MadeChange = false;
751 DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
752 DEBUG(errs() << "********** Function: "
753 << MF.getFunction()->getName() << '\n');
755 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
756 BitVector ReMatRegs;
757 ReMatRegs.resize(MRI->getLastVirtReg()+1);
759 SmallPtrSet<MachineInstr*, 8> Processed;
760 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
761 mbbi != mbbe; ++mbbi) {
762 unsigned Dist = 0;
763 DistanceMap.clear();
764 SrcRegMap.clear();
765 DstRegMap.clear();
766 Processed.clear();
767 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
768 mi != me; ) {
769 MachineBasicBlock::iterator nmi = next(mi);
770 const TargetInstrDesc &TID = mi->getDesc();
771 bool FirstTied = true;
773 DistanceMap.insert(std::make_pair(mi, ++Dist));
775 ProcessCopy(&*mi, &*mbbi, Processed);
777 unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
778 ? mi->getNumOperands() : TID.getNumOperands();
779 for (unsigned si = 0; si < NumOps; ++si) {
780 unsigned ti = 0;
781 if (!mi->isRegTiedToDefOperand(si, &ti))
782 continue;
784 if (FirstTied) {
785 ++NumTwoAddressInstrs;
786 DOUT << '\t' << *mi;
789 FirstTied = false;
791 assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
792 mi->getOperand(si).isUse() && "two address instruction invalid");
794 // If the two operands are the same we just remove the use
795 // and mark the def as def&use, otherwise we have to insert a copy.
796 if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
797 // Rewrite:
798 // a = b op c
799 // to:
800 // a = b
801 // a = a op c
802 unsigned regA = mi->getOperand(ti).getReg();
803 unsigned regB = mi->getOperand(si).getReg();
804 unsigned regASubIdx = mi->getOperand(ti).getSubReg();
806 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
807 "cannot make instruction into two-address form");
809 #ifndef NDEBUG
810 // First, verify that we don't have a use of a in the instruction (a =
811 // b + a for example) because our transformation will not work. This
812 // should never occur because we are in SSA form.
813 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
814 assert(i == ti ||
815 !mi->getOperand(i).isReg() ||
816 mi->getOperand(i).getReg() != regA);
817 #endif
819 // If this instruction is not the killing user of B, see if we can
820 // rearrange the code to make it so. Making it the killing user will
821 // allow us to coalesce A and B together, eliminating the copy we are
822 // about to insert.
823 if (!isKilled(*mi, regB, MRI, TII)) {
824 // If regA is dead and the instruction can be deleted, just delete
825 // it so it doesn't clobber regB.
826 SmallVector<unsigned, 4> Kills;
827 if (mi->getOperand(ti).isDead() &&
828 isSafeToDelete(mi, regB, TII, Kills)) {
829 SmallVector<std::pair<std::pair<unsigned, bool>
830 ,MachineInstr*>, 4> NewKills;
831 bool ReallySafe = true;
832 // If this instruction kills some virtual registers, we need
833 // update the kill information. If it's not possible to do so,
834 // then bail out.
835 while (!Kills.empty()) {
836 unsigned Kill = Kills.back();
837 Kills.pop_back();
838 if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
839 ReallySafe = false;
840 break;
842 MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
843 if (LastKill) {
844 bool isModRef = LastKill->modifiesRegister(Kill);
845 NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
846 LastKill));
847 } else {
848 ReallySafe = false;
849 break;
853 if (ReallySafe) {
854 if (LV) {
855 while (!NewKills.empty()) {
856 MachineInstr *NewKill = NewKills.back().second;
857 unsigned Kill = NewKills.back().first.first;
858 bool isDead = NewKills.back().first.second;
859 NewKills.pop_back();
860 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
861 if (isDead)
862 LV->addVirtualRegisterDead(Kill, NewKill);
863 else
864 LV->addVirtualRegisterKilled(Kill, NewKill);
869 // We're really going to nuke the old inst. If regB was marked
870 // as a kill we need to update its Kills list.
871 if (mi->getOperand(si).isKill())
872 LV->removeVirtualRegisterKilled(regB, mi);
874 mbbi->erase(mi); // Nuke the old inst.
875 mi = nmi;
876 ++NumDeletes;
877 break; // Done with this instruction.
881 // If this instruction is commutative, check to see if C dies. If
882 // so, swap the B and C operands. This makes the live ranges of A
883 // and C joinable.
884 // FIXME: This code also works for A := B op C instructions.
885 unsigned SrcOp1, SrcOp2;
886 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
887 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
888 unsigned regC = 0;
889 if (si == SrcOp1)
890 regC = mi->getOperand(SrcOp2).getReg();
891 else if (si == SrcOp2)
892 regC = mi->getOperand(SrcOp1).getReg();
893 if (isKilled(*mi, regC, MRI, TII)) {
894 if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
895 ++NumCommuted;
896 regB = regC;
897 goto InstructionRearranged;
902 // If this instruction is potentially convertible to a true
903 // three-address instruction,
904 if (TID.isConvertibleTo3Addr()) {
905 // FIXME: This assumes there are no more operands which are tied
906 // to another register.
907 #ifndef NDEBUG
908 for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
909 assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
910 #endif
912 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
913 ++NumConvertedTo3Addr;
914 break; // Done with this instruction.
919 // If it's profitable to commute the instruction, do so.
920 unsigned SrcOp1, SrcOp2;
921 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
922 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
923 unsigned regC = 0;
924 if (si == SrcOp1)
925 regC = mi->getOperand(SrcOp2).getReg();
926 else if (si == SrcOp2)
927 regC = mi->getOperand(SrcOp1).getReg();
929 if (regC && isProfitableToCommute(regB, regC, mi, mbbi, Dist))
930 if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
931 ++NumAggrCommuted;
932 ++NumCommuted;
933 regB = regC;
934 goto InstructionRearranged;
938 // If it's profitable to convert the 2-address instruction to a
939 // 3-address one, do so.
940 if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
941 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
942 ++NumConvertedTo3Addr;
943 break; // Done with this instruction.
947 InstructionRearranged:
948 const TargetRegisterClass* rc = MRI->getRegClass(regB);
949 MachineInstr *DefMI = MRI->getVRegDef(regB);
950 // If it's safe and profitable, remat the definition instead of
951 // copying it.
952 if (DefMI &&
953 DefMI->getDesc().isAsCheapAsAMove() &&
954 DefMI->isSafeToReMat(TII, regB) &&
955 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
956 DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
957 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI);
958 ReMatRegs.set(regB);
959 ++NumReMats;
960 } else {
961 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
962 (void)Emitted;
963 assert(Emitted && "Unable to issue a copy instruction!\n");
966 MachineBasicBlock::iterator prevMI = prior(mi);
967 // Update DistanceMap.
968 DistanceMap.insert(std::make_pair(prevMI, Dist));
969 DistanceMap[mi] = ++Dist;
971 // Update live variables for regB.
972 if (LV) {
973 if (LV->removeVirtualRegisterKilled(regB, mi))
974 LV->addVirtualRegisterKilled(regB, prevMI);
976 if (LV->removeVirtualRegisterDead(regB, mi))
977 LV->addVirtualRegisterDead(regB, prevMI);
980 DOUT << "\t\tprepend:\t" << *prevMI;
982 // Replace all occurences of regB with regA.
983 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
984 if (mi->getOperand(i).isReg() &&
985 mi->getOperand(i).getReg() == regB)
986 mi->getOperand(i).setReg(regA);
990 assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
991 mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
992 MadeChange = true;
994 DOUT << "\t\trewrite to:\t" << *mi;
997 mi = nmi;
1001 // Some remat'ed instructions are dead.
1002 int VReg = ReMatRegs.find_first();
1003 while (VReg != -1) {
1004 if (MRI->use_empty(VReg)) {
1005 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1006 DefMI->eraseFromParent();
1008 VReg = ReMatRegs.find_next(VReg);
1011 return MadeChange;