Indentation.
[llvm/avr.git] / lib / CodeGen / VirtRegRewriter.cpp
blobb34d43a1f5d0284e0d6048cf2483d43663562b80
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Support/Compiler.h"
13 #include "llvm/Support/ErrorHandling.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include <algorithm>
20 using namespace llvm;
22 STATISTIC(NumDSE , "Number of dead stores elided");
23 STATISTIC(NumDSS , "Number of dead spill slots removed");
24 STATISTIC(NumCommutes, "Number of instructions commuted");
25 STATISTIC(NumDRM , "Number of re-materializable defs elided");
26 STATISTIC(NumStores , "Number of stores added");
27 STATISTIC(NumPSpills , "Number of physical register spills");
28 STATISTIC(NumOmitted , "Number of reloads omited");
29 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
30 STATISTIC(NumCopified, "Number of available reloads turned into copies");
31 STATISTIC(NumReMats , "Number of re-materialization");
32 STATISTIC(NumLoads , "Number of loads added");
33 STATISTIC(NumReused , "Number of values reused");
34 STATISTIC(NumDCE , "Number of copies elided");
35 STATISTIC(NumSUnfold , "Number of stores unfolded");
36 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
38 namespace {
39 enum RewriterName { local, trivial };
42 static cl::opt<RewriterName>
43 RewriterOpt("rewriter",
44 cl::desc("Rewriter to use: (default: local)"),
45 cl::Prefix,
46 cl::values(clEnumVal(local, "local rewriter"),
47 clEnumVal(trivial, "trivial rewriter"),
48 clEnumValEnd),
49 cl::init(local));
51 static cl::opt<bool>
52 ScheduleSpills("schedule-spills",
53 cl::desc("Schedule spill code"),
54 cl::init(false));
56 VirtRegRewriter::~VirtRegRewriter() {}
58 namespace {
60 /// This class is intended for use with the new spilling framework only. It
61 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
62 /// spill code.
63 struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
65 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
66 LiveIntervals* LIs) {
67 DOUT << "********** REWRITE MACHINE CODE **********\n";
68 DEBUG(errs() << "********** Function: "
69 << MF.getFunction()->getName() << '\n');
70 DOUT << "**** Machine Instrs"
71 << "(NOTE! Does not include spills and reloads!) ****\n";
72 DEBUG(MF.dump());
74 MachineRegisterInfo *mri = &MF.getRegInfo();
76 bool changed = false;
78 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
79 liItr != liEnd; ++liItr) {
81 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
82 if (VRM.hasPhys(liItr->first)) {
83 unsigned preg = VRM.getPhys(liItr->first);
84 mri->replaceRegWith(liItr->first, preg);
85 mri->setPhysRegUsed(preg);
86 changed = true;
89 else {
90 if (!liItr->second->empty()) {
91 mri->setPhysRegUsed(liItr->first);
97 DOUT << "**** Post Machine Instrs ****\n";
98 DEBUG(MF.dump());
100 return changed;
107 // ************************************************************************ //
109 namespace {
111 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
112 /// from top down, keep track of which spill slots or remat are available in
113 /// each register.
115 /// Note that not all physregs are created equal here. In particular, some
116 /// physregs are reloads that we are allowed to clobber or ignore at any time.
117 /// Other physregs are values that the register allocated program is using
118 /// that we cannot CHANGE, but we can read if we like. We keep track of this
119 /// on a per-stack-slot / remat id basis as the low bit in the value of the
120 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
121 /// this bit and addAvailable sets it if.
122 class VISIBILITY_HIDDEN AvailableSpills {
123 const TargetRegisterInfo *TRI;
124 const TargetInstrInfo *TII;
126 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
127 // or remat'ed virtual register values that are still available, due to
128 // being loaded or stored to, but not invalidated yet.
129 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
131 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
132 // indicating which stack slot values are currently held by a physreg. This
133 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
134 // physreg is modified.
135 std::multimap<unsigned, int> PhysRegsAvailable;
137 void disallowClobberPhysRegOnly(unsigned PhysReg);
139 void ClobberPhysRegOnly(unsigned PhysReg);
140 public:
141 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
142 : TRI(tri), TII(tii) {
145 /// clear - Reset the state.
146 void clear() {
147 SpillSlotsOrReMatsAvailable.clear();
148 PhysRegsAvailable.clear();
151 const TargetRegisterInfo *getRegInfo() const { return TRI; }
153 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
154 /// available in a physical register, return that PhysReg, otherwise
155 /// return 0.
156 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
157 std::map<int, unsigned>::const_iterator I =
158 SpillSlotsOrReMatsAvailable.find(Slot);
159 if (I != SpillSlotsOrReMatsAvailable.end()) {
160 return I->second >> 1; // Remove the CanClobber bit.
162 return 0;
165 /// addAvailable - Mark that the specified stack slot / remat is available
166 /// in the specified physreg. If CanClobber is true, the physreg can be
167 /// modified at any time without changing the semantics of the program.
168 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
169 // If this stack slot is thought to be available in some other physreg,
170 // remove its record.
171 ModifyStackSlotOrReMat(SlotOrReMat);
173 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
174 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
175 (unsigned)CanClobber;
177 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
178 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
179 else
180 DOUT << "Remembering SS#" << SlotOrReMat;
181 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
184 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
185 /// the value of the specified stackslot register if it desires. The
186 /// specified stack slot must be available in a physreg for this query to
187 /// make sense.
188 bool canClobberPhysRegForSS(int SlotOrReMat) const {
189 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
190 "Value not available!");
191 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
194 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
195 /// physical register where values for some stack slot(s) might be
196 /// available.
197 bool canClobberPhysReg(unsigned PhysReg) const {
198 std::multimap<unsigned, int>::const_iterator I =
199 PhysRegsAvailable.lower_bound(PhysReg);
200 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
201 int SlotOrReMat = I->second;
202 I++;
203 if (!canClobberPhysRegForSS(SlotOrReMat))
204 return false;
206 return true;
209 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
210 /// stackslot register. The register is still available but is no longer
211 /// allowed to be modifed.
212 void disallowClobberPhysReg(unsigned PhysReg);
214 /// ClobberPhysReg - This is called when the specified physreg changes
215 /// value. We use this to invalidate any info about stuff that lives in
216 /// it and any of its aliases.
217 void ClobberPhysReg(unsigned PhysReg);
219 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
220 /// slot changes. This removes information about which register the
221 /// previous value for this slot lives in (as the previous value is dead
222 /// now).
223 void ModifyStackSlotOrReMat(int SlotOrReMat);
225 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
226 /// into the specified MBB. Add available physical registers as potential
227 /// live-in's. If they are reused in the MBB, they will be added to the
228 /// live-in set to make register scavenger and post-allocation scheduler.
229 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
230 std::vector<MachineOperand*> &KillOps);
235 // ************************************************************************ //
237 // Given a location where a reload of a spilled register or a remat of
238 // a constant is to be inserted, attempt to find a safe location to
239 // insert the load at an earlier point in the basic-block, to hide
240 // latency of the load and to avoid address-generation interlock
241 // issues.
242 static MachineBasicBlock::iterator
243 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
244 MachineBasicBlock::iterator const Begin,
245 unsigned PhysReg,
246 const TargetRegisterInfo *TRI,
247 bool DoReMat,
248 int SSorRMId,
249 const TargetInstrInfo *TII,
250 const MachineFunction &MF)
252 if (!ScheduleSpills)
253 return InsertLoc;
255 // Spill backscheduling is of primary interest to addresses, so
256 // don't do anything if the register isn't in the register class
257 // used for pointers.
259 const TargetLowering *TL = MF.getTarget().getTargetLowering();
261 if (!TL->isTypeLegal(TL->getPointerTy()))
262 // Believe it or not, this is true on PIC16.
263 return InsertLoc;
265 const TargetRegisterClass *ptrRegClass =
266 TL->getRegClassFor(TL->getPointerTy());
267 if (!ptrRegClass->contains(PhysReg))
268 return InsertLoc;
270 // Scan upwards through the preceding instructions. If an instruction doesn't
271 // reference the stack slot or the register we're loading, we can
272 // backschedule the reload up past it.
273 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
274 while (NewInsertLoc != Begin) {
275 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
276 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
277 MachineOperand &Op = Prev->getOperand(i);
278 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
279 goto stop;
281 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
282 Prev->findRegisterDefOperand(PhysReg))
283 goto stop;
284 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
285 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
286 Prev->findRegisterDefOperand(*Alias))
287 goto stop;
288 NewInsertLoc = Prev;
290 stop:;
292 // If we made it to the beginning of the block, turn around and move back
293 // down just past any existing reloads. They're likely to be reloads/remats
294 // for instructions earlier than what our current reload/remat is for, so
295 // they should be scheduled earlier.
296 if (NewInsertLoc == Begin) {
297 int FrameIdx;
298 while (InsertLoc != NewInsertLoc &&
299 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
300 TII->isTriviallyReMaterializable(NewInsertLoc)))
301 ++NewInsertLoc;
304 return NewInsertLoc;
307 namespace {
309 // ReusedOp - For each reused operand, we keep track of a bit of information,
310 // in case we need to rollback upon processing a new operand. See comments
311 // below.
312 struct ReusedOp {
313 // The MachineInstr operand that reused an available value.
314 unsigned Operand;
316 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
317 unsigned StackSlotOrReMat;
319 // PhysRegReused - The physical register the value was available in.
320 unsigned PhysRegReused;
322 // AssignedPhysReg - The physreg that was assigned for use by the reload.
323 unsigned AssignedPhysReg;
325 // VirtReg - The virtual register itself.
326 unsigned VirtReg;
328 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
329 unsigned vreg)
330 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
331 AssignedPhysReg(apr), VirtReg(vreg) {}
334 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
335 /// is reused instead of reloaded.
336 class VISIBILITY_HIDDEN ReuseInfo {
337 MachineInstr &MI;
338 std::vector<ReusedOp> Reuses;
339 BitVector PhysRegsClobbered;
340 public:
341 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
342 PhysRegsClobbered.resize(tri->getNumRegs());
345 bool hasReuses() const {
346 return !Reuses.empty();
349 /// addReuse - If we choose to reuse a virtual register that is already
350 /// available instead of reloading it, remember that we did so.
351 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
352 unsigned PhysRegReused, unsigned AssignedPhysReg,
353 unsigned VirtReg) {
354 // If the reload is to the assigned register anyway, no undo will be
355 // required.
356 if (PhysRegReused == AssignedPhysReg) return;
358 // Otherwise, remember this.
359 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
360 AssignedPhysReg, VirtReg));
363 void markClobbered(unsigned PhysReg) {
364 PhysRegsClobbered.set(PhysReg);
367 bool isClobbered(unsigned PhysReg) const {
368 return PhysRegsClobbered.test(PhysReg);
371 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
372 /// is some other operand that is using the specified register, either pick
373 /// a new register to use, or evict the previous reload and use this reg.
374 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
375 MachineFunction &MF, MachineInstr *MI,
376 AvailableSpills &Spills,
377 std::vector<MachineInstr*> &MaybeDeadStores,
378 SmallSet<unsigned, 8> &Rejected,
379 BitVector &RegKills,
380 std::vector<MachineOperand*> &KillOps,
381 VirtRegMap &VRM);
383 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
384 /// 'Rejected' set to remember which registers have been considered and
385 /// rejected for the reload. This avoids infinite looping in case like
386 /// this:
387 /// t1 := op t2, t3
388 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
389 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
390 /// t1 <- desires r1
391 /// sees r1 is taken by t2, tries t2's reload register r0
392 /// sees r0 is taken by t3, tries t3's reload register r1
393 /// sees r1 is taken by t2, tries t2's reload register r0 ...
394 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
395 AvailableSpills &Spills,
396 std::vector<MachineInstr*> &MaybeDeadStores,
397 BitVector &RegKills,
398 std::vector<MachineOperand*> &KillOps,
399 VirtRegMap &VRM) {
400 SmallSet<unsigned, 8> Rejected;
401 MachineFunction &MF = *MI->getParent()->getParent();
402 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
403 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
404 Rejected, RegKills, KillOps, VRM);
410 // ****************** //
411 // Utility Functions //
412 // ****************** //
414 /// findSinglePredSuccessor - Return via reference a vector of machine basic
415 /// blocks each of which is a successor of the specified BB and has no other
416 /// predecessor.
417 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
418 SmallVectorImpl<MachineBasicBlock *> &Succs) {
419 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
420 SE = MBB->succ_end(); SI != SE; ++SI) {
421 MachineBasicBlock *SuccMBB = *SI;
422 if (SuccMBB->pred_size() == 1)
423 Succs.push_back(SuccMBB);
427 /// InvalidateKill - Invalidate register kill information for a specific
428 /// register. This also unsets the kills marker on the last kill operand.
429 static void InvalidateKill(unsigned Reg,
430 const TargetRegisterInfo* TRI,
431 BitVector &RegKills,
432 std::vector<MachineOperand*> &KillOps) {
433 if (RegKills[Reg]) {
434 KillOps[Reg]->setIsKill(false);
435 // KillOps[Reg] might be a def of a super-register.
436 unsigned KReg = KillOps[Reg]->getReg();
437 KillOps[KReg] = NULL;
438 RegKills.reset(KReg);
439 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
440 if (RegKills[*SR]) {
441 KillOps[*SR]->setIsKill(false);
442 KillOps[*SR] = NULL;
443 RegKills.reset(*SR);
449 /// InvalidateKills - MI is going to be deleted. If any of its operands are
450 /// marked kill, then invalidate the information.
451 static void InvalidateKills(MachineInstr &MI,
452 const TargetRegisterInfo* TRI,
453 BitVector &RegKills,
454 std::vector<MachineOperand*> &KillOps,
455 SmallVector<unsigned, 2> *KillRegs = NULL) {
456 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
457 MachineOperand &MO = MI.getOperand(i);
458 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
459 continue;
460 unsigned Reg = MO.getReg();
461 if (TargetRegisterInfo::isVirtualRegister(Reg))
462 continue;
463 if (KillRegs)
464 KillRegs->push_back(Reg);
465 assert(Reg < KillOps.size());
466 if (KillOps[Reg] == &MO) {
467 KillOps[Reg] = NULL;
468 RegKills.reset(Reg);
469 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
470 if (RegKills[*SR]) {
471 KillOps[*SR] = NULL;
472 RegKills.reset(*SR);
479 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
480 /// (since it's spill instruction is removed), mark it isDead. Also checks if
481 /// the def MI has other definition operands that are not dead. Returns it by
482 /// reference.
483 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
484 MachineInstr &NewDef, unsigned Reg,
485 bool &HasLiveDef) {
486 // Due to remat, it's possible this reg isn't being reused. That is,
487 // the def of this reg (by prev MI) is now dead.
488 MachineInstr *DefMI = I;
489 MachineOperand *DefOp = NULL;
490 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
491 MachineOperand &MO = DefMI->getOperand(i);
492 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
493 continue;
494 if (MO.getReg() == Reg)
495 DefOp = &MO;
496 else if (!MO.isDead())
497 HasLiveDef = true;
499 if (!DefOp)
500 return false;
502 bool FoundUse = false, Done = false;
503 MachineBasicBlock::iterator E = &NewDef;
504 ++I; ++E;
505 for (; !Done && I != E; ++I) {
506 MachineInstr *NMI = I;
507 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
508 MachineOperand &MO = NMI->getOperand(j);
509 if (!MO.isReg() || MO.getReg() != Reg)
510 continue;
511 if (MO.isUse())
512 FoundUse = true;
513 Done = true; // Stop after scanning all the operands of this MI.
516 if (!FoundUse) {
517 // Def is dead!
518 DefOp->setIsDead();
519 return true;
521 return false;
524 /// UpdateKills - Track and update kill info. If a MI reads a register that is
525 /// marked kill, then it must be due to register reuse. Transfer the kill info
526 /// over.
527 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
528 BitVector &RegKills,
529 std::vector<MachineOperand*> &KillOps) {
530 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
531 MachineOperand &MO = MI.getOperand(i);
532 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
533 continue;
534 unsigned Reg = MO.getReg();
535 if (Reg == 0)
536 continue;
538 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
539 // That can't be right. Register is killed but not re-defined and it's
540 // being reused. Let's fix that.
541 KillOps[Reg]->setIsKill(false);
542 // KillOps[Reg] might be a def of a super-register.
543 unsigned KReg = KillOps[Reg]->getReg();
544 KillOps[KReg] = NULL;
545 RegKills.reset(KReg);
547 // Must be a def of a super-register. Its other sub-regsters are no
548 // longer killed as well.
549 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
550 KillOps[*SR] = NULL;
551 RegKills.reset(*SR);
554 if (!MI.isRegTiedToDefOperand(i))
555 // Unless it's a two-address operand, this is the new kill.
556 MO.setIsKill();
558 if (MO.isKill()) {
559 RegKills.set(Reg);
560 KillOps[Reg] = &MO;
561 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
562 RegKills.set(*SR);
563 KillOps[*SR] = &MO;
568 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
569 const MachineOperand &MO = MI.getOperand(i);
570 if (!MO.isReg() || !MO.isDef())
571 continue;
572 unsigned Reg = MO.getReg();
573 RegKills.reset(Reg);
574 KillOps[Reg] = NULL;
575 // It also defines (or partially define) aliases.
576 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
577 RegKills.reset(*SR);
578 KillOps[*SR] = NULL;
583 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
585 static void ReMaterialize(MachineBasicBlock &MBB,
586 MachineBasicBlock::iterator &MII,
587 unsigned DestReg, unsigned Reg,
588 const TargetInstrInfo *TII,
589 const TargetRegisterInfo *TRI,
590 VirtRegMap &VRM) {
591 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
592 #ifndef NDEBUG
593 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
594 assert(TID.getNumDefs() == 1 &&
595 "Don't know how to remat instructions that define > 1 values!");
596 #endif
597 TII->reMaterialize(MBB, MII, DestReg,
598 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
599 MachineInstr *NewMI = prior(MII);
600 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
601 MachineOperand &MO = NewMI->getOperand(i);
602 if (!MO.isReg() || MO.getReg() == 0)
603 continue;
604 unsigned VirtReg = MO.getReg();
605 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
606 continue;
607 assert(MO.isUse());
608 unsigned SubIdx = MO.getSubReg();
609 unsigned Phys = VRM.getPhys(VirtReg);
610 assert(Phys);
611 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
612 MO.setReg(RReg);
613 MO.setSubReg(0);
615 ++NumReMats;
618 /// findSuperReg - Find the SubReg's super-register of given register class
619 /// where its SubIdx sub-register is SubReg.
620 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
621 unsigned SubIdx, const TargetRegisterInfo *TRI) {
622 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
623 I != E; ++I) {
624 unsigned Reg = *I;
625 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
626 return Reg;
628 return 0;
631 // ******************************** //
632 // Available Spills Implementation //
633 // ******************************** //
635 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
636 /// stackslot register. The register is still available but is no longer
637 /// allowed to be modifed.
638 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
639 std::multimap<unsigned, int>::iterator I =
640 PhysRegsAvailable.lower_bound(PhysReg);
641 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
642 int SlotOrReMat = I->second;
643 I++;
644 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
645 "Bidirectional map mismatch!");
646 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
647 DOUT << "PhysReg " << TRI->getName(PhysReg)
648 << " copied, it is available for use but can no longer be modified\n";
652 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
653 /// stackslot register and its aliases. The register and its aliases may
654 /// still available but is no longer allowed to be modifed.
655 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
656 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
657 disallowClobberPhysRegOnly(*AS);
658 disallowClobberPhysRegOnly(PhysReg);
661 /// ClobberPhysRegOnly - This is called when the specified physreg changes
662 /// value. We use this to invalidate any info about stuff we thing lives in it.
663 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
664 std::multimap<unsigned, int>::iterator I =
665 PhysRegsAvailable.lower_bound(PhysReg);
666 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
667 int SlotOrReMat = I->second;
668 PhysRegsAvailable.erase(I++);
669 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
670 "Bidirectional map mismatch!");
671 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
672 DOUT << "PhysReg " << TRI->getName(PhysReg)
673 << " clobbered, invalidating ";
674 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
675 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
676 else
677 DOUT << "SS#" << SlotOrReMat << "\n";
681 /// ClobberPhysReg - This is called when the specified physreg changes
682 /// value. We use this to invalidate any info about stuff we thing lives in
683 /// it and any of its aliases.
684 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
685 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
686 ClobberPhysRegOnly(*AS);
687 ClobberPhysRegOnly(PhysReg);
690 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
691 /// into the specified MBB. Add available physical registers as potential
692 /// live-in's. If they are reused in the MBB, they will be added to the
693 /// live-in set to make register scavenger and post-allocation scheduler.
694 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
695 BitVector &RegKills,
696 std::vector<MachineOperand*> &KillOps) {
697 std::set<unsigned> NotAvailable;
698 for (std::multimap<unsigned, int>::iterator
699 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
700 I != E; ++I) {
701 unsigned Reg = I->first;
702 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
703 // FIXME: A temporary workaround. We can't reuse available value if it's
704 // not safe to move the def of the virtual register's class. e.g.
705 // X86::RFP* register classes. Do not add it as a live-in.
706 if (!TII->isSafeToMoveRegClassDefs(RC))
707 // This is no longer available.
708 NotAvailable.insert(Reg);
709 else {
710 MBB.addLiveIn(Reg);
711 InvalidateKill(Reg, TRI, RegKills, KillOps);
714 // Skip over the same register.
715 std::multimap<unsigned, int>::iterator NI = next(I);
716 while (NI != E && NI->first == Reg) {
717 ++I;
718 ++NI;
722 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
723 E = NotAvailable.end(); I != E; ++I) {
724 ClobberPhysReg(*I);
725 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
726 *SubRegs; ++SubRegs)
727 ClobberPhysReg(*SubRegs);
731 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
732 /// slot changes. This removes information about which register the previous
733 /// value for this slot lives in (as the previous value is dead now).
734 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
735 std::map<int, unsigned>::iterator It =
736 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
737 if (It == SpillSlotsOrReMatsAvailable.end()) return;
738 unsigned Reg = It->second >> 1;
739 SpillSlotsOrReMatsAvailable.erase(It);
741 // This register may hold the value of multiple stack slots, only remove this
742 // stack slot from the set of values the register contains.
743 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
744 for (; ; ++I) {
745 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
746 "Map inverse broken!");
747 if (I->second == SlotOrReMat) break;
749 PhysRegsAvailable.erase(I);
752 // ************************** //
753 // Reuse Info Implementation //
754 // ************************** //
756 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
757 /// is some other operand that is using the specified register, either pick
758 /// a new register to use, or evict the previous reload and use this reg.
759 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
760 unsigned PhysReg,
761 MachineFunction &MF,
762 MachineInstr *MI, AvailableSpills &Spills,
763 std::vector<MachineInstr*> &MaybeDeadStores,
764 SmallSet<unsigned, 8> &Rejected,
765 BitVector &RegKills,
766 std::vector<MachineOperand*> &KillOps,
767 VirtRegMap &VRM) {
768 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
769 const TargetRegisterInfo *TRI = Spills.getRegInfo();
771 if (Reuses.empty()) return PhysReg; // This is most often empty.
773 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
774 ReusedOp &Op = Reuses[ro];
775 // If we find some other reuse that was supposed to use this register
776 // exactly for its reload, we can change this reload to use ITS reload
777 // register. That is, unless its reload register has already been
778 // considered and subsequently rejected because it has also been reused
779 // by another operand.
780 if (Op.PhysRegReused == PhysReg &&
781 Rejected.count(Op.AssignedPhysReg) == 0 &&
782 RC->contains(Op.AssignedPhysReg)) {
783 // Yup, use the reload register that we didn't use before.
784 unsigned NewReg = Op.AssignedPhysReg;
785 Rejected.insert(PhysReg);
786 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
787 RegKills, KillOps, VRM);
788 } else {
789 // Otherwise, we might also have a problem if a previously reused
790 // value aliases the new register. If so, codegen the previous reload
791 // and use this one.
792 unsigned PRRU = Op.PhysRegReused;
793 if (TRI->areAliases(PRRU, PhysReg)) {
794 // Okay, we found out that an alias of a reused register
795 // was used. This isn't good because it means we have
796 // to undo a previous reuse.
797 MachineBasicBlock *MBB = MI->getParent();
798 const TargetRegisterClass *AliasRC =
799 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
801 // Copy Op out of the vector and remove it, we're going to insert an
802 // explicit load for it.
803 ReusedOp NewOp = Op;
804 Reuses.erase(Reuses.begin()+ro);
806 // Ok, we're going to try to reload the assigned physreg into the
807 // slot that we were supposed to in the first place. However, that
808 // register could hold a reuse. Check to see if it conflicts or
809 // would prefer us to use a different register.
810 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
811 MF, MI, Spills, MaybeDeadStores,
812 Rejected, RegKills, KillOps, VRM);
814 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
815 int SSorRMId = DoReMat
816 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
818 // Back-schedule reloads and remats.
819 MachineBasicBlock::iterator InsertLoc =
820 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
821 DoReMat, SSorRMId, TII, MF);
823 if (DoReMat) {
824 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
825 TRI, VRM);
826 } else {
827 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
828 NewOp.StackSlotOrReMat, AliasRC);
829 MachineInstr *LoadMI = prior(InsertLoc);
830 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
831 // Any stores to this stack slot are not dead anymore.
832 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
833 ++NumLoads;
835 Spills.ClobberPhysReg(NewPhysReg);
836 Spills.ClobberPhysReg(NewOp.PhysRegReused);
838 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
839 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
840 MI->getOperand(NewOp.Operand).setReg(RReg);
841 MI->getOperand(NewOp.Operand).setSubReg(0);
843 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
844 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
845 DOUT << '\t' << *prior(InsertLoc);
847 DOUT << "Reuse undone!\n";
848 --NumReused;
850 // Finally, PhysReg is now available, go ahead and use it.
851 return PhysReg;
855 return PhysReg;
858 // ************************************************************************ //
860 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
861 /// stack slot mod/ref. It also checks if it's possible to unfold the
862 /// instruction by having it define a specified physical register instead.
863 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
864 const TargetInstrInfo *TII,
865 const TargetRegisterInfo *TRI,
866 VirtRegMap &VRM) {
867 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
868 return false;
870 bool Found = false;
871 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
872 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
873 unsigned VirtReg = I->second.first;
874 VirtRegMap::ModRef MR = I->second.second;
875 if (MR & VirtRegMap::isModRef)
876 if (VRM.getStackSlot(VirtReg) == SS) {
877 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
878 break;
881 if (!Found)
882 return false;
884 // Does the instruction uses a register that overlaps the scratch register?
885 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
886 MachineOperand &MO = MI.getOperand(i);
887 if (!MO.isReg() || MO.getReg() == 0)
888 continue;
889 unsigned Reg = MO.getReg();
890 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
891 if (!VRM.hasPhys(Reg))
892 continue;
893 Reg = VRM.getPhys(Reg);
895 if (TRI->regsOverlap(PhysReg, Reg))
896 return false;
898 return true;
901 /// FindFreeRegister - Find a free register of a given register class by looking
902 /// at (at most) the last two machine instructions.
903 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
904 MachineBasicBlock &MBB,
905 const TargetRegisterClass *RC,
906 const TargetRegisterInfo *TRI,
907 BitVector &AllocatableRegs) {
908 BitVector Defs(TRI->getNumRegs());
909 BitVector Uses(TRI->getNumRegs());
910 SmallVector<unsigned, 4> LocalUses;
911 SmallVector<unsigned, 4> Kills;
913 // Take a look at 2 instructions at most.
914 for (unsigned Count = 0; Count < 2; ++Count) {
915 if (MII == MBB.begin())
916 break;
917 MachineInstr *PrevMI = prior(MII);
918 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
919 MachineOperand &MO = PrevMI->getOperand(i);
920 if (!MO.isReg() || MO.getReg() == 0)
921 continue;
922 unsigned Reg = MO.getReg();
923 if (MO.isDef()) {
924 Defs.set(Reg);
925 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
926 Defs.set(*AS);
927 } else {
928 LocalUses.push_back(Reg);
929 if (MO.isKill() && AllocatableRegs[Reg])
930 Kills.push_back(Reg);
934 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
935 unsigned Kill = Kills[i];
936 if (!Defs[Kill] && !Uses[Kill] &&
937 TRI->getPhysicalRegisterRegClass(Kill) == RC)
938 return Kill;
940 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
941 unsigned Reg = LocalUses[i];
942 Uses.set(Reg);
943 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
944 Uses.set(*AS);
947 MII = PrevMI;
950 return 0;
953 static
954 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
955 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
956 MachineOperand &MO = MI->getOperand(i);
957 if (MO.isReg() && MO.getReg() == VirtReg)
958 MO.setReg(PhysReg);
962 namespace {
963 struct RefSorter {
964 bool operator()(const std::pair<MachineInstr*, int> &A,
965 const std::pair<MachineInstr*, int> &B) {
966 return A.second < B.second;
971 // ***************************** //
972 // Local Spiller Implementation //
973 // ***************************** //
975 namespace {
977 class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
978 MachineRegisterInfo *RegInfo;
979 const TargetRegisterInfo *TRI;
980 const TargetInstrInfo *TII;
981 BitVector AllocatableRegs;
982 DenseMap<MachineInstr*, unsigned> DistanceMap;
983 public:
985 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
986 LiveIntervals* LIs) {
987 RegInfo = &MF.getRegInfo();
988 TRI = MF.getTarget().getRegisterInfo();
989 TII = MF.getTarget().getInstrInfo();
990 AllocatableRegs = TRI->getAllocatableSet(MF);
991 DEBUG(errs() << "\n**** Local spiller rewriting function '"
992 << MF.getFunction()->getName() << "':\n");
993 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
994 " ****\n";
995 DEBUG(MF.dump());
997 // Spills - Keep track of which spilled values are available in physregs
998 // so that we can choose to reuse the physregs instead of emitting
999 // reloads. This is usually refreshed per basic block.
1000 AvailableSpills Spills(TRI, TII);
1002 // Keep track of kill information.
1003 BitVector RegKills(TRI->getNumRegs());
1004 std::vector<MachineOperand*> KillOps;
1005 KillOps.resize(TRI->getNumRegs(), NULL);
1007 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1008 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1009 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1011 // Traverse the basic blocks depth first.
1012 MachineBasicBlock *Entry = MF.begin();
1013 SmallPtrSet<MachineBasicBlock*,16> Visited;
1014 for (df_ext_iterator<MachineBasicBlock*,
1015 SmallPtrSet<MachineBasicBlock*,16> >
1016 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1017 DFI != E; ++DFI) {
1018 MachineBasicBlock *MBB = *DFI;
1019 if (!EarlyVisited.count(MBB))
1020 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1022 // If this MBB is the only predecessor of a successor. Keep the
1023 // availability information and visit it next.
1024 do {
1025 // Keep visiting single predecessor successor as long as possible.
1026 SinglePredSuccs.clear();
1027 findSinglePredSuccessor(MBB, SinglePredSuccs);
1028 if (SinglePredSuccs.empty())
1029 MBB = 0;
1030 else {
1031 // FIXME: More than one successors, each of which has MBB has
1032 // the only predecessor.
1033 MBB = SinglePredSuccs[0];
1034 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1035 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1036 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1039 } while (MBB);
1041 // Clear the availability info.
1042 Spills.clear();
1045 DOUT << "**** Post Machine Instrs ****\n";
1046 DEBUG(MF.dump());
1048 // Mark unused spill slots.
1049 MachineFrameInfo *MFI = MF.getFrameInfo();
1050 int SS = VRM.getLowSpillSlot();
1051 if (SS != VirtRegMap::NO_STACK_SLOT)
1052 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1053 if (!VRM.isSpillSlotUsed(SS)) {
1054 MFI->RemoveStackObject(SS);
1055 ++NumDSS;
1058 return true;
1061 private:
1063 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1064 /// a scratch register is available.
1065 /// xorq %r12<kill>, %r13
1066 /// addq %rax, -184(%rbp)
1067 /// addq %r13, -184(%rbp)
1068 /// ==>
1069 /// xorq %r12<kill>, %r13
1070 /// movq -184(%rbp), %r12
1071 /// addq %rax, %r12
1072 /// addq %r13, %r12
1073 /// movq %r12, -184(%rbp)
1074 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1075 MachineBasicBlock &MBB,
1076 MachineBasicBlock::iterator &MII,
1077 std::vector<MachineInstr*> &MaybeDeadStores,
1078 AvailableSpills &Spills,
1079 BitVector &RegKills,
1080 std::vector<MachineOperand*> &KillOps,
1081 VirtRegMap &VRM) {
1083 MachineBasicBlock::iterator NextMII = next(MII);
1084 if (NextMII == MBB.end())
1085 return false;
1087 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1088 return false;
1090 // Now let's see if the last couple of instructions happens to have freed up
1091 // a register.
1092 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1093 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1094 if (!PhysReg)
1095 return false;
1097 MachineFunction &MF = *MBB.getParent();
1098 TRI = MF.getTarget().getRegisterInfo();
1099 MachineInstr &MI = *MII;
1100 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1101 return false;
1103 // If the next instruction also folds the same SS modref and can be unfoled,
1104 // then it's worthwhile to issue a load from SS into the free register and
1105 // then unfold these instructions.
1106 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1107 return false;
1109 // Back-schedule reloads and remats.
1110 MachineBasicBlock::iterator InsertLoc =
1111 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
1113 // Load from SS to the spare physical register.
1114 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1115 // This invalidates Phys.
1116 Spills.ClobberPhysReg(PhysReg);
1117 // Remember it's available.
1118 Spills.addAvailable(SS, PhysReg);
1119 MaybeDeadStores[SS] = NULL;
1121 // Unfold current MI.
1122 SmallVector<MachineInstr*, 4> NewMIs;
1123 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1124 llvm_unreachable("Unable unfold the load / store folding instruction!");
1125 assert(NewMIs.size() == 1);
1126 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1127 VRM.transferRestorePts(&MI, NewMIs[0]);
1128 MII = MBB.insert(MII, NewMIs[0]);
1129 InvalidateKills(MI, TRI, RegKills, KillOps);
1130 VRM.RemoveMachineInstrFromMaps(&MI);
1131 MBB.erase(&MI);
1132 ++NumModRefUnfold;
1134 // Unfold next instructions that fold the same SS.
1135 do {
1136 MachineInstr &NextMI = *NextMII;
1137 NextMII = next(NextMII);
1138 NewMIs.clear();
1139 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1140 llvm_unreachable("Unable unfold the load / store folding instruction!");
1141 assert(NewMIs.size() == 1);
1142 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1143 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1144 MBB.insert(NextMII, NewMIs[0]);
1145 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1146 VRM.RemoveMachineInstrFromMaps(&NextMI);
1147 MBB.erase(&NextMI);
1148 ++NumModRefUnfold;
1149 if (NextMII == MBB.end())
1150 break;
1151 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1153 // Store the value back into SS.
1154 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1155 MachineInstr *StoreMI = prior(NextMII);
1156 VRM.addSpillSlotUse(SS, StoreMI);
1157 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1159 return true;
1162 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1163 /// instruction. e.g.
1164 /// xorl %edi, %eax
1165 /// movl %eax, -32(%ebp)
1166 /// movl -36(%ebp), %eax
1167 /// orl %eax, -32(%ebp)
1168 /// ==>
1169 /// xorl %edi, %eax
1170 /// orl -36(%ebp), %eax
1171 /// mov %eax, -32(%ebp)
1172 /// This enables unfolding optimization for a subsequent instruction which will
1173 /// also eliminate the newly introduced store instruction.
1174 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1175 MachineBasicBlock::iterator &MII,
1176 std::vector<MachineInstr*> &MaybeDeadStores,
1177 AvailableSpills &Spills,
1178 BitVector &RegKills,
1179 std::vector<MachineOperand*> &KillOps,
1180 VirtRegMap &VRM) {
1181 MachineFunction &MF = *MBB.getParent();
1182 MachineInstr &MI = *MII;
1183 unsigned UnfoldedOpc = 0;
1184 unsigned UnfoldPR = 0;
1185 unsigned UnfoldVR = 0;
1186 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1187 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1188 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1189 // Only transform a MI that folds a single register.
1190 if (UnfoldedOpc)
1191 return false;
1192 UnfoldVR = I->second.first;
1193 VirtRegMap::ModRef MR = I->second.second;
1194 // MI2VirtMap be can updated which invalidate the iterator.
1195 // Increment the iterator first.
1196 ++I;
1197 if (VRM.isAssignedReg(UnfoldVR))
1198 continue;
1199 // If this reference is not a use, any previous store is now dead.
1200 // Otherwise, the store to this stack slot is not dead anymore.
1201 FoldedSS = VRM.getStackSlot(UnfoldVR);
1202 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1203 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1204 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1205 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1206 continue;
1207 UnfoldPR = PhysReg;
1208 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1209 false, true);
1213 if (!UnfoldedOpc) {
1214 if (!UnfoldVR)
1215 return false;
1217 // Look for other unfolding opportunities.
1218 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1219 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1222 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1223 MachineOperand &MO = MI.getOperand(i);
1224 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1225 continue;
1226 unsigned VirtReg = MO.getReg();
1227 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1228 continue;
1229 if (VRM.isAssignedReg(VirtReg)) {
1230 unsigned PhysReg = VRM.getPhys(VirtReg);
1231 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1232 return false;
1233 } else if (VRM.isReMaterialized(VirtReg))
1234 continue;
1235 int SS = VRM.getStackSlot(VirtReg);
1236 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1237 if (PhysReg) {
1238 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1239 return false;
1240 continue;
1242 if (VRM.hasPhys(VirtReg)) {
1243 PhysReg = VRM.getPhys(VirtReg);
1244 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1245 continue;
1248 // Ok, we'll need to reload the value into a register which makes
1249 // it impossible to perform the store unfolding optimization later.
1250 // Let's see if it is possible to fold the load if the store is
1251 // unfolded. This allows us to perform the store unfolding
1252 // optimization.
1253 SmallVector<MachineInstr*, 4> NewMIs;
1254 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1255 assert(NewMIs.size() == 1);
1256 MachineInstr *NewMI = NewMIs.back();
1257 NewMIs.clear();
1258 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1259 assert(Idx != -1);
1260 SmallVector<unsigned, 1> Ops;
1261 Ops.push_back(Idx);
1262 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1263 if (FoldedMI) {
1264 VRM.addSpillSlotUse(SS, FoldedMI);
1265 if (!VRM.hasPhys(UnfoldVR))
1266 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1267 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1268 MII = MBB.insert(MII, FoldedMI);
1269 InvalidateKills(MI, TRI, RegKills, KillOps);
1270 VRM.RemoveMachineInstrFromMaps(&MI);
1271 MBB.erase(&MI);
1272 MF.DeleteMachineInstr(NewMI);
1273 return true;
1275 MF.DeleteMachineInstr(NewMI);
1279 return false;
1282 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1283 /// where SrcReg is r1 and it is tied to r0. Return true if after
1284 /// commuting this instruction it will be r0 = op r2, r1.
1285 static bool CommuteChangesDestination(MachineInstr *DefMI,
1286 const TargetInstrDesc &TID,
1287 unsigned SrcReg,
1288 const TargetInstrInfo *TII,
1289 unsigned &DstIdx) {
1290 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1291 return false;
1292 if (!DefMI->getOperand(1).isReg() ||
1293 DefMI->getOperand(1).getReg() != SrcReg)
1294 return false;
1295 unsigned DefIdx;
1296 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1297 return false;
1298 unsigned SrcIdx1, SrcIdx2;
1299 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1300 return false;
1301 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1302 DstIdx = 2;
1303 return true;
1305 return false;
1308 /// CommuteToFoldReload -
1309 /// Look for
1310 /// r1 = load fi#1
1311 /// r1 = op r1, r2<kill>
1312 /// store r1, fi#1
1314 /// If op is commutable and r2 is killed, then we can xform these to
1315 /// r2 = op r2, fi#1
1316 /// store r2, fi#1
1317 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1318 MachineBasicBlock::iterator &MII,
1319 unsigned VirtReg, unsigned SrcReg, int SS,
1320 AvailableSpills &Spills,
1321 BitVector &RegKills,
1322 std::vector<MachineOperand*> &KillOps,
1323 const TargetRegisterInfo *TRI,
1324 VirtRegMap &VRM) {
1325 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1326 return false;
1328 MachineFunction &MF = *MBB.getParent();
1329 MachineInstr &MI = *MII;
1330 MachineBasicBlock::iterator DefMII = prior(MII);
1331 MachineInstr *DefMI = DefMII;
1332 const TargetInstrDesc &TID = DefMI->getDesc();
1333 unsigned NewDstIdx;
1334 if (DefMII != MBB.begin() &&
1335 TID.isCommutable() &&
1336 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1337 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1338 unsigned NewReg = NewDstMO.getReg();
1339 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1340 return false;
1341 MachineInstr *ReloadMI = prior(DefMII);
1342 int FrameIdx;
1343 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1344 if (DestReg != SrcReg || FrameIdx != SS)
1345 return false;
1346 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1347 if (UseIdx == -1)
1348 return false;
1349 unsigned DefIdx;
1350 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1351 return false;
1352 assert(DefMI->getOperand(DefIdx).isReg() &&
1353 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1355 // Now commute def instruction.
1356 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1357 if (!CommutedMI)
1358 return false;
1359 SmallVector<unsigned, 1> Ops;
1360 Ops.push_back(NewDstIdx);
1361 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1362 // Not needed since foldMemoryOperand returns new MI.
1363 MF.DeleteMachineInstr(CommutedMI);
1364 if (!FoldedMI)
1365 return false;
1367 VRM.addSpillSlotUse(SS, FoldedMI);
1368 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1369 // Insert new def MI and spill MI.
1370 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1371 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1372 MII = prior(MII);
1373 MachineInstr *StoreMI = MII;
1374 VRM.addSpillSlotUse(SS, StoreMI);
1375 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1376 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1378 // Delete all 3 old instructions.
1379 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1380 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1381 MBB.erase(ReloadMI);
1382 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1383 VRM.RemoveMachineInstrFromMaps(DefMI);
1384 MBB.erase(DefMI);
1385 InvalidateKills(MI, TRI, RegKills, KillOps);
1386 VRM.RemoveMachineInstrFromMaps(&MI);
1387 MBB.erase(&MI);
1389 // If NewReg was previously holding value of some SS, it's now clobbered.
1390 // This has to be done now because it's a physical register. When this
1391 // instruction is re-visited, it's ignored.
1392 Spills.ClobberPhysReg(NewReg);
1394 ++NumCommutes;
1395 return true;
1398 return false;
1401 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1402 /// the last store to the same slot is now dead. If so, remove the last store.
1403 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1404 MachineBasicBlock::iterator &MII,
1405 int Idx, unsigned PhysReg, int StackSlot,
1406 const TargetRegisterClass *RC,
1407 bool isAvailable, MachineInstr *&LastStore,
1408 AvailableSpills &Spills,
1409 SmallSet<MachineInstr*, 4> &ReMatDefs,
1410 BitVector &RegKills,
1411 std::vector<MachineOperand*> &KillOps,
1412 VirtRegMap &VRM) {
1414 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1415 MachineInstr *StoreMI = next(MII);
1416 VRM.addSpillSlotUse(StackSlot, StoreMI);
1417 DOUT << "Store:\t" << *StoreMI;
1419 // If there is a dead store to this stack slot, nuke it now.
1420 if (LastStore) {
1421 DOUT << "Removed dead store:\t" << *LastStore;
1422 ++NumDSE;
1423 SmallVector<unsigned, 2> KillRegs;
1424 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1425 MachineBasicBlock::iterator PrevMII = LastStore;
1426 bool CheckDef = PrevMII != MBB.begin();
1427 if (CheckDef)
1428 --PrevMII;
1429 VRM.RemoveMachineInstrFromMaps(LastStore);
1430 MBB.erase(LastStore);
1431 if (CheckDef) {
1432 // Look at defs of killed registers on the store. Mark the defs
1433 // as dead since the store has been deleted and they aren't
1434 // being reused.
1435 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1436 bool HasOtherDef = false;
1437 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1438 MachineInstr *DeadDef = PrevMII;
1439 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1440 // FIXME: This assumes a remat def does not have side effects.
1441 VRM.RemoveMachineInstrFromMaps(DeadDef);
1442 MBB.erase(DeadDef);
1443 ++NumDRM;
1450 LastStore = next(MII);
1452 // If the stack slot value was previously available in some other
1453 // register, change it now. Otherwise, make the register available,
1454 // in PhysReg.
1455 Spills.ModifyStackSlotOrReMat(StackSlot);
1456 Spills.ClobberPhysReg(PhysReg);
1457 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1458 ++NumStores;
1461 /// TransferDeadness - A identity copy definition is dead and it's being
1462 /// removed. Find the last def or use and mark it as dead / kill.
1463 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1464 unsigned Reg, BitVector &RegKills,
1465 std::vector<MachineOperand*> &KillOps,
1466 VirtRegMap &VRM) {
1467 SmallPtrSet<MachineInstr*, 4> Seens;
1468 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1469 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1470 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1471 MachineInstr *UDMI = &*RI;
1472 if (UDMI->getParent() != MBB)
1473 continue;
1474 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1475 if (DI == DistanceMap.end() || DI->second > CurDist)
1476 continue;
1477 if (Seens.insert(UDMI))
1478 Refs.push_back(std::make_pair(UDMI, DI->second));
1481 if (Refs.empty())
1482 return;
1483 std::sort(Refs.begin(), Refs.end(), RefSorter());
1485 while (!Refs.empty()) {
1486 MachineInstr *LastUDMI = Refs.back().first;
1487 Refs.pop_back();
1489 MachineOperand *LastUD = NULL;
1490 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1491 MachineOperand &MO = LastUDMI->getOperand(i);
1492 if (!MO.isReg() || MO.getReg() != Reg)
1493 continue;
1494 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1495 LastUD = &MO;
1496 if (LastUDMI->isRegTiedToDefOperand(i))
1497 break;
1499 if (LastUD->isDef()) {
1500 // If the instruction has no side effect, delete it and propagate
1501 // backward further. Otherwise, mark is dead and we are done.
1502 if (!TII->isDeadInstruction(LastUDMI)) {
1503 LastUD->setIsDead();
1504 break;
1506 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1507 MBB->erase(LastUDMI);
1508 } else {
1509 LastUD->setIsKill();
1510 RegKills.set(Reg);
1511 KillOps[Reg] = LastUD;
1512 break;
1517 /// rewriteMBB - Keep track of which spills are available even after the
1518 /// register allocator is done with them. If possible, avid reloading vregs.
1519 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1520 LiveIntervals *LIs,
1521 AvailableSpills &Spills, BitVector &RegKills,
1522 std::vector<MachineOperand*> &KillOps) {
1524 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1525 << MBB.getBasicBlock()->getName() << "':\n");
1527 MachineFunction &MF = *MBB.getParent();
1529 // MaybeDeadStores - When we need to write a value back into a stack slot,
1530 // keep track of the inserted store. If the stack slot value is never read
1531 // (because the value was used from some available register, for example), and
1532 // subsequently stored to, the original store is dead. This map keeps track
1533 // of inserted stores that are not used. If we see a subsequent store to the
1534 // same stack slot, the original store is deleted.
1535 std::vector<MachineInstr*> MaybeDeadStores;
1536 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1538 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1539 SmallSet<MachineInstr*, 4> ReMatDefs;
1541 // Clear kill info.
1542 SmallSet<unsigned, 2> KilledMIRegs;
1543 RegKills.reset();
1544 KillOps.clear();
1545 KillOps.resize(TRI->getNumRegs(), NULL);
1547 unsigned Dist = 0;
1548 DistanceMap.clear();
1549 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1550 MII != E; ) {
1551 MachineBasicBlock::iterator NextMII = next(MII);
1553 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1554 bool Erased = false;
1555 bool BackTracked = false;
1556 if (OptimizeByUnfold(MBB, MII,
1557 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1558 NextMII = next(MII);
1560 MachineInstr &MI = *MII;
1562 if (VRM.hasEmergencySpills(&MI)) {
1563 // Spill physical register(s) in the rare case the allocator has run out
1564 // of registers to allocate.
1565 SmallSet<int, 4> UsedSS;
1566 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1567 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1568 unsigned PhysReg = EmSpills[i];
1569 const TargetRegisterClass *RC =
1570 TRI->getPhysicalRegisterRegClass(PhysReg);
1571 assert(RC && "Unable to determine register class!");
1572 int SS = VRM.getEmergencySpillSlot(RC);
1573 if (UsedSS.count(SS))
1574 llvm_unreachable("Need to spill more than one physical registers!");
1575 UsedSS.insert(SS);
1576 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1577 MachineInstr *StoreMI = prior(MII);
1578 VRM.addSpillSlotUse(SS, StoreMI);
1580 // Back-schedule reloads and remats.
1581 MachineBasicBlock::iterator InsertLoc =
1582 ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
1583 SS, TII, MF);
1585 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1587 MachineInstr *LoadMI = prior(InsertLoc);
1588 VRM.addSpillSlotUse(SS, LoadMI);
1589 ++NumPSpills;
1591 NextMII = next(MII);
1594 // Insert restores here if asked to.
1595 if (VRM.isRestorePt(&MI)) {
1596 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1597 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1598 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1599 if (!VRM.getPreSplitReg(VirtReg))
1600 continue; // Split interval spilled again.
1601 unsigned Phys = VRM.getPhys(VirtReg);
1602 RegInfo->setPhysRegUsed(Phys);
1604 // Check if the value being restored if available. If so, it must be
1605 // from a predecessor BB that fallthrough into this BB. We do not
1606 // expect:
1607 // BB1:
1608 // r1 = load fi#1
1609 // ...
1610 // = r1<kill>
1611 // ... # r1 not clobbered
1612 // ...
1613 // = load fi#1
1614 bool DoReMat = VRM.isReMaterialized(VirtReg);
1615 int SSorRMId = DoReMat
1616 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1617 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1618 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1619 if (InReg == Phys) {
1620 // If the value is already available in the expected register, save
1621 // a reload / remat.
1622 if (SSorRMId)
1623 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1624 else
1625 DOUT << "Reusing SS#" << SSorRMId;
1626 DOUT << " from physreg "
1627 << TRI->getName(InReg) << " for vreg"
1628 << VirtReg <<" instead of reloading into physreg "
1629 << TRI->getName(Phys) << "\n";
1630 ++NumOmitted;
1631 continue;
1632 } else if (InReg && InReg != Phys) {
1633 if (SSorRMId)
1634 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1635 else
1636 DOUT << "Reusing SS#" << SSorRMId;
1637 DOUT << " from physreg "
1638 << TRI->getName(InReg) << " for vreg"
1639 << VirtReg <<" by copying it into physreg "
1640 << TRI->getName(Phys) << "\n";
1642 // If the reloaded / remat value is available in another register,
1643 // copy it to the desired register.
1645 // Back-schedule reloads and remats.
1646 MachineBasicBlock::iterator InsertLoc =
1647 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1648 SSorRMId, TII, MF);
1650 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
1652 // This invalidates Phys.
1653 Spills.ClobberPhysReg(Phys);
1654 // Remember it's available.
1655 Spills.addAvailable(SSorRMId, Phys);
1657 // Mark is killed.
1658 MachineInstr *CopyMI = prior(InsertLoc);
1659 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1660 KillOpnd->setIsKill();
1661 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1663 DOUT << '\t' << *CopyMI;
1664 ++NumCopified;
1665 continue;
1668 // Back-schedule reloads and remats.
1669 MachineBasicBlock::iterator InsertLoc =
1670 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1671 SSorRMId, TII, MF);
1673 if (VRM.isReMaterialized(VirtReg)) {
1674 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
1675 } else {
1676 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1677 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1678 MachineInstr *LoadMI = prior(InsertLoc);
1679 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1680 ++NumLoads;
1683 // This invalidates Phys.
1684 Spills.ClobberPhysReg(Phys);
1685 // Remember it's available.
1686 Spills.addAvailable(SSorRMId, Phys);
1688 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1689 DOUT << '\t' << *prior(MII);
1693 // Insert spills here if asked to.
1694 if (VRM.isSpillPt(&MI)) {
1695 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1696 VRM.getSpillPtSpills(&MI);
1697 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1698 unsigned VirtReg = SpillRegs[i].first;
1699 bool isKill = SpillRegs[i].second;
1700 if (!VRM.getPreSplitReg(VirtReg))
1701 continue; // Split interval spilled again.
1702 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1703 unsigned Phys = VRM.getPhys(VirtReg);
1704 int StackSlot = VRM.getStackSlot(VirtReg);
1705 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1706 MachineInstr *StoreMI = next(MII);
1707 VRM.addSpillSlotUse(StackSlot, StoreMI);
1708 DOUT << "Store:\t" << *StoreMI;
1709 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1711 NextMII = next(MII);
1714 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1715 /// reuse.
1716 ReuseInfo ReusedOperands(MI, TRI);
1717 SmallVector<unsigned, 4> VirtUseOps;
1718 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1719 MachineOperand &MO = MI.getOperand(i);
1720 if (!MO.isReg() || MO.getReg() == 0)
1721 continue; // Ignore non-register operands.
1723 unsigned VirtReg = MO.getReg();
1724 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1725 // Ignore physregs for spilling, but remember that it is used by this
1726 // function.
1727 RegInfo->setPhysRegUsed(VirtReg);
1728 continue;
1731 // We want to process implicit virtual register uses first.
1732 if (MO.isImplicit())
1733 // If the virtual register is implicitly defined, emit a implicit_def
1734 // before so scavenger knows it's "defined".
1735 // FIXME: This is a horrible hack done the by register allocator to
1736 // remat a definition with virtual register operand.
1737 VirtUseOps.insert(VirtUseOps.begin(), i);
1738 else
1739 VirtUseOps.push_back(i);
1742 // Process all of the spilled uses and all non spilled reg references.
1743 SmallVector<int, 2> PotentialDeadStoreSlots;
1744 KilledMIRegs.clear();
1745 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1746 unsigned i = VirtUseOps[j];
1747 MachineOperand &MO = MI.getOperand(i);
1748 unsigned VirtReg = MO.getReg();
1749 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1750 "Not a virtual register?");
1752 unsigned SubIdx = MO.getSubReg();
1753 if (VRM.isAssignedReg(VirtReg)) {
1754 // This virtual register was assigned a physreg!
1755 unsigned Phys = VRM.getPhys(VirtReg);
1756 RegInfo->setPhysRegUsed(Phys);
1757 if (MO.isDef())
1758 ReusedOperands.markClobbered(Phys);
1759 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1760 MI.getOperand(i).setReg(RReg);
1761 MI.getOperand(i).setSubReg(0);
1762 if (VRM.isImplicitlyDefined(VirtReg))
1763 // FIXME: Is this needed?
1764 BuildMI(MBB, &MI, MI.getDebugLoc(),
1765 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1766 continue;
1769 // This virtual register is now known to be a spilled value.
1770 if (!MO.isUse())
1771 continue; // Handle defs in the loop below (handle use&def here though)
1773 bool AvoidReload = MO.isUndef();
1774 // Check if it is defined by an implicit def. It should not be spilled.
1775 // Note, this is for correctness reason. e.g.
1776 // 8 %reg1024<def> = IMPLICIT_DEF
1777 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1778 // The live range [12, 14) are not part of the r1024 live interval since
1779 // it's defined by an implicit def. It will not conflicts with live
1780 // interval of r1025. Now suppose both registers are spilled, you can
1781 // easily see a situation where both registers are reloaded before
1782 // the INSERT_SUBREG and both target registers that would overlap.
1783 bool DoReMat = VRM.isReMaterialized(VirtReg);
1784 int SSorRMId = DoReMat
1785 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1786 int ReuseSlot = SSorRMId;
1788 // Check to see if this stack slot is available.
1789 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1791 // If this is a sub-register use, make sure the reuse register is in the
1792 // right register class. For example, for x86 not all of the 32-bit
1793 // registers have accessible sub-registers.
1794 // Similarly so for EXTRACT_SUBREG. Consider this:
1795 // EDI = op
1796 // MOV32_mr fi#1, EDI
1797 // ...
1798 // = EXTRACT_SUBREG fi#1
1799 // fi#1 is available in EDI, but it cannot be reused because it's not in
1800 // the right register file.
1801 if (PhysReg && !AvoidReload &&
1802 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1803 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1804 if (!RC->contains(PhysReg))
1805 PhysReg = 0;
1808 if (PhysReg && !AvoidReload) {
1809 // This spilled operand might be part of a two-address operand. If this
1810 // is the case, then changing it will necessarily require changing the
1811 // def part of the instruction as well. However, in some cases, we
1812 // aren't allowed to modify the reused register. If none of these cases
1813 // apply, reuse it.
1814 bool CanReuse = true;
1815 bool isTied = MI.isRegTiedToDefOperand(i);
1816 if (isTied) {
1817 // Okay, we have a two address operand. We can reuse this physreg as
1818 // long as we are allowed to clobber the value and there isn't an
1819 // earlier def that has already clobbered the physreg.
1820 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1821 Spills.canClobberPhysReg(PhysReg);
1824 if (CanReuse) {
1825 // If this stack slot value is already available, reuse it!
1826 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1827 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1828 else
1829 DOUT << "Reusing SS#" << ReuseSlot;
1830 DOUT << " from physreg "
1831 << TRI->getName(PhysReg) << " for vreg"
1832 << VirtReg <<" instead of reloading into physreg "
1833 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1834 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1835 MI.getOperand(i).setReg(RReg);
1836 MI.getOperand(i).setSubReg(0);
1838 // The only technical detail we have is that we don't know that
1839 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1840 // later in the instruction. In particular, consider 'op V1, V2'.
1841 // If V1 is available in physreg R0, we would choose to reuse it
1842 // here, instead of reloading it into the register the allocator
1843 // indicated (say R1). However, V2 might have to be reloaded
1844 // later, and it might indicate that it needs to live in R0. When
1845 // this occurs, we need to have information available that
1846 // indicates it is safe to use R1 for the reload instead of R0.
1848 // To further complicate matters, we might conflict with an alias,
1849 // or R0 and R1 might not be compatible with each other. In this
1850 // case, we actually insert a reload for V1 in R1, ensuring that
1851 // we can get at R0 or its alias.
1852 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1853 VRM.getPhys(VirtReg), VirtReg);
1854 if (isTied)
1855 // Only mark it clobbered if this is a use&def operand.
1856 ReusedOperands.markClobbered(PhysReg);
1857 ++NumReused;
1859 if (MI.getOperand(i).isKill() &&
1860 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1862 // The store of this spilled value is potentially dead, but we
1863 // won't know for certain until we've confirmed that the re-use
1864 // above is valid, which means waiting until the other operands
1865 // are processed. For now we just track the spill slot, we'll
1866 // remove it after the other operands are processed if valid.
1868 PotentialDeadStoreSlots.push_back(ReuseSlot);
1871 // Mark is isKill if it's there no other uses of the same virtual
1872 // register and it's not a two-address operand. IsKill will be
1873 // unset if reg is reused.
1874 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1875 MI.getOperand(i).setIsKill();
1876 KilledMIRegs.insert(VirtReg);
1879 continue;
1880 } // CanReuse
1882 // Otherwise we have a situation where we have a two-address instruction
1883 // whose mod/ref operand needs to be reloaded. This reload is already
1884 // available in some register "PhysReg", but if we used PhysReg as the
1885 // operand to our 2-addr instruction, the instruction would modify
1886 // PhysReg. This isn't cool if something later uses PhysReg and expects
1887 // to get its initial value.
1889 // To avoid this problem, and to avoid doing a load right after a store,
1890 // we emit a copy from PhysReg into the designated register for this
1891 // operand.
1892 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1893 assert(DesignatedReg && "Must map virtreg to physreg!");
1895 // Note that, if we reused a register for a previous operand, the
1896 // register we want to reload into might not actually be
1897 // available. If this occurs, use the register indicated by the
1898 // reuser.
1899 if (ReusedOperands.hasReuses())
1900 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1901 DesignatedReg, &MI,
1902 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1904 // If the mapped designated register is actually the physreg we have
1905 // incoming, we don't need to inserted a dead copy.
1906 if (DesignatedReg == PhysReg) {
1907 // If this stack slot value is already available, reuse it!
1908 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1909 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1910 else
1911 DOUT << "Reusing SS#" << ReuseSlot;
1912 DOUT << " from physreg " << TRI->getName(PhysReg)
1913 << " for vreg" << VirtReg
1914 << " instead of reloading into same physreg.\n";
1915 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1916 MI.getOperand(i).setReg(RReg);
1917 MI.getOperand(i).setSubReg(0);
1918 ReusedOperands.markClobbered(RReg);
1919 ++NumReused;
1920 continue;
1923 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1924 RegInfo->setPhysRegUsed(DesignatedReg);
1925 ReusedOperands.markClobbered(DesignatedReg);
1927 // Back-schedule reloads and remats.
1928 MachineBasicBlock::iterator InsertLoc =
1929 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
1930 SSorRMId, TII, MF);
1932 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
1934 MachineInstr *CopyMI = prior(InsertLoc);
1935 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1937 // This invalidates DesignatedReg.
1938 Spills.ClobberPhysReg(DesignatedReg);
1940 Spills.addAvailable(ReuseSlot, DesignatedReg);
1941 unsigned RReg =
1942 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1943 MI.getOperand(i).setReg(RReg);
1944 MI.getOperand(i).setSubReg(0);
1945 DOUT << '\t' << *prior(MII);
1946 ++NumReused;
1947 continue;
1948 } // if (PhysReg)
1950 // Otherwise, reload it and remember that we have it.
1951 PhysReg = VRM.getPhys(VirtReg);
1952 assert(PhysReg && "Must map virtreg to physreg!");
1954 // Note that, if we reused a register for a previous operand, the
1955 // register we want to reload into might not actually be
1956 // available. If this occurs, use the register indicated by the
1957 // reuser.
1958 if (ReusedOperands.hasReuses())
1959 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1960 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1962 RegInfo->setPhysRegUsed(PhysReg);
1963 ReusedOperands.markClobbered(PhysReg);
1964 if (AvoidReload)
1965 ++NumAvoided;
1966 else {
1967 // Back-schedule reloads and remats.
1968 MachineBasicBlock::iterator InsertLoc =
1969 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
1970 SSorRMId, TII, MF);
1972 if (DoReMat) {
1973 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
1974 } else {
1975 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1976 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
1977 MachineInstr *LoadMI = prior(InsertLoc);
1978 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1979 ++NumLoads;
1981 // This invalidates PhysReg.
1982 Spills.ClobberPhysReg(PhysReg);
1984 // Any stores to this stack slot are not dead anymore.
1985 if (!DoReMat)
1986 MaybeDeadStores[SSorRMId] = NULL;
1987 Spills.addAvailable(SSorRMId, PhysReg);
1988 // Assumes this is the last use. IsKill will be unset if reg is reused
1989 // unless it's a two-address operand.
1990 if (!MI.isRegTiedToDefOperand(i) &&
1991 KilledMIRegs.count(VirtReg) == 0) {
1992 MI.getOperand(i).setIsKill();
1993 KilledMIRegs.insert(VirtReg);
1996 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1997 DOUT << '\t' << *prior(InsertLoc);
1999 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2000 MI.getOperand(i).setReg(RReg);
2001 MI.getOperand(i).setSubReg(0);
2004 // Ok - now we can remove stores that have been confirmed dead.
2005 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2006 // This was the last use and the spilled value is still available
2007 // for reuse. That means the spill was unnecessary!
2008 int PDSSlot = PotentialDeadStoreSlots[j];
2009 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2010 if (DeadStore) {
2011 DOUT << "Removed dead store:\t" << *DeadStore;
2012 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2013 VRM.RemoveMachineInstrFromMaps(DeadStore);
2014 MBB.erase(DeadStore);
2015 MaybeDeadStores[PDSSlot] = NULL;
2016 ++NumDSE;
2021 DOUT << '\t' << MI;
2024 // If we have folded references to memory operands, make sure we clear all
2025 // physical registers that may contain the value of the spilled virtual
2026 // register
2027 SmallSet<int, 2> FoldedSS;
2028 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2029 unsigned VirtReg = I->second.first;
2030 VirtRegMap::ModRef MR = I->second.second;
2031 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
2033 // MI2VirtMap be can updated which invalidate the iterator.
2034 // Increment the iterator first.
2035 ++I;
2036 int SS = VRM.getStackSlot(VirtReg);
2037 if (SS == VirtRegMap::NO_STACK_SLOT)
2038 continue;
2039 FoldedSS.insert(SS);
2040 DOUT << " - StackSlot: " << SS << "\n";
2042 // If this folded instruction is just a use, check to see if it's a
2043 // straight load from the virt reg slot.
2044 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2045 int FrameIdx;
2046 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2047 if (DestReg && FrameIdx == SS) {
2048 // If this spill slot is available, turn it into a copy (or nothing)
2049 // instead of leaving it as a load!
2050 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2051 DOUT << "Promoted Load To Copy: " << MI;
2052 if (DestReg != InReg) {
2053 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2054 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2055 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2056 unsigned SubIdx = DefMO->getSubReg();
2057 // Revisit the copy so we make sure to notice the effects of the
2058 // operation on the destreg (either needing to RA it if it's
2059 // virtual or needing to clobber any values if it's physical).
2060 NextMII = &MI;
2061 --NextMII; // backtrack to the copy.
2062 // Propagate the sub-register index over.
2063 if (SubIdx) {
2064 DefMO = NextMII->findRegisterDefOperand(DestReg);
2065 DefMO->setSubReg(SubIdx);
2068 // Mark is killed.
2069 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2070 KillOpnd->setIsKill();
2072 BackTracked = true;
2073 } else {
2074 DOUT << "Removing now-noop copy: " << MI;
2075 // Unset last kill since it's being reused.
2076 InvalidateKill(InReg, TRI, RegKills, KillOps);
2077 Spills.disallowClobberPhysReg(InReg);
2080 InvalidateKills(MI, TRI, RegKills, KillOps);
2081 VRM.RemoveMachineInstrFromMaps(&MI);
2082 MBB.erase(&MI);
2083 Erased = true;
2084 goto ProcessNextInst;
2086 } else {
2087 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2088 SmallVector<MachineInstr*, 4> NewMIs;
2089 if (PhysReg &&
2090 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2091 MBB.insert(MII, NewMIs[0]);
2092 InvalidateKills(MI, TRI, RegKills, KillOps);
2093 VRM.RemoveMachineInstrFromMaps(&MI);
2094 MBB.erase(&MI);
2095 Erased = true;
2096 --NextMII; // backtrack to the unfolded instruction.
2097 BackTracked = true;
2098 goto ProcessNextInst;
2103 // If this reference is not a use, any previous store is now dead.
2104 // Otherwise, the store to this stack slot is not dead anymore.
2105 MachineInstr* DeadStore = MaybeDeadStores[SS];
2106 if (DeadStore) {
2107 bool isDead = !(MR & VirtRegMap::isRef);
2108 MachineInstr *NewStore = NULL;
2109 if (MR & VirtRegMap::isModRef) {
2110 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2111 SmallVector<MachineInstr*, 4> NewMIs;
2112 // We can reuse this physreg as long as we are allowed to clobber
2113 // the value and there isn't an earlier def that has already clobbered
2114 // the physreg.
2115 if (PhysReg &&
2116 !ReusedOperands.isClobbered(PhysReg) &&
2117 Spills.canClobberPhysReg(PhysReg) &&
2118 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2119 MachineOperand *KillOpnd =
2120 DeadStore->findRegisterUseOperand(PhysReg, true);
2121 // Note, if the store is storing a sub-register, it's possible the
2122 // super-register is needed below.
2123 if (KillOpnd && !KillOpnd->getSubReg() &&
2124 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2125 MBB.insert(MII, NewMIs[0]);
2126 NewStore = NewMIs[1];
2127 MBB.insert(MII, NewStore);
2128 VRM.addSpillSlotUse(SS, NewStore);
2129 InvalidateKills(MI, TRI, RegKills, KillOps);
2130 VRM.RemoveMachineInstrFromMaps(&MI);
2131 MBB.erase(&MI);
2132 Erased = true;
2133 --NextMII;
2134 --NextMII; // backtrack to the unfolded instruction.
2135 BackTracked = true;
2136 isDead = true;
2137 ++NumSUnfold;
2142 if (isDead) { // Previous store is dead.
2143 // If we get here, the store is dead, nuke it now.
2144 DOUT << "Removed dead store:\t" << *DeadStore;
2145 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2146 VRM.RemoveMachineInstrFromMaps(DeadStore);
2147 MBB.erase(DeadStore);
2148 if (!NewStore)
2149 ++NumDSE;
2152 MaybeDeadStores[SS] = NULL;
2153 if (NewStore) {
2154 // Treat this store as a spill merged into a copy. That makes the
2155 // stack slot value available.
2156 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2157 goto ProcessNextInst;
2161 // If the spill slot value is available, and this is a new definition of
2162 // the value, the value is not available anymore.
2163 if (MR & VirtRegMap::isMod) {
2164 // Notice that the value in this stack slot has been modified.
2165 Spills.ModifyStackSlotOrReMat(SS);
2167 // If this is *just* a mod of the value, check to see if this is just a
2168 // store to the spill slot (i.e. the spill got merged into the copy). If
2169 // so, realize that the vreg is available now, and add the store to the
2170 // MaybeDeadStore info.
2171 int StackSlot;
2172 if (!(MR & VirtRegMap::isRef)) {
2173 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2174 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2175 "Src hasn't been allocated yet?");
2177 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2178 Spills, RegKills, KillOps, TRI, VRM)) {
2179 NextMII = next(MII);
2180 BackTracked = true;
2181 goto ProcessNextInst;
2184 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2185 // this as a potentially dead store in case there is a subsequent
2186 // store into the stack slot without a read from it.
2187 MaybeDeadStores[StackSlot] = &MI;
2189 // If the stack slot value was previously available in some other
2190 // register, change it now. Otherwise, make the register
2191 // available in PhysReg.
2192 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2198 // Process all of the spilled defs.
2199 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2200 MachineOperand &MO = MI.getOperand(i);
2201 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2202 continue;
2204 unsigned VirtReg = MO.getReg();
2205 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2206 // Check to see if this is a noop copy. If so, eliminate the
2207 // instruction before considering the dest reg to be changed.
2208 // Also check if it's copying from an "undef", if so, we can't
2209 // eliminate this or else the undef marker is lost and it will
2210 // confuses the scavenger. This is extremely rare.
2211 unsigned Src, Dst, SrcSR, DstSR;
2212 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2213 !MI.findRegisterUseOperand(Src)->isUndef()) {
2214 ++NumDCE;
2215 DOUT << "Removing now-noop copy: " << MI;
2216 SmallVector<unsigned, 2> KillRegs;
2217 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2218 if (MO.isDead() && !KillRegs.empty()) {
2219 // Source register or an implicit super/sub-register use is killed.
2220 assert(KillRegs[0] == Dst ||
2221 TRI->isSubRegister(KillRegs[0], Dst) ||
2222 TRI->isSuperRegister(KillRegs[0], Dst));
2223 // Last def is now dead.
2224 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
2226 VRM.RemoveMachineInstrFromMaps(&MI);
2227 MBB.erase(&MI);
2228 Erased = true;
2229 Spills.disallowClobberPhysReg(VirtReg);
2230 goto ProcessNextInst;
2233 // If it's not a no-op copy, it clobbers the value in the destreg.
2234 Spills.ClobberPhysReg(VirtReg);
2235 ReusedOperands.markClobbered(VirtReg);
2237 // Check to see if this instruction is a load from a stack slot into
2238 // a register. If so, this provides the stack slot value in the reg.
2239 int FrameIdx;
2240 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2241 assert(DestReg == VirtReg && "Unknown load situation!");
2243 // If it is a folded reference, then it's not safe to clobber.
2244 bool Folded = FoldedSS.count(FrameIdx);
2245 // Otherwise, if it wasn't available, remember that it is now!
2246 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2247 goto ProcessNextInst;
2250 continue;
2253 unsigned SubIdx = MO.getSubReg();
2254 bool DoReMat = VRM.isReMaterialized(VirtReg);
2255 if (DoReMat)
2256 ReMatDefs.insert(&MI);
2258 // The only vregs left are stack slot definitions.
2259 int StackSlot = VRM.getStackSlot(VirtReg);
2260 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2262 // If this def is part of a two-address operand, make sure to execute
2263 // the store from the correct physical register.
2264 unsigned PhysReg;
2265 unsigned TiedOp;
2266 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2267 PhysReg = MI.getOperand(TiedOp).getReg();
2268 if (SubIdx) {
2269 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2270 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2271 "Can't find corresponding super-register!");
2272 PhysReg = SuperReg;
2274 } else {
2275 PhysReg = VRM.getPhys(VirtReg);
2276 if (ReusedOperands.isClobbered(PhysReg)) {
2277 // Another def has taken the assigned physreg. It must have been a
2278 // use&def which got it due to reuse. Undo the reuse!
2279 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2280 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2284 assert(PhysReg && "VR not assigned a physical register?");
2285 RegInfo->setPhysRegUsed(PhysReg);
2286 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2287 ReusedOperands.markClobbered(RReg);
2288 MI.getOperand(i).setReg(RReg);
2289 MI.getOperand(i).setSubReg(0);
2291 if (!MO.isDead()) {
2292 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2293 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2294 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2295 NextMII = next(MII);
2297 // Check to see if this is a noop copy. If so, eliminate the
2298 // instruction before considering the dest reg to be changed.
2300 unsigned Src, Dst, SrcSR, DstSR;
2301 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2302 ++NumDCE;
2303 DOUT << "Removing now-noop copy: " << MI;
2304 InvalidateKills(MI, TRI, RegKills, KillOps);
2305 VRM.RemoveMachineInstrFromMaps(&MI);
2306 MBB.erase(&MI);
2307 Erased = true;
2308 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2309 goto ProcessNextInst;
2314 ProcessNextInst:
2315 // Delete dead instructions without side effects.
2316 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
2317 InvalidateKills(MI, TRI, RegKills, KillOps);
2318 VRM.RemoveMachineInstrFromMaps(&MI);
2319 MBB.erase(&MI);
2320 Erased = true;
2322 if (!Erased)
2323 DistanceMap.insert(std::make_pair(&MI, Dist++));
2324 if (!Erased && !BackTracked) {
2325 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2326 UpdateKills(*II, TRI, RegKills, KillOps);
2328 MII = NextMII;
2337 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2338 switch (RewriterOpt) {
2339 default: llvm_unreachable("Unreachable!");
2340 case local:
2341 return new LocalRewriter();
2342 case trivial:
2343 return new TrivialRewriter();