1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the common interface used by the various execution engine
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ModuleProvider.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Config/alloca.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MutexGuard.h"
28 #include "llvm/Support/ValueHandle.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/DynamicLibrary.h"
31 #include "llvm/System/Host.h"
32 #include "llvm/Target/TargetData.h"
37 STATISTIC(NumInitBytes
, "Number of bytes of global vars initialized");
38 STATISTIC(NumGlobals
, "Number of global vars initialized");
40 ExecutionEngine
*(*ExecutionEngine::JITCtor
)(ModuleProvider
*MP
,
41 std::string
*ErrorStr
,
42 JITMemoryManager
*JMM
,
43 CodeGenOpt::Level OptLevel
,
44 bool GVsWithCode
) = 0;
45 ExecutionEngine
*(*ExecutionEngine::InterpCtor
)(ModuleProvider
*MP
,
46 std::string
*ErrorStr
) = 0;
47 ExecutionEngine::EERegisterFn
ExecutionEngine::ExceptionTableRegister
= 0;
50 ExecutionEngine::ExecutionEngine(ModuleProvider
*P
) : LazyFunctionCreator(0) {
51 LazyCompilationDisabled
= false;
52 GVCompilationDisabled
= false;
53 SymbolSearchingDisabled
= false;
54 DlsymStubsEnabled
= false;
56 assert(P
&& "ModuleProvider is null?");
59 ExecutionEngine::~ExecutionEngine() {
60 clearAllGlobalMappings();
61 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
)
65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable
* GV
) {
66 const Type
*ElTy
= GV
->getType()->getElementType();
67 size_t GVSize
= (size_t)getTargetData()->getTypeAllocSize(ElTy
);
68 return new char[GVSize
];
71 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
72 /// Relases the Module from the ModuleProvider, materializing it in the
73 /// process, and returns the materialized Module.
74 Module
* ExecutionEngine::removeModuleProvider(ModuleProvider
*P
,
75 std::string
*ErrInfo
) {
76 for(SmallVector
<ModuleProvider
*, 1>::iterator I
= Modules
.begin(),
77 E
= Modules
.end(); I
!= E
; ++I
) {
78 ModuleProvider
*MP
= *I
;
81 clearGlobalMappingsFromModule(MP
->getModule());
82 return MP
->releaseModule(ErrInfo
);
88 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
89 /// and deletes the ModuleProvider and owned Module. Avoids materializing
90 /// the underlying module.
91 void ExecutionEngine::deleteModuleProvider(ModuleProvider
*P
,
92 std::string
*ErrInfo
) {
93 for(SmallVector
<ModuleProvider
*, 1>::iterator I
= Modules
.begin(),
94 E
= Modules
.end(); I
!= E
; ++I
) {
95 ModuleProvider
*MP
= *I
;
98 clearGlobalMappingsFromModule(MP
->getModule());
105 /// FindFunctionNamed - Search all of the active modules to find the one that
106 /// defines FnName. This is very slow operation and shouldn't be used for
108 Function
*ExecutionEngine::FindFunctionNamed(const char *FnName
) {
109 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
) {
110 if (Function
*F
= Modules
[i
]->getModule()->getFunction(FnName
))
117 /// addGlobalMapping - Tell the execution engine that the specified global is
118 /// at the specified location. This is used internally as functions are JIT'd
119 /// and as global variables are laid out in memory. It can and should also be
120 /// used by clients of the EE that want to have an LLVM global overlay
121 /// existing data in memory.
122 void ExecutionEngine::addGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
123 MutexGuard
locked(lock
);
125 DEBUG(errs() << "JIT: Map \'" << GV
->getName()
126 << "\' to [" << Addr
<< "]\n";);
127 void *&CurVal
= state
.getGlobalAddressMap(locked
)[GV
];
128 assert((CurVal
== 0 || Addr
== 0) && "GlobalMapping already established!");
131 // If we are using the reverse mapping, add it too
132 if (!state
.getGlobalAddressReverseMap(locked
).empty()) {
133 AssertingVH
<const GlobalValue
> &V
=
134 state
.getGlobalAddressReverseMap(locked
)[Addr
];
135 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
140 /// clearAllGlobalMappings - Clear all global mappings and start over again
141 /// use in dynamic compilation scenarios when you want to move globals
142 void ExecutionEngine::clearAllGlobalMappings() {
143 MutexGuard
locked(lock
);
145 state
.getGlobalAddressMap(locked
).clear();
146 state
.getGlobalAddressReverseMap(locked
).clear();
149 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
150 /// particular module, because it has been removed from the JIT.
151 void ExecutionEngine::clearGlobalMappingsFromModule(Module
*M
) {
152 MutexGuard
locked(lock
);
154 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; ++FI
) {
155 state
.getGlobalAddressMap(locked
).erase(&*FI
);
156 state
.getGlobalAddressReverseMap(locked
).erase(&*FI
);
158 for (Module::global_iterator GI
= M
->global_begin(), GE
= M
->global_end();
160 state
.getGlobalAddressMap(locked
).erase(&*GI
);
161 state
.getGlobalAddressReverseMap(locked
).erase(&*GI
);
165 /// updateGlobalMapping - Replace an existing mapping for GV with a new
166 /// address. This updates both maps as required. If "Addr" is null, the
167 /// entry for the global is removed from the mappings.
168 void *ExecutionEngine::updateGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
169 MutexGuard
locked(lock
);
171 std::map
<AssertingVH
<const GlobalValue
>, void *> &Map
=
172 state
.getGlobalAddressMap(locked
);
174 // Deleting from the mapping?
176 std::map
<AssertingVH
<const GlobalValue
>, void *>::iterator I
= Map
.find(GV
);
185 if (!state
.getGlobalAddressReverseMap(locked
).empty())
186 state
.getGlobalAddressReverseMap(locked
).erase(OldVal
);
190 void *&CurVal
= Map
[GV
];
191 void *OldVal
= CurVal
;
193 if (CurVal
&& !state
.getGlobalAddressReverseMap(locked
).empty())
194 state
.getGlobalAddressReverseMap(locked
).erase(CurVal
);
197 // If we are using the reverse mapping, add it too
198 if (!state
.getGlobalAddressReverseMap(locked
).empty()) {
199 AssertingVH
<const GlobalValue
> &V
=
200 state
.getGlobalAddressReverseMap(locked
)[Addr
];
201 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
207 /// getPointerToGlobalIfAvailable - This returns the address of the specified
208 /// global value if it is has already been codegen'd, otherwise it returns null.
210 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue
*GV
) {
211 MutexGuard
locked(lock
);
213 std::map
<AssertingVH
<const GlobalValue
>, void*>::iterator I
=
214 state
.getGlobalAddressMap(locked
).find(GV
);
215 return I
!= state
.getGlobalAddressMap(locked
).end() ? I
->second
: 0;
218 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
219 /// at the specified address.
221 const GlobalValue
*ExecutionEngine::getGlobalValueAtAddress(void *Addr
) {
222 MutexGuard
locked(lock
);
224 // If we haven't computed the reverse mapping yet, do so first.
225 if (state
.getGlobalAddressReverseMap(locked
).empty()) {
226 for (std::map
<AssertingVH
<const GlobalValue
>, void *>::iterator
227 I
= state
.getGlobalAddressMap(locked
).begin(),
228 E
= state
.getGlobalAddressMap(locked
).end(); I
!= E
; ++I
)
229 state
.getGlobalAddressReverseMap(locked
).insert(std::make_pair(I
->second
,
233 std::map
<void *, AssertingVH
<const GlobalValue
> >::iterator I
=
234 state
.getGlobalAddressReverseMap(locked
).find(Addr
);
235 return I
!= state
.getGlobalAddressReverseMap(locked
).end() ? I
->second
: 0;
238 // CreateArgv - Turn a vector of strings into a nice argv style array of
239 // pointers to null terminated strings.
241 static void *CreateArgv(LLVMContext
&C
, ExecutionEngine
*EE
,
242 const std::vector
<std::string
> &InputArgv
) {
243 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
244 char *Result
= new char[(InputArgv
.size()+1)*PtrSize
];
246 DOUT
<< "JIT: ARGV = " << (void*)Result
<< "\n";
247 const Type
*SBytePtr
= PointerType::getUnqual(Type::getInt8Ty(C
));
249 for (unsigned i
= 0; i
!= InputArgv
.size(); ++i
) {
250 unsigned Size
= InputArgv
[i
].size()+1;
251 char *Dest
= new char[Size
];
252 DOUT
<< "JIT: ARGV[" << i
<< "] = " << (void*)Dest
<< "\n";
254 std::copy(InputArgv
[i
].begin(), InputArgv
[i
].end(), Dest
);
257 // Endian safe: Result[i] = (PointerTy)Dest;
258 EE
->StoreValueToMemory(PTOGV(Dest
), (GenericValue
*)(Result
+i
*PtrSize
),
263 EE
->StoreValueToMemory(PTOGV(0),
264 (GenericValue
*)(Result
+InputArgv
.size()*PtrSize
),
270 /// runStaticConstructorsDestructors - This method is used to execute all of
271 /// the static constructors or destructors for a module, depending on the
272 /// value of isDtors.
273 void ExecutionEngine::runStaticConstructorsDestructors(Module
*module
, bool isDtors
) {
274 const char *Name
= isDtors
? "llvm.global_dtors" : "llvm.global_ctors";
276 // Execute global ctors/dtors for each module in the program.
278 GlobalVariable
*GV
= module
->getNamedGlobal(Name
);
280 // If this global has internal linkage, or if it has a use, then it must be
281 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
282 // this is the case, don't execute any of the global ctors, __main will do
284 if (!GV
|| GV
->isDeclaration() || GV
->hasLocalLinkage()) return;
286 // Should be an array of '{ int, void ()* }' structs. The first value is
287 // the init priority, which we ignore.
288 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
289 if (!InitList
) return;
290 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
291 if (ConstantStruct
*CS
=
292 dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))) {
293 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
295 Constant
*FP
= CS
->getOperand(1);
296 if (FP
->isNullValue())
297 break; // Found a null terminator, exit.
299 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(FP
))
301 FP
= CE
->getOperand(0);
302 if (Function
*F
= dyn_cast
<Function
>(FP
)) {
303 // Execute the ctor/dtor function!
304 runFunction(F
, std::vector
<GenericValue
>());
309 /// runStaticConstructorsDestructors - This method is used to execute all of
310 /// the static constructors or destructors for a program, depending on the
311 /// value of isDtors.
312 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors
) {
313 // Execute global ctors/dtors for each module in the program.
314 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
)
315 runStaticConstructorsDestructors(Modules
[m
]->getModule(), isDtors
);
319 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
320 static bool isTargetNullPtr(ExecutionEngine
*EE
, void *Loc
) {
321 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
322 for (unsigned i
= 0; i
< PtrSize
; ++i
)
323 if (*(i
+ (uint8_t*)Loc
))
329 /// runFunctionAsMain - This is a helper function which wraps runFunction to
330 /// handle the common task of starting up main with the specified argc, argv,
331 /// and envp parameters.
332 int ExecutionEngine::runFunctionAsMain(Function
*Fn
,
333 const std::vector
<std::string
> &argv
,
334 const char * const * envp
) {
335 std::vector
<GenericValue
> GVArgs
;
337 GVArgc
.IntVal
= APInt(32, argv
.size());
340 unsigned NumArgs
= Fn
->getFunctionType()->getNumParams();
341 const FunctionType
*FTy
= Fn
->getFunctionType();
342 const Type
* PPInt8Ty
=
343 PointerType::getUnqual(PointerType::getUnqual(
344 Type::getInt8Ty(Fn
->getContext())));
347 if (FTy
->getParamType(2) != PPInt8Ty
) {
348 llvm_report_error("Invalid type for third argument of main() supplied");
352 if (FTy
->getParamType(1) != PPInt8Ty
) {
353 llvm_report_error("Invalid type for second argument of main() supplied");
357 if (FTy
->getParamType(0) != Type::getInt32Ty(Fn
->getContext())) {
358 llvm_report_error("Invalid type for first argument of main() supplied");
362 if (!isa
<IntegerType
>(FTy
->getReturnType()) &&
363 FTy
->getReturnType() != Type::getVoidTy(FTy
->getContext())) {
364 llvm_report_error("Invalid return type of main() supplied");
368 llvm_report_error("Invalid number of arguments of main() supplied");
372 GVArgs
.push_back(GVArgc
); // Arg #0 = argc.
375 GVArgs
.push_back(PTOGV(CreateArgv(Fn
->getContext(), this, argv
)));
376 assert(!isTargetNullPtr(this, GVTOP(GVArgs
[1])) &&
377 "argv[0] was null after CreateArgv");
379 std::vector
<std::string
> EnvVars
;
380 for (unsigned i
= 0; envp
[i
]; ++i
)
381 EnvVars
.push_back(envp
[i
]);
383 GVArgs
.push_back(PTOGV(CreateArgv(Fn
->getContext(), this, EnvVars
)));
387 return runFunction(Fn
, GVArgs
).IntVal
.getZExtValue();
390 /// If possible, create a JIT, unless the caller specifically requests an
391 /// Interpreter or there's an error. If even an Interpreter cannot be created,
392 /// NULL is returned.
394 ExecutionEngine
*ExecutionEngine::create(ModuleProvider
*MP
,
395 bool ForceInterpreter
,
396 std::string
*ErrorStr
,
397 CodeGenOpt::Level OptLevel
,
399 return EngineBuilder(MP
)
400 .setEngineKind(ForceInterpreter
401 ? EngineKind::Interpreter
403 .setErrorStr(ErrorStr
)
404 .setOptLevel(OptLevel
)
405 .setAllocateGVsWithCode(GVsWithCode
)
409 ExecutionEngine
*ExecutionEngine::create(Module
*M
) {
410 return EngineBuilder(M
).create();
413 /// EngineBuilder - Overloaded constructor that automatically creates an
414 /// ExistingModuleProvider for an existing module.
415 EngineBuilder::EngineBuilder(Module
*m
) : MP(new ExistingModuleProvider(m
)) {
419 ExecutionEngine
*EngineBuilder::create() {
420 // Make sure we can resolve symbols in the program as well. The zero arg
421 // to the function tells DynamicLibrary to load the program, not a library.
422 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr
))
425 // If the user specified a memory manager but didn't specify which engine to
426 // create, we assume they only want the JIT, and we fail if they only want
429 if (WhichEngine
& EngineKind::JIT
) {
430 WhichEngine
= EngineKind::JIT
;
432 *ErrorStr
= "Cannot create an interpreter with a memory manager.";
436 ExecutionEngine
*EE
= 0;
438 // Unless the interpreter was explicitly selected or the JIT is not linked,
440 if (WhichEngine
& EngineKind::JIT
&& ExecutionEngine::JITCtor
) {
441 EE
= ExecutionEngine::JITCtor(MP
, ErrorStr
, JMM
, OptLevel
,
442 AllocateGVsWithCode
);
445 // If we can't make a JIT and we didn't request one specifically, try making
446 // an interpreter instead.
447 if (WhichEngine
& EngineKind::Interpreter
&& EE
== 0 &&
448 ExecutionEngine::InterpCtor
) {
449 EE
= ExecutionEngine::InterpCtor(MP
, ErrorStr
);
455 /// getPointerToGlobal - This returns the address of the specified global
456 /// value. This may involve code generation if it's a function.
458 void *ExecutionEngine::getPointerToGlobal(const GlobalValue
*GV
) {
459 if (Function
*F
= const_cast<Function
*>(dyn_cast
<Function
>(GV
)))
460 return getPointerToFunction(F
);
462 MutexGuard
locked(lock
);
463 void *p
= state
.getGlobalAddressMap(locked
)[GV
];
467 // Global variable might have been added since interpreter started.
468 if (GlobalVariable
*GVar
=
469 const_cast<GlobalVariable
*>(dyn_cast
<GlobalVariable
>(GV
)))
470 EmitGlobalVariable(GVar
);
472 llvm_unreachable("Global hasn't had an address allocated yet!");
473 return state
.getGlobalAddressMap(locked
)[GV
];
476 /// This function converts a Constant* into a GenericValue. The interesting
477 /// part is if C is a ConstantExpr.
478 /// @brief Get a GenericValue for a Constant*
479 GenericValue
ExecutionEngine::getConstantValue(const Constant
*C
) {
480 // If its undefined, return the garbage.
481 if (isa
<UndefValue
>(C
))
482 return GenericValue();
484 // If the value is a ConstantExpr
485 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
486 Constant
*Op0
= CE
->getOperand(0);
487 switch (CE
->getOpcode()) {
488 case Instruction::GetElementPtr
: {
490 GenericValue Result
= getConstantValue(Op0
);
491 SmallVector
<Value
*, 8> Indices(CE
->op_begin()+1, CE
->op_end());
493 TD
->getIndexedOffset(Op0
->getType(), &Indices
[0], Indices
.size());
495 char* tmp
= (char*) Result
.PointerVal
;
496 Result
= PTOGV(tmp
+ Offset
);
499 case Instruction::Trunc
: {
500 GenericValue GV
= getConstantValue(Op0
);
501 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
502 GV
.IntVal
= GV
.IntVal
.trunc(BitWidth
);
505 case Instruction::ZExt
: {
506 GenericValue GV
= getConstantValue(Op0
);
507 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
508 GV
.IntVal
= GV
.IntVal
.zext(BitWidth
);
511 case Instruction::SExt
: {
512 GenericValue GV
= getConstantValue(Op0
);
513 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
514 GV
.IntVal
= GV
.IntVal
.sext(BitWidth
);
517 case Instruction::FPTrunc
: {
519 GenericValue GV
= getConstantValue(Op0
);
520 GV
.FloatVal
= float(GV
.DoubleVal
);
523 case Instruction::FPExt
:{
525 GenericValue GV
= getConstantValue(Op0
);
526 GV
.DoubleVal
= double(GV
.FloatVal
);
529 case Instruction::UIToFP
: {
530 GenericValue GV
= getConstantValue(Op0
);
531 if (CE
->getType() == Type::getFloatTy(CE
->getContext()))
532 GV
.FloatVal
= float(GV
.IntVal
.roundToDouble());
533 else if (CE
->getType() == Type::getDoubleTy(CE
->getContext()))
534 GV
.DoubleVal
= GV
.IntVal
.roundToDouble();
535 else if (CE
->getType() == Type::getX86_FP80Ty(Op0
->getContext())) {
536 const uint64_t zero
[] = {0, 0};
537 APFloat apf
= APFloat(APInt(80, 2, zero
));
538 (void)apf
.convertFromAPInt(GV
.IntVal
,
540 APFloat::rmNearestTiesToEven
);
541 GV
.IntVal
= apf
.bitcastToAPInt();
545 case Instruction::SIToFP
: {
546 GenericValue GV
= getConstantValue(Op0
);
547 if (CE
->getType() == Type::getFloatTy(CE
->getContext()))
548 GV
.FloatVal
= float(GV
.IntVal
.signedRoundToDouble());
549 else if (CE
->getType() == Type::getDoubleTy(CE
->getContext()))
550 GV
.DoubleVal
= GV
.IntVal
.signedRoundToDouble();
551 else if (CE
->getType() == Type::getX86_FP80Ty(CE
->getContext())) {
552 const uint64_t zero
[] = { 0, 0};
553 APFloat apf
= APFloat(APInt(80, 2, zero
));
554 (void)apf
.convertFromAPInt(GV
.IntVal
,
556 APFloat::rmNearestTiesToEven
);
557 GV
.IntVal
= apf
.bitcastToAPInt();
561 case Instruction::FPToUI
: // double->APInt conversion handles sign
562 case Instruction::FPToSI
: {
563 GenericValue GV
= getConstantValue(Op0
);
564 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
565 if (Op0
->getType() == Type::getFloatTy(Op0
->getContext()))
566 GV
.IntVal
= APIntOps::RoundFloatToAPInt(GV
.FloatVal
, BitWidth
);
567 else if (Op0
->getType() == Type::getDoubleTy(Op0
->getContext()))
568 GV
.IntVal
= APIntOps::RoundDoubleToAPInt(GV
.DoubleVal
, BitWidth
);
569 else if (Op0
->getType() == Type::getX86_FP80Ty(Op0
->getContext())) {
570 APFloat apf
= APFloat(GV
.IntVal
);
573 (void)apf
.convertToInteger(&v
, BitWidth
,
574 CE
->getOpcode()==Instruction::FPToSI
,
575 APFloat::rmTowardZero
, &ignored
);
576 GV
.IntVal
= v
; // endian?
580 case Instruction::PtrToInt
: {
581 GenericValue GV
= getConstantValue(Op0
);
582 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
583 GV
.IntVal
= APInt(PtrWidth
, uintptr_t(GV
.PointerVal
));
586 case Instruction::IntToPtr
: {
587 GenericValue GV
= getConstantValue(Op0
);
588 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
589 if (PtrWidth
!= GV
.IntVal
.getBitWidth())
590 GV
.IntVal
= GV
.IntVal
.zextOrTrunc(PtrWidth
);
591 assert(GV
.IntVal
.getBitWidth() <= 64 && "Bad pointer width");
592 GV
.PointerVal
= PointerTy(uintptr_t(GV
.IntVal
.getZExtValue()));
595 case Instruction::BitCast
: {
596 GenericValue GV
= getConstantValue(Op0
);
597 const Type
* DestTy
= CE
->getType();
598 switch (Op0
->getType()->getTypeID()) {
599 default: llvm_unreachable("Invalid bitcast operand");
600 case Type::IntegerTyID
:
601 assert(DestTy
->isFloatingPoint() && "invalid bitcast");
602 if (DestTy
== Type::getFloatTy(Op0
->getContext()))
603 GV
.FloatVal
= GV
.IntVal
.bitsToFloat();
604 else if (DestTy
== Type::getDoubleTy(DestTy
->getContext()))
605 GV
.DoubleVal
= GV
.IntVal
.bitsToDouble();
607 case Type::FloatTyID
:
608 assert(DestTy
== Type::getInt32Ty(DestTy
->getContext()) &&
610 GV
.IntVal
.floatToBits(GV
.FloatVal
);
612 case Type::DoubleTyID
:
613 assert(DestTy
== Type::getInt64Ty(DestTy
->getContext()) &&
615 GV
.IntVal
.doubleToBits(GV
.DoubleVal
);
617 case Type::PointerTyID
:
618 assert(isa
<PointerType
>(DestTy
) && "Invalid bitcast");
619 break; // getConstantValue(Op0) above already converted it
623 case Instruction::Add
:
624 case Instruction::FAdd
:
625 case Instruction::Sub
:
626 case Instruction::FSub
:
627 case Instruction::Mul
:
628 case Instruction::FMul
:
629 case Instruction::UDiv
:
630 case Instruction::SDiv
:
631 case Instruction::URem
:
632 case Instruction::SRem
:
633 case Instruction::And
:
634 case Instruction::Or
:
635 case Instruction::Xor
: {
636 GenericValue LHS
= getConstantValue(Op0
);
637 GenericValue RHS
= getConstantValue(CE
->getOperand(1));
639 switch (CE
->getOperand(0)->getType()->getTypeID()) {
640 default: llvm_unreachable("Bad add type!");
641 case Type::IntegerTyID
:
642 switch (CE
->getOpcode()) {
643 default: llvm_unreachable("Invalid integer opcode");
644 case Instruction::Add
: GV
.IntVal
= LHS
.IntVal
+ RHS
.IntVal
; break;
645 case Instruction::Sub
: GV
.IntVal
= LHS
.IntVal
- RHS
.IntVal
; break;
646 case Instruction::Mul
: GV
.IntVal
= LHS
.IntVal
* RHS
.IntVal
; break;
647 case Instruction::UDiv
:GV
.IntVal
= LHS
.IntVal
.udiv(RHS
.IntVal
); break;
648 case Instruction::SDiv
:GV
.IntVal
= LHS
.IntVal
.sdiv(RHS
.IntVal
); break;
649 case Instruction::URem
:GV
.IntVal
= LHS
.IntVal
.urem(RHS
.IntVal
); break;
650 case Instruction::SRem
:GV
.IntVal
= LHS
.IntVal
.srem(RHS
.IntVal
); break;
651 case Instruction::And
: GV
.IntVal
= LHS
.IntVal
& RHS
.IntVal
; break;
652 case Instruction::Or
: GV
.IntVal
= LHS
.IntVal
| RHS
.IntVal
; break;
653 case Instruction::Xor
: GV
.IntVal
= LHS
.IntVal
^ RHS
.IntVal
; break;
656 case Type::FloatTyID
:
657 switch (CE
->getOpcode()) {
658 default: llvm_unreachable("Invalid float opcode");
659 case Instruction::FAdd
:
660 GV
.FloatVal
= LHS
.FloatVal
+ RHS
.FloatVal
; break;
661 case Instruction::FSub
:
662 GV
.FloatVal
= LHS
.FloatVal
- RHS
.FloatVal
; break;
663 case Instruction::FMul
:
664 GV
.FloatVal
= LHS
.FloatVal
* RHS
.FloatVal
; break;
665 case Instruction::FDiv
:
666 GV
.FloatVal
= LHS
.FloatVal
/ RHS
.FloatVal
; break;
667 case Instruction::FRem
:
668 GV
.FloatVal
= ::fmodf(LHS
.FloatVal
,RHS
.FloatVal
); break;
671 case Type::DoubleTyID
:
672 switch (CE
->getOpcode()) {
673 default: llvm_unreachable("Invalid double opcode");
674 case Instruction::FAdd
:
675 GV
.DoubleVal
= LHS
.DoubleVal
+ RHS
.DoubleVal
; break;
676 case Instruction::FSub
:
677 GV
.DoubleVal
= LHS
.DoubleVal
- RHS
.DoubleVal
; break;
678 case Instruction::FMul
:
679 GV
.DoubleVal
= LHS
.DoubleVal
* RHS
.DoubleVal
; break;
680 case Instruction::FDiv
:
681 GV
.DoubleVal
= LHS
.DoubleVal
/ RHS
.DoubleVal
; break;
682 case Instruction::FRem
:
683 GV
.DoubleVal
= ::fmod(LHS
.DoubleVal
,RHS
.DoubleVal
); break;
686 case Type::X86_FP80TyID
:
687 case Type::PPC_FP128TyID
:
688 case Type::FP128TyID
: {
689 APFloat apfLHS
= APFloat(LHS
.IntVal
);
690 switch (CE
->getOpcode()) {
691 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
692 case Instruction::FAdd
:
693 apfLHS
.add(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
694 GV
.IntVal
= apfLHS
.bitcastToAPInt();
696 case Instruction::FSub
:
697 apfLHS
.subtract(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
698 GV
.IntVal
= apfLHS
.bitcastToAPInt();
700 case Instruction::FMul
:
701 apfLHS
.multiply(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
702 GV
.IntVal
= apfLHS
.bitcastToAPInt();
704 case Instruction::FDiv
:
705 apfLHS
.divide(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
706 GV
.IntVal
= apfLHS
.bitcastToAPInt();
708 case Instruction::FRem
:
709 apfLHS
.mod(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
710 GV
.IntVal
= apfLHS
.bitcastToAPInt();
722 raw_string_ostream
Msg(msg
);
723 Msg
<< "ConstantExpr not handled: " << *CE
;
724 llvm_report_error(Msg
.str());
728 switch (C
->getType()->getTypeID()) {
729 case Type::FloatTyID
:
730 Result
.FloatVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToFloat();
732 case Type::DoubleTyID
:
733 Result
.DoubleVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToDouble();
735 case Type::X86_FP80TyID
:
736 case Type::FP128TyID
:
737 case Type::PPC_FP128TyID
:
738 Result
.IntVal
= cast
<ConstantFP
>(C
)->getValueAPF().bitcastToAPInt();
740 case Type::IntegerTyID
:
741 Result
.IntVal
= cast
<ConstantInt
>(C
)->getValue();
743 case Type::PointerTyID
:
744 if (isa
<ConstantPointerNull
>(C
))
745 Result
.PointerVal
= 0;
746 else if (const Function
*F
= dyn_cast
<Function
>(C
))
747 Result
= PTOGV(getPointerToFunctionOrStub(const_cast<Function
*>(F
)));
748 else if (const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(C
))
749 Result
= PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable
*>(GV
)));
751 llvm_unreachable("Unknown constant pointer type!");
755 raw_string_ostream
Msg(msg
);
756 Msg
<< "ERROR: Constant unimplemented for type: " << *C
->getType();
757 llvm_report_error(Msg
.str());
762 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
763 /// with the integer held in IntVal.
764 static void StoreIntToMemory(const APInt
&IntVal
, uint8_t *Dst
,
765 unsigned StoreBytes
) {
766 assert((IntVal
.getBitWidth()+7)/8 >= StoreBytes
&& "Integer too small!");
767 uint8_t *Src
= (uint8_t *)IntVal
.getRawData();
769 if (sys::isLittleEndianHost())
770 // Little-endian host - the source is ordered from LSB to MSB. Order the
771 // destination from LSB to MSB: Do a straight copy.
772 memcpy(Dst
, Src
, StoreBytes
);
774 // Big-endian host - the source is an array of 64 bit words ordered from
775 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
776 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
777 while (StoreBytes
> sizeof(uint64_t)) {
778 StoreBytes
-= sizeof(uint64_t);
779 // May not be aligned so use memcpy.
780 memcpy(Dst
+ StoreBytes
, Src
, sizeof(uint64_t));
781 Src
+= sizeof(uint64_t);
784 memcpy(Dst
, Src
+ sizeof(uint64_t) - StoreBytes
, StoreBytes
);
788 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
789 /// is the address of the memory at which to store Val, cast to GenericValue *.
790 /// It is not a pointer to a GenericValue containing the address at which to
792 void ExecutionEngine::StoreValueToMemory(const GenericValue
&Val
,
793 GenericValue
*Ptr
, const Type
*Ty
) {
794 const unsigned StoreBytes
= getTargetData()->getTypeStoreSize(Ty
);
796 switch (Ty
->getTypeID()) {
797 case Type::IntegerTyID
:
798 StoreIntToMemory(Val
.IntVal
, (uint8_t*)Ptr
, StoreBytes
);
800 case Type::FloatTyID
:
801 *((float*)Ptr
) = Val
.FloatVal
;
803 case Type::DoubleTyID
:
804 *((double*)Ptr
) = Val
.DoubleVal
;
806 case Type::X86_FP80TyID
:
807 memcpy(Ptr
, Val
.IntVal
.getRawData(), 10);
809 case Type::PointerTyID
:
810 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
811 if (StoreBytes
!= sizeof(PointerTy
))
812 memset(Ptr
, 0, StoreBytes
);
814 *((PointerTy
*)Ptr
) = Val
.PointerVal
;
817 cerr
<< "Cannot store value of type " << *Ty
<< "!\n";
820 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
821 // Host and target are different endian - reverse the stored bytes.
822 std::reverse((uint8_t*)Ptr
, StoreBytes
+ (uint8_t*)Ptr
);
825 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
826 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
827 static void LoadIntFromMemory(APInt
&IntVal
, uint8_t *Src
, unsigned LoadBytes
) {
828 assert((IntVal
.getBitWidth()+7)/8 >= LoadBytes
&& "Integer too small!");
829 uint8_t *Dst
= (uint8_t *)IntVal
.getRawData();
831 if (sys::isLittleEndianHost())
832 // Little-endian host - the destination must be ordered from LSB to MSB.
833 // The source is ordered from LSB to MSB: Do a straight copy.
834 memcpy(Dst
, Src
, LoadBytes
);
836 // Big-endian - the destination is an array of 64 bit words ordered from
837 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
838 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
840 while (LoadBytes
> sizeof(uint64_t)) {
841 LoadBytes
-= sizeof(uint64_t);
842 // May not be aligned so use memcpy.
843 memcpy(Dst
, Src
+ LoadBytes
, sizeof(uint64_t));
844 Dst
+= sizeof(uint64_t);
847 memcpy(Dst
+ sizeof(uint64_t) - LoadBytes
, Src
, LoadBytes
);
853 void ExecutionEngine::LoadValueFromMemory(GenericValue
&Result
,
856 const unsigned LoadBytes
= getTargetData()->getTypeStoreSize(Ty
);
858 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
859 // Host and target are different endian - reverse copy the stored
860 // bytes into a buffer, and load from that.
861 uint8_t *Src
= (uint8_t*)Ptr
;
862 uint8_t *Buf
= (uint8_t*)alloca(LoadBytes
);
863 std::reverse_copy(Src
, Src
+ LoadBytes
, Buf
);
864 Ptr
= (GenericValue
*)Buf
;
867 switch (Ty
->getTypeID()) {
868 case Type::IntegerTyID
:
869 // An APInt with all words initially zero.
870 Result
.IntVal
= APInt(cast
<IntegerType
>(Ty
)->getBitWidth(), 0);
871 LoadIntFromMemory(Result
.IntVal
, (uint8_t*)Ptr
, LoadBytes
);
873 case Type::FloatTyID
:
874 Result
.FloatVal
= *((float*)Ptr
);
876 case Type::DoubleTyID
:
877 Result
.DoubleVal
= *((double*)Ptr
);
879 case Type::PointerTyID
:
880 Result
.PointerVal
= *((PointerTy
*)Ptr
);
882 case Type::X86_FP80TyID
: {
883 // This is endian dependent, but it will only work on x86 anyway.
884 // FIXME: Will not trap if loading a signaling NaN.
887 Result
.IntVal
= APInt(80, 2, y
);
892 raw_string_ostream
Msg(msg
);
893 Msg
<< "Cannot load value of type " << *Ty
<< "!";
894 llvm_report_error(Msg
.str());
898 // InitializeMemory - Recursive function to apply a Constant value into the
899 // specified memory location...
901 void ExecutionEngine::InitializeMemory(const Constant
*Init
, void *Addr
) {
902 DOUT
<< "JIT: Initializing " << Addr
<< " ";
904 if (isa
<UndefValue
>(Init
)) {
906 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Init
)) {
907 unsigned ElementSize
=
908 getTargetData()->getTypeAllocSize(CP
->getType()->getElementType());
909 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
910 InitializeMemory(CP
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
912 } else if (isa
<ConstantAggregateZero
>(Init
)) {
913 memset(Addr
, 0, (size_t)getTargetData()->getTypeAllocSize(Init
->getType()));
915 } else if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(Init
)) {
916 unsigned ElementSize
=
917 getTargetData()->getTypeAllocSize(CPA
->getType()->getElementType());
918 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
919 InitializeMemory(CPA
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
921 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(Init
)) {
922 const StructLayout
*SL
=
923 getTargetData()->getStructLayout(cast
<StructType
>(CPS
->getType()));
924 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
925 InitializeMemory(CPS
->getOperand(i
), (char*)Addr
+SL
->getElementOffset(i
));
927 } else if (Init
->getType()->isFirstClassType()) {
928 GenericValue Val
= getConstantValue(Init
);
929 StoreValueToMemory(Val
, (GenericValue
*)Addr
, Init
->getType());
933 cerr
<< "Bad Type: " << *Init
->getType() << "\n";
934 llvm_unreachable("Unknown constant type to initialize memory with!");
937 /// EmitGlobals - Emit all of the global variables to memory, storing their
938 /// addresses into GlobalAddress. This must make sure to copy the contents of
939 /// their initializers into the memory.
941 void ExecutionEngine::emitGlobals() {
943 // Loop over all of the global variables in the program, allocating the memory
944 // to hold them. If there is more than one module, do a prepass over globals
945 // to figure out how the different modules should link together.
947 std::map
<std::pair
<std::string
, const Type
*>,
948 const GlobalValue
*> LinkedGlobalsMap
;
950 if (Modules
.size() != 1) {
951 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
952 Module
&M
= *Modules
[m
]->getModule();
953 for (Module::const_global_iterator I
= M
.global_begin(),
954 E
= M
.global_end(); I
!= E
; ++I
) {
955 const GlobalValue
*GV
= I
;
956 if (GV
->hasLocalLinkage() || GV
->isDeclaration() ||
957 GV
->hasAppendingLinkage() || !GV
->hasName())
958 continue;// Ignore external globals and globals with internal linkage.
960 const GlobalValue
*&GVEntry
=
961 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
963 // If this is the first time we've seen this global, it is the canonical
970 // If the existing global is strong, never replace it.
971 if (GVEntry
->hasExternalLinkage() ||
972 GVEntry
->hasDLLImportLinkage() ||
973 GVEntry
->hasDLLExportLinkage())
976 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
977 // symbol. FIXME is this right for common?
978 if (GV
->hasExternalLinkage() || GVEntry
->hasExternalWeakLinkage())
984 std::vector
<const GlobalValue
*> NonCanonicalGlobals
;
985 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
986 Module
&M
= *Modules
[m
]->getModule();
987 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
989 // In the multi-module case, see what this global maps to.
990 if (!LinkedGlobalsMap
.empty()) {
991 if (const GlobalValue
*GVEntry
=
992 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())]) {
993 // If something else is the canonical global, ignore this one.
994 if (GVEntry
!= &*I
) {
995 NonCanonicalGlobals
.push_back(I
);
1001 if (!I
->isDeclaration()) {
1002 addGlobalMapping(I
, getMemoryForGV(I
));
1004 // External variable reference. Try to use the dynamic loader to
1005 // get a pointer to it.
1007 sys::DynamicLibrary::SearchForAddressOfSymbol(I
->getName()))
1008 addGlobalMapping(I
, SymAddr
);
1010 llvm_report_error("Could not resolve external global address: "
1016 // If there are multiple modules, map the non-canonical globals to their
1017 // canonical location.
1018 if (!NonCanonicalGlobals
.empty()) {
1019 for (unsigned i
= 0, e
= NonCanonicalGlobals
.size(); i
!= e
; ++i
) {
1020 const GlobalValue
*GV
= NonCanonicalGlobals
[i
];
1021 const GlobalValue
*CGV
=
1022 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
1023 void *Ptr
= getPointerToGlobalIfAvailable(CGV
);
1024 assert(Ptr
&& "Canonical global wasn't codegen'd!");
1025 addGlobalMapping(GV
, Ptr
);
1029 // Now that all of the globals are set up in memory, loop through them all
1030 // and initialize their contents.
1031 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
1033 if (!I
->isDeclaration()) {
1034 if (!LinkedGlobalsMap
.empty()) {
1035 if (const GlobalValue
*GVEntry
=
1036 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())])
1037 if (GVEntry
!= &*I
) // Not the canonical variable.
1040 EmitGlobalVariable(I
);
1046 // EmitGlobalVariable - This method emits the specified global variable to the
1047 // address specified in GlobalAddresses, or allocates new memory if it's not
1048 // already in the map.
1049 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable
*GV
) {
1050 void *GA
= getPointerToGlobalIfAvailable(GV
);
1053 // If it's not already specified, allocate memory for the global.
1054 GA
= getMemoryForGV(GV
);
1055 addGlobalMapping(GV
, GA
);
1058 // Don't initialize if it's thread local, let the client do it.
1059 if (!GV
->isThreadLocal())
1060 InitializeMemory(GV
->getInitializer(), GA
);
1062 const Type
*ElTy
= GV
->getType()->getElementType();
1063 size_t GVSize
= (size_t)getTargetData()->getTypeAllocSize(ElTy
);
1064 NumInitBytes
+= (unsigned)GVSize
;