Indentation.
[llvm/avr.git] / lib / ExecutionEngine / ExecutionEngine.cpp
bloba20122d9f9c532e93ca618508653ae0b2fa989c1
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ModuleProvider.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Config/alloca.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MutexGuard.h"
28 #include "llvm/Support/ValueHandle.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/DynamicLibrary.h"
31 #include "llvm/System/Host.h"
32 #include "llvm/Target/TargetData.h"
33 #include <cmath>
34 #include <cstring>
35 using namespace llvm;
37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
38 STATISTIC(NumGlobals , "Number of global vars initialized");
40 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
41 std::string *ErrorStr,
42 JITMemoryManager *JMM,
43 CodeGenOpt::Level OptLevel,
44 bool GVsWithCode) = 0;
45 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
46 std::string *ErrorStr) = 0;
47 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
50 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
51 LazyCompilationDisabled = false;
52 GVCompilationDisabled = false;
53 SymbolSearchingDisabled = false;
54 DlsymStubsEnabled = false;
55 Modules.push_back(P);
56 assert(P && "ModuleProvider is null?");
59 ExecutionEngine::~ExecutionEngine() {
60 clearAllGlobalMappings();
61 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
62 delete Modules[i];
65 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
66 const Type *ElTy = GV->getType()->getElementType();
67 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
68 return new char[GVSize];
71 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
72 /// Relases the Module from the ModuleProvider, materializing it in the
73 /// process, and returns the materialized Module.
74 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
75 std::string *ErrInfo) {
76 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
77 E = Modules.end(); I != E; ++I) {
78 ModuleProvider *MP = *I;
79 if (MP == P) {
80 Modules.erase(I);
81 clearGlobalMappingsFromModule(MP->getModule());
82 return MP->releaseModule(ErrInfo);
85 return NULL;
88 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
89 /// and deletes the ModuleProvider and owned Module. Avoids materializing
90 /// the underlying module.
91 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
92 std::string *ErrInfo) {
93 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
94 E = Modules.end(); I != E; ++I) {
95 ModuleProvider *MP = *I;
96 if (MP == P) {
97 Modules.erase(I);
98 clearGlobalMappingsFromModule(MP->getModule());
99 delete MP;
100 return;
105 /// FindFunctionNamed - Search all of the active modules to find the one that
106 /// defines FnName. This is very slow operation and shouldn't be used for
107 /// general code.
108 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
109 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
110 if (Function *F = Modules[i]->getModule()->getFunction(FnName))
111 return F;
113 return 0;
117 /// addGlobalMapping - Tell the execution engine that the specified global is
118 /// at the specified location. This is used internally as functions are JIT'd
119 /// and as global variables are laid out in memory. It can and should also be
120 /// used by clients of the EE that want to have an LLVM global overlay
121 /// existing data in memory.
122 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
123 MutexGuard locked(lock);
125 DEBUG(errs() << "JIT: Map \'" << GV->getName()
126 << "\' to [" << Addr << "]\n";);
127 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
128 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
129 CurVal = Addr;
131 // If we are using the reverse mapping, add it too
132 if (!state.getGlobalAddressReverseMap(locked).empty()) {
133 AssertingVH<const GlobalValue> &V =
134 state.getGlobalAddressReverseMap(locked)[Addr];
135 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
136 V = GV;
140 /// clearAllGlobalMappings - Clear all global mappings and start over again
141 /// use in dynamic compilation scenarios when you want to move globals
142 void ExecutionEngine::clearAllGlobalMappings() {
143 MutexGuard locked(lock);
145 state.getGlobalAddressMap(locked).clear();
146 state.getGlobalAddressReverseMap(locked).clear();
149 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
150 /// particular module, because it has been removed from the JIT.
151 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
152 MutexGuard locked(lock);
154 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
155 state.getGlobalAddressMap(locked).erase(&*FI);
156 state.getGlobalAddressReverseMap(locked).erase(&*FI);
158 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
159 GI != GE; ++GI) {
160 state.getGlobalAddressMap(locked).erase(&*GI);
161 state.getGlobalAddressReverseMap(locked).erase(&*GI);
165 /// updateGlobalMapping - Replace an existing mapping for GV with a new
166 /// address. This updates both maps as required. If "Addr" is null, the
167 /// entry for the global is removed from the mappings.
168 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
169 MutexGuard locked(lock);
171 std::map<AssertingVH<const GlobalValue>, void *> &Map =
172 state.getGlobalAddressMap(locked);
174 // Deleting from the mapping?
175 if (Addr == 0) {
176 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV);
177 void *OldVal;
178 if (I == Map.end())
179 OldVal = 0;
180 else {
181 OldVal = I->second;
182 Map.erase(I);
185 if (!state.getGlobalAddressReverseMap(locked).empty())
186 state.getGlobalAddressReverseMap(locked).erase(OldVal);
187 return OldVal;
190 void *&CurVal = Map[GV];
191 void *OldVal = CurVal;
193 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
194 state.getGlobalAddressReverseMap(locked).erase(CurVal);
195 CurVal = Addr;
197 // If we are using the reverse mapping, add it too
198 if (!state.getGlobalAddressReverseMap(locked).empty()) {
199 AssertingVH<const GlobalValue> &V =
200 state.getGlobalAddressReverseMap(locked)[Addr];
201 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
202 V = GV;
204 return OldVal;
207 /// getPointerToGlobalIfAvailable - This returns the address of the specified
208 /// global value if it is has already been codegen'd, otherwise it returns null.
210 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
211 MutexGuard locked(lock);
213 std::map<AssertingVH<const GlobalValue>, void*>::iterator I =
214 state.getGlobalAddressMap(locked).find(GV);
215 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
218 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
219 /// at the specified address.
221 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
222 MutexGuard locked(lock);
224 // If we haven't computed the reverse mapping yet, do so first.
225 if (state.getGlobalAddressReverseMap(locked).empty()) {
226 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator
227 I = state.getGlobalAddressMap(locked).begin(),
228 E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
229 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
230 I->first));
233 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
234 state.getGlobalAddressReverseMap(locked).find(Addr);
235 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
238 // CreateArgv - Turn a vector of strings into a nice argv style array of
239 // pointers to null terminated strings.
241 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
242 const std::vector<std::string> &InputArgv) {
243 unsigned PtrSize = EE->getTargetData()->getPointerSize();
244 char *Result = new char[(InputArgv.size()+1)*PtrSize];
246 DOUT << "JIT: ARGV = " << (void*)Result << "\n";
247 const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C));
249 for (unsigned i = 0; i != InputArgv.size(); ++i) {
250 unsigned Size = InputArgv[i].size()+1;
251 char *Dest = new char[Size];
252 DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
254 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
255 Dest[Size-1] = 0;
257 // Endian safe: Result[i] = (PointerTy)Dest;
258 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
259 SBytePtr);
262 // Null terminate it
263 EE->StoreValueToMemory(PTOGV(0),
264 (GenericValue*)(Result+InputArgv.size()*PtrSize),
265 SBytePtr);
266 return Result;
270 /// runStaticConstructorsDestructors - This method is used to execute all of
271 /// the static constructors or destructors for a module, depending on the
272 /// value of isDtors.
273 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
274 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
276 // Execute global ctors/dtors for each module in the program.
278 GlobalVariable *GV = module->getNamedGlobal(Name);
280 // If this global has internal linkage, or if it has a use, then it must be
281 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
282 // this is the case, don't execute any of the global ctors, __main will do
283 // it.
284 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
286 // Should be an array of '{ int, void ()* }' structs. The first value is
287 // the init priority, which we ignore.
288 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
289 if (!InitList) return;
290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
291 if (ConstantStruct *CS =
292 dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
293 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
295 Constant *FP = CS->getOperand(1);
296 if (FP->isNullValue())
297 break; // Found a null terminator, exit.
299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
300 if (CE->isCast())
301 FP = CE->getOperand(0);
302 if (Function *F = dyn_cast<Function>(FP)) {
303 // Execute the ctor/dtor function!
304 runFunction(F, std::vector<GenericValue>());
309 /// runStaticConstructorsDestructors - This method is used to execute all of
310 /// the static constructors or destructors for a program, depending on the
311 /// value of isDtors.
312 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
313 // Execute global ctors/dtors for each module in the program.
314 for (unsigned m = 0, e = Modules.size(); m != e; ++m)
315 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
318 #ifndef NDEBUG
319 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
320 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
321 unsigned PtrSize = EE->getTargetData()->getPointerSize();
322 for (unsigned i = 0; i < PtrSize; ++i)
323 if (*(i + (uint8_t*)Loc))
324 return false;
325 return true;
327 #endif
329 /// runFunctionAsMain - This is a helper function which wraps runFunction to
330 /// handle the common task of starting up main with the specified argc, argv,
331 /// and envp parameters.
332 int ExecutionEngine::runFunctionAsMain(Function *Fn,
333 const std::vector<std::string> &argv,
334 const char * const * envp) {
335 std::vector<GenericValue> GVArgs;
336 GenericValue GVArgc;
337 GVArgc.IntVal = APInt(32, argv.size());
339 // Check main() type
340 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
341 const FunctionType *FTy = Fn->getFunctionType();
342 const Type* PPInt8Ty =
343 PointerType::getUnqual(PointerType::getUnqual(
344 Type::getInt8Ty(Fn->getContext())));
345 switch (NumArgs) {
346 case 3:
347 if (FTy->getParamType(2) != PPInt8Ty) {
348 llvm_report_error("Invalid type for third argument of main() supplied");
350 // FALLS THROUGH
351 case 2:
352 if (FTy->getParamType(1) != PPInt8Ty) {
353 llvm_report_error("Invalid type for second argument of main() supplied");
355 // FALLS THROUGH
356 case 1:
357 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
358 llvm_report_error("Invalid type for first argument of main() supplied");
360 // FALLS THROUGH
361 case 0:
362 if (!isa<IntegerType>(FTy->getReturnType()) &&
363 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
364 llvm_report_error("Invalid return type of main() supplied");
366 break;
367 default:
368 llvm_report_error("Invalid number of arguments of main() supplied");
371 if (NumArgs) {
372 GVArgs.push_back(GVArgc); // Arg #0 = argc.
373 if (NumArgs > 1) {
374 // Arg #1 = argv.
375 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
376 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
377 "argv[0] was null after CreateArgv");
378 if (NumArgs > 2) {
379 std::vector<std::string> EnvVars;
380 for (unsigned i = 0; envp[i]; ++i)
381 EnvVars.push_back(envp[i]);
382 // Arg #2 = envp.
383 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
387 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
390 /// If possible, create a JIT, unless the caller specifically requests an
391 /// Interpreter or there's an error. If even an Interpreter cannot be created,
392 /// NULL is returned.
394 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
395 bool ForceInterpreter,
396 std::string *ErrorStr,
397 CodeGenOpt::Level OptLevel,
398 bool GVsWithCode) {
399 return EngineBuilder(MP)
400 .setEngineKind(ForceInterpreter
401 ? EngineKind::Interpreter
402 : EngineKind::JIT)
403 .setErrorStr(ErrorStr)
404 .setOptLevel(OptLevel)
405 .setAllocateGVsWithCode(GVsWithCode)
406 .create();
409 ExecutionEngine *ExecutionEngine::create(Module *M) {
410 return EngineBuilder(M).create();
413 /// EngineBuilder - Overloaded constructor that automatically creates an
414 /// ExistingModuleProvider for an existing module.
415 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
416 InitEngine();
419 ExecutionEngine *EngineBuilder::create() {
420 // Make sure we can resolve symbols in the program as well. The zero arg
421 // to the function tells DynamicLibrary to load the program, not a library.
422 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
423 return 0;
425 // If the user specified a memory manager but didn't specify which engine to
426 // create, we assume they only want the JIT, and we fail if they only want
427 // the interpreter.
428 if (JMM) {
429 if (WhichEngine & EngineKind::JIT) {
430 WhichEngine = EngineKind::JIT;
431 } else {
432 *ErrorStr = "Cannot create an interpreter with a memory manager.";
436 ExecutionEngine *EE = 0;
438 // Unless the interpreter was explicitly selected or the JIT is not linked,
439 // try making a JIT.
440 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) {
441 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
442 AllocateGVsWithCode);
445 // If we can't make a JIT and we didn't request one specifically, try making
446 // an interpreter instead.
447 if (WhichEngine & EngineKind::Interpreter && EE == 0 &&
448 ExecutionEngine::InterpCtor) {
449 EE = ExecutionEngine::InterpCtor(MP, ErrorStr);
452 return EE;
455 /// getPointerToGlobal - This returns the address of the specified global
456 /// value. This may involve code generation if it's a function.
458 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
459 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
460 return getPointerToFunction(F);
462 MutexGuard locked(lock);
463 void *p = state.getGlobalAddressMap(locked)[GV];
464 if (p)
465 return p;
467 // Global variable might have been added since interpreter started.
468 if (GlobalVariable *GVar =
469 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
470 EmitGlobalVariable(GVar);
471 else
472 llvm_unreachable("Global hasn't had an address allocated yet!");
473 return state.getGlobalAddressMap(locked)[GV];
476 /// This function converts a Constant* into a GenericValue. The interesting
477 /// part is if C is a ConstantExpr.
478 /// @brief Get a GenericValue for a Constant*
479 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
480 // If its undefined, return the garbage.
481 if (isa<UndefValue>(C))
482 return GenericValue();
484 // If the value is a ConstantExpr
485 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
486 Constant *Op0 = CE->getOperand(0);
487 switch (CE->getOpcode()) {
488 case Instruction::GetElementPtr: {
489 // Compute the index
490 GenericValue Result = getConstantValue(Op0);
491 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
492 uint64_t Offset =
493 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
495 char* tmp = (char*) Result.PointerVal;
496 Result = PTOGV(tmp + Offset);
497 return Result;
499 case Instruction::Trunc: {
500 GenericValue GV = getConstantValue(Op0);
501 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
502 GV.IntVal = GV.IntVal.trunc(BitWidth);
503 return GV;
505 case Instruction::ZExt: {
506 GenericValue GV = getConstantValue(Op0);
507 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
508 GV.IntVal = GV.IntVal.zext(BitWidth);
509 return GV;
511 case Instruction::SExt: {
512 GenericValue GV = getConstantValue(Op0);
513 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
514 GV.IntVal = GV.IntVal.sext(BitWidth);
515 return GV;
517 case Instruction::FPTrunc: {
518 // FIXME long double
519 GenericValue GV = getConstantValue(Op0);
520 GV.FloatVal = float(GV.DoubleVal);
521 return GV;
523 case Instruction::FPExt:{
524 // FIXME long double
525 GenericValue GV = getConstantValue(Op0);
526 GV.DoubleVal = double(GV.FloatVal);
527 return GV;
529 case Instruction::UIToFP: {
530 GenericValue GV = getConstantValue(Op0);
531 if (CE->getType() == Type::getFloatTy(CE->getContext()))
532 GV.FloatVal = float(GV.IntVal.roundToDouble());
533 else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
534 GV.DoubleVal = GV.IntVal.roundToDouble();
535 else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
536 const uint64_t zero[] = {0, 0};
537 APFloat apf = APFloat(APInt(80, 2, zero));
538 (void)apf.convertFromAPInt(GV.IntVal,
539 false,
540 APFloat::rmNearestTiesToEven);
541 GV.IntVal = apf.bitcastToAPInt();
543 return GV;
545 case Instruction::SIToFP: {
546 GenericValue GV = getConstantValue(Op0);
547 if (CE->getType() == Type::getFloatTy(CE->getContext()))
548 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
549 else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
550 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
551 else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) {
552 const uint64_t zero[] = { 0, 0};
553 APFloat apf = APFloat(APInt(80, 2, zero));
554 (void)apf.convertFromAPInt(GV.IntVal,
555 true,
556 APFloat::rmNearestTiesToEven);
557 GV.IntVal = apf.bitcastToAPInt();
559 return GV;
561 case Instruction::FPToUI: // double->APInt conversion handles sign
562 case Instruction::FPToSI: {
563 GenericValue GV = getConstantValue(Op0);
564 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
565 if (Op0->getType() == Type::getFloatTy(Op0->getContext()))
566 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
567 else if (Op0->getType() == Type::getDoubleTy(Op0->getContext()))
568 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
569 else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
570 APFloat apf = APFloat(GV.IntVal);
571 uint64_t v;
572 bool ignored;
573 (void)apf.convertToInteger(&v, BitWidth,
574 CE->getOpcode()==Instruction::FPToSI,
575 APFloat::rmTowardZero, &ignored);
576 GV.IntVal = v; // endian?
578 return GV;
580 case Instruction::PtrToInt: {
581 GenericValue GV = getConstantValue(Op0);
582 uint32_t PtrWidth = TD->getPointerSizeInBits();
583 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
584 return GV;
586 case Instruction::IntToPtr: {
587 GenericValue GV = getConstantValue(Op0);
588 uint32_t PtrWidth = TD->getPointerSizeInBits();
589 if (PtrWidth != GV.IntVal.getBitWidth())
590 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
591 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
592 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
593 return GV;
595 case Instruction::BitCast: {
596 GenericValue GV = getConstantValue(Op0);
597 const Type* DestTy = CE->getType();
598 switch (Op0->getType()->getTypeID()) {
599 default: llvm_unreachable("Invalid bitcast operand");
600 case Type::IntegerTyID:
601 assert(DestTy->isFloatingPoint() && "invalid bitcast");
602 if (DestTy == Type::getFloatTy(Op0->getContext()))
603 GV.FloatVal = GV.IntVal.bitsToFloat();
604 else if (DestTy == Type::getDoubleTy(DestTy->getContext()))
605 GV.DoubleVal = GV.IntVal.bitsToDouble();
606 break;
607 case Type::FloatTyID:
608 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
609 "Invalid bitcast");
610 GV.IntVal.floatToBits(GV.FloatVal);
611 break;
612 case Type::DoubleTyID:
613 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
614 "Invalid bitcast");
615 GV.IntVal.doubleToBits(GV.DoubleVal);
616 break;
617 case Type::PointerTyID:
618 assert(isa<PointerType>(DestTy) && "Invalid bitcast");
619 break; // getConstantValue(Op0) above already converted it
621 return GV;
623 case Instruction::Add:
624 case Instruction::FAdd:
625 case Instruction::Sub:
626 case Instruction::FSub:
627 case Instruction::Mul:
628 case Instruction::FMul:
629 case Instruction::UDiv:
630 case Instruction::SDiv:
631 case Instruction::URem:
632 case Instruction::SRem:
633 case Instruction::And:
634 case Instruction::Or:
635 case Instruction::Xor: {
636 GenericValue LHS = getConstantValue(Op0);
637 GenericValue RHS = getConstantValue(CE->getOperand(1));
638 GenericValue GV;
639 switch (CE->getOperand(0)->getType()->getTypeID()) {
640 default: llvm_unreachable("Bad add type!");
641 case Type::IntegerTyID:
642 switch (CE->getOpcode()) {
643 default: llvm_unreachable("Invalid integer opcode");
644 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
645 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
646 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
647 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
648 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
649 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
650 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
651 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
652 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
653 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
655 break;
656 case Type::FloatTyID:
657 switch (CE->getOpcode()) {
658 default: llvm_unreachable("Invalid float opcode");
659 case Instruction::FAdd:
660 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
661 case Instruction::FSub:
662 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
663 case Instruction::FMul:
664 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
665 case Instruction::FDiv:
666 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
667 case Instruction::FRem:
668 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
670 break;
671 case Type::DoubleTyID:
672 switch (CE->getOpcode()) {
673 default: llvm_unreachable("Invalid double opcode");
674 case Instruction::FAdd:
675 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
676 case Instruction::FSub:
677 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
678 case Instruction::FMul:
679 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
680 case Instruction::FDiv:
681 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
682 case Instruction::FRem:
683 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
685 break;
686 case Type::X86_FP80TyID:
687 case Type::PPC_FP128TyID:
688 case Type::FP128TyID: {
689 APFloat apfLHS = APFloat(LHS.IntVal);
690 switch (CE->getOpcode()) {
691 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
692 case Instruction::FAdd:
693 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
694 GV.IntVal = apfLHS.bitcastToAPInt();
695 break;
696 case Instruction::FSub:
697 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
698 GV.IntVal = apfLHS.bitcastToAPInt();
699 break;
700 case Instruction::FMul:
701 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
702 GV.IntVal = apfLHS.bitcastToAPInt();
703 break;
704 case Instruction::FDiv:
705 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
706 GV.IntVal = apfLHS.bitcastToAPInt();
707 break;
708 case Instruction::FRem:
709 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
710 GV.IntVal = apfLHS.bitcastToAPInt();
711 break;
714 break;
716 return GV;
718 default:
719 break;
721 std::string msg;
722 raw_string_ostream Msg(msg);
723 Msg << "ConstantExpr not handled: " << *CE;
724 llvm_report_error(Msg.str());
727 GenericValue Result;
728 switch (C->getType()->getTypeID()) {
729 case Type::FloatTyID:
730 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
731 break;
732 case Type::DoubleTyID:
733 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
734 break;
735 case Type::X86_FP80TyID:
736 case Type::FP128TyID:
737 case Type::PPC_FP128TyID:
738 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
739 break;
740 case Type::IntegerTyID:
741 Result.IntVal = cast<ConstantInt>(C)->getValue();
742 break;
743 case Type::PointerTyID:
744 if (isa<ConstantPointerNull>(C))
745 Result.PointerVal = 0;
746 else if (const Function *F = dyn_cast<Function>(C))
747 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
748 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
749 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
750 else
751 llvm_unreachable("Unknown constant pointer type!");
752 break;
753 default:
754 std::string msg;
755 raw_string_ostream Msg(msg);
756 Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
757 llvm_report_error(Msg.str());
759 return Result;
762 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
763 /// with the integer held in IntVal.
764 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
765 unsigned StoreBytes) {
766 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
767 uint8_t *Src = (uint8_t *)IntVal.getRawData();
769 if (sys::isLittleEndianHost())
770 // Little-endian host - the source is ordered from LSB to MSB. Order the
771 // destination from LSB to MSB: Do a straight copy.
772 memcpy(Dst, Src, StoreBytes);
773 else {
774 // Big-endian host - the source is an array of 64 bit words ordered from
775 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
776 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
777 while (StoreBytes > sizeof(uint64_t)) {
778 StoreBytes -= sizeof(uint64_t);
779 // May not be aligned so use memcpy.
780 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
781 Src += sizeof(uint64_t);
784 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
788 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
789 /// is the address of the memory at which to store Val, cast to GenericValue *.
790 /// It is not a pointer to a GenericValue containing the address at which to
791 /// store Val.
792 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
793 GenericValue *Ptr, const Type *Ty) {
794 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
796 switch (Ty->getTypeID()) {
797 case Type::IntegerTyID:
798 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
799 break;
800 case Type::FloatTyID:
801 *((float*)Ptr) = Val.FloatVal;
802 break;
803 case Type::DoubleTyID:
804 *((double*)Ptr) = Val.DoubleVal;
805 break;
806 case Type::X86_FP80TyID:
807 memcpy(Ptr, Val.IntVal.getRawData(), 10);
808 break;
809 case Type::PointerTyID:
810 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
811 if (StoreBytes != sizeof(PointerTy))
812 memset(Ptr, 0, StoreBytes);
814 *((PointerTy*)Ptr) = Val.PointerVal;
815 break;
816 default:
817 cerr << "Cannot store value of type " << *Ty << "!\n";
820 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
821 // Host and target are different endian - reverse the stored bytes.
822 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
825 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
826 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
827 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
828 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
829 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
831 if (sys::isLittleEndianHost())
832 // Little-endian host - the destination must be ordered from LSB to MSB.
833 // The source is ordered from LSB to MSB: Do a straight copy.
834 memcpy(Dst, Src, LoadBytes);
835 else {
836 // Big-endian - the destination is an array of 64 bit words ordered from
837 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
838 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
839 // a word.
840 while (LoadBytes > sizeof(uint64_t)) {
841 LoadBytes -= sizeof(uint64_t);
842 // May not be aligned so use memcpy.
843 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
844 Dst += sizeof(uint64_t);
847 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
851 /// FIXME: document
853 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
854 GenericValue *Ptr,
855 const Type *Ty) {
856 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
858 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
859 // Host and target are different endian - reverse copy the stored
860 // bytes into a buffer, and load from that.
861 uint8_t *Src = (uint8_t*)Ptr;
862 uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
863 std::reverse_copy(Src, Src + LoadBytes, Buf);
864 Ptr = (GenericValue*)Buf;
867 switch (Ty->getTypeID()) {
868 case Type::IntegerTyID:
869 // An APInt with all words initially zero.
870 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
871 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
872 break;
873 case Type::FloatTyID:
874 Result.FloatVal = *((float*)Ptr);
875 break;
876 case Type::DoubleTyID:
877 Result.DoubleVal = *((double*)Ptr);
878 break;
879 case Type::PointerTyID:
880 Result.PointerVal = *((PointerTy*)Ptr);
881 break;
882 case Type::X86_FP80TyID: {
883 // This is endian dependent, but it will only work on x86 anyway.
884 // FIXME: Will not trap if loading a signaling NaN.
885 uint64_t y[2];
886 memcpy(y, Ptr, 10);
887 Result.IntVal = APInt(80, 2, y);
888 break;
890 default:
891 std::string msg;
892 raw_string_ostream Msg(msg);
893 Msg << "Cannot load value of type " << *Ty << "!";
894 llvm_report_error(Msg.str());
898 // InitializeMemory - Recursive function to apply a Constant value into the
899 // specified memory location...
901 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
902 DOUT << "JIT: Initializing " << Addr << " ";
903 DEBUG(Init->dump());
904 if (isa<UndefValue>(Init)) {
905 return;
906 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
907 unsigned ElementSize =
908 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
909 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
910 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
911 return;
912 } else if (isa<ConstantAggregateZero>(Init)) {
913 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
914 return;
915 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
916 unsigned ElementSize =
917 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
918 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
919 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
920 return;
921 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
922 const StructLayout *SL =
923 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
924 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
925 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
926 return;
927 } else if (Init->getType()->isFirstClassType()) {
928 GenericValue Val = getConstantValue(Init);
929 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
930 return;
933 cerr << "Bad Type: " << *Init->getType() << "\n";
934 llvm_unreachable("Unknown constant type to initialize memory with!");
937 /// EmitGlobals - Emit all of the global variables to memory, storing their
938 /// addresses into GlobalAddress. This must make sure to copy the contents of
939 /// their initializers into the memory.
941 void ExecutionEngine::emitGlobals() {
943 // Loop over all of the global variables in the program, allocating the memory
944 // to hold them. If there is more than one module, do a prepass over globals
945 // to figure out how the different modules should link together.
947 std::map<std::pair<std::string, const Type*>,
948 const GlobalValue*> LinkedGlobalsMap;
950 if (Modules.size() != 1) {
951 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
952 Module &M = *Modules[m]->getModule();
953 for (Module::const_global_iterator I = M.global_begin(),
954 E = M.global_end(); I != E; ++I) {
955 const GlobalValue *GV = I;
956 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
957 GV->hasAppendingLinkage() || !GV->hasName())
958 continue;// Ignore external globals and globals with internal linkage.
960 const GlobalValue *&GVEntry =
961 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
963 // If this is the first time we've seen this global, it is the canonical
964 // version.
965 if (!GVEntry) {
966 GVEntry = GV;
967 continue;
970 // If the existing global is strong, never replace it.
971 if (GVEntry->hasExternalLinkage() ||
972 GVEntry->hasDLLImportLinkage() ||
973 GVEntry->hasDLLExportLinkage())
974 continue;
976 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
977 // symbol. FIXME is this right for common?
978 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
979 GVEntry = GV;
984 std::vector<const GlobalValue*> NonCanonicalGlobals;
985 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
986 Module &M = *Modules[m]->getModule();
987 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
988 I != E; ++I) {
989 // In the multi-module case, see what this global maps to.
990 if (!LinkedGlobalsMap.empty()) {
991 if (const GlobalValue *GVEntry =
992 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
993 // If something else is the canonical global, ignore this one.
994 if (GVEntry != &*I) {
995 NonCanonicalGlobals.push_back(I);
996 continue;
1001 if (!I->isDeclaration()) {
1002 addGlobalMapping(I, getMemoryForGV(I));
1003 } else {
1004 // External variable reference. Try to use the dynamic loader to
1005 // get a pointer to it.
1006 if (void *SymAddr =
1007 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1008 addGlobalMapping(I, SymAddr);
1009 else {
1010 llvm_report_error("Could not resolve external global address: "
1011 +I->getName());
1016 // If there are multiple modules, map the non-canonical globals to their
1017 // canonical location.
1018 if (!NonCanonicalGlobals.empty()) {
1019 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1020 const GlobalValue *GV = NonCanonicalGlobals[i];
1021 const GlobalValue *CGV =
1022 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1023 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1024 assert(Ptr && "Canonical global wasn't codegen'd!");
1025 addGlobalMapping(GV, Ptr);
1029 // Now that all of the globals are set up in memory, loop through them all
1030 // and initialize their contents.
1031 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1032 I != E; ++I) {
1033 if (!I->isDeclaration()) {
1034 if (!LinkedGlobalsMap.empty()) {
1035 if (const GlobalValue *GVEntry =
1036 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1037 if (GVEntry != &*I) // Not the canonical variable.
1038 continue;
1040 EmitGlobalVariable(I);
1046 // EmitGlobalVariable - This method emits the specified global variable to the
1047 // address specified in GlobalAddresses, or allocates new memory if it's not
1048 // already in the map.
1049 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1050 void *GA = getPointerToGlobalIfAvailable(GV);
1052 if (GA == 0) {
1053 // If it's not already specified, allocate memory for the global.
1054 GA = getMemoryForGV(GV);
1055 addGlobalMapping(GV, GA);
1058 // Don't initialize if it's thread local, let the client do it.
1059 if (!GV->isThreadLocal())
1060 InitializeMemory(GV->getInitializer(), GA);
1062 const Type *ElTy = GV->getType()->getElementType();
1063 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1064 NumInitBytes += (unsigned)GVSize;
1065 ++NumGlobals;