Indentation.
[llvm/avr.git] / lib / ExecutionEngine / JIT / JITDwarfEmitter.cpp
blobc661168487a83894a3c6392bc8680debe6fae89c
1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a JITDwarfEmitter object that is used by the JIT to
11 // write dwarf tables to memory.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "JITDwarfEmitter.h"
17 #include "llvm/Function.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/JITCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLocation.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/ExecutionEngine/JITMemoryManager.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Target/TargetAsmInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
34 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {}
37 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
38 JITCodeEmitter& jce,
39 unsigned char* StartFunction,
40 unsigned char* EndFunction) {
41 const TargetMachine& TM = F.getTarget();
42 TD = TM.getTargetData();
43 needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
44 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
45 RI = TM.getRegisterInfo();
46 JCE = &jce;
48 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
49 EndFunction);
51 unsigned char* Result = 0;
52 unsigned char* EHFramePtr = 0;
54 const std::vector<Function *> Personalities = MMI->getPersonalities();
55 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
57 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
58 StartFunction, EndFunction, ExceptionTable);
60 return Result;
64 void
65 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
66 const std::vector<MachineMove> &Moves) const {
67 unsigned PointerSize = TD->getPointerSize();
68 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
69 PointerSize : -PointerSize;
70 bool IsLocal = false;
71 unsigned BaseLabelID = 0;
73 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
74 const MachineMove &Move = Moves[i];
75 unsigned LabelID = Move.getLabelID();
77 if (LabelID) {
78 LabelID = MMI->MappedLabel(LabelID);
80 // Throw out move if the label is invalid.
81 if (!LabelID) continue;
84 intptr_t LabelPtr = 0;
85 if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID);
87 const MachineLocation &Dst = Move.getDestination();
88 const MachineLocation &Src = Move.getSource();
90 // Advance row if new location.
91 if (BaseLabelPtr && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
92 JCE->emitByte(dwarf::DW_CFA_advance_loc4);
93 JCE->emitInt32(LabelPtr - BaseLabelPtr);
95 BaseLabelID = LabelID;
96 BaseLabelPtr = LabelPtr;
97 IsLocal = true;
100 // If advancing cfa.
101 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
102 if (!Src.isReg()) {
103 if (Src.getReg() == MachineLocation::VirtualFP) {
104 JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
105 } else {
106 JCE->emitByte(dwarf::DW_CFA_def_cfa);
107 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
110 int Offset = -Src.getOffset();
112 JCE->emitULEB128Bytes(Offset);
113 } else {
114 llvm_unreachable("Machine move no supported yet.");
116 } else if (Src.isReg() &&
117 Src.getReg() == MachineLocation::VirtualFP) {
118 if (Dst.isReg()) {
119 JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
120 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
121 } else {
122 llvm_unreachable("Machine move no supported yet.");
124 } else {
125 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
126 int Offset = Dst.getOffset() / stackGrowth;
128 if (Offset < 0) {
129 JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
130 JCE->emitULEB128Bytes(Reg);
131 JCE->emitSLEB128Bytes(Offset);
132 } else if (Reg < 64) {
133 JCE->emitByte(dwarf::DW_CFA_offset + Reg);
134 JCE->emitULEB128Bytes(Offset);
135 } else {
136 JCE->emitByte(dwarf::DW_CFA_offset_extended);
137 JCE->emitULEB128Bytes(Reg);
138 JCE->emitULEB128Bytes(Offset);
144 /// SharedTypeIds - How many leading type ids two landing pads have in common.
145 static unsigned SharedTypeIds(const LandingPadInfo *L,
146 const LandingPadInfo *R) {
147 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
148 unsigned LSize = LIds.size(), RSize = RIds.size();
149 unsigned MinSize = LSize < RSize ? LSize : RSize;
150 unsigned Count = 0;
152 for (; Count != MinSize; ++Count)
153 if (LIds[Count] != RIds[Count])
154 return Count;
156 return Count;
160 /// PadLT - Order landing pads lexicographically by type id.
161 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
162 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
163 unsigned LSize = LIds.size(), RSize = RIds.size();
164 unsigned MinSize = LSize < RSize ? LSize : RSize;
166 for (unsigned i = 0; i != MinSize; ++i)
167 if (LIds[i] != RIds[i])
168 return LIds[i] < RIds[i];
170 return LSize < RSize;
173 namespace {
175 struct KeyInfo {
176 static inline unsigned getEmptyKey() { return -1U; }
177 static inline unsigned getTombstoneKey() { return -2U; }
178 static unsigned getHashValue(const unsigned &Key) { return Key; }
179 static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
180 static bool isPod() { return true; }
183 /// ActionEntry - Structure describing an entry in the actions table.
184 struct ActionEntry {
185 int ValueForTypeID; // The value to write - may not be equal to the type id.
186 int NextAction;
187 struct ActionEntry *Previous;
190 /// PadRange - Structure holding a try-range and the associated landing pad.
191 struct PadRange {
192 // The index of the landing pad.
193 unsigned PadIndex;
194 // The index of the begin and end labels in the landing pad's label lists.
195 unsigned RangeIndex;
198 typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
200 /// CallSiteEntry - Structure describing an entry in the call-site table.
201 struct CallSiteEntry {
202 unsigned BeginLabel; // zero indicates the start of the function.
203 unsigned EndLabel; // zero indicates the end of the function.
204 unsigned PadLabel; // zero indicates that there is no landing pad.
205 unsigned Action;
210 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
211 unsigned char* StartFunction,
212 unsigned char* EndFunction) const {
213 // Map all labels and get rid of any dead landing pads.
214 MMI->TidyLandingPads();
216 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
217 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
218 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
219 if (PadInfos.empty()) return 0;
221 // Sort the landing pads in order of their type ids. This is used to fold
222 // duplicate actions.
223 SmallVector<const LandingPadInfo *, 64> LandingPads;
224 LandingPads.reserve(PadInfos.size());
225 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
226 LandingPads.push_back(&PadInfos[i]);
227 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
229 // Negative type ids index into FilterIds, positive type ids index into
230 // TypeInfos. The value written for a positive type id is just the type
231 // id itself. For a negative type id, however, the value written is the
232 // (negative) byte offset of the corresponding FilterIds entry. The byte
233 // offset is usually equal to the type id, because the FilterIds entries
234 // are written using a variable width encoding which outputs one byte per
235 // entry as long as the value written is not too large, but can differ.
236 // This kind of complication does not occur for positive type ids because
237 // type infos are output using a fixed width encoding.
238 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
239 SmallVector<int, 16> FilterOffsets;
240 FilterOffsets.reserve(FilterIds.size());
241 int Offset = -1;
242 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
243 E = FilterIds.end(); I != E; ++I) {
244 FilterOffsets.push_back(Offset);
245 Offset -= TargetAsmInfo::getULEB128Size(*I);
248 // Compute the actions table and gather the first action index for each
249 // landing pad site.
250 SmallVector<ActionEntry, 32> Actions;
251 SmallVector<unsigned, 64> FirstActions;
252 FirstActions.reserve(LandingPads.size());
254 int FirstAction = 0;
255 unsigned SizeActions = 0;
256 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
257 const LandingPadInfo *LP = LandingPads[i];
258 const std::vector<int> &TypeIds = LP->TypeIds;
259 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
260 unsigned SizeSiteActions = 0;
262 if (NumShared < TypeIds.size()) {
263 unsigned SizeAction = 0;
264 ActionEntry *PrevAction = 0;
266 if (NumShared) {
267 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
268 assert(Actions.size());
269 PrevAction = &Actions.back();
270 SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
271 TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
272 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
273 SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
274 SizeAction += -PrevAction->NextAction;
275 PrevAction = PrevAction->Previous;
279 // Compute the actions.
280 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
281 int TypeID = TypeIds[I];
282 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
283 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
284 unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
286 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
287 SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
288 SizeSiteActions += SizeAction;
290 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
291 Actions.push_back(Action);
293 PrevAction = &Actions.back();
296 // Record the first action of the landing pad site.
297 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
298 } // else identical - re-use previous FirstAction
300 FirstActions.push_back(FirstAction);
302 // Compute this sites contribution to size.
303 SizeActions += SizeSiteActions;
306 // Compute the call-site table. Entries must be ordered by address.
307 SmallVector<CallSiteEntry, 64> CallSites;
309 RangeMapType PadMap;
310 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
311 const LandingPadInfo *LandingPad = LandingPads[i];
312 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
313 unsigned BeginLabel = LandingPad->BeginLabels[j];
314 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
315 PadRange P = { i, j };
316 PadMap[BeginLabel] = P;
320 bool MayThrow = false;
321 unsigned LastLabel = 0;
322 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
323 I != E; ++I) {
324 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
325 MI != E; ++MI) {
326 if (!MI->isLabel()) {
327 MayThrow |= MI->getDesc().isCall();
328 continue;
331 unsigned BeginLabel = MI->getOperand(0).getImm();
332 assert(BeginLabel && "Invalid label!");
334 if (BeginLabel == LastLabel)
335 MayThrow = false;
337 RangeMapType::iterator L = PadMap.find(BeginLabel);
339 if (L == PadMap.end())
340 continue;
342 PadRange P = L->second;
343 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
345 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
346 "Inconsistent landing pad map!");
348 // If some instruction between the previous try-range and this one may
349 // throw, create a call-site entry with no landing pad for the region
350 // between the try-ranges.
351 if (MayThrow) {
352 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
353 CallSites.push_back(Site);
356 LastLabel = LandingPad->EndLabels[P.RangeIndex];
357 CallSiteEntry Site = {BeginLabel, LastLabel,
358 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
360 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
361 "Invalid landing pad!");
363 // Try to merge with the previous call-site.
364 if (CallSites.size()) {
365 CallSiteEntry &Prev = CallSites.back();
366 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
367 // Extend the range of the previous entry.
368 Prev.EndLabel = Site.EndLabel;
369 continue;
373 // Otherwise, create a new call-site.
374 CallSites.push_back(Site);
377 // If some instruction between the previous try-range and the end of the
378 // function may throw, create a call-site entry with no landing pad for the
379 // region following the try-range.
380 if (MayThrow) {
381 CallSiteEntry Site = {LastLabel, 0, 0, 0};
382 CallSites.push_back(Site);
385 // Final tallies.
386 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
387 sizeof(int32_t) + // Site length.
388 sizeof(int32_t)); // Landing pad.
389 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
390 SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
392 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
394 unsigned TypeOffset = sizeof(int8_t) + // Call site format
395 // Call-site table length
396 TargetAsmInfo::getULEB128Size(SizeSites) +
397 SizeSites + SizeActions + SizeTypes;
399 unsigned TotalSize = sizeof(int8_t) + // LPStart format
400 sizeof(int8_t) + // TType format
401 TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
402 TypeOffset;
404 unsigned SizeAlign = (4 - TotalSize) & 3;
406 // Begin the exception table.
407 JCE->emitAlignment(4);
408 for (unsigned i = 0; i != SizeAlign; ++i) {
409 JCE->emitByte(0);
410 // Asm->EOL("Padding");
413 unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
415 // Emit the header.
416 JCE->emitByte(dwarf::DW_EH_PE_omit);
417 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
418 JCE->emitByte(dwarf::DW_EH_PE_absptr);
419 // Asm->EOL("TType format (DW_EH_PE_absptr)");
420 JCE->emitULEB128Bytes(TypeOffset);
421 // Asm->EOL("TType base offset");
422 JCE->emitByte(dwarf::DW_EH_PE_udata4);
423 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
424 JCE->emitULEB128Bytes(SizeSites);
425 // Asm->EOL("Call-site table length");
427 // Emit the landing pad site information.
428 for (unsigned i = 0; i < CallSites.size(); ++i) {
429 CallSiteEntry &S = CallSites[i];
430 intptr_t BeginLabelPtr = 0;
431 intptr_t EndLabelPtr = 0;
433 if (!S.BeginLabel) {
434 BeginLabelPtr = (intptr_t)StartFunction;
435 JCE->emitInt32(0);
436 } else {
437 BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
438 JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
441 // Asm->EOL("Region start");
443 if (!S.EndLabel) {
444 EndLabelPtr = (intptr_t)EndFunction;
445 JCE->emitInt32((intptr_t)EndFunction - BeginLabelPtr);
446 } else {
447 EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
448 JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
450 //Asm->EOL("Region length");
452 if (!S.PadLabel) {
453 JCE->emitInt32(0);
454 } else {
455 unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
456 JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
458 // Asm->EOL("Landing pad");
460 JCE->emitULEB128Bytes(S.Action);
461 // Asm->EOL("Action");
464 // Emit the actions.
465 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
466 ActionEntry &Action = Actions[I];
468 JCE->emitSLEB128Bytes(Action.ValueForTypeID);
469 //Asm->EOL("TypeInfo index");
470 JCE->emitSLEB128Bytes(Action.NextAction);
471 //Asm->EOL("Next action");
474 // Emit the type ids.
475 for (unsigned M = TypeInfos.size(); M; --M) {
476 GlobalVariable *GV = TypeInfos[M - 1];
478 if (GV) {
479 if (TD->getPointerSize() == sizeof(int32_t)) {
480 JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
481 } else {
482 JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
484 } else {
485 if (TD->getPointerSize() == sizeof(int32_t))
486 JCE->emitInt32(0);
487 else
488 JCE->emitInt64(0);
490 // Asm->EOL("TypeInfo");
493 // Emit the filter typeids.
494 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
495 unsigned TypeID = FilterIds[j];
496 JCE->emitULEB128Bytes(TypeID);
497 //Asm->EOL("Filter TypeInfo index");
500 JCE->emitAlignment(4);
502 return DwarfExceptionTable;
505 unsigned char*
506 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
507 unsigned PointerSize = TD->getPointerSize();
508 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
509 PointerSize : -PointerSize;
511 unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
512 // EH Common Frame header
513 JCE->allocateSpace(4, 0);
514 unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
515 JCE->emitInt32((int)0);
516 JCE->emitByte(dwarf::DW_CIE_VERSION);
517 JCE->emitString(Personality ? "zPLR" : "zR");
518 JCE->emitULEB128Bytes(1);
519 JCE->emitSLEB128Bytes(stackGrowth);
520 JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
522 if (Personality) {
523 // Augmentation Size: 3 small ULEBs of one byte each, and the personality
524 // function which size is PointerSize.
525 JCE->emitULEB128Bytes(3 + PointerSize);
527 // We set the encoding of the personality as direct encoding because we use
528 // the function pointer. The encoding is not relative because the current
529 // PC value may be bigger than the personality function pointer.
530 if (PointerSize == 4) {
531 JCE->emitByte(dwarf::DW_EH_PE_sdata4);
532 JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
533 } else {
534 JCE->emitByte(dwarf::DW_EH_PE_sdata8);
535 JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
538 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
539 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
541 } else {
542 JCE->emitULEB128Bytes(1);
543 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
546 std::vector<MachineMove> Moves;
547 RI->getInitialFrameState(Moves);
548 EmitFrameMoves(0, Moves);
549 JCE->emitAlignment(PointerSize);
551 JCE->emitInt32At((uintptr_t*)StartCommonPtr,
552 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
553 FrameCommonBeginPtr));
555 return StartCommonPtr;
559 unsigned char*
560 JITDwarfEmitter::EmitEHFrame(const Function* Personality,
561 unsigned char* StartCommonPtr,
562 unsigned char* StartFunction,
563 unsigned char* EndFunction,
564 unsigned char* ExceptionTable) const {
565 unsigned PointerSize = TD->getPointerSize();
567 // EH frame header.
568 unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
569 JCE->allocateSpace(4, 0);
570 unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
571 // FDE CIE Offset
572 JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
573 JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
574 JCE->emitInt32(EndFunction - StartFunction);
576 // If there is a personality and landing pads then point to the language
577 // specific data area in the exception table.
578 if (MMI->getPersonalityIndex()) {
579 JCE->emitULEB128Bytes(4);
581 if (!MMI->getLandingPads().empty()) {
582 JCE->emitInt32(ExceptionTable - (unsigned char*)JCE->getCurrentPCValue());
583 } else {
584 JCE->emitInt32((int)0);
586 } else {
587 JCE->emitULEB128Bytes(0);
590 // Indicate locations of function specific callee saved registers in
591 // frame.
592 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
594 JCE->emitAlignment(PointerSize);
596 // Indicate the size of the table
597 JCE->emitInt32At((uintptr_t*)StartEHPtr,
598 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
599 StartEHPtr));
601 // Double zeroes for the unwind runtime
602 if (PointerSize == 8) {
603 JCE->emitInt64(0);
604 JCE->emitInt64(0);
605 } else {
606 JCE->emitInt32(0);
607 JCE->emitInt32(0);
611 return StartEHPtr;
614 unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
615 JITCodeEmitter& jce,
616 unsigned char* StartFunction,
617 unsigned char* EndFunction) {
618 const TargetMachine& TM = F.getTarget();
619 TD = TM.getTargetData();
620 needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
621 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
622 RI = TM.getRegisterInfo();
623 JCE = &jce;
624 unsigned FinalSize = 0;
626 FinalSize += GetExceptionTableSizeInBytes(&F);
628 const std::vector<Function *> Personalities = MMI->getPersonalities();
629 FinalSize +=
630 GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]);
632 FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()],
633 StartFunction);
635 return FinalSize;
638 /// RoundUpToAlign - Add the specified alignment to FinalSize and returns
639 /// the new value.
640 static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) {
641 if (Alignment == 0) Alignment = 1;
642 // Since we do not know where the buffer will be allocated, be pessimistic.
643 return FinalSize + Alignment;
646 unsigned
647 JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality,
648 unsigned char* StartFunction) const {
649 unsigned PointerSize = TD->getPointerSize();
650 unsigned FinalSize = 0;
651 // EH frame header.
652 FinalSize += PointerSize;
653 // FDE CIE Offset
654 FinalSize += 3 * PointerSize;
655 // If there is a personality and landing pads then point to the language
656 // specific data area in the exception table.
657 if (MMI->getPersonalityIndex()) {
658 FinalSize += TargetAsmInfo::getULEB128Size(4);
659 FinalSize += PointerSize;
660 } else {
661 FinalSize += TargetAsmInfo::getULEB128Size(0);
664 // Indicate locations of function specific callee saved registers in
665 // frame.
666 FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction,
667 MMI->getFrameMoves());
669 FinalSize = RoundUpToAlign(FinalSize, 4);
671 // Double zeroes for the unwind runtime
672 FinalSize += 2 * PointerSize;
674 return FinalSize;
677 unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality)
678 const {
680 unsigned PointerSize = TD->getPointerSize();
681 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
682 PointerSize : -PointerSize;
683 unsigned FinalSize = 0;
684 // EH Common Frame header
685 FinalSize += PointerSize;
686 FinalSize += 4;
687 FinalSize += 1;
688 FinalSize += Personality ? 5 : 3; // "zPLR" or "zR"
689 FinalSize += TargetAsmInfo::getULEB128Size(1);
690 FinalSize += TargetAsmInfo::getSLEB128Size(stackGrowth);
691 FinalSize += 1;
693 if (Personality) {
694 FinalSize += TargetAsmInfo::getULEB128Size(7);
696 // Encoding
697 FinalSize+= 1;
698 //Personality
699 FinalSize += PointerSize;
701 FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
702 FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
704 } else {
705 FinalSize += TargetAsmInfo::getULEB128Size(1);
706 FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
709 std::vector<MachineMove> Moves;
710 RI->getInitialFrameState(Moves);
711 FinalSize += GetFrameMovesSizeInBytes(0, Moves);
712 FinalSize = RoundUpToAlign(FinalSize, 4);
713 return FinalSize;
716 unsigned
717 JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
718 const std::vector<MachineMove> &Moves) const {
719 unsigned PointerSize = TD->getPointerSize();
720 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
721 PointerSize : -PointerSize;
722 bool IsLocal = BaseLabelPtr;
723 unsigned FinalSize = 0;
725 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
726 const MachineMove &Move = Moves[i];
727 unsigned LabelID = Move.getLabelID();
729 if (LabelID) {
730 LabelID = MMI->MappedLabel(LabelID);
732 // Throw out move if the label is invalid.
733 if (!LabelID) continue;
736 intptr_t LabelPtr = 0;
737 if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID);
739 const MachineLocation &Dst = Move.getDestination();
740 const MachineLocation &Src = Move.getSource();
742 // Advance row if new location.
743 if (BaseLabelPtr && LabelID && (BaseLabelPtr != LabelPtr || !IsLocal)) {
744 FinalSize++;
745 FinalSize += PointerSize;
746 BaseLabelPtr = LabelPtr;
747 IsLocal = true;
750 // If advancing cfa.
751 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
752 if (!Src.isReg()) {
753 if (Src.getReg() == MachineLocation::VirtualFP) {
754 ++FinalSize;
755 } else {
756 ++FinalSize;
757 unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true);
758 FinalSize += TargetAsmInfo::getULEB128Size(RegNum);
761 int Offset = -Src.getOffset();
763 FinalSize += TargetAsmInfo::getULEB128Size(Offset);
764 } else {
765 llvm_unreachable("Machine move no supported yet.");
767 } else if (Src.isReg() &&
768 Src.getReg() == MachineLocation::VirtualFP) {
769 if (Dst.isReg()) {
770 ++FinalSize;
771 unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true);
772 FinalSize += TargetAsmInfo::getULEB128Size(RegNum);
773 } else {
774 llvm_unreachable("Machine move no supported yet.");
776 } else {
777 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
778 int Offset = Dst.getOffset() / stackGrowth;
780 if (Offset < 0) {
781 ++FinalSize;
782 FinalSize += TargetAsmInfo::getULEB128Size(Reg);
783 FinalSize += TargetAsmInfo::getSLEB128Size(Offset);
784 } else if (Reg < 64) {
785 ++FinalSize;
786 FinalSize += TargetAsmInfo::getULEB128Size(Offset);
787 } else {
788 ++FinalSize;
789 FinalSize += TargetAsmInfo::getULEB128Size(Reg);
790 FinalSize += TargetAsmInfo::getULEB128Size(Offset);
794 return FinalSize;
797 unsigned
798 JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
799 unsigned FinalSize = 0;
801 // Map all labels and get rid of any dead landing pads.
802 MMI->TidyLandingPads();
804 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
805 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
806 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
807 if (PadInfos.empty()) return 0;
809 // Sort the landing pads in order of their type ids. This is used to fold
810 // duplicate actions.
811 SmallVector<const LandingPadInfo *, 64> LandingPads;
812 LandingPads.reserve(PadInfos.size());
813 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
814 LandingPads.push_back(&PadInfos[i]);
815 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
817 // Negative type ids index into FilterIds, positive type ids index into
818 // TypeInfos. The value written for a positive type id is just the type
819 // id itself. For a negative type id, however, the value written is the
820 // (negative) byte offset of the corresponding FilterIds entry. The byte
821 // offset is usually equal to the type id, because the FilterIds entries
822 // are written using a variable width encoding which outputs one byte per
823 // entry as long as the value written is not too large, but can differ.
824 // This kind of complication does not occur for positive type ids because
825 // type infos are output using a fixed width encoding.
826 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
827 SmallVector<int, 16> FilterOffsets;
828 FilterOffsets.reserve(FilterIds.size());
829 int Offset = -1;
830 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
831 E = FilterIds.end(); I != E; ++I) {
832 FilterOffsets.push_back(Offset);
833 Offset -= TargetAsmInfo::getULEB128Size(*I);
836 // Compute the actions table and gather the first action index for each
837 // landing pad site.
838 SmallVector<ActionEntry, 32> Actions;
839 SmallVector<unsigned, 64> FirstActions;
840 FirstActions.reserve(LandingPads.size());
842 int FirstAction = 0;
843 unsigned SizeActions = 0;
844 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
845 const LandingPadInfo *LP = LandingPads[i];
846 const std::vector<int> &TypeIds = LP->TypeIds;
847 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
848 unsigned SizeSiteActions = 0;
850 if (NumShared < TypeIds.size()) {
851 unsigned SizeAction = 0;
852 ActionEntry *PrevAction = 0;
854 if (NumShared) {
855 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
856 assert(Actions.size());
857 PrevAction = &Actions.back();
858 SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
859 TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
860 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
861 SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
862 SizeAction += -PrevAction->NextAction;
863 PrevAction = PrevAction->Previous;
867 // Compute the actions.
868 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
869 int TypeID = TypeIds[I];
870 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
871 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
872 unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
874 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
875 SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
876 SizeSiteActions += SizeAction;
878 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
879 Actions.push_back(Action);
881 PrevAction = &Actions.back();
884 // Record the first action of the landing pad site.
885 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
886 } // else identical - re-use previous FirstAction
888 FirstActions.push_back(FirstAction);
890 // Compute this sites contribution to size.
891 SizeActions += SizeSiteActions;
894 // Compute the call-site table. Entries must be ordered by address.
895 SmallVector<CallSiteEntry, 64> CallSites;
897 RangeMapType PadMap;
898 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
899 const LandingPadInfo *LandingPad = LandingPads[i];
900 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
901 unsigned BeginLabel = LandingPad->BeginLabels[j];
902 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
903 PadRange P = { i, j };
904 PadMap[BeginLabel] = P;
908 bool MayThrow = false;
909 unsigned LastLabel = 0;
910 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
911 I != E; ++I) {
912 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
913 MI != E; ++MI) {
914 if (!MI->isLabel()) {
915 MayThrow |= MI->getDesc().isCall();
916 continue;
919 unsigned BeginLabel = MI->getOperand(0).getImm();
920 assert(BeginLabel && "Invalid label!");
922 if (BeginLabel == LastLabel)
923 MayThrow = false;
925 RangeMapType::iterator L = PadMap.find(BeginLabel);
927 if (L == PadMap.end())
928 continue;
930 PadRange P = L->second;
931 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
933 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
934 "Inconsistent landing pad map!");
936 // If some instruction between the previous try-range and this one may
937 // throw, create a call-site entry with no landing pad for the region
938 // between the try-ranges.
939 if (MayThrow) {
940 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
941 CallSites.push_back(Site);
944 LastLabel = LandingPad->EndLabels[P.RangeIndex];
945 CallSiteEntry Site = {BeginLabel, LastLabel,
946 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
948 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
949 "Invalid landing pad!");
951 // Try to merge with the previous call-site.
952 if (CallSites.size()) {
953 CallSiteEntry &Prev = CallSites.back();
954 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
955 // Extend the range of the previous entry.
956 Prev.EndLabel = Site.EndLabel;
957 continue;
961 // Otherwise, create a new call-site.
962 CallSites.push_back(Site);
965 // If some instruction between the previous try-range and the end of the
966 // function may throw, create a call-site entry with no landing pad for the
967 // region following the try-range.
968 if (MayThrow) {
969 CallSiteEntry Site = {LastLabel, 0, 0, 0};
970 CallSites.push_back(Site);
973 // Final tallies.
974 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
975 sizeof(int32_t) + // Site length.
976 sizeof(int32_t)); // Landing pad.
977 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
978 SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
980 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
982 unsigned TypeOffset = sizeof(int8_t) + // Call site format
983 // Call-site table length
984 TargetAsmInfo::getULEB128Size(SizeSites) +
985 SizeSites + SizeActions + SizeTypes;
987 unsigned TotalSize = sizeof(int8_t) + // LPStart format
988 sizeof(int8_t) + // TType format
989 TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
990 TypeOffset;
992 unsigned SizeAlign = (4 - TotalSize) & 3;
994 // Begin the exception table.
995 FinalSize = RoundUpToAlign(FinalSize, 4);
996 for (unsigned i = 0; i != SizeAlign; ++i) {
997 ++FinalSize;
1000 unsigned PointerSize = TD->getPointerSize();
1002 // Emit the header.
1003 ++FinalSize;
1004 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
1005 ++FinalSize;
1006 // Asm->EOL("TType format (DW_EH_PE_absptr)");
1007 ++FinalSize;
1008 // Asm->EOL("TType base offset");
1009 ++FinalSize;
1010 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
1011 ++FinalSize;
1012 // Asm->EOL("Call-site table length");
1014 // Emit the landing pad site information.
1015 for (unsigned i = 0; i < CallSites.size(); ++i) {
1016 CallSiteEntry &S = CallSites[i];
1018 // Asm->EOL("Region start");
1019 FinalSize += PointerSize;
1021 //Asm->EOL("Region length");
1022 FinalSize += PointerSize;
1024 // Asm->EOL("Landing pad");
1025 FinalSize += PointerSize;
1027 FinalSize += TargetAsmInfo::getULEB128Size(S.Action);
1028 // Asm->EOL("Action");
1031 // Emit the actions.
1032 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
1033 ActionEntry &Action = Actions[I];
1035 //Asm->EOL("TypeInfo index");
1036 FinalSize += TargetAsmInfo::getSLEB128Size(Action.ValueForTypeID);
1037 //Asm->EOL("Next action");
1038 FinalSize += TargetAsmInfo::getSLEB128Size(Action.NextAction);
1041 // Emit the type ids.
1042 for (unsigned M = TypeInfos.size(); M; --M) {
1043 // Asm->EOL("TypeInfo");
1044 FinalSize += PointerSize;
1047 // Emit the filter typeids.
1048 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
1049 unsigned TypeID = FilterIds[j];
1050 FinalSize += TargetAsmInfo::getULEB128Size(TypeID);
1051 //Asm->EOL("Filter TypeInfo index");
1054 FinalSize = RoundUpToAlign(FinalSize, 4);
1056 return FinalSize;