Indentation.
[llvm/avr.git] / lib / ExecutionEngine / JIT / JITEmitter.cpp
blob23321260f2693b8142c02ee040ea3583d5e64f08
1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "JIT.h"
17 #include "JITDwarfEmitter.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Module.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/CodeGen/JITCodeEmitter.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRelocation.h"
27 #include "llvm/ExecutionEngine/GenericValue.h"
28 #include "llvm/ExecutionEngine/JITEventListener.h"
29 #include "llvm/ExecutionEngine/JITMemoryManager.h"
30 #include "llvm/CodeGen/MachineCodeInfo.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetJITInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MutexGuard.h"
38 #include "llvm/Support/ValueHandle.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/System/Disassembler.h"
41 #include "llvm/System/Memory.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include <algorithm>
47 #ifndef NDEBUG
48 #include <iomanip>
49 #endif
50 using namespace llvm;
52 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
53 STATISTIC(NumRelos, "Number of relocations applied");
54 STATISTIC(NumRetries, "Number of retries with more memory");
55 static JIT *TheJIT = 0;
58 //===----------------------------------------------------------------------===//
59 // JIT lazy compilation code.
61 namespace {
62 class JITResolverState {
63 public:
64 typedef std::map<AssertingVH<Function>, void*> FunctionToStubMapTy;
65 typedef std::map<void*, Function*> StubToFunctionMapTy;
66 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
67 private:
68 /// FunctionToStubMap - Keep track of the stub created for a particular
69 /// function so that we can reuse them if necessary.
70 FunctionToStubMapTy FunctionToStubMap;
72 /// StubToFunctionMap - Keep track of the function that each stub
73 /// corresponds to.
74 StubToFunctionMapTy StubToFunctionMap;
76 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
77 /// particular GlobalVariable so that we can reuse them if necessary.
78 GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
80 public:
81 FunctionToStubMapTy& getFunctionToStubMap(const MutexGuard& locked) {
82 assert(locked.holds(TheJIT->lock));
83 return FunctionToStubMap;
86 StubToFunctionMapTy& getStubToFunctionMap(const MutexGuard& locked) {
87 assert(locked.holds(TheJIT->lock));
88 return StubToFunctionMap;
91 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
92 assert(locked.holds(TheJIT->lock));
93 return GlobalToIndirectSymMap;
97 /// JITResolver - Keep track of, and resolve, call sites for functions that
98 /// have not yet been compiled.
99 class JITResolver {
100 typedef JITResolverState::FunctionToStubMapTy FunctionToStubMapTy;
101 typedef JITResolverState::StubToFunctionMapTy StubToFunctionMapTy;
102 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
104 /// LazyResolverFn - The target lazy resolver function that we actually
105 /// rewrite instructions to use.
106 TargetJITInfo::LazyResolverFn LazyResolverFn;
108 JITResolverState state;
110 /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
111 /// external functions.
112 std::map<void*, void*> ExternalFnToStubMap;
114 /// revGOTMap - map addresses to indexes in the GOT
115 std::map<void*, unsigned> revGOTMap;
116 unsigned nextGOTIndex;
118 static JITResolver *TheJITResolver;
119 public:
120 explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
121 TheJIT = &jit;
123 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
124 assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
125 TheJITResolver = this;
128 ~JITResolver() {
129 TheJITResolver = 0;
132 /// getFunctionStubIfAvailable - This returns a pointer to a function stub
133 /// if it has already been created.
134 void *getFunctionStubIfAvailable(Function *F);
136 /// getFunctionStub - This returns a pointer to a function stub, creating
137 /// one on demand as needed. If empty is true, create a function stub
138 /// pointing at address 0, to be filled in later.
139 void *getFunctionStub(Function *F);
141 /// getExternalFunctionStub - Return a stub for the function at the
142 /// specified address, created lazily on demand.
143 void *getExternalFunctionStub(void *FnAddr);
145 /// getGlobalValueIndirectSym - Return an indirect symbol containing the
146 /// specified GV address.
147 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
149 /// AddCallbackAtLocation - If the target is capable of rewriting an
150 /// instruction without the use of a stub, record the location of the use so
151 /// we know which function is being used at the location.
152 void *AddCallbackAtLocation(Function *F, void *Location) {
153 MutexGuard locked(TheJIT->lock);
154 /// Get the target-specific JIT resolver function.
155 state.getStubToFunctionMap(locked)[Location] = F;
156 return (void*)(intptr_t)LazyResolverFn;
159 void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
160 SmallVectorImpl<void*> &Ptrs);
162 GlobalValue *invalidateStub(void *Stub);
164 /// getGOTIndexForAddress - Return a new or existing index in the GOT for
165 /// an address. This function only manages slots, it does not manage the
166 /// contents of the slots or the memory associated with the GOT.
167 unsigned getGOTIndexForAddr(void *addr);
169 /// JITCompilerFn - This function is called to resolve a stub to a compiled
170 /// address. If the LLVM Function corresponding to the stub has not yet
171 /// been compiled, this function compiles it first.
172 static void *JITCompilerFn(void *Stub);
176 JITResolver *JITResolver::TheJITResolver = 0;
178 /// getFunctionStubIfAvailable - This returns a pointer to a function stub
179 /// if it has already been created.
180 void *JITResolver::getFunctionStubIfAvailable(Function *F) {
181 MutexGuard locked(TheJIT->lock);
183 // If we already have a stub for this function, recycle it.
184 void *&Stub = state.getFunctionToStubMap(locked)[F];
185 return Stub;
188 /// getFunctionStub - This returns a pointer to a function stub, creating
189 /// one on demand as needed.
190 void *JITResolver::getFunctionStub(Function *F) {
191 MutexGuard locked(TheJIT->lock);
193 // If we already have a stub for this function, recycle it.
194 void *&Stub = state.getFunctionToStubMap(locked)[F];
195 if (Stub) return Stub;
197 // Call the lazy resolver function unless we are JIT'ing non-lazily, in which
198 // case we must resolve the symbol now.
199 void *Actual = TheJIT->isLazyCompilationDisabled()
200 ? (void *)0 : (void *)(intptr_t)LazyResolverFn;
202 // If this is an external declaration, attempt to resolve the address now
203 // to place in the stub.
204 if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
205 Actual = TheJIT->getPointerToFunction(F);
207 // If we resolved the symbol to a null address (eg. a weak external)
208 // don't emit a stub. Return a null pointer to the application. If dlsym
209 // stubs are enabled, not being able to resolve the address is not
210 // meaningful.
211 if (!Actual && !TheJIT->areDlsymStubsEnabled()) return 0;
214 // Codegen a new stub, calling the lazy resolver or the actual address of the
215 // external function, if it was resolved.
216 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
217 *TheJIT->getCodeEmitter());
219 if (Actual != (void*)(intptr_t)LazyResolverFn) {
220 // If we are getting the stub for an external function, we really want the
221 // address of the stub in the GlobalAddressMap for the JIT, not the address
222 // of the external function.
223 TheJIT->updateGlobalMapping(F, Stub);
226 DEBUG(errs() << "JIT: Stub emitted at [" << Stub << "] for function '"
227 << F->getName() << "'\n");
229 // Finally, keep track of the stub-to-Function mapping so that the
230 // JITCompilerFn knows which function to compile!
231 state.getStubToFunctionMap(locked)[Stub] = F;
233 // If we are JIT'ing non-lazily but need to call a function that does not
234 // exist yet, add it to the JIT's work list so that we can fill in the stub
235 // address later.
236 if (!Actual && TheJIT->isLazyCompilationDisabled())
237 if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
238 TheJIT->addPendingFunction(F);
240 return Stub;
243 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
244 /// GV address.
245 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
246 MutexGuard locked(TheJIT->lock);
248 // If we already have a stub for this global variable, recycle it.
249 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
250 if (IndirectSym) return IndirectSym;
252 // Otherwise, codegen a new indirect symbol.
253 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
254 *TheJIT->getCodeEmitter());
256 DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
257 << "] for GV '" << GV->getName() << "'\n");
259 return IndirectSym;
262 /// getExternalFunctionStub - Return a stub for the function at the
263 /// specified address, created lazily on demand.
264 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
265 // If we already have a stub for this function, recycle it.
266 void *&Stub = ExternalFnToStubMap[FnAddr];
267 if (Stub) return Stub;
269 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
270 *TheJIT->getCodeEmitter());
272 DOUT << "JIT: Stub emitted at [" << Stub
273 << "] for external function at '" << FnAddr << "'\n";
274 return Stub;
277 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
278 unsigned idx = revGOTMap[addr];
279 if (!idx) {
280 idx = ++nextGOTIndex;
281 revGOTMap[addr] = idx;
282 DOUT << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n";
284 return idx;
287 void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
288 SmallVectorImpl<void*> &Ptrs) {
289 MutexGuard locked(TheJIT->lock);
291 FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
292 GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
294 for (FunctionToStubMapTy::iterator i = FM.begin(), e = FM.end(); i != e; ++i){
295 Function *F = i->first;
296 if (F->isDeclaration() && F->hasExternalLinkage()) {
297 GVs.push_back(i->first);
298 Ptrs.push_back(i->second);
301 for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
302 i != e; ++i) {
303 GVs.push_back(i->first);
304 Ptrs.push_back(i->second);
308 GlobalValue *JITResolver::invalidateStub(void *Stub) {
309 MutexGuard locked(TheJIT->lock);
311 FunctionToStubMapTy &FM = state.getFunctionToStubMap(locked);
312 StubToFunctionMapTy &SM = state.getStubToFunctionMap(locked);
313 GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
315 // Look up the cheap way first, to see if it's a function stub we are
316 // invalidating. If so, remove it from both the forward and reverse maps.
317 if (SM.find(Stub) != SM.end()) {
318 Function *F = SM[Stub];
319 SM.erase(Stub);
320 FM.erase(F);
321 return F;
324 // Otherwise, it might be an indirect symbol stub. Find it and remove it.
325 for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
326 i != e; ++i) {
327 if (i->second != Stub)
328 continue;
329 GlobalValue *GV = i->first;
330 GM.erase(i);
331 return GV;
334 // Lastly, check to see if it's in the ExternalFnToStubMap.
335 for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(),
336 e = ExternalFnToStubMap.end(); i != e; ++i) {
337 if (i->second != Stub)
338 continue;
339 ExternalFnToStubMap.erase(i);
340 break;
343 return 0;
346 /// JITCompilerFn - This function is called when a lazy compilation stub has
347 /// been entered. It looks up which function this stub corresponds to, compiles
348 /// it if necessary, then returns the resultant function pointer.
349 void *JITResolver::JITCompilerFn(void *Stub) {
350 JITResolver &JR = *TheJITResolver;
352 Function* F = 0;
353 void* ActualPtr = 0;
356 // Only lock for getting the Function. The call getPointerToFunction made
357 // in this function might trigger function materializing, which requires
358 // JIT lock to be unlocked.
359 MutexGuard locked(TheJIT->lock);
361 // The address given to us for the stub may not be exactly right, it might be
362 // a little bit after the stub. As such, use upper_bound to find it.
363 StubToFunctionMapTy::iterator I =
364 JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
365 assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
366 "This is not a known stub!");
367 F = (--I)->second;
368 ActualPtr = I->first;
371 // If we have already code generated the function, just return the address.
372 void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
374 if (!Result) {
375 // Otherwise we don't have it, do lazy compilation now.
377 // If lazy compilation is disabled, emit a useful error message and abort.
378 if (TheJIT->isLazyCompilationDisabled()) {
379 llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
380 + F->getName() + "' when lazy compiles are disabled!");
383 // We might like to remove the stub from the StubToFunction map.
384 // We can't do that! Multiple threads could be stuck, waiting to acquire the
385 // lock above. As soon as the 1st function finishes compiling the function,
386 // the next one will be released, and needs to be able to find the function
387 // it needs to call.
388 //JR.state.getStubToFunctionMap(locked).erase(I);
390 DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
391 << "' In stub ptr = " << Stub << " actual ptr = "
392 << ActualPtr << "\n");
394 Result = TheJIT->getPointerToFunction(F);
397 // Reacquire the lock to erase the stub in the map.
398 MutexGuard locked(TheJIT->lock);
400 // We don't need to reuse this stub in the future, as F is now compiled.
401 JR.state.getFunctionToStubMap(locked).erase(F);
403 // FIXME: We could rewrite all references to this stub if we knew them.
405 // What we will do is set the compiled function address to map to the
406 // same GOT entry as the stub so that later clients may update the GOT
407 // if they see it still using the stub address.
408 // Note: this is done so the Resolver doesn't have to manage GOT memory
409 // Do this without allocating map space if the target isn't using a GOT
410 if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
411 JR.revGOTMap[Result] = JR.revGOTMap[Stub];
413 return Result;
416 //===----------------------------------------------------------------------===//
417 // JITEmitter code.
419 namespace {
420 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
421 /// used to output functions to memory for execution.
422 class JITEmitter : public JITCodeEmitter {
423 JITMemoryManager *MemMgr;
425 // When outputting a function stub in the context of some other function, we
426 // save BufferBegin/BufferEnd/CurBufferPtr here.
427 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
429 // When reattempting to JIT a function after running out of space, we store
430 // the estimated size of the function we're trying to JIT here, so we can
431 // ask the memory manager for at least this much space. When we
432 // successfully emit the function, we reset this back to zero.
433 uintptr_t SizeEstimate;
435 /// Relocations - These are the relocations that the function needs, as
436 /// emitted.
437 std::vector<MachineRelocation> Relocations;
439 /// MBBLocations - This vector is a mapping from MBB ID's to their address.
440 /// It is filled in by the StartMachineBasicBlock callback and queried by
441 /// the getMachineBasicBlockAddress callback.
442 std::vector<uintptr_t> MBBLocations;
444 /// ConstantPool - The constant pool for the current function.
446 MachineConstantPool *ConstantPool;
448 /// ConstantPoolBase - A pointer to the first entry in the constant pool.
450 void *ConstantPoolBase;
452 /// ConstPoolAddresses - Addresses of individual constant pool entries.
454 SmallVector<uintptr_t, 8> ConstPoolAddresses;
456 /// JumpTable - The jump tables for the current function.
458 MachineJumpTableInfo *JumpTable;
460 /// JumpTableBase - A pointer to the first entry in the jump table.
462 void *JumpTableBase;
464 /// Resolver - This contains info about the currently resolved functions.
465 JITResolver Resolver;
467 /// DE - The dwarf emitter for the jit.
468 JITDwarfEmitter *DE;
470 /// LabelLocations - This vector is a mapping from Label ID's to their
471 /// address.
472 std::vector<uintptr_t> LabelLocations;
474 /// MMI - Machine module info for exception informations
475 MachineModuleInfo* MMI;
477 // GVSet - a set to keep track of which globals have been seen
478 SmallPtrSet<const GlobalVariable*, 8> GVSet;
480 // CurFn - The llvm function being emitted. Only valid during
481 // finishFunction().
482 const Function *CurFn;
484 /// Information about emitted code, which is passed to the
485 /// JITEventListeners. This is reset in startFunction and used in
486 /// finishFunction.
487 JITEvent_EmittedFunctionDetails EmissionDetails;
489 // CurFnStubUses - For a given Function, a vector of stubs that it
490 // references. This facilitates the JIT detecting that a stub is no
491 // longer used, so that it may be deallocated.
492 DenseMap<const Function *, SmallVector<void*, 1> > CurFnStubUses;
494 // StubFnRefs - For a given pointer to a stub, a set of Functions which
495 // reference the stub. When the count of a stub's references drops to zero,
496 // the stub is unused.
497 DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs;
499 // ExtFnStubs - A map of external function names to stubs which have entries
500 // in the JITResolver's ExternalFnToStubMap.
501 StringMap<void *> ExtFnStubs;
503 DebugLocTuple PrevDLT;
505 public:
506 JITEmitter(JIT &jit, JITMemoryManager *JMM)
507 : SizeEstimate(0), Resolver(jit), CurFn(0) {
508 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
509 if (jit.getJITInfo().needsGOT()) {
510 MemMgr->AllocateGOT();
511 DOUT << "JIT is managing a GOT\n";
514 if (DwarfExceptionHandling) DE = new JITDwarfEmitter(jit);
516 ~JITEmitter() {
517 delete MemMgr;
518 if (DwarfExceptionHandling) delete DE;
521 /// classof - Methods for support type inquiry through isa, cast, and
522 /// dyn_cast:
524 static inline bool classof(const JITEmitter*) { return true; }
525 static inline bool classof(const MachineCodeEmitter*) { return true; }
527 JITResolver &getJITResolver() { return Resolver; }
529 virtual void startFunction(MachineFunction &F);
530 virtual bool finishFunction(MachineFunction &F);
532 void emitConstantPool(MachineConstantPool *MCP);
533 void initJumpTableInfo(MachineJumpTableInfo *MJTI);
534 void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
536 virtual void startGVStub(const GlobalValue* GV, unsigned StubSize,
537 unsigned Alignment = 1);
538 virtual void startGVStub(const GlobalValue* GV, void *Buffer,
539 unsigned StubSize);
540 virtual void* finishGVStub(const GlobalValue *GV);
542 /// allocateSpace - Reserves space in the current block if any, or
543 /// allocate a new one of the given size.
544 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
546 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
547 /// this method does not allocate memory in the current output buffer,
548 /// because a global may live longer than the current function.
549 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
551 virtual void addRelocation(const MachineRelocation &MR) {
552 Relocations.push_back(MR);
555 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
556 if (MBBLocations.size() <= (unsigned)MBB->getNumber())
557 MBBLocations.resize((MBB->getNumber()+1)*2);
558 MBBLocations[MBB->getNumber()] = getCurrentPCValue();
559 DOUT << "JIT: Emitting BB" << MBB->getNumber() << " at ["
560 << (void*) getCurrentPCValue() << "]\n";
563 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
564 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
566 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
567 assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
568 MBBLocations[MBB->getNumber()] && "MBB not emitted!");
569 return MBBLocations[MBB->getNumber()];
572 /// retryWithMoreMemory - Log a retry and deallocate all memory for the
573 /// given function. Increase the minimum allocation size so that we get
574 /// more memory next time.
575 void retryWithMoreMemory(MachineFunction &F);
577 /// deallocateMemForFunction - Deallocate all memory for the specified
578 /// function body.
579 void deallocateMemForFunction(const Function *F);
581 /// AddStubToCurrentFunction - Mark the current function being JIT'd as
582 /// using the stub at the specified address. Allows
583 /// deallocateMemForFunction to also remove stubs no longer referenced.
584 void AddStubToCurrentFunction(void *Stub);
586 /// getExternalFnStubs - Accessor for the JIT to find stubs emitted for
587 /// MachineRelocations that reference external functions by name.
588 const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
590 virtual void processDebugLoc(DebugLoc DL);
592 virtual void emitLabel(uint64_t LabelID) {
593 if (LabelLocations.size() <= LabelID)
594 LabelLocations.resize((LabelID+1)*2);
595 LabelLocations[LabelID] = getCurrentPCValue();
598 virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
599 assert(LabelLocations.size() > (unsigned)LabelID &&
600 LabelLocations[LabelID] && "Label not emitted!");
601 return LabelLocations[LabelID];
604 virtual void setModuleInfo(MachineModuleInfo* Info) {
605 MMI = Info;
606 if (DwarfExceptionHandling) DE->setModuleInfo(Info);
609 void setMemoryExecutable() {
610 MemMgr->setMemoryExecutable();
613 JITMemoryManager *getMemMgr() const { return MemMgr; }
615 private:
616 void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
617 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
618 bool NoNeedStub);
619 unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
620 unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
621 unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
622 unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
626 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
627 bool DoesntNeedStub) {
628 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
629 return TheJIT->getOrEmitGlobalVariable(GV);
631 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
632 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
634 // If we have already compiled the function, return a pointer to its body.
635 Function *F = cast<Function>(V);
636 void *ResultPtr;
637 if (!DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) {
638 // Return the function stub if it's already created.
639 ResultPtr = Resolver.getFunctionStubIfAvailable(F);
640 if (ResultPtr)
641 AddStubToCurrentFunction(ResultPtr);
642 } else {
643 ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
645 if (ResultPtr) return ResultPtr;
647 // If this is an external function pointer, we can force the JIT to
648 // 'compile' it, which really just adds it to the map. In dlsym mode,
649 // external functions are forced through a stub, regardless of reloc type.
650 if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode() &&
651 DoesntNeedStub && !TheJIT->areDlsymStubsEnabled())
652 return TheJIT->getPointerToFunction(F);
654 // Okay, the function has not been compiled yet, if the target callback
655 // mechanism is capable of rewriting the instruction directly, prefer to do
656 // that instead of emitting a stub. This uses the lazy resolver, so is not
657 // legal if lazy compilation is disabled.
658 if (DoesntNeedStub && !TheJIT->isLazyCompilationDisabled())
659 return Resolver.AddCallbackAtLocation(F, Reference);
661 // Otherwise, we have to emit a stub.
662 void *StubAddr = Resolver.getFunctionStub(F);
664 // Add the stub to the current function's list of referenced stubs, so we can
665 // deallocate them if the current function is ever freed. It's possible to
666 // return null from getFunctionStub in the case of a weak extern that fails
667 // to resolve.
668 if (StubAddr)
669 AddStubToCurrentFunction(StubAddr);
671 return StubAddr;
674 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
675 bool NoNeedStub) {
676 // Make sure GV is emitted first, and create a stub containing the fully
677 // resolved address.
678 void *GVAddress = getPointerToGlobal(V, Reference, true);
679 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
681 // Add the stub to the current function's list of referenced stubs, so we can
682 // deallocate them if the current function is ever freed.
683 AddStubToCurrentFunction(StubAddr);
685 return StubAddr;
688 void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
689 if (!TheJIT->areDlsymStubsEnabled())
690 return;
692 assert(CurFn && "Stub added to current function, but current function is 0!");
694 SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
695 StubsUsed.push_back(StubAddr);
697 SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr];
698 FnRefs.insert(CurFn);
701 void JITEmitter::processDebugLoc(DebugLoc DL) {
702 if (!DL.isUnknown()) {
703 DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL);
705 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) {
706 JITEvent_EmittedFunctionDetails::LineStart NextLine;
707 NextLine.Address = getCurrentPCValue();
708 NextLine.Loc = DL;
709 EmissionDetails.LineStarts.push_back(NextLine);
712 PrevDLT = CurDLT;
716 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
717 const TargetData *TD) {
718 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
719 if (Constants.empty()) return 0;
721 unsigned Size = 0;
722 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
723 MachineConstantPoolEntry CPE = Constants[i];
724 unsigned AlignMask = CPE.getAlignment() - 1;
725 Size = (Size + AlignMask) & ~AlignMask;
726 const Type *Ty = CPE.getType();
727 Size += TD->getTypeAllocSize(Ty);
729 return Size;
732 static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
733 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
734 if (JT.empty()) return 0;
736 unsigned NumEntries = 0;
737 for (unsigned i = 0, e = JT.size(); i != e; ++i)
738 NumEntries += JT[i].MBBs.size();
740 unsigned EntrySize = MJTI->getEntrySize();
742 return NumEntries * EntrySize;
745 static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
746 if (Alignment == 0) Alignment = 1;
747 // Since we do not know where the buffer will be allocated, be pessimistic.
748 return Size + Alignment;
751 /// addSizeOfGlobal - add the size of the global (plus any alignment padding)
752 /// into the running total Size.
754 unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
755 const Type *ElTy = GV->getType()->getElementType();
756 size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
757 size_t GVAlign =
758 (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
759 DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign;
760 DEBUG(GV->dump());
761 // Assume code section ends with worst possible alignment, so first
762 // variable needs maximal padding.
763 if (Size==0)
764 Size = 1;
765 Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
766 Size += GVSize;
767 return Size;
770 /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
771 /// but are referenced from the constant; put them in GVSet and add their
772 /// size into the running total Size.
774 unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
775 unsigned Size) {
776 // If its undefined, return the garbage.
777 if (isa<UndefValue>(C))
778 return Size;
780 // If the value is a ConstantExpr
781 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
782 Constant *Op0 = CE->getOperand(0);
783 switch (CE->getOpcode()) {
784 case Instruction::GetElementPtr:
785 case Instruction::Trunc:
786 case Instruction::ZExt:
787 case Instruction::SExt:
788 case Instruction::FPTrunc:
789 case Instruction::FPExt:
790 case Instruction::UIToFP:
791 case Instruction::SIToFP:
792 case Instruction::FPToUI:
793 case Instruction::FPToSI:
794 case Instruction::PtrToInt:
795 case Instruction::IntToPtr:
796 case Instruction::BitCast: {
797 Size = addSizeOfGlobalsInConstantVal(Op0, Size);
798 break;
800 case Instruction::Add:
801 case Instruction::FAdd:
802 case Instruction::Sub:
803 case Instruction::FSub:
804 case Instruction::Mul:
805 case Instruction::FMul:
806 case Instruction::UDiv:
807 case Instruction::SDiv:
808 case Instruction::URem:
809 case Instruction::SRem:
810 case Instruction::And:
811 case Instruction::Or:
812 case Instruction::Xor: {
813 Size = addSizeOfGlobalsInConstantVal(Op0, Size);
814 Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
815 break;
817 default: {
818 std::string msg;
819 raw_string_ostream Msg(msg);
820 Msg << "ConstantExpr not handled: " << *CE;
821 llvm_report_error(Msg.str());
826 if (C->getType()->getTypeID() == Type::PointerTyID)
827 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
828 if (GVSet.insert(GV))
829 Size = addSizeOfGlobal(GV, Size);
831 return Size;
834 /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
835 /// but are referenced from the given initializer.
837 unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init,
838 unsigned Size) {
839 if (!isa<UndefValue>(Init) &&
840 !isa<ConstantVector>(Init) &&
841 !isa<ConstantAggregateZero>(Init) &&
842 !isa<ConstantArray>(Init) &&
843 !isa<ConstantStruct>(Init) &&
844 Init->getType()->isFirstClassType())
845 Size = addSizeOfGlobalsInConstantVal(Init, Size);
846 return Size;
849 /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
850 /// globals; then walk the initializers of those globals looking for more.
851 /// If their size has not been considered yet, add it into the running total
852 /// Size.
854 unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
855 unsigned Size = 0;
856 GVSet.clear();
858 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
859 MBB != E; ++MBB) {
860 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
861 I != E; ++I) {
862 const TargetInstrDesc &Desc = I->getDesc();
863 const MachineInstr &MI = *I;
864 unsigned NumOps = Desc.getNumOperands();
865 for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
866 const MachineOperand &MO = MI.getOperand(CurOp);
867 if (MO.isGlobal()) {
868 GlobalValue* V = MO.getGlobal();
869 const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
870 if (!GV)
871 continue;
872 // If seen in previous function, it will have an entry here.
873 if (TheJIT->getPointerToGlobalIfAvailable(GV))
874 continue;
875 // If seen earlier in this function, it will have an entry here.
876 // FIXME: it should be possible to combine these tables, by
877 // assuming the addresses of the new globals in this module
878 // start at 0 (or something) and adjusting them after codegen
879 // complete. Another possibility is to grab a marker bit in GV.
880 if (GVSet.insert(GV))
881 // A variable as yet unseen. Add in its size.
882 Size = addSizeOfGlobal(GV, Size);
887 DOUT << "JIT: About to look through initializers\n";
888 // Look for more globals that are referenced only from initializers.
889 // GVSet.end is computed each time because the set can grow as we go.
890 for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
891 I != GVSet.end(); I++) {
892 const GlobalVariable* GV = *I;
893 if (GV->hasInitializer())
894 Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
897 return Size;
900 void JITEmitter::startFunction(MachineFunction &F) {
901 DEBUG(errs() << "JIT: Starting CodeGen of Function "
902 << F.getFunction()->getName() << "\n");
904 uintptr_t ActualSize = 0;
905 // Set the memory writable, if it's not already
906 MemMgr->setMemoryWritable();
907 if (MemMgr->NeedsExactSize()) {
908 DOUT << "JIT: ExactSize\n";
909 const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
910 MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
911 MachineConstantPool *MCP = F.getConstantPool();
913 // Ensure the constant pool/jump table info is at least 4-byte aligned.
914 ActualSize = RoundUpToAlign(ActualSize, 16);
916 // Add the alignment of the constant pool
917 ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
919 // Add the constant pool size
920 ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
922 // Add the aligment of the jump table info
923 ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());
925 // Add the jump table size
926 ActualSize += GetJumpTableSizeInBytes(MJTI);
928 // Add the alignment for the function
929 ActualSize = RoundUpToAlign(ActualSize,
930 std::max(F.getFunction()->getAlignment(), 8U));
932 // Add the function size
933 ActualSize += TII->GetFunctionSizeInBytes(F);
935 DOUT << "JIT: ActualSize before globals " << ActualSize << "\n";
936 // Add the size of the globals that will be allocated after this function.
937 // These are all the ones referenced from this function that were not
938 // previously allocated.
939 ActualSize += GetSizeOfGlobalsInBytes(F);
940 DOUT << "JIT: ActualSize after globals " << ActualSize << "\n";
941 } else if (SizeEstimate > 0) {
942 // SizeEstimate will be non-zero on reallocation attempts.
943 ActualSize = SizeEstimate;
946 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
947 ActualSize);
948 BufferEnd = BufferBegin+ActualSize;
950 // Ensure the constant pool/jump table info is at least 4-byte aligned.
951 emitAlignment(16);
953 emitConstantPool(F.getConstantPool());
954 initJumpTableInfo(F.getJumpTableInfo());
956 // About to start emitting the machine code for the function.
957 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
958 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
960 MBBLocations.clear();
962 EmissionDetails.MF = &F;
963 EmissionDetails.LineStarts.clear();
966 bool JITEmitter::finishFunction(MachineFunction &F) {
967 if (CurBufferPtr == BufferEnd) {
968 // We must call endFunctionBody before retrying, because
969 // deallocateMemForFunction requires it.
970 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
971 retryWithMoreMemory(F);
972 return true;
975 emitJumpTableInfo(F.getJumpTableInfo());
977 // FnStart is the start of the text, not the start of the constant pool and
978 // other per-function data.
979 uint8_t *FnStart =
980 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
982 // FnEnd is the end of the function's machine code.
983 uint8_t *FnEnd = CurBufferPtr;
985 if (!Relocations.empty()) {
986 CurFn = F.getFunction();
987 NumRelos += Relocations.size();
989 // Resolve the relocations to concrete pointers.
990 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
991 MachineRelocation &MR = Relocations[i];
992 void *ResultPtr = 0;
993 if (!MR.letTargetResolve()) {
994 if (MR.isExternalSymbol()) {
995 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
996 false);
997 DOUT << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
998 << ResultPtr << "]\n";
1000 // If the target REALLY wants a stub for this function, emit it now.
1001 if (!MR.doesntNeedStub()) {
1002 if (!TheJIT->areDlsymStubsEnabled()) {
1003 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1004 } else {
1005 void *&Stub = ExtFnStubs[MR.getExternalSymbol()];
1006 if (!Stub) {
1007 Stub = Resolver.getExternalFunctionStub((void *)&Stub);
1008 AddStubToCurrentFunction(Stub);
1010 ResultPtr = Stub;
1013 } else if (MR.isGlobalValue()) {
1014 ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1015 BufferBegin+MR.getMachineCodeOffset(),
1016 MR.doesntNeedStub());
1017 } else if (MR.isIndirectSymbol()) {
1018 ResultPtr = getPointerToGVIndirectSym(MR.getGlobalValue(),
1019 BufferBegin+MR.getMachineCodeOffset(),
1020 MR.doesntNeedStub());
1021 } else if (MR.isBasicBlock()) {
1022 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1023 } else if (MR.isConstantPoolIndex()) {
1024 ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1025 } else {
1026 assert(MR.isJumpTableIndex());
1027 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1030 MR.setResultPointer(ResultPtr);
1033 // if we are managing the GOT and the relocation wants an index,
1034 // give it one
1035 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1036 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1037 MR.setGOTIndex(idx);
1038 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1039 DOUT << "JIT: GOT was out of date for " << ResultPtr
1040 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1041 << "\n";
1042 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1047 CurFn = 0;
1048 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1049 Relocations.size(), MemMgr->getGOTBase());
1052 // Update the GOT entry for F to point to the new code.
1053 if (MemMgr->isManagingGOT()) {
1054 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1055 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1056 DOUT << "JIT: GOT was out of date for " << (void*)BufferBegin
1057 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
1058 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1062 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1063 // global variables that were referenced in the relocations.
1064 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1066 if (CurBufferPtr == BufferEnd) {
1067 retryWithMoreMemory(F);
1068 return true;
1069 } else {
1070 // Now that we've succeeded in emitting the function, reset the
1071 // SizeEstimate back down to zero.
1072 SizeEstimate = 0;
1075 BufferBegin = CurBufferPtr = 0;
1076 NumBytes += FnEnd-FnStart;
1078 // Invalidate the icache if necessary.
1079 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1081 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1082 EmissionDetails);
1084 DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1085 << "] Function: " << F.getFunction()->getName()
1086 << ": " << (FnEnd-FnStart) << " bytes of text, "
1087 << Relocations.size() << " relocations\n");
1089 Relocations.clear();
1090 ConstPoolAddresses.clear();
1092 // Mark code region readable and executable if it's not so already.
1093 MemMgr->setMemoryExecutable();
1095 #ifndef NDEBUG
1097 if (sys::hasDisassembler()) {
1098 DOUT << "JIT: Disassembled code:\n";
1099 DOUT << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
1100 } else {
1101 DOUT << "JIT: Binary code:\n";
1102 DOUT << std::hex;
1103 uint8_t* q = FnStart;
1104 for (int i = 0; q < FnEnd; q += 4, ++i) {
1105 if (i == 4)
1106 i = 0;
1107 if (i == 0)
1108 DOUT << "JIT: " << std::setw(8) << std::setfill('0')
1109 << (long)(q - FnStart) << ": ";
1110 bool Done = false;
1111 for (int j = 3; j >= 0; --j) {
1112 if (q + j >= FnEnd)
1113 Done = true;
1114 else
1115 DOUT << std::setw(2) << std::setfill('0') << (unsigned short)q[j];
1117 if (Done)
1118 break;
1119 DOUT << ' ';
1120 if (i == 3)
1121 DOUT << '\n';
1123 DOUT << std::dec;
1124 DOUT<< '\n';
1127 #endif
1128 if (DwarfExceptionHandling) {
1129 uintptr_t ActualSize = 0;
1130 SavedBufferBegin = BufferBegin;
1131 SavedBufferEnd = BufferEnd;
1132 SavedCurBufferPtr = CurBufferPtr;
1134 if (MemMgr->NeedsExactSize()) {
1135 ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1138 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1139 ActualSize);
1140 BufferEnd = BufferBegin+ActualSize;
1141 uint8_t* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
1142 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1143 FrameRegister);
1144 BufferBegin = SavedBufferBegin;
1145 BufferEnd = SavedBufferEnd;
1146 CurBufferPtr = SavedCurBufferPtr;
1148 TheJIT->RegisterTable(FrameRegister);
1151 if (MMI)
1152 MMI->EndFunction();
1154 return false;
1157 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1158 DOUT << "JIT: Ran out of space for native code. Reattempting.\n";
1159 Relocations.clear(); // Clear the old relocations or we'll reapply them.
1160 ConstPoolAddresses.clear();
1161 ++NumRetries;
1162 deallocateMemForFunction(F.getFunction());
1163 // Try again with at least twice as much free space.
1164 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1167 /// deallocateMemForFunction - Deallocate all memory for the specified
1168 /// function body. Also drop any references the function has to stubs.
1169 void JITEmitter::deallocateMemForFunction(const Function *F) {
1170 MemMgr->deallocateMemForFunction(F);
1172 // If the function did not reference any stubs, return.
1173 if (CurFnStubUses.find(F) == CurFnStubUses.end())
1174 return;
1176 // For each referenced stub, erase the reference to this function, and then
1177 // erase the list of referenced stubs.
1178 SmallVectorImpl<void *> &StubList = CurFnStubUses[F];
1179 for (unsigned i = 0, e = StubList.size(); i != e; ++i) {
1180 void *Stub = StubList[i];
1182 // If we already invalidated this stub for this function, continue.
1183 if (StubFnRefs.count(Stub) == 0)
1184 continue;
1186 SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub];
1187 FnRefs.erase(F);
1189 // If this function was the last reference to the stub, invalidate the stub
1190 // in the JITResolver. Were there a memory manager deallocateStub routine,
1191 // we could call that at this point too.
1192 if (FnRefs.empty()) {
1193 DOUT << "\nJIT: Invalidated Stub at [" << Stub << "]\n";
1194 StubFnRefs.erase(Stub);
1196 // Invalidate the stub. If it is a GV stub, update the JIT's global
1197 // mapping for that GV to zero, otherwise, search the string map of
1198 // external function names to stubs and remove the entry for this stub.
1199 GlobalValue *GV = Resolver.invalidateStub(Stub);
1200 if (GV) {
1201 TheJIT->updateGlobalMapping(GV, 0);
1202 } else {
1203 for (StringMapIterator<void*> i = ExtFnStubs.begin(),
1204 e = ExtFnStubs.end(); i != e; ++i) {
1205 if (i->second == Stub) {
1206 ExtFnStubs.erase(i);
1207 break;
1213 CurFnStubUses.erase(F);
1217 void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1218 if (BufferBegin)
1219 return JITCodeEmitter::allocateSpace(Size, Alignment);
1221 // create a new memory block if there is no active one.
1222 // care must be taken so that BufferBegin is invalidated when a
1223 // block is trimmed
1224 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1225 BufferEnd = BufferBegin+Size;
1226 return CurBufferPtr;
1229 void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1230 // Delegate this call through the memory manager.
1231 return MemMgr->allocateGlobal(Size, Alignment);
1234 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1235 if (TheJIT->getJITInfo().hasCustomConstantPool())
1236 return;
1238 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1239 if (Constants.empty()) return;
1241 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1242 unsigned Align = MCP->getConstantPoolAlignment();
1243 ConstantPoolBase = allocateSpace(Size, Align);
1244 ConstantPool = MCP;
1246 if (ConstantPoolBase == 0) return; // Buffer overflow.
1248 DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
1249 << "] (size: " << Size << ", alignment: " << Align << ")\n";
1251 // Initialize the memory for all of the constant pool entries.
1252 unsigned Offset = 0;
1253 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1254 MachineConstantPoolEntry CPE = Constants[i];
1255 unsigned AlignMask = CPE.getAlignment() - 1;
1256 Offset = (Offset + AlignMask) & ~AlignMask;
1258 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1259 ConstPoolAddresses.push_back(CAddr);
1260 if (CPE.isMachineConstantPoolEntry()) {
1261 // FIXME: add support to lower machine constant pool values into bytes!
1262 llvm_report_error("Initialize memory with machine specific constant pool"
1263 "entry has not been implemented!");
1265 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1266 DOUT << "JIT: CP" << i << " at [0x"
1267 << std::hex << CAddr << std::dec << "]\n";
1269 const Type *Ty = CPE.Val.ConstVal->getType();
1270 Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1274 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1275 if (TheJIT->getJITInfo().hasCustomJumpTables())
1276 return;
1278 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1279 if (JT.empty()) return;
1281 unsigned NumEntries = 0;
1282 for (unsigned i = 0, e = JT.size(); i != e; ++i)
1283 NumEntries += JT[i].MBBs.size();
1285 unsigned EntrySize = MJTI->getEntrySize();
1287 // Just allocate space for all the jump tables now. We will fix up the actual
1288 // MBB entries in the tables after we emit the code for each block, since then
1289 // we will know the final locations of the MBBs in memory.
1290 JumpTable = MJTI;
1291 JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
1294 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1295 if (TheJIT->getJITInfo().hasCustomJumpTables())
1296 return;
1298 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1299 if (JT.empty() || JumpTableBase == 0) return;
1301 if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
1302 assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
1303 // For each jump table, place the offset from the beginning of the table
1304 // to the target address.
1305 int *SlotPtr = (int*)JumpTableBase;
1307 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1308 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1309 // Store the offset of the basic block for this jump table slot in the
1310 // memory we allocated for the jump table in 'initJumpTableInfo'
1311 uintptr_t Base = (uintptr_t)SlotPtr;
1312 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1313 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1314 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1317 } else {
1318 assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
1320 // For each jump table, map each target in the jump table to the address of
1321 // an emitted MachineBasicBlock.
1322 intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1324 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1325 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1326 // Store the address of the basic block for this jump table slot in the
1327 // memory we allocated for the jump table in 'initJumpTableInfo'
1328 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1329 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1334 void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize,
1335 unsigned Alignment) {
1336 SavedBufferBegin = BufferBegin;
1337 SavedBufferEnd = BufferEnd;
1338 SavedCurBufferPtr = CurBufferPtr;
1340 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1341 BufferEnd = BufferBegin+StubSize+1;
1344 void JITEmitter::startGVStub(const GlobalValue* GV, void *Buffer,
1345 unsigned StubSize) {
1346 SavedBufferBegin = BufferBegin;
1347 SavedBufferEnd = BufferEnd;
1348 SavedCurBufferPtr = CurBufferPtr;
1350 BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1351 BufferEnd = BufferBegin+StubSize+1;
1354 void *JITEmitter::finishGVStub(const GlobalValue* GV) {
1355 NumBytes += getCurrentPCOffset();
1356 std::swap(SavedBufferBegin, BufferBegin);
1357 BufferEnd = SavedBufferEnd;
1358 CurBufferPtr = SavedCurBufferPtr;
1359 return SavedBufferBegin;
1362 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1363 // in the constant pool that was last emitted with the 'emitConstantPool'
1364 // method.
1366 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1367 assert(ConstantNum < ConstantPool->getConstants().size() &&
1368 "Invalid ConstantPoolIndex!");
1369 return ConstPoolAddresses[ConstantNum];
1372 // getJumpTableEntryAddress - Return the address of the JumpTable with index
1373 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1375 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1376 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1377 assert(Index < JT.size() && "Invalid jump table index!");
1379 unsigned Offset = 0;
1380 unsigned EntrySize = JumpTable->getEntrySize();
1382 for (unsigned i = 0; i < Index; ++i)
1383 Offset += JT[i].MBBs.size();
1385 Offset *= EntrySize;
1387 return (uintptr_t)((char *)JumpTableBase + Offset);
1390 //===----------------------------------------------------------------------===//
1391 // Public interface to this file
1392 //===----------------------------------------------------------------------===//
1394 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
1395 return new JITEmitter(jit, JMM);
1398 // getPointerToNamedFunction - This function is used as a global wrapper to
1399 // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
1400 // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
1401 // need to resolve function(s) that are being mis-codegenerated, so we need to
1402 // resolve their addresses at runtime, and this is the way to do it.
1403 extern "C" {
1404 void *getPointerToNamedFunction(const char *Name) {
1405 if (Function *F = TheJIT->FindFunctionNamed(Name))
1406 return TheJIT->getPointerToFunction(F);
1407 return TheJIT->getPointerToNamedFunction(Name);
1411 // getPointerToFunctionOrStub - If the specified function has been
1412 // code-gen'd, return a pointer to the function. If not, compile it, or use
1413 // a stub to implement lazy compilation if available.
1415 void *JIT::getPointerToFunctionOrStub(Function *F) {
1416 // If we have already code generated the function, just return the address.
1417 if (void *Addr = getPointerToGlobalIfAvailable(F))
1418 return Addr;
1420 // Get a stub if the target supports it.
1421 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1422 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1423 return JE->getJITResolver().getFunctionStub(F);
1426 void JIT::updateFunctionStub(Function *F) {
1427 // Get the empty stub we generated earlier.
1428 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1429 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1430 void *Stub = JE->getJITResolver().getFunctionStub(F);
1432 // Tell the target jit info to rewrite the stub at the specified address,
1433 // rather than creating a new one.
1434 void *Addr = getPointerToGlobalIfAvailable(F);
1435 getJITInfo().emitFunctionStubAtAddr(F, Addr, Stub, *getCodeEmitter());
1438 /// updateDlsymStubTable - Emit the data necessary to relocate the stubs
1439 /// that were emitted during code generation.
1441 void JIT::updateDlsymStubTable() {
1442 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1443 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1445 SmallVector<GlobalValue*, 8> GVs;
1446 SmallVector<void*, 8> Ptrs;
1447 const StringMap<void *> &ExtFns = JE->getExternalFnStubs();
1449 JE->getJITResolver().getRelocatableGVs(GVs, Ptrs);
1451 unsigned nStubs = GVs.size() + ExtFns.size();
1453 // If there are no relocatable stubs, return.
1454 if (nStubs == 0)
1455 return;
1457 // If there are no new relocatable stubs, return.
1458 void *CurTable = JE->getMemMgr()->getDlsymTable();
1459 if (CurTable && (*(unsigned *)CurTable == nStubs))
1460 return;
1462 // Calculate the size of the stub info
1463 unsigned offset = 4 + 4 * nStubs + sizeof(intptr_t) * nStubs;
1465 SmallVector<unsigned, 8> Offsets;
1466 for (unsigned i = 0; i != GVs.size(); ++i) {
1467 Offsets.push_back(offset);
1468 offset += GVs[i]->getName().size() + 1;
1470 for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1471 i != e; ++i) {
1472 Offsets.push_back(offset);
1473 offset += strlen(i->first()) + 1;
1476 // Allocate space for the new "stub", which contains the dlsym table.
1477 JE->startGVStub(0, offset, 4);
1479 // Emit the number of records
1480 JE->emitInt32(nStubs);
1482 // Emit the string offsets
1483 for (unsigned i = 0; i != nStubs; ++i)
1484 JE->emitInt32(Offsets[i]);
1486 // Emit the pointers. Verify that they are at least 2-byte aligned, and set
1487 // the low bit to 0 == GV, 1 == Function, so that the client code doing the
1488 // relocation can write the relocated pointer at the appropriate place in
1489 // the stub.
1490 for (unsigned i = 0; i != GVs.size(); ++i) {
1491 intptr_t Ptr = (intptr_t)Ptrs[i];
1492 assert((Ptr & 1) == 0 && "Stub pointers must be at least 2-byte aligned!");
1494 if (isa<Function>(GVs[i]))
1495 Ptr |= (intptr_t)1;
1497 if (sizeof(Ptr) == 8)
1498 JE->emitInt64(Ptr);
1499 else
1500 JE->emitInt32(Ptr);
1502 for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1503 i != e; ++i) {
1504 intptr_t Ptr = (intptr_t)i->second | 1;
1506 if (sizeof(Ptr) == 8)
1507 JE->emitInt64(Ptr);
1508 else
1509 JE->emitInt32(Ptr);
1512 // Emit the strings.
1513 for (unsigned i = 0; i != GVs.size(); ++i)
1514 JE->emitString(GVs[i]->getName());
1515 for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
1516 i != e; ++i)
1517 JE->emitString(i->first());
1519 // Tell the JIT memory manager where it is. The JIT Memory Manager will
1520 // deallocate space for the old one, if one existed.
1521 JE->getMemMgr()->SetDlsymTable(JE->finishGVStub(0));
1524 /// freeMachineCodeForFunction - release machine code memory for given Function.
1526 void JIT::freeMachineCodeForFunction(Function *F) {
1528 // Delete translation for this from the ExecutionEngine, so it will get
1529 // retranslated next time it is used.
1530 void *OldPtr = updateGlobalMapping(F, 0);
1532 if (OldPtr)
1533 TheJIT->NotifyFreeingMachineCode(*F, OldPtr);
1535 // Free the actual memory for the function body and related stuff.
1536 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1537 cast<JITEmitter>(JCE)->deallocateMemForFunction(F);