1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the DefaultJITMemoryManager class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jit"
15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/System/Memory.h"
34 STATISTIC(NumSlabs
, "Number of slabs of memory allocated by the JIT");
36 JITMemoryManager::~JITMemoryManager() {}
38 //===----------------------------------------------------------------------===//
39 // Memory Block Implementation.
40 //===----------------------------------------------------------------------===//
43 /// MemoryRangeHeader - For a range of memory, this is the header that we put
44 /// on the block of memory. It is carefully crafted to be one word of memory.
45 /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
46 /// which starts with this.
47 struct FreeRangeHeader
;
48 struct MemoryRangeHeader
{
49 /// ThisAllocated - This is true if this block is currently allocated. If
50 /// not, this can be converted to a FreeRangeHeader.
51 unsigned ThisAllocated
: 1;
53 /// PrevAllocated - Keep track of whether the block immediately before us is
54 /// allocated. If not, the word immediately before this header is the size
55 /// of the previous block.
56 unsigned PrevAllocated
: 1;
58 /// BlockSize - This is the size in bytes of this memory block,
59 /// including this header.
60 uintptr_t BlockSize
: (sizeof(intptr_t)*CHAR_BIT
- 2);
63 /// getBlockAfter - Return the memory block immediately after this one.
65 MemoryRangeHeader
&getBlockAfter() const {
66 return *(MemoryRangeHeader
*)((char*)this+BlockSize
);
69 /// getFreeBlockBefore - If the block before this one is free, return it,
70 /// otherwise return null.
71 FreeRangeHeader
*getFreeBlockBefore() const {
72 if (PrevAllocated
) return 0;
73 intptr_t PrevSize
= ((intptr_t *)this)[-1];
74 return (FreeRangeHeader
*)((char*)this-PrevSize
);
77 /// FreeBlock - Turn an allocated block into a free block, adjusting
78 /// bits in the object headers, and adding an end of region memory block.
79 FreeRangeHeader
*FreeBlock(FreeRangeHeader
*FreeList
);
81 /// TrimAllocationToSize - If this allocated block is significantly larger
82 /// than NewSize, split it into two pieces (where the former is NewSize
83 /// bytes, including the header), and add the new block to the free list.
84 FreeRangeHeader
*TrimAllocationToSize(FreeRangeHeader
*FreeList
,
88 /// FreeRangeHeader - For a memory block that isn't already allocated, this
89 /// keeps track of the current block and has a pointer to the next free block.
90 /// Free blocks are kept on a circularly linked list.
91 struct FreeRangeHeader
: public MemoryRangeHeader
{
92 FreeRangeHeader
*Prev
;
93 FreeRangeHeader
*Next
;
95 /// getMinBlockSize - Get the minimum size for a memory block. Blocks
96 /// smaller than this size cannot be created.
97 static unsigned getMinBlockSize() {
98 return sizeof(FreeRangeHeader
)+sizeof(intptr_t);
101 /// SetEndOfBlockSizeMarker - The word at the end of every free block is
102 /// known to be the size of the free block. Set it for this block.
103 void SetEndOfBlockSizeMarker() {
104 void *EndOfBlock
= (char*)this + BlockSize
;
105 ((intptr_t *)EndOfBlock
)[-1] = BlockSize
;
108 FreeRangeHeader
*RemoveFromFreeList() {
109 assert(Next
->Prev
== this && Prev
->Next
== this && "Freelist broken!");
111 return Prev
->Next
= Next
;
114 void AddToFreeList(FreeRangeHeader
*FreeList
) {
116 Prev
= FreeList
->Prev
;
121 /// GrowBlock - The block after this block just got deallocated. Merge it
122 /// into the current block.
123 void GrowBlock(uintptr_t NewSize
);
125 /// AllocateBlock - Mark this entire block allocated, updating freelists
126 /// etc. This returns a pointer to the circular free-list.
127 FreeRangeHeader
*AllocateBlock();
132 /// AllocateBlock - Mark this entire block allocated, updating freelists
133 /// etc. This returns a pointer to the circular free-list.
134 FreeRangeHeader
*FreeRangeHeader::AllocateBlock() {
135 assert(!ThisAllocated
&& !getBlockAfter().PrevAllocated
&&
136 "Cannot allocate an allocated block!");
137 // Mark this block allocated.
139 getBlockAfter().PrevAllocated
= 1;
141 // Remove it from the free list.
142 return RemoveFromFreeList();
145 /// FreeBlock - Turn an allocated block into a free block, adjusting
146 /// bits in the object headers, and adding an end of region memory block.
147 /// If possible, coalesce this block with neighboring blocks. Return the
148 /// FreeRangeHeader to allocate from.
149 FreeRangeHeader
*MemoryRangeHeader::FreeBlock(FreeRangeHeader
*FreeList
) {
150 MemoryRangeHeader
*FollowingBlock
= &getBlockAfter();
151 assert(ThisAllocated
&& "This block is already free!");
152 assert(FollowingBlock
->PrevAllocated
&& "Flags out of sync!");
154 FreeRangeHeader
*FreeListToReturn
= FreeList
;
156 // If the block after this one is free, merge it into this block.
157 if (!FollowingBlock
->ThisAllocated
) {
158 FreeRangeHeader
&FollowingFreeBlock
= *(FreeRangeHeader
*)FollowingBlock
;
159 // "FreeList" always needs to be a valid free block. If we're about to
160 // coalesce with it, update our notion of what the free list is.
161 if (&FollowingFreeBlock
== FreeList
) {
162 FreeList
= FollowingFreeBlock
.Next
;
163 FreeListToReturn
= 0;
164 assert(&FollowingFreeBlock
!= FreeList
&& "No tombstone block?");
166 FollowingFreeBlock
.RemoveFromFreeList();
168 // Include the following block into this one.
169 BlockSize
+= FollowingFreeBlock
.BlockSize
;
170 FollowingBlock
= &FollowingFreeBlock
.getBlockAfter();
172 // Tell the block after the block we are coalescing that this block is
174 FollowingBlock
->PrevAllocated
= 1;
177 assert(FollowingBlock
->ThisAllocated
&& "Missed coalescing?");
179 if (FreeRangeHeader
*PrevFreeBlock
= getFreeBlockBefore()) {
180 PrevFreeBlock
->GrowBlock(PrevFreeBlock
->BlockSize
+ BlockSize
);
181 return FreeListToReturn
? FreeListToReturn
: PrevFreeBlock
;
184 // Otherwise, mark this block free.
185 FreeRangeHeader
&FreeBlock
= *(FreeRangeHeader
*)this;
186 FollowingBlock
->PrevAllocated
= 0;
187 FreeBlock
.ThisAllocated
= 0;
189 // Link this into the linked list of free blocks.
190 FreeBlock
.AddToFreeList(FreeList
);
192 // Add a marker at the end of the block, indicating the size of this free
194 FreeBlock
.SetEndOfBlockSizeMarker();
195 return FreeListToReturn
? FreeListToReturn
: &FreeBlock
;
198 /// GrowBlock - The block after this block just got deallocated. Merge it
199 /// into the current block.
200 void FreeRangeHeader::GrowBlock(uintptr_t NewSize
) {
201 assert(NewSize
> BlockSize
&& "Not growing block?");
203 SetEndOfBlockSizeMarker();
204 getBlockAfter().PrevAllocated
= 0;
207 /// TrimAllocationToSize - If this allocated block is significantly larger
208 /// than NewSize, split it into two pieces (where the former is NewSize
209 /// bytes, including the header), and add the new block to the free list.
210 FreeRangeHeader
*MemoryRangeHeader::
211 TrimAllocationToSize(FreeRangeHeader
*FreeList
, uint64_t NewSize
) {
212 assert(ThisAllocated
&& getBlockAfter().PrevAllocated
&&
213 "Cannot deallocate part of an allocated block!");
215 // Don't allow blocks to be trimmed below minimum required size
216 NewSize
= std::max
<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize
);
218 // Round up size for alignment of header.
219 unsigned HeaderAlign
= __alignof(FreeRangeHeader
);
220 NewSize
= (NewSize
+ (HeaderAlign
-1)) & ~(HeaderAlign
-1);
222 // Size is now the size of the block we will remove from the start of the
224 assert(NewSize
<= BlockSize
&&
225 "Allocating more space from this block than exists!");
227 // If splitting this block will cause the remainder to be too small, do not
229 if (BlockSize
<= NewSize
+FreeRangeHeader::getMinBlockSize())
232 // Otherwise, we splice the required number of bytes out of this block, form
233 // a new block immediately after it, then mark this block allocated.
234 MemoryRangeHeader
&FormerNextBlock
= getBlockAfter();
236 // Change the size of this block.
239 // Get the new block we just sliced out and turn it into a free block.
240 FreeRangeHeader
&NewNextBlock
= (FreeRangeHeader
&)getBlockAfter();
241 NewNextBlock
.BlockSize
= (char*)&FormerNextBlock
- (char*)&NewNextBlock
;
242 NewNextBlock
.ThisAllocated
= 0;
243 NewNextBlock
.PrevAllocated
= 1;
244 NewNextBlock
.SetEndOfBlockSizeMarker();
245 FormerNextBlock
.PrevAllocated
= 0;
246 NewNextBlock
.AddToFreeList(FreeList
);
247 return &NewNextBlock
;
250 //===----------------------------------------------------------------------===//
251 // Memory Block Implementation.
252 //===----------------------------------------------------------------------===//
256 class DefaultJITMemoryManager
;
258 class JITSlabAllocator
: public SlabAllocator
{
259 DefaultJITMemoryManager
&JMM
;
261 JITSlabAllocator(DefaultJITMemoryManager
&jmm
) : JMM(jmm
) { }
262 virtual ~JITSlabAllocator() { }
263 virtual MemSlab
*Allocate(size_t Size
);
264 virtual void Deallocate(MemSlab
*Slab
);
267 /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
268 /// This splits a large block of MAP_NORESERVE'd memory into two
269 /// sections, one for function stubs, one for the functions themselves. We
270 /// have to do this because we may need to emit a function stub while in the
271 /// middle of emitting a function, and we don't know how large the function we
273 class DefaultJITMemoryManager
: public JITMemoryManager
{
275 // Whether to poison freed memory.
278 /// LastSlab - This points to the last slab allocated and is used as the
279 /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
280 /// stubs, data, and code contiguously in memory. In general, however, this
281 /// is not possible because the NearBlock parameter is ignored on Windows
282 /// platforms and even on Unix it works on a best-effort pasis.
283 sys::MemoryBlock LastSlab
;
285 // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
286 // confuse them with the blocks of memory descibed above.
287 std::vector
<sys::MemoryBlock
> CodeSlabs
;
288 JITSlabAllocator BumpSlabAllocator
;
289 BumpPtrAllocator StubAllocator
;
290 BumpPtrAllocator DataAllocator
;
292 // Circular list of free blocks.
293 FreeRangeHeader
*FreeMemoryList
;
295 // When emitting code into a memory block, this is the block.
296 MemoryRangeHeader
*CurBlock
;
298 uint8_t *GOTBase
; // Target Specific reserved memory
299 void *DlsymTable
; // Stub external symbol information
301 std::map
<const Function
*, MemoryRangeHeader
*> FunctionBlocks
;
302 std::map
<const Function
*, MemoryRangeHeader
*> TableBlocks
;
304 DefaultJITMemoryManager();
305 ~DefaultJITMemoryManager();
307 /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
308 /// last slab it allocated, so that subsequent allocations follow it.
309 sys::MemoryBlock
allocateNewSlab(size_t size
);
311 /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
312 /// least this much unless more is requested.
313 static const size_t DefaultCodeSlabSize
;
315 /// DefaultSlabSize - Allocate data into slabs of this size unless we get
316 /// an allocation above SizeThreshold.
317 static const size_t DefaultSlabSize
;
319 /// DefaultSizeThreshold - For any allocation larger than this threshold, we
320 /// should allocate a separate slab.
321 static const size_t DefaultSizeThreshold
;
324 void SetDlsymTable(void *);
327 virtual bool CheckInvariants(std::string
&ErrorStr
);
328 size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize
; }
329 size_t GetDefaultDataSlabSize() { return DefaultSlabSize
; }
330 size_t GetDefaultStubSlabSize() { return DefaultSlabSize
; }
331 unsigned GetNumCodeSlabs() { return CodeSlabs
.size(); }
332 unsigned GetNumDataSlabs() { return DataAllocator
.GetNumSlabs(); }
333 unsigned GetNumStubSlabs() { return StubAllocator
.GetNumSlabs(); }
335 /// startFunctionBody - When a function starts, allocate a block of free
336 /// executable memory, returning a pointer to it and its actual size.
337 uint8_t *startFunctionBody(const Function
*F
, uintptr_t &ActualSize
) {
339 FreeRangeHeader
* candidateBlock
= FreeMemoryList
;
340 FreeRangeHeader
* head
= FreeMemoryList
;
341 FreeRangeHeader
* iter
= head
->Next
;
343 uintptr_t largest
= candidateBlock
->BlockSize
;
345 // Search for the largest free block
346 while (iter
!= head
) {
347 if (iter
->BlockSize
> largest
) {
348 largest
= iter
->BlockSize
;
349 candidateBlock
= iter
;
354 largest
= largest
- sizeof(MemoryRangeHeader
);
356 // If this block isn't big enough for the allocation desired, allocate
357 // another block of memory and add it to the free list.
358 if (largest
< ActualSize
||
359 largest
<= FreeRangeHeader::getMinBlockSize()) {
360 DOUT
<< "JIT: Allocating another slab of memory for function.";
361 candidateBlock
= allocateNewCodeSlab((size_t)ActualSize
);
364 // Select this candidate block for allocation
365 CurBlock
= candidateBlock
;
367 // Allocate the entire memory block.
368 FreeMemoryList
= candidateBlock
->AllocateBlock();
369 ActualSize
= CurBlock
->BlockSize
- sizeof(MemoryRangeHeader
);
370 return (uint8_t *)(CurBlock
+ 1);
373 /// allocateNewCodeSlab - Helper method to allocate a new slab of code
374 /// memory from the OS and add it to the free list. Returns the new
375 /// FreeRangeHeader at the base of the slab.
376 FreeRangeHeader
*allocateNewCodeSlab(size_t MinSize
) {
377 // If the user needs at least MinSize free memory, then we account for
378 // two MemoryRangeHeaders: the one in the user's block, and the one at the
380 size_t PaddedMin
= MinSize
+ 2 * sizeof(MemoryRangeHeader
);
381 size_t SlabSize
= std::max(DefaultCodeSlabSize
, PaddedMin
);
382 sys::MemoryBlock B
= allocateNewSlab(SlabSize
);
383 CodeSlabs
.push_back(B
);
384 char *MemBase
= (char*)(B
.base());
386 // Put a tiny allocated block at the end of the memory chunk, so when
387 // FreeBlock calls getBlockAfter it doesn't fall off the end.
388 MemoryRangeHeader
*EndBlock
=
389 (MemoryRangeHeader
*)(MemBase
+ B
.size()) - 1;
390 EndBlock
->ThisAllocated
= 1;
391 EndBlock
->PrevAllocated
= 0;
392 EndBlock
->BlockSize
= sizeof(MemoryRangeHeader
);
394 // Start out with a vast new block of free memory.
395 FreeRangeHeader
*NewBlock
= (FreeRangeHeader
*)MemBase
;
396 NewBlock
->ThisAllocated
= 0;
397 // Make sure getFreeBlockBefore doesn't look into unmapped memory.
398 NewBlock
->PrevAllocated
= 1;
399 NewBlock
->BlockSize
= (uintptr_t)EndBlock
- (uintptr_t)NewBlock
;
400 NewBlock
->SetEndOfBlockSizeMarker();
401 NewBlock
->AddToFreeList(FreeMemoryList
);
403 assert(NewBlock
->BlockSize
- sizeof(MemoryRangeHeader
) >= MinSize
&&
404 "The block was too small!");
408 /// endFunctionBody - The function F is now allocated, and takes the memory
409 /// in the range [FunctionStart,FunctionEnd).
410 void endFunctionBody(const Function
*F
, uint8_t *FunctionStart
,
411 uint8_t *FunctionEnd
) {
412 assert(FunctionEnd
> FunctionStart
);
413 assert(FunctionStart
== (uint8_t *)(CurBlock
+1) &&
414 "Mismatched function start/end!");
416 uintptr_t BlockSize
= FunctionEnd
- (uint8_t *)CurBlock
;
417 FunctionBlocks
[F
] = CurBlock
;
419 // Release the memory at the end of this block that isn't needed.
420 FreeMemoryList
=CurBlock
->TrimAllocationToSize(FreeMemoryList
, BlockSize
);
423 /// allocateSpace - Allocate a memory block of the given size. This method
424 /// cannot be called between calls to startFunctionBody and endFunctionBody.
425 uint8_t *allocateSpace(intptr_t Size
, unsigned Alignment
) {
426 CurBlock
= FreeMemoryList
;
427 FreeMemoryList
= FreeMemoryList
->AllocateBlock();
429 uint8_t *result
= (uint8_t *)(CurBlock
+ 1);
431 if (Alignment
== 0) Alignment
= 1;
432 result
= (uint8_t*)(((intptr_t)result
+Alignment
-1) &
433 ~(intptr_t)(Alignment
-1));
435 uintptr_t BlockSize
= result
+ Size
- (uint8_t *)CurBlock
;
436 FreeMemoryList
=CurBlock
->TrimAllocationToSize(FreeMemoryList
, BlockSize
);
441 /// allocateStub - Allocate memory for a function stub.
442 uint8_t *allocateStub(const GlobalValue
* F
, unsigned StubSize
,
443 unsigned Alignment
) {
444 return (uint8_t*)StubAllocator
.Allocate(StubSize
, Alignment
);
447 /// allocateGlobal - Allocate memory for a global.
448 uint8_t *allocateGlobal(uintptr_t Size
, unsigned Alignment
) {
449 return (uint8_t*)DataAllocator
.Allocate(Size
, Alignment
);
452 /// startExceptionTable - Use startFunctionBody to allocate memory for the
453 /// function's exception table.
454 uint8_t* startExceptionTable(const Function
* F
, uintptr_t &ActualSize
) {
455 return startFunctionBody(F
, ActualSize
);
458 /// endExceptionTable - The exception table of F is now allocated,
459 /// and takes the memory in the range [TableStart,TableEnd).
460 void endExceptionTable(const Function
*F
, uint8_t *TableStart
,
461 uint8_t *TableEnd
, uint8_t* FrameRegister
) {
462 assert(TableEnd
> TableStart
);
463 assert(TableStart
== (uint8_t *)(CurBlock
+1) &&
464 "Mismatched table start/end!");
466 uintptr_t BlockSize
= TableEnd
- (uint8_t *)CurBlock
;
467 TableBlocks
[F
] = CurBlock
;
469 // Release the memory at the end of this block that isn't needed.
470 FreeMemoryList
=CurBlock
->TrimAllocationToSize(FreeMemoryList
, BlockSize
);
473 uint8_t *getGOTBase() const {
477 void *getDlsymTable() const {
481 /// deallocateMemForFunction - Deallocate all memory for the specified
483 void deallocateMemForFunction(const Function
*F
) {
484 std::map
<const Function
*, MemoryRangeHeader
*>::iterator
485 I
= FunctionBlocks
.find(F
);
486 if (I
== FunctionBlocks
.end()) return;
488 // Find the block that is allocated for this function.
489 MemoryRangeHeader
*MemRange
= I
->second
;
490 assert(MemRange
->ThisAllocated
&& "Block isn't allocated!");
492 // Fill the buffer with garbage!
494 memset(MemRange
+1, 0xCD, MemRange
->BlockSize
-sizeof(*MemRange
));
498 FreeMemoryList
= MemRange
->FreeBlock(FreeMemoryList
);
500 // Finally, remove this entry from FunctionBlocks.
501 FunctionBlocks
.erase(I
);
503 I
= TableBlocks
.find(F
);
504 if (I
== TableBlocks
.end()) return;
506 // Find the block that is allocated for this function.
507 MemRange
= I
->second
;
508 assert(MemRange
->ThisAllocated
&& "Block isn't allocated!");
510 // Fill the buffer with garbage!
512 memset(MemRange
+1, 0xCD, MemRange
->BlockSize
-sizeof(*MemRange
));
516 FreeMemoryList
= MemRange
->FreeBlock(FreeMemoryList
);
518 // Finally, remove this entry from TableBlocks.
519 TableBlocks
.erase(I
);
522 /// setMemoryWritable - When code generation is in progress,
523 /// the code pages may need permissions changed.
524 void setMemoryWritable()
526 for (unsigned i
= 0, e
= CodeSlabs
.size(); i
!= e
; ++i
)
527 sys::Memory::setWritable(CodeSlabs
[i
]);
529 /// setMemoryExecutable - When code generation is done and we're ready to
530 /// start execution, the code pages may need permissions changed.
531 void setMemoryExecutable()
533 for (unsigned i
= 0, e
= CodeSlabs
.size(); i
!= e
; ++i
)
534 sys::Memory::setExecutable(CodeSlabs
[i
]);
537 /// setPoisonMemory - Controls whether we write garbage over freed memory.
539 void setPoisonMemory(bool poison
) {
540 PoisonMemory
= poison
;
545 MemSlab
*JITSlabAllocator::Allocate(size_t Size
) {
546 sys::MemoryBlock B
= JMM
.allocateNewSlab(Size
);
547 MemSlab
*Slab
= (MemSlab
*)B
.base();
548 Slab
->Size
= B
.size();
553 void JITSlabAllocator::Deallocate(MemSlab
*Slab
) {
554 sys::MemoryBlock
B(Slab
, Slab
->Size
);
555 sys::Memory::ReleaseRWX(B
);
558 DefaultJITMemoryManager::DefaultJITMemoryManager()
560 BumpSlabAllocator(*this),
561 StubAllocator(DefaultSlabSize
, DefaultSizeThreshold
, BumpSlabAllocator
),
562 DataAllocator(DefaultSlabSize
, DefaultSizeThreshold
, BumpSlabAllocator
) {
565 PoisonMemory
= false;
570 // Allocate space for code.
571 sys::MemoryBlock MemBlock
= allocateNewSlab(DefaultCodeSlabSize
);
572 CodeSlabs
.push_back(MemBlock
);
573 uint8_t *MemBase
= (uint8_t*)MemBlock
.base();
575 // We set up the memory chunk with 4 mem regions, like this:
577 // [ Free #0 ] -> Large space to allocate functions from.
578 // [ Allocated #1 ] -> Tiny space to separate regions.
579 // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
580 // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
583 // The last three blocks are never deallocated or touched.
585 // Add MemoryRangeHeader to the end of the memory region, indicating that
586 // the space after the block of memory is allocated. This is block #3.
587 MemoryRangeHeader
*Mem3
= (MemoryRangeHeader
*)(MemBase
+MemBlock
.size())-1;
588 Mem3
->ThisAllocated
= 1;
589 Mem3
->PrevAllocated
= 0;
590 Mem3
->BlockSize
= sizeof(MemoryRangeHeader
);
592 /// Add a tiny free region so that the free list always has one entry.
593 FreeRangeHeader
*Mem2
=
594 (FreeRangeHeader
*)(((char*)Mem3
)-FreeRangeHeader::getMinBlockSize());
595 Mem2
->ThisAllocated
= 0;
596 Mem2
->PrevAllocated
= 1;
597 Mem2
->BlockSize
= FreeRangeHeader::getMinBlockSize();
598 Mem2
->SetEndOfBlockSizeMarker();
599 Mem2
->Prev
= Mem2
; // Mem2 *is* the free list for now.
602 /// Add a tiny allocated region so that Mem2 is never coalesced away.
603 MemoryRangeHeader
*Mem1
= (MemoryRangeHeader
*)Mem2
-1;
604 Mem1
->ThisAllocated
= 1;
605 Mem1
->PrevAllocated
= 0;
606 Mem1
->BlockSize
= sizeof(MemoryRangeHeader
);
608 // Add a FreeRangeHeader to the start of the function body region, indicating
609 // that the space is free. Mark the previous block allocated so we never look
611 FreeRangeHeader
*Mem0
= (FreeRangeHeader
*)MemBase
;
612 Mem0
->ThisAllocated
= 0;
613 Mem0
->PrevAllocated
= 1;
614 Mem0
->BlockSize
= (char*)Mem1
-(char*)Mem0
;
615 Mem0
->SetEndOfBlockSizeMarker();
616 Mem0
->AddToFreeList(Mem2
);
618 // Start out with the freelist pointing to Mem0.
619 FreeMemoryList
= Mem0
;
625 void DefaultJITMemoryManager::AllocateGOT() {
626 assert(GOTBase
== 0 && "Cannot allocate the got multiple times");
627 GOTBase
= new uint8_t[sizeof(void*) * 8192];
631 void DefaultJITMemoryManager::SetDlsymTable(void *ptr
) {
635 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
636 for (unsigned i
= 0, e
= CodeSlabs
.size(); i
!= e
; ++i
)
637 sys::Memory::ReleaseRWX(CodeSlabs
[i
]);
642 sys::MemoryBlock
DefaultJITMemoryManager::allocateNewSlab(size_t size
) {
643 // Allocate a new block close to the last one.
645 sys::MemoryBlock
*LastSlabPtr
= LastSlab
.base() ? &LastSlab
: 0;
646 sys::MemoryBlock B
= sys::Memory::AllocateRWX(size
, LastSlabPtr
, &ErrMsg
);
648 llvm_report_error("Allocation failed when allocating new memory in the"
656 /// CheckInvariants - For testing only. Return "" if all internal invariants
657 /// are preserved, and a helpful error message otherwise. For free and
658 /// allocated blocks, make sure that adding BlockSize gives a valid block.
659 /// For free blocks, make sure they're in the free list and that their end of
660 /// block size marker is correct. This function should return an error before
661 /// accessing bad memory. This function is defined here instead of in
662 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
663 /// implementation details of DefaultJITMemoryManager.
664 bool DefaultJITMemoryManager::CheckInvariants(std::string
&ErrorStr
) {
665 raw_string_ostream
Err(ErrorStr
);
667 // Construct a the set of FreeRangeHeader pointers so we can query it
669 llvm::SmallPtrSet
<MemoryRangeHeader
*, 16> FreeHdrSet
;
670 FreeRangeHeader
* FreeHead
= FreeMemoryList
;
671 FreeRangeHeader
* FreeRange
= FreeHead
;
674 // Check that the free range pointer is in the blocks we've allocated.
676 for (std::vector
<sys::MemoryBlock
>::iterator I
= CodeSlabs
.begin(),
677 E
= CodeSlabs
.end(); I
!= E
&& !Found
; ++I
) {
678 char *Start
= (char*)I
->base();
679 char *End
= Start
+ I
->size();
680 Found
= (Start
<= (char*)FreeRange
&& (char*)FreeRange
< End
);
683 Err
<< "Corrupt free list; points to " << FreeRange
;
687 if (FreeRange
->Next
->Prev
!= FreeRange
) {
688 Err
<< "Next and Prev pointers do not match.";
692 // Otherwise, add it to the set.
693 FreeHdrSet
.insert(FreeRange
);
694 FreeRange
= FreeRange
->Next
;
695 } while (FreeRange
!= FreeHead
);
697 // Go over each block, and look at each MemoryRangeHeader.
698 for (std::vector
<sys::MemoryBlock
>::iterator I
= CodeSlabs
.begin(),
699 E
= CodeSlabs
.end(); I
!= E
; ++I
) {
700 char *Start
= (char*)I
->base();
701 char *End
= Start
+ I
->size();
703 // Check each memory range.
704 for (MemoryRangeHeader
*Hdr
= (MemoryRangeHeader
*)Start
, *LastHdr
= NULL
;
705 Start
<= (char*)Hdr
&& (char*)Hdr
< End
;
706 Hdr
= &Hdr
->getBlockAfter()) {
707 if (Hdr
->ThisAllocated
== 0) {
708 // Check that this range is in the free list.
709 if (!FreeHdrSet
.count(Hdr
)) {
710 Err
<< "Found free header at " << Hdr
<< " that is not in free list.";
714 // Now make sure the size marker at the end of the block is correct.
715 uintptr_t *Marker
= ((uintptr_t*)&Hdr
->getBlockAfter()) - 1;
716 if (!(Start
<= (char*)Marker
&& (char*)Marker
< End
)) {
717 Err
<< "Block size in header points out of current MemoryBlock.";
720 if (Hdr
->BlockSize
!= *Marker
) {
721 Err
<< "End of block size marker (" << *Marker
<< ") "
722 << "and BlockSize (" << Hdr
->BlockSize
<< ") don't match.";
727 if (LastHdr
&& LastHdr
->ThisAllocated
!= Hdr
->PrevAllocated
) {
728 Err
<< "Hdr->PrevAllocated (" << Hdr
->PrevAllocated
<< ") != "
729 << "LastHdr->ThisAllocated (" << LastHdr
->ThisAllocated
<< ")";
731 } else if (!LastHdr
&& !Hdr
->PrevAllocated
) {
732 Err
<< "The first header should have PrevAllocated true.";
736 // Remember the last header.
741 // All invariants are preserved.
745 JITMemoryManager
*JITMemoryManager::CreateDefaultMemManager() {
746 return new DefaultJITMemoryManager();
749 // Allocate memory for code in 512K slabs.
750 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize
= 512 * 1024;
752 // Allocate globals and stubs in slabs of 64K. (probably 16 pages)
753 const size_t DefaultJITMemoryManager::DefaultSlabSize
= 64 * 1024;
755 // Waste at most 16K at the end of each bump slab. (probably 4 pages)
756 const size_t DefaultJITMemoryManager::DefaultSizeThreshold
= 16 * 1024;