1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
41 /// BitCastConstantVector - Convert the specified ConstantVector node to the
42 /// specified vector type. At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
44 static Constant
*BitCastConstantVector(LLVMContext
&Context
, ConstantVector
*CV
,
45 const VectorType
*DstTy
) {
46 // If this cast changes element count then we can't handle it here:
47 // doing so requires endianness information. This should be handled by
48 // Analysis/ConstantFolding.cpp
49 unsigned NumElts
= DstTy
->getNumElements();
50 if (NumElts
!= CV
->getNumOperands())
53 // Check to verify that all elements of the input are simple.
54 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
55 if (!isa
<ConstantInt
>(CV
->getOperand(i
)) &&
56 !isa
<ConstantFP
>(CV
->getOperand(i
)))
60 // Bitcast each element now.
61 std::vector
<Constant
*> Result
;
62 const Type
*DstEltTy
= DstTy
->getElementType();
63 for (unsigned i
= 0; i
!= NumElts
; ++i
)
64 Result
.push_back(ConstantExpr::getBitCast(CV
->getOperand(i
),
66 return ConstantVector::get(Result
);
69 /// This function determines which opcode to use to fold two constant cast
70 /// expressions together. It uses CastInst::isEliminableCastPair to determine
71 /// the opcode. Consequently its just a wrapper around that function.
72 /// @brief Determine if it is valid to fold a cast of a cast
75 unsigned opc
, ///< opcode of the second cast constant expression
76 const ConstantExpr
*Op
, ///< the first cast constant expression
77 const Type
*DstTy
///< desintation type of the first cast
79 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
80 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
81 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
83 // The the types and opcodes for the two Cast constant expressions
84 const Type
*SrcTy
= Op
->getOperand(0)->getType();
85 const Type
*MidTy
= Op
->getType();
86 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
87 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
89 // Let CastInst::isEliminableCastPair do the heavy lifting.
90 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
91 Type::getInt64Ty(DstTy
->getContext()));
94 static Constant
*FoldBitCast(LLVMContext
&Context
,
95 Constant
*V
, const Type
*DestTy
) {
96 const Type
*SrcTy
= V
->getType();
98 return V
; // no-op cast
100 // Check to see if we are casting a pointer to an aggregate to a pointer to
101 // the first element. If so, return the appropriate GEP instruction.
102 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
103 if (const PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
104 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()) {
105 SmallVector
<Value
*, 8> IdxList
;
106 Value
*Zero
= Constant::getNullValue(Type::getInt32Ty(Context
));
107 IdxList
.push_back(Zero
);
108 const Type
*ElTy
= PTy
->getElementType();
109 while (ElTy
!= DPTy
->getElementType()) {
110 if (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
111 if (STy
->getNumElements() == 0) break;
112 ElTy
= STy
->getElementType(0);
113 IdxList
.push_back(Zero
);
114 } else if (const SequentialType
*STy
=
115 dyn_cast
<SequentialType
>(ElTy
)) {
116 if (isa
<PointerType
>(ElTy
)) break; // Can't index into pointers!
117 ElTy
= STy
->getElementType();
118 IdxList
.push_back(Zero
);
124 if (ElTy
== DPTy
->getElementType())
125 // This GEP is inbounds because all indices are zero.
126 return ConstantExpr::getInBoundsGetElementPtr(V
, &IdxList
[0],
130 // Handle casts from one vector constant to another. We know that the src
131 // and dest type have the same size (otherwise its an illegal cast).
132 if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
133 if (const VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
134 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
135 "Not cast between same sized vectors!");
137 // First, check for null. Undef is already handled.
138 if (isa
<ConstantAggregateZero
>(V
))
139 return Constant::getNullValue(DestTy
);
141 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
142 return BitCastConstantVector(Context
, CV
, DestPTy
);
145 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
146 // This allows for other simplifications (although some of them
147 // can only be handled by Analysis/ConstantFolding.cpp).
148 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
149 return ConstantExpr::getBitCast(
150 ConstantVector::get(&V
, 1), DestPTy
);
153 // Finally, implement bitcast folding now. The code below doesn't handle
155 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
156 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
158 // Handle integral constant input.
159 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
160 if (DestTy
->isInteger())
161 // Integral -> Integral. This is a no-op because the bit widths must
162 // be the same. Consequently, we just fold to V.
165 if (DestTy
->isFloatingPoint())
166 return ConstantFP::get(Context
, APFloat(CI
->getValue(),
167 DestTy
!= Type::getPPC_FP128Ty(Context
)));
169 // Otherwise, can't fold this (vector?)
173 // Handle ConstantFP input.
174 if (const ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
))
176 return ConstantInt::get(Context
, FP
->getValueAPF().bitcastToAPInt());
182 Constant
*llvm::ConstantFoldCastInstruction(LLVMContext
&Context
,
183 unsigned opc
, const Constant
*V
,
184 const Type
*DestTy
) {
185 if (isa
<UndefValue
>(V
)) {
186 // zext(undef) = 0, because the top bits will be zero.
187 // sext(undef) = 0, because the top bits will all be the same.
188 // [us]itofp(undef) = 0, because the result value is bounded.
189 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
190 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
191 return Constant::getNullValue(DestTy
);
192 return UndefValue::get(DestTy
);
194 // No compile-time operations on this type yet.
195 if (V
->getType() == Type::getPPC_FP128Ty(Context
) || DestTy
== Type::getPPC_FP128Ty(Context
))
198 // If the cast operand is a constant expression, there's a few things we can
199 // do to try to simplify it.
200 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
202 // Try hard to fold cast of cast because they are often eliminable.
203 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
204 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
205 } else if (CE
->getOpcode() == Instruction::GetElementPtr
) {
206 // If all of the indexes in the GEP are null values, there is no pointer
207 // adjustment going on. We might as well cast the source pointer.
208 bool isAllNull
= true;
209 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
210 if (!CE
->getOperand(i
)->isNullValue()) {
215 // This is casting one pointer type to another, always BitCast
216 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
220 // If the cast operand is a constant vector, perform the cast by
221 // operating on each element. In the cast of bitcasts, the element
222 // count may be mismatched; don't attempt to handle that here.
223 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
224 if (isa
<VectorType
>(DestTy
) &&
225 cast
<VectorType
>(DestTy
)->getNumElements() ==
226 CV
->getType()->getNumElements()) {
227 std::vector
<Constant
*> res
;
228 const VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
229 const Type
*DstEltTy
= DestVecTy
->getElementType();
230 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
231 res
.push_back(ConstantExpr::getCast(opc
,
232 CV
->getOperand(i
), DstEltTy
));
233 return ConstantVector::get(DestVecTy
, res
);
236 // We actually have to do a cast now. Perform the cast according to the
239 case Instruction::FPTrunc
:
240 case Instruction::FPExt
:
241 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
243 APFloat Val
= FPC
->getValueAPF();
244 Val
.convert(DestTy
== Type::getFloatTy(Context
) ? APFloat::IEEEsingle
:
245 DestTy
== Type::getDoubleTy(Context
) ? APFloat::IEEEdouble
:
246 DestTy
== Type::getX86_FP80Ty(Context
) ? APFloat::x87DoubleExtended
:
247 DestTy
== Type::getFP128Ty(Context
) ? APFloat::IEEEquad
:
249 APFloat::rmNearestTiesToEven
, &ignored
);
250 return ConstantFP::get(Context
, Val
);
252 return 0; // Can't fold.
253 case Instruction::FPToUI
:
254 case Instruction::FPToSI
:
255 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
256 const APFloat
&V
= FPC
->getValueAPF();
259 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
260 (void) V
.convertToInteger(x
, DestBitWidth
, opc
==Instruction::FPToSI
,
261 APFloat::rmTowardZero
, &ignored
);
262 APInt
Val(DestBitWidth
, 2, x
);
263 return ConstantInt::get(Context
, Val
);
265 return 0; // Can't fold.
266 case Instruction::IntToPtr
: //always treated as unsigned
267 if (V
->isNullValue()) // Is it an integral null value?
268 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
269 return 0; // Other pointer types cannot be casted
270 case Instruction::PtrToInt
: // always treated as unsigned
271 if (V
->isNullValue()) // is it a null pointer value?
272 return ConstantInt::get(DestTy
, 0);
273 return 0; // Other pointer types cannot be casted
274 case Instruction::UIToFP
:
275 case Instruction::SIToFP
:
276 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
277 APInt api
= CI
->getValue();
278 const uint64_t zero
[] = {0, 0};
279 APFloat apf
= APFloat(APInt(DestTy
->getPrimitiveSizeInBits(),
281 (void)apf
.convertFromAPInt(api
,
282 opc
==Instruction::SIToFP
,
283 APFloat::rmNearestTiesToEven
);
284 return ConstantFP::get(Context
, apf
);
287 case Instruction::ZExt
:
288 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
289 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
290 APInt
Result(CI
->getValue());
291 Result
.zext(BitWidth
);
292 return ConstantInt::get(Context
, Result
);
295 case Instruction::SExt
:
296 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
297 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
298 APInt
Result(CI
->getValue());
299 Result
.sext(BitWidth
);
300 return ConstantInt::get(Context
, Result
);
303 case Instruction::Trunc
:
304 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
305 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
306 APInt
Result(CI
->getValue());
307 Result
.trunc(BitWidth
);
308 return ConstantInt::get(Context
, Result
);
311 case Instruction::BitCast
:
312 return FoldBitCast(Context
, const_cast<Constant
*>(V
), DestTy
);
314 assert(!"Invalid CE CastInst opcode");
318 llvm_unreachable("Failed to cast constant expression");
322 Constant
*llvm::ConstantFoldSelectInstruction(LLVMContext
&,
323 const Constant
*Cond
,
325 const Constant
*V2
) {
326 if (const ConstantInt
*CB
= dyn_cast
<ConstantInt
>(Cond
))
327 return const_cast<Constant
*>(CB
->getZExtValue() ? V1
: V2
);
329 if (isa
<UndefValue
>(V1
)) return const_cast<Constant
*>(V2
);
330 if (isa
<UndefValue
>(V2
)) return const_cast<Constant
*>(V1
);
331 if (isa
<UndefValue
>(Cond
)) return const_cast<Constant
*>(V1
);
332 if (V1
== V2
) return const_cast<Constant
*>(V1
);
336 Constant
*llvm::ConstantFoldExtractElementInstruction(LLVMContext
&Context
,
338 const Constant
*Idx
) {
339 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
340 return UndefValue::get(cast
<VectorType
>(Val
->getType())->getElementType());
341 if (Val
->isNullValue()) // ee(zero, x) -> zero
342 return Constant::getNullValue(
343 cast
<VectorType
>(Val
->getType())->getElementType());
345 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
346 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
347 return CVal
->getOperand(CIdx
->getZExtValue());
348 } else if (isa
<UndefValue
>(Idx
)) {
349 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
350 return CVal
->getOperand(0);
356 Constant
*llvm::ConstantFoldInsertElementInstruction(LLVMContext
&Context
,
359 const Constant
*Idx
) {
360 const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
362 APInt idxVal
= CIdx
->getValue();
363 if (isa
<UndefValue
>(Val
)) {
364 // Insertion of scalar constant into vector undef
365 // Optimize away insertion of undef
366 if (isa
<UndefValue
>(Elt
))
367 return const_cast<Constant
*>(Val
);
368 // Otherwise break the aggregate undef into multiple undefs and do
371 cast
<VectorType
>(Val
->getType())->getNumElements();
372 std::vector
<Constant
*> Ops
;
374 for (unsigned i
= 0; i
< numOps
; ++i
) {
376 (idxVal
== i
) ? Elt
: UndefValue::get(Elt
->getType());
377 Ops
.push_back(const_cast<Constant
*>(Op
));
379 return ConstantVector::get(Ops
);
381 if (isa
<ConstantAggregateZero
>(Val
)) {
382 // Insertion of scalar constant into vector aggregate zero
383 // Optimize away insertion of zero
384 if (Elt
->isNullValue())
385 return const_cast<Constant
*>(Val
);
386 // Otherwise break the aggregate zero into multiple zeros and do
389 cast
<VectorType
>(Val
->getType())->getNumElements();
390 std::vector
<Constant
*> Ops
;
392 for (unsigned i
= 0; i
< numOps
; ++i
) {
394 (idxVal
== i
) ? Elt
: Constant::getNullValue(Elt
->getType());
395 Ops
.push_back(const_cast<Constant
*>(Op
));
397 return ConstantVector::get(Ops
);
399 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
400 // Insertion of scalar constant into vector constant
401 std::vector
<Constant
*> Ops
;
402 Ops
.reserve(CVal
->getNumOperands());
403 for (unsigned i
= 0; i
< CVal
->getNumOperands(); ++i
) {
405 (idxVal
== i
) ? Elt
: cast
<Constant
>(CVal
->getOperand(i
));
406 Ops
.push_back(const_cast<Constant
*>(Op
));
408 return ConstantVector::get(Ops
);
414 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
415 /// return the specified element value. Otherwise return null.
416 static Constant
*GetVectorElement(LLVMContext
&Context
, const Constant
*C
,
418 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
))
419 return CV
->getOperand(EltNo
);
421 const Type
*EltTy
= cast
<VectorType
>(C
->getType())->getElementType();
422 if (isa
<ConstantAggregateZero
>(C
))
423 return Constant::getNullValue(EltTy
);
424 if (isa
<UndefValue
>(C
))
425 return UndefValue::get(EltTy
);
429 Constant
*llvm::ConstantFoldShuffleVectorInstruction(LLVMContext
&Context
,
432 const Constant
*Mask
) {
433 // Undefined shuffle mask -> undefined value.
434 if (isa
<UndefValue
>(Mask
)) return UndefValue::get(V1
->getType());
436 unsigned MaskNumElts
= cast
<VectorType
>(Mask
->getType())->getNumElements();
437 unsigned SrcNumElts
= cast
<VectorType
>(V1
->getType())->getNumElements();
438 const Type
*EltTy
= cast
<VectorType
>(V1
->getType())->getElementType();
440 // Loop over the shuffle mask, evaluating each element.
441 SmallVector
<Constant
*, 32> Result
;
442 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
443 Constant
*InElt
= GetVectorElement(Context
, Mask
, i
);
444 if (InElt
== 0) return 0;
446 if (isa
<UndefValue
>(InElt
))
447 InElt
= UndefValue::get(EltTy
);
448 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(InElt
)) {
449 unsigned Elt
= CI
->getZExtValue();
450 if (Elt
>= SrcNumElts
*2)
451 InElt
= UndefValue::get(EltTy
);
452 else if (Elt
>= SrcNumElts
)
453 InElt
= GetVectorElement(Context
, V2
, Elt
- SrcNumElts
);
455 InElt
= GetVectorElement(Context
, V1
, Elt
);
456 if (InElt
== 0) return 0;
461 Result
.push_back(InElt
);
464 return ConstantVector::get(&Result
[0], Result
.size());
467 Constant
*llvm::ConstantFoldExtractValueInstruction(LLVMContext
&Context
,
469 const unsigned *Idxs
,
471 // Base case: no indices, so return the entire value.
473 return const_cast<Constant
*>(Agg
);
475 if (isa
<UndefValue
>(Agg
)) // ev(undef, x) -> undef
476 return UndefValue::get(ExtractValueInst::getIndexedType(Agg
->getType(),
480 if (isa
<ConstantAggregateZero
>(Agg
)) // ev(0, x) -> 0
482 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg
->getType(),
486 // Otherwise recurse.
487 return ConstantFoldExtractValueInstruction(Context
, Agg
->getOperand(*Idxs
),
491 Constant
*llvm::ConstantFoldInsertValueInstruction(LLVMContext
&Context
,
494 const unsigned *Idxs
,
496 // Base case: no indices, so replace the entire value.
498 return const_cast<Constant
*>(Val
);
500 if (isa
<UndefValue
>(Agg
)) {
501 // Insertion of constant into aggregate undef
502 // Optimize away insertion of undef
503 if (isa
<UndefValue
>(Val
))
504 return const_cast<Constant
*>(Agg
);
505 // Otherwise break the aggregate undef into multiple undefs and do
507 const CompositeType
*AggTy
= cast
<CompositeType
>(Agg
->getType());
509 if (const ArrayType
*AR
= dyn_cast
<ArrayType
>(AggTy
))
510 numOps
= AR
->getNumElements();
512 numOps
= cast
<StructType
>(AggTy
)->getNumElements();
513 std::vector
<Constant
*> Ops(numOps
);
514 for (unsigned i
= 0; i
< numOps
; ++i
) {
515 const Type
*MemberTy
= AggTy
->getTypeAtIndex(i
);
518 ConstantFoldInsertValueInstruction(Context
, UndefValue::get(MemberTy
),
519 Val
, Idxs
+1, NumIdx
-1) :
520 UndefValue::get(MemberTy
);
521 Ops
[i
] = const_cast<Constant
*>(Op
);
523 if (isa
<StructType
>(AggTy
))
524 return ConstantStruct::get(Context
, Ops
);
526 return ConstantArray::get(cast
<ArrayType
>(AggTy
), Ops
);
528 if (isa
<ConstantAggregateZero
>(Agg
)) {
529 // Insertion of constant into aggregate zero
530 // Optimize away insertion of zero
531 if (Val
->isNullValue())
532 return const_cast<Constant
*>(Agg
);
533 // Otherwise break the aggregate zero into multiple zeros and do
535 const CompositeType
*AggTy
= cast
<CompositeType
>(Agg
->getType());
537 if (const ArrayType
*AR
= dyn_cast
<ArrayType
>(AggTy
))
538 numOps
= AR
->getNumElements();
540 numOps
= cast
<StructType
>(AggTy
)->getNumElements();
541 std::vector
<Constant
*> Ops(numOps
);
542 for (unsigned i
= 0; i
< numOps
; ++i
) {
543 const Type
*MemberTy
= AggTy
->getTypeAtIndex(i
);
546 ConstantFoldInsertValueInstruction(Context
,
547 Constant::getNullValue(MemberTy
),
548 Val
, Idxs
+1, NumIdx
-1) :
549 Constant::getNullValue(MemberTy
);
550 Ops
[i
] = const_cast<Constant
*>(Op
);
552 if (isa
<StructType
>(AggTy
))
553 return ConstantStruct::get(Context
, Ops
);
555 return ConstantArray::get(cast
<ArrayType
>(AggTy
), Ops
);
557 if (isa
<ConstantStruct
>(Agg
) || isa
<ConstantArray
>(Agg
)) {
558 // Insertion of constant into aggregate constant
559 std::vector
<Constant
*> Ops(Agg
->getNumOperands());
560 for (unsigned i
= 0; i
< Agg
->getNumOperands(); ++i
) {
563 ConstantFoldInsertValueInstruction(Context
, Agg
->getOperand(i
),
564 Val
, Idxs
+1, NumIdx
-1) :
566 Ops
[i
] = const_cast<Constant
*>(Op
);
569 if (isa
<StructType
>(Agg
->getType()))
570 C
= ConstantStruct::get(Context
, Ops
);
572 C
= ConstantArray::get(cast
<ArrayType
>(Agg
->getType()), Ops
);
580 Constant
*llvm::ConstantFoldBinaryInstruction(LLVMContext
&Context
,
583 const Constant
*C2
) {
584 // No compile-time operations on this type yet.
585 if (C1
->getType() == Type::getPPC_FP128Ty(Context
))
588 // Handle UndefValue up front
589 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
591 case Instruction::Xor
:
592 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
593 // Handle undef ^ undef -> 0 special case. This is a common
595 return Constant::getNullValue(C1
->getType());
597 case Instruction::Add
:
598 case Instruction::Sub
:
599 return UndefValue::get(C1
->getType());
600 case Instruction::Mul
:
601 case Instruction::And
:
602 return Constant::getNullValue(C1
->getType());
603 case Instruction::UDiv
:
604 case Instruction::SDiv
:
605 case Instruction::URem
:
606 case Instruction::SRem
:
607 if (!isa
<UndefValue
>(C2
)) // undef / X -> 0
608 return Constant::getNullValue(C1
->getType());
609 return const_cast<Constant
*>(C2
); // X / undef -> undef
610 case Instruction::Or
: // X | undef -> -1
611 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(C1
->getType()))
612 return Constant::getAllOnesValue(PTy
);
613 return Constant::getAllOnesValue(C1
->getType());
614 case Instruction::LShr
:
615 if (isa
<UndefValue
>(C2
) && isa
<UndefValue
>(C1
))
616 return const_cast<Constant
*>(C1
); // undef lshr undef -> undef
617 return Constant::getNullValue(C1
->getType()); // X lshr undef -> 0
619 case Instruction::AShr
:
620 if (!isa
<UndefValue
>(C2
))
621 return const_cast<Constant
*>(C1
); // undef ashr X --> undef
622 else if (isa
<UndefValue
>(C1
))
623 return const_cast<Constant
*>(C1
); // undef ashr undef -> undef
625 return const_cast<Constant
*>(C1
); // X ashr undef --> X
626 case Instruction::Shl
:
627 // undef << X -> 0 or X << undef -> 0
628 return Constant::getNullValue(C1
->getType());
632 // Handle simplifications when the RHS is a constant int.
633 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
635 case Instruction::Add
:
636 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X + 0 == X
638 case Instruction::Sub
:
639 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X - 0 == X
641 case Instruction::Mul
:
642 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C2
); // X * 0 == 0
643 if (CI2
->equalsInt(1))
644 return const_cast<Constant
*>(C1
); // X * 1 == X
646 case Instruction::UDiv
:
647 case Instruction::SDiv
:
648 if (CI2
->equalsInt(1))
649 return const_cast<Constant
*>(C1
); // X / 1 == X
650 if (CI2
->equalsInt(0))
651 return UndefValue::get(CI2
->getType()); // X / 0 == undef
653 case Instruction::URem
:
654 case Instruction::SRem
:
655 if (CI2
->equalsInt(1))
656 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
657 if (CI2
->equalsInt(0))
658 return UndefValue::get(CI2
->getType()); // X % 0 == undef
660 case Instruction::And
:
661 if (CI2
->isZero()) return const_cast<Constant
*>(C2
); // X & 0 == 0
662 if (CI2
->isAllOnesValue())
663 return const_cast<Constant
*>(C1
); // X & -1 == X
665 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
666 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
667 if (CE1
->getOpcode() == Instruction::ZExt
) {
668 unsigned DstWidth
= CI2
->getType()->getBitWidth();
670 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
671 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
672 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
673 return const_cast<Constant
*>(C1
);
676 // If and'ing the address of a global with a constant, fold it.
677 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
678 isa
<GlobalValue
>(CE1
->getOperand(0))) {
679 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
681 // Functions are at least 4-byte aligned.
682 unsigned GVAlign
= GV
->getAlignment();
683 if (isa
<Function
>(GV
))
684 GVAlign
= std::max(GVAlign
, 4U);
687 unsigned DstWidth
= CI2
->getType()->getBitWidth();
688 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
689 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
691 // If checking bits we know are clear, return zero.
692 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
693 return Constant::getNullValue(CI2
->getType());
698 case Instruction::Or
:
699 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X | 0 == X
700 if (CI2
->isAllOnesValue())
701 return const_cast<Constant
*>(C2
); // X | -1 == -1
703 case Instruction::Xor
:
704 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X ^ 0 == X
706 case Instruction::AShr
:
707 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
708 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
709 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
710 return ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
711 const_cast<Constant
*>(C2
));
716 // At this point we know neither constant is an UndefValue.
717 if (const ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
718 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
719 using namespace APIntOps
;
720 const APInt
&C1V
= CI1
->getValue();
721 const APInt
&C2V
= CI2
->getValue();
725 case Instruction::Add
:
726 return ConstantInt::get(Context
, C1V
+ C2V
);
727 case Instruction::Sub
:
728 return ConstantInt::get(Context
, C1V
- C2V
);
729 case Instruction::Mul
:
730 return ConstantInt::get(Context
, C1V
* C2V
);
731 case Instruction::UDiv
:
732 assert(!CI2
->isNullValue() && "Div by zero handled above");
733 return ConstantInt::get(Context
, C1V
.udiv(C2V
));
734 case Instruction::SDiv
:
735 assert(!CI2
->isNullValue() && "Div by zero handled above");
736 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
737 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
738 return ConstantInt::get(Context
, C1V
.sdiv(C2V
));
739 case Instruction::URem
:
740 assert(!CI2
->isNullValue() && "Div by zero handled above");
741 return ConstantInt::get(Context
, C1V
.urem(C2V
));
742 case Instruction::SRem
:
743 assert(!CI2
->isNullValue() && "Div by zero handled above");
744 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
745 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
746 return ConstantInt::get(Context
, C1V
.srem(C2V
));
747 case Instruction::And
:
748 return ConstantInt::get(Context
, C1V
& C2V
);
749 case Instruction::Or
:
750 return ConstantInt::get(Context
, C1V
| C2V
);
751 case Instruction::Xor
:
752 return ConstantInt::get(Context
, C1V
^ C2V
);
753 case Instruction::Shl
: {
754 uint32_t shiftAmt
= C2V
.getZExtValue();
755 if (shiftAmt
< C1V
.getBitWidth())
756 return ConstantInt::get(Context
, C1V
.shl(shiftAmt
));
758 return UndefValue::get(C1
->getType()); // too big shift is undef
760 case Instruction::LShr
: {
761 uint32_t shiftAmt
= C2V
.getZExtValue();
762 if (shiftAmt
< C1V
.getBitWidth())
763 return ConstantInt::get(Context
, C1V
.lshr(shiftAmt
));
765 return UndefValue::get(C1
->getType()); // too big shift is undef
767 case Instruction::AShr
: {
768 uint32_t shiftAmt
= C2V
.getZExtValue();
769 if (shiftAmt
< C1V
.getBitWidth())
770 return ConstantInt::get(Context
, C1V
.ashr(shiftAmt
));
772 return UndefValue::get(C1
->getType()); // too big shift is undef
778 case Instruction::SDiv
:
779 case Instruction::UDiv
:
780 case Instruction::URem
:
781 case Instruction::SRem
:
782 case Instruction::LShr
:
783 case Instruction::AShr
:
784 case Instruction::Shl
:
785 if (CI1
->equalsInt(0)) return const_cast<Constant
*>(C1
);
790 } else if (const ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
791 if (const ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
792 APFloat C1V
= CFP1
->getValueAPF();
793 APFloat C2V
= CFP2
->getValueAPF();
794 APFloat C3V
= C1V
; // copy for modification
798 case Instruction::FAdd
:
799 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
800 return ConstantFP::get(Context
, C3V
);
801 case Instruction::FSub
:
802 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
803 return ConstantFP::get(Context
, C3V
);
804 case Instruction::FMul
:
805 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
806 return ConstantFP::get(Context
, C3V
);
807 case Instruction::FDiv
:
808 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
809 return ConstantFP::get(Context
, C3V
);
810 case Instruction::FRem
:
811 (void)C3V
.mod(C2V
, APFloat::rmNearestTiesToEven
);
812 return ConstantFP::get(Context
, C3V
);
815 } else if (const VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
816 const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
);
817 const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
);
818 if ((CP1
!= NULL
|| isa
<ConstantAggregateZero
>(C1
)) &&
819 (CP2
!= NULL
|| isa
<ConstantAggregateZero
>(C2
))) {
820 std::vector
<Constant
*> Res
;
821 const Type
* EltTy
= VTy
->getElementType();
822 const Constant
*C1
= 0;
823 const Constant
*C2
= 0;
827 case Instruction::Add
:
828 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
829 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
830 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
831 Res
.push_back(ConstantExpr::getAdd(const_cast<Constant
*>(C1
),
832 const_cast<Constant
*>(C2
)));
834 return ConstantVector::get(Res
);
835 case Instruction::FAdd
:
836 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
837 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
838 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
839 Res
.push_back(ConstantExpr::getFAdd(const_cast<Constant
*>(C1
),
840 const_cast<Constant
*>(C2
)));
842 return ConstantVector::get(Res
);
843 case Instruction::Sub
:
844 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
845 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
846 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
847 Res
.push_back(ConstantExpr::getSub(const_cast<Constant
*>(C1
),
848 const_cast<Constant
*>(C2
)));
850 return ConstantVector::get(Res
);
851 case Instruction::FSub
:
852 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
853 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
854 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
855 Res
.push_back(ConstantExpr::getFSub(const_cast<Constant
*>(C1
),
856 const_cast<Constant
*>(C2
)));
858 return ConstantVector::get(Res
);
859 case Instruction::Mul
:
860 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
861 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
862 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
863 Res
.push_back(ConstantExpr::getMul(const_cast<Constant
*>(C1
),
864 const_cast<Constant
*>(C2
)));
866 return ConstantVector::get(Res
);
867 case Instruction::FMul
:
868 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
869 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
870 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
871 Res
.push_back(ConstantExpr::getFMul(const_cast<Constant
*>(C1
),
872 const_cast<Constant
*>(C2
)));
874 return ConstantVector::get(Res
);
875 case Instruction::UDiv
:
876 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
877 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
878 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
879 Res
.push_back(ConstantExpr::getUDiv(const_cast<Constant
*>(C1
),
880 const_cast<Constant
*>(C2
)));
882 return ConstantVector::get(Res
);
883 case Instruction::SDiv
:
884 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
885 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
886 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
887 Res
.push_back(ConstantExpr::getSDiv(const_cast<Constant
*>(C1
),
888 const_cast<Constant
*>(C2
)));
890 return ConstantVector::get(Res
);
891 case Instruction::FDiv
:
892 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
893 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
894 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
895 Res
.push_back(ConstantExpr::getFDiv(const_cast<Constant
*>(C1
),
896 const_cast<Constant
*>(C2
)));
898 return ConstantVector::get(Res
);
899 case Instruction::URem
:
900 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
901 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
902 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
903 Res
.push_back(ConstantExpr::getURem(const_cast<Constant
*>(C1
),
904 const_cast<Constant
*>(C2
)));
906 return ConstantVector::get(Res
);
907 case Instruction::SRem
:
908 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
909 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
910 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
911 Res
.push_back(ConstantExpr::getSRem(const_cast<Constant
*>(C1
),
912 const_cast<Constant
*>(C2
)));
914 return ConstantVector::get(Res
);
915 case Instruction::FRem
:
916 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
917 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
918 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
919 Res
.push_back(ConstantExpr::getFRem(const_cast<Constant
*>(C1
),
920 const_cast<Constant
*>(C2
)));
922 return ConstantVector::get(Res
);
923 case Instruction::And
:
924 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
925 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
926 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
927 Res
.push_back(ConstantExpr::getAnd(const_cast<Constant
*>(C1
),
928 const_cast<Constant
*>(C2
)));
930 return ConstantVector::get(Res
);
931 case Instruction::Or
:
932 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
933 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
934 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
935 Res
.push_back(ConstantExpr::getOr(const_cast<Constant
*>(C1
),
936 const_cast<Constant
*>(C2
)));
938 return ConstantVector::get(Res
);
939 case Instruction::Xor
:
940 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
941 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
942 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
943 Res
.push_back(ConstantExpr::getXor(const_cast<Constant
*>(C1
),
944 const_cast<Constant
*>(C2
)));
946 return ConstantVector::get(Res
);
947 case Instruction::LShr
:
948 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
949 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
950 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
951 Res
.push_back(ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
952 const_cast<Constant
*>(C2
)));
954 return ConstantVector::get(Res
);
955 case Instruction::AShr
:
956 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
957 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
958 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
959 Res
.push_back(ConstantExpr::getAShr(const_cast<Constant
*>(C1
),
960 const_cast<Constant
*>(C2
)));
962 return ConstantVector::get(Res
);
963 case Instruction::Shl
:
964 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
965 C1
= CP1
? CP1
->getOperand(i
) : Constant::getNullValue(EltTy
);
966 C2
= CP2
? CP2
->getOperand(i
) : Constant::getNullValue(EltTy
);
967 Res
.push_back(ConstantExpr::getShl(const_cast<Constant
*>(C1
),
968 const_cast<Constant
*>(C2
)));
970 return ConstantVector::get(Res
);
975 if (isa
<ConstantExpr
>(C1
)) {
976 // There are many possible foldings we could do here. We should probably
977 // at least fold add of a pointer with an integer into the appropriate
978 // getelementptr. This will improve alias analysis a bit.
979 } else if (isa
<ConstantExpr
>(C2
)) {
980 // If C2 is a constant expr and C1 isn't, flop them around and fold the
981 // other way if possible.
983 case Instruction::Add
:
984 case Instruction::FAdd
:
985 case Instruction::Mul
:
986 case Instruction::FMul
:
987 case Instruction::And
:
988 case Instruction::Or
:
989 case Instruction::Xor
:
990 // No change of opcode required.
991 return ConstantFoldBinaryInstruction(Context
, Opcode
, C2
, C1
);
993 case Instruction::Shl
:
994 case Instruction::LShr
:
995 case Instruction::AShr
:
996 case Instruction::Sub
:
997 case Instruction::FSub
:
998 case Instruction::SDiv
:
999 case Instruction::UDiv
:
1000 case Instruction::FDiv
:
1001 case Instruction::URem
:
1002 case Instruction::SRem
:
1003 case Instruction::FRem
:
1004 default: // These instructions cannot be flopped around.
1009 // We don't know how to fold this.
1013 /// isZeroSizedType - This type is zero sized if its an array or structure of
1014 /// zero sized types. The only leaf zero sized type is an empty structure.
1015 static bool isMaybeZeroSizedType(const Type
*Ty
) {
1016 if (isa
<OpaqueType
>(Ty
)) return true; // Can't say.
1017 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1019 // If all of elements have zero size, this does too.
1020 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1021 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1024 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1025 return isMaybeZeroSizedType(ATy
->getElementType());
1030 /// IdxCompare - Compare the two constants as though they were getelementptr
1031 /// indices. This allows coersion of the types to be the same thing.
1033 /// If the two constants are the "same" (after coersion), return 0. If the
1034 /// first is less than the second, return -1, if the second is less than the
1035 /// first, return 1. If the constants are not integral, return -2.
1037 static int IdxCompare(LLVMContext
&Context
, Constant
*C1
, Constant
*C2
,
1039 if (C1
== C2
) return 0;
1041 // Ok, we found a different index. If they are not ConstantInt, we can't do
1042 // anything with them.
1043 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1044 return -2; // don't know!
1046 // Ok, we have two differing integer indices. Sign extend them to be the same
1047 // type. Long is always big enough, so we use it.
1048 if (C1
->getType() != Type::getInt64Ty(Context
))
1049 C1
= ConstantExpr::getSExt(C1
, Type::getInt64Ty(Context
));
1051 if (C2
->getType() != Type::getInt64Ty(Context
))
1052 C2
= ConstantExpr::getSExt(C2
, Type::getInt64Ty(Context
));
1054 if (C1
== C2
) return 0; // They are equal
1056 // If the type being indexed over is really just a zero sized type, there is
1057 // no pointer difference being made here.
1058 if (isMaybeZeroSizedType(ElTy
))
1059 return -2; // dunno.
1061 // If they are really different, now that they are the same type, then we
1062 // found a difference!
1063 if (cast
<ConstantInt
>(C1
)->getSExtValue() <
1064 cast
<ConstantInt
>(C2
)->getSExtValue())
1070 /// evaluateFCmpRelation - This function determines if there is anything we can
1071 /// decide about the two constants provided. This doesn't need to handle simple
1072 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1073 /// If we can determine that the two constants have a particular relation to
1074 /// each other, we should return the corresponding FCmpInst predicate,
1075 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1076 /// ConstantFoldCompareInstruction.
1078 /// To simplify this code we canonicalize the relation so that the first
1079 /// operand is always the most "complex" of the two. We consider ConstantFP
1080 /// to be the simplest, and ConstantExprs to be the most complex.
1081 static FCmpInst::Predicate
evaluateFCmpRelation(LLVMContext
&Context
,
1083 const Constant
*V2
) {
1084 assert(V1
->getType() == V2
->getType() &&
1085 "Cannot compare values of different types!");
1087 // No compile-time operations on this type yet.
1088 if (V1
->getType() == Type::getPPC_FP128Ty(Context
))
1089 return FCmpInst::BAD_FCMP_PREDICATE
;
1091 // Handle degenerate case quickly
1092 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
1094 if (!isa
<ConstantExpr
>(V1
)) {
1095 if (!isa
<ConstantExpr
>(V2
)) {
1096 // We distilled thisUse the standard constant folder for a few cases
1098 Constant
*C1
= const_cast<Constant
*>(V1
);
1099 Constant
*C2
= const_cast<Constant
*>(V2
);
1100 R
= dyn_cast
<ConstantInt
>(
1101 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, C1
, C2
));
1102 if (R
&& !R
->isZero())
1103 return FCmpInst::FCMP_OEQ
;
1104 R
= dyn_cast
<ConstantInt
>(
1105 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, C1
, C2
));
1106 if (R
&& !R
->isZero())
1107 return FCmpInst::FCMP_OLT
;
1108 R
= dyn_cast
<ConstantInt
>(
1109 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, C1
, C2
));
1110 if (R
&& !R
->isZero())
1111 return FCmpInst::FCMP_OGT
;
1113 // Nothing more we can do
1114 return FCmpInst::BAD_FCMP_PREDICATE
;
1117 // If the first operand is simple and second is ConstantExpr, swap operands.
1118 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(Context
, V2
, V1
);
1119 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1120 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1122 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1123 // constantexpr or a simple constant.
1124 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1125 switch (CE1
->getOpcode()) {
1126 case Instruction::FPTrunc
:
1127 case Instruction::FPExt
:
1128 case Instruction::UIToFP
:
1129 case Instruction::SIToFP
:
1130 // We might be able to do something with these but we don't right now.
1136 // There are MANY other foldings that we could perform here. They will
1137 // probably be added on demand, as they seem needed.
1138 return FCmpInst::BAD_FCMP_PREDICATE
;
1141 /// evaluateICmpRelation - This function determines if there is anything we can
1142 /// decide about the two constants provided. This doesn't need to handle simple
1143 /// things like integer comparisons, but should instead handle ConstantExprs
1144 /// and GlobalValues. If we can determine that the two constants have a
1145 /// particular relation to each other, we should return the corresponding ICmp
1146 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1148 /// To simplify this code we canonicalize the relation so that the first
1149 /// operand is always the most "complex" of the two. We consider simple
1150 /// constants (like ConstantInt) to be the simplest, followed by
1151 /// GlobalValues, followed by ConstantExpr's (the most complex).
1153 static ICmpInst::Predicate
evaluateICmpRelation(LLVMContext
&Context
,
1157 assert(V1
->getType() == V2
->getType() &&
1158 "Cannot compare different types of values!");
1159 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1161 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
)) {
1162 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
)) {
1163 // We distilled this down to a simple case, use the standard constant
1166 Constant
*C1
= const_cast<Constant
*>(V1
);
1167 Constant
*C2
= const_cast<Constant
*>(V2
);
1168 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1169 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1170 if (R
&& !R
->isZero())
1172 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1173 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1174 if (R
&& !R
->isZero())
1176 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1177 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1178 if (R
&& !R
->isZero())
1181 // If we couldn't figure it out, bail.
1182 return ICmpInst::BAD_ICMP_PREDICATE
;
1185 // If the first operand is simple, swap operands.
1186 ICmpInst::Predicate SwappedRelation
=
1187 evaluateICmpRelation(Context
, V2
, V1
, isSigned
);
1188 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1189 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1191 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(V1
)) {
1192 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1193 ICmpInst::Predicate SwappedRelation
=
1194 evaluateICmpRelation(Context
, V2
, V1
, isSigned
);
1195 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1196 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1198 return ICmpInst::BAD_ICMP_PREDICATE
;
1201 // Now we know that the RHS is a GlobalValue or simple constant,
1202 // which (since the types must match) means that it's a ConstantPointerNull.
1203 if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1204 // Don't try to decide equality of aliases.
1205 if (!isa
<GlobalAlias
>(CPR1
) && !isa
<GlobalAlias
>(CPR2
))
1206 if (!CPR1
->hasExternalWeakLinkage() || !CPR2
->hasExternalWeakLinkage())
1207 return ICmpInst::ICMP_NE
;
1209 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1210 // GlobalVals can never be null. Don't try to evaluate aliases.
1211 if (!CPR1
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(CPR1
))
1212 return ICmpInst::ICMP_NE
;
1215 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1216 // constantexpr, a CPR, or a simple constant.
1217 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1218 const Constant
*CE1Op0
= CE1
->getOperand(0);
1220 switch (CE1
->getOpcode()) {
1221 case Instruction::Trunc
:
1222 case Instruction::FPTrunc
:
1223 case Instruction::FPExt
:
1224 case Instruction::FPToUI
:
1225 case Instruction::FPToSI
:
1226 break; // We can't evaluate floating point casts or truncations.
1228 case Instruction::UIToFP
:
1229 case Instruction::SIToFP
:
1230 case Instruction::BitCast
:
1231 case Instruction::ZExt
:
1232 case Instruction::SExt
:
1233 // If the cast is not actually changing bits, and the second operand is a
1234 // null pointer, do the comparison with the pre-casted value.
1235 if (V2
->isNullValue() &&
1236 (isa
<PointerType
>(CE1
->getType()) || CE1
->getType()->isInteger())) {
1237 bool sgnd
= isSigned
;
1238 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1239 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1240 return evaluateICmpRelation(Context
, CE1Op0
,
1241 Constant::getNullValue(CE1Op0
->getType()),
1245 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1246 // from the same type as the src of the LHS, evaluate the inputs. This is
1247 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1248 // which happens a lot in compilers with tagged integers.
1249 if (const ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(V2
))
1250 if (CE2
->isCast() && isa
<PointerType
>(CE1
->getType()) &&
1251 CE1
->getOperand(0)->getType() == CE2
->getOperand(0)->getType() &&
1252 CE1
->getOperand(0)->getType()->isInteger()) {
1253 bool sgnd
= isSigned
;
1254 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1255 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1256 return evaluateICmpRelation(Context
, CE1
->getOperand(0),
1257 CE2
->getOperand(0), sgnd
);
1261 case Instruction::GetElementPtr
:
1262 // Ok, since this is a getelementptr, we know that the constant has a
1263 // pointer type. Check the various cases.
1264 if (isa
<ConstantPointerNull
>(V2
)) {
1265 // If we are comparing a GEP to a null pointer, check to see if the base
1266 // of the GEP equals the null pointer.
1267 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1268 if (GV
->hasExternalWeakLinkage())
1269 // Weak linkage GVals could be zero or not. We're comparing that
1270 // to null pointer so its greater-or-equal
1271 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1273 // If its not weak linkage, the GVal must have a non-zero address
1274 // so the result is greater-than
1275 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1276 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1277 // If we are indexing from a null pointer, check to see if we have any
1278 // non-zero indices.
1279 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1280 if (!CE1
->getOperand(i
)->isNullValue())
1281 // Offsetting from null, must not be equal.
1282 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1283 // Only zero indexes from null, must still be zero.
1284 return ICmpInst::ICMP_EQ
;
1286 // Otherwise, we can't really say if the first operand is null or not.
1287 } else if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1288 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1289 if (CPR2
->hasExternalWeakLinkage())
1290 // Weak linkage GVals could be zero or not. We're comparing it to
1291 // a null pointer, so its less-or-equal
1292 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1294 // If its not weak linkage, the GVal must have a non-zero address
1295 // so the result is less-than
1296 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1297 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1299 // If this is a getelementptr of the same global, then it must be
1300 // different. Because the types must match, the getelementptr could
1301 // only have at most one index, and because we fold getelementptr's
1302 // with a single zero index, it must be nonzero.
1303 assert(CE1
->getNumOperands() == 2 &&
1304 !CE1
->getOperand(1)->isNullValue() &&
1305 "Suprising getelementptr!");
1306 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1308 // If they are different globals, we don't know what the value is,
1309 // but they can't be equal.
1310 return ICmpInst::ICMP_NE
;
1314 const ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1315 const Constant
*CE2Op0
= CE2
->getOperand(0);
1317 // There are MANY other foldings that we could perform here. They will
1318 // probably be added on demand, as they seem needed.
1319 switch (CE2
->getOpcode()) {
1321 case Instruction::GetElementPtr
:
1322 // By far the most common case to handle is when the base pointers are
1323 // obviously to the same or different globals.
1324 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1325 if (CE1Op0
!= CE2Op0
) // Don't know relative ordering, but not equal
1326 return ICmpInst::ICMP_NE
;
1327 // Ok, we know that both getelementptr instructions are based on the
1328 // same global. From this, we can precisely determine the relative
1329 // ordering of the resultant pointers.
1332 // Compare all of the operands the GEP's have in common.
1333 gep_type_iterator GTI
= gep_type_begin(CE1
);
1334 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1336 switch (IdxCompare(Context
, CE1
->getOperand(i
),
1337 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1338 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1339 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1340 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1343 // Ok, we ran out of things they have in common. If any leftovers
1344 // are non-zero then we have a difference, otherwise we are equal.
1345 for (; i
< CE1
->getNumOperands(); ++i
)
1346 if (!CE1
->getOperand(i
)->isNullValue()) {
1347 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1348 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1350 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1353 for (; i
< CE2
->getNumOperands(); ++i
)
1354 if (!CE2
->getOperand(i
)->isNullValue()) {
1355 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1356 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1358 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1360 return ICmpInst::ICMP_EQ
;
1369 return ICmpInst::BAD_ICMP_PREDICATE
;
1372 Constant
*llvm::ConstantFoldCompareInstruction(LLVMContext
&Context
,
1373 unsigned short pred
,
1375 const Constant
*C2
) {
1376 const Type
*ResultTy
;
1377 if (const VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1378 ResultTy
= VectorType::get(Type::getInt1Ty(Context
), VT
->getNumElements());
1380 ResultTy
= Type::getInt1Ty(Context
);
1382 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1383 if (pred
== FCmpInst::FCMP_FALSE
)
1384 return Constant::getNullValue(ResultTy
);
1386 if (pred
== FCmpInst::FCMP_TRUE
)
1387 return Constant::getAllOnesValue(ResultTy
);
1389 // Handle some degenerate cases first
1390 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
))
1391 return UndefValue::get(ResultTy
);
1393 // No compile-time operations on this type yet.
1394 if (C1
->getType() == Type::getPPC_FP128Ty(Context
))
1397 // icmp eq/ne(null,GV) -> false/true
1398 if (C1
->isNullValue()) {
1399 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1400 // Don't try to evaluate aliases. External weak GV can be null.
1401 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1402 if (pred
== ICmpInst::ICMP_EQ
)
1403 return ConstantInt::getFalse(Context
);
1404 else if (pred
== ICmpInst::ICMP_NE
)
1405 return ConstantInt::getTrue(Context
);
1407 // icmp eq/ne(GV,null) -> false/true
1408 } else if (C2
->isNullValue()) {
1409 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1410 // Don't try to evaluate aliases. External weak GV can be null.
1411 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1412 if (pred
== ICmpInst::ICMP_EQ
)
1413 return ConstantInt::getFalse(Context
);
1414 else if (pred
== ICmpInst::ICMP_NE
)
1415 return ConstantInt::getTrue(Context
);
1419 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1420 APInt V1
= cast
<ConstantInt
>(C1
)->getValue();
1421 APInt V2
= cast
<ConstantInt
>(C2
)->getValue();
1423 default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1424 case ICmpInst::ICMP_EQ
:
1425 return ConstantInt::get(Type::getInt1Ty(Context
), V1
== V2
);
1426 case ICmpInst::ICMP_NE
:
1427 return ConstantInt::get(Type::getInt1Ty(Context
), V1
!= V2
);
1428 case ICmpInst::ICMP_SLT
:
1429 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.slt(V2
));
1430 case ICmpInst::ICMP_SGT
:
1431 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.sgt(V2
));
1432 case ICmpInst::ICMP_SLE
:
1433 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.sle(V2
));
1434 case ICmpInst::ICMP_SGE
:
1435 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.sge(V2
));
1436 case ICmpInst::ICMP_ULT
:
1437 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.ult(V2
));
1438 case ICmpInst::ICMP_UGT
:
1439 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.ugt(V2
));
1440 case ICmpInst::ICMP_ULE
:
1441 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.ule(V2
));
1442 case ICmpInst::ICMP_UGE
:
1443 return ConstantInt::get(Type::getInt1Ty(Context
), V1
.uge(V2
));
1445 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1446 APFloat C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1447 APFloat C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1448 APFloat::cmpResult R
= C1V
.compare(C2V
);
1450 default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1451 case FCmpInst::FCMP_FALSE
: return ConstantInt::getFalse(Context
);
1452 case FCmpInst::FCMP_TRUE
: return ConstantInt::getTrue(Context
);
1453 case FCmpInst::FCMP_UNO
:
1454 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpUnordered
);
1455 case FCmpInst::FCMP_ORD
:
1456 return ConstantInt::get(Type::getInt1Ty(Context
), R
!=APFloat::cmpUnordered
);
1457 case FCmpInst::FCMP_UEQ
:
1458 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpUnordered
||
1459 R
==APFloat::cmpEqual
);
1460 case FCmpInst::FCMP_OEQ
:
1461 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpEqual
);
1462 case FCmpInst::FCMP_UNE
:
1463 return ConstantInt::get(Type::getInt1Ty(Context
), R
!=APFloat::cmpEqual
);
1464 case FCmpInst::FCMP_ONE
:
1465 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpLessThan
||
1466 R
==APFloat::cmpGreaterThan
);
1467 case FCmpInst::FCMP_ULT
:
1468 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpUnordered
||
1469 R
==APFloat::cmpLessThan
);
1470 case FCmpInst::FCMP_OLT
:
1471 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpLessThan
);
1472 case FCmpInst::FCMP_UGT
:
1473 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpUnordered
||
1474 R
==APFloat::cmpGreaterThan
);
1475 case FCmpInst::FCMP_OGT
:
1476 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpGreaterThan
);
1477 case FCmpInst::FCMP_ULE
:
1478 return ConstantInt::get(Type::getInt1Ty(Context
), R
!=APFloat::cmpGreaterThan
);
1479 case FCmpInst::FCMP_OLE
:
1480 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpLessThan
||
1481 R
==APFloat::cmpEqual
);
1482 case FCmpInst::FCMP_UGE
:
1483 return ConstantInt::get(Type::getInt1Ty(Context
), R
!=APFloat::cmpLessThan
);
1484 case FCmpInst::FCMP_OGE
:
1485 return ConstantInt::get(Type::getInt1Ty(Context
), R
==APFloat::cmpGreaterThan
||
1486 R
==APFloat::cmpEqual
);
1488 } else if (isa
<VectorType
>(C1
->getType())) {
1489 SmallVector
<Constant
*, 16> C1Elts
, C2Elts
;
1490 C1
->getVectorElements(Context
, C1Elts
);
1491 C2
->getVectorElements(Context
, C2Elts
);
1493 // If we can constant fold the comparison of each element, constant fold
1494 // the whole vector comparison.
1495 SmallVector
<Constant
*, 4> ResElts
;
1496 for (unsigned i
= 0, e
= C1Elts
.size(); i
!= e
; ++i
) {
1497 // Compare the elements, producing an i1 result or constant expr.
1499 ConstantExpr::getCompare(pred
, C1Elts
[i
], C2Elts
[i
]));
1501 return ConstantVector::get(&ResElts
[0], ResElts
.size());
1504 if (C1
->getType()->isFloatingPoint()) {
1505 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1506 switch (evaluateFCmpRelation(Context
, C1
, C2
)) {
1507 default: llvm_unreachable("Unknown relation!");
1508 case FCmpInst::FCMP_UNO
:
1509 case FCmpInst::FCMP_ORD
:
1510 case FCmpInst::FCMP_UEQ
:
1511 case FCmpInst::FCMP_UNE
:
1512 case FCmpInst::FCMP_ULT
:
1513 case FCmpInst::FCMP_UGT
:
1514 case FCmpInst::FCMP_ULE
:
1515 case FCmpInst::FCMP_UGE
:
1516 case FCmpInst::FCMP_TRUE
:
1517 case FCmpInst::FCMP_FALSE
:
1518 case FCmpInst::BAD_FCMP_PREDICATE
:
1519 break; // Couldn't determine anything about these constants.
1520 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1521 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1522 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1523 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1525 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1526 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1527 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1528 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1530 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1531 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1532 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1533 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1535 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1536 // We can only partially decide this relation.
1537 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1539 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1542 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1543 // We can only partially decide this relation.
1544 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1546 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1549 case ICmpInst::ICMP_NE
: // We know that C1 != C2
1550 // We can only partially decide this relation.
1551 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1553 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1558 // If we evaluated the result, return it now.
1560 return ConstantInt::get(Type::getInt1Ty(Context
), Result
);
1563 // Evaluate the relation between the two constants, per the predicate.
1564 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1565 switch (evaluateICmpRelation(Context
, C1
, C2
, CmpInst::isSigned(pred
))) {
1566 default: llvm_unreachable("Unknown relational!");
1567 case ICmpInst::BAD_ICMP_PREDICATE
:
1568 break; // Couldn't determine anything about these constants.
1569 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1570 // If we know the constants are equal, we can decide the result of this
1571 // computation precisely.
1572 Result
= (pred
== ICmpInst::ICMP_EQ
||
1573 pred
== ICmpInst::ICMP_ULE
||
1574 pred
== ICmpInst::ICMP_SLE
||
1575 pred
== ICmpInst::ICMP_UGE
||
1576 pred
== ICmpInst::ICMP_SGE
);
1578 case ICmpInst::ICMP_ULT
:
1579 // If we know that C1 < C2, we can decide the result of this computation
1581 Result
= (pred
== ICmpInst::ICMP_ULT
||
1582 pred
== ICmpInst::ICMP_NE
||
1583 pred
== ICmpInst::ICMP_ULE
);
1585 case ICmpInst::ICMP_SLT
:
1586 // If we know that C1 < C2, we can decide the result of this computation
1588 Result
= (pred
== ICmpInst::ICMP_SLT
||
1589 pred
== ICmpInst::ICMP_NE
||
1590 pred
== ICmpInst::ICMP_SLE
);
1592 case ICmpInst::ICMP_UGT
:
1593 // If we know that C1 > C2, we can decide the result of this computation
1595 Result
= (pred
== ICmpInst::ICMP_UGT
||
1596 pred
== ICmpInst::ICMP_NE
||
1597 pred
== ICmpInst::ICMP_UGE
);
1599 case ICmpInst::ICMP_SGT
:
1600 // If we know that C1 > C2, we can decide the result of this computation
1602 Result
= (pred
== ICmpInst::ICMP_SGT
||
1603 pred
== ICmpInst::ICMP_NE
||
1604 pred
== ICmpInst::ICMP_SGE
);
1606 case ICmpInst::ICMP_ULE
:
1607 // If we know that C1 <= C2, we can only partially decide this relation.
1608 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
1609 if (pred
== ICmpInst::ICMP_ULT
) Result
= 1;
1611 case ICmpInst::ICMP_SLE
:
1612 // If we know that C1 <= C2, we can only partially decide this relation.
1613 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
1614 if (pred
== ICmpInst::ICMP_SLT
) Result
= 1;
1617 case ICmpInst::ICMP_UGE
:
1618 // If we know that C1 >= C2, we can only partially decide this relation.
1619 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
1620 if (pred
== ICmpInst::ICMP_UGT
) Result
= 1;
1622 case ICmpInst::ICMP_SGE
:
1623 // If we know that C1 >= C2, we can only partially decide this relation.
1624 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
1625 if (pred
== ICmpInst::ICMP_SGT
) Result
= 1;
1628 case ICmpInst::ICMP_NE
:
1629 // If we know that C1 != C2, we can only partially decide this relation.
1630 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
1631 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
1635 // If we evaluated the result, return it now.
1637 return ConstantInt::get(Type::getInt1Ty(Context
), Result
);
1639 if (!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) {
1640 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1641 // other way if possible.
1643 case ICmpInst::ICMP_EQ
:
1644 case ICmpInst::ICMP_NE
:
1645 // No change of predicate required.
1646 return ConstantFoldCompareInstruction(Context
, pred
, C2
, C1
);
1648 case ICmpInst::ICMP_ULT
:
1649 case ICmpInst::ICMP_SLT
:
1650 case ICmpInst::ICMP_UGT
:
1651 case ICmpInst::ICMP_SGT
:
1652 case ICmpInst::ICMP_ULE
:
1653 case ICmpInst::ICMP_SLE
:
1654 case ICmpInst::ICMP_UGE
:
1655 case ICmpInst::ICMP_SGE
:
1656 // Change the predicate as necessary to swap the operands.
1657 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
1658 return ConstantFoldCompareInstruction(Context
, pred
, C2
, C1
);
1660 default: // These predicates cannot be flopped around.
1668 Constant
*llvm::ConstantFoldGetElementPtr(LLVMContext
&Context
,
1670 Constant
* const *Idxs
,
1673 (NumIdx
== 1 && Idxs
[0]->isNullValue()))
1674 return const_cast<Constant
*>(C
);
1676 if (isa
<UndefValue
>(C
)) {
1677 const PointerType
*Ptr
= cast
<PointerType
>(C
->getType());
1678 const Type
*Ty
= GetElementPtrInst::getIndexedType(Ptr
,
1680 (Value
**)Idxs
+NumIdx
);
1681 assert(Ty
!= 0 && "Invalid indices for GEP!");
1682 return UndefValue::get(PointerType::get(Ty
, Ptr
->getAddressSpace()));
1685 Constant
*Idx0
= Idxs
[0];
1686 if (C
->isNullValue()) {
1688 for (unsigned i
= 0, e
= NumIdx
; i
!= e
; ++i
)
1689 if (!Idxs
[i
]->isNullValue()) {
1694 const PointerType
*Ptr
= cast
<PointerType
>(C
->getType());
1695 const Type
*Ty
= GetElementPtrInst::getIndexedType(Ptr
,
1697 (Value
**)Idxs
+NumIdx
);
1698 assert(Ty
!= 0 && "Invalid indices for GEP!");
1699 return ConstantPointerNull::get(
1700 PointerType::get(Ty
,Ptr
->getAddressSpace()));
1704 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(const_cast<Constant
*>(C
))) {
1705 // Combine Indices - If the source pointer to this getelementptr instruction
1706 // is a getelementptr instruction, combine the indices of the two
1707 // getelementptr instructions into a single instruction.
1709 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
1710 const Type
*LastTy
= 0;
1711 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
1715 if ((LastTy
&& isa
<ArrayType
>(LastTy
)) || Idx0
->isNullValue()) {
1716 SmallVector
<Value
*, 16> NewIndices
;
1717 NewIndices
.reserve(NumIdx
+ CE
->getNumOperands());
1718 for (unsigned i
= 1, e
= CE
->getNumOperands()-1; i
!= e
; ++i
)
1719 NewIndices
.push_back(CE
->getOperand(i
));
1721 // Add the last index of the source with the first index of the new GEP.
1722 // Make sure to handle the case when they are actually different types.
1723 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
1724 // Otherwise it must be an array.
1725 if (!Idx0
->isNullValue()) {
1726 const Type
*IdxTy
= Combined
->getType();
1727 if (IdxTy
!= Idx0
->getType()) {
1729 ConstantExpr::getSExtOrBitCast(Idx0
, Type::getInt64Ty(Context
));
1730 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
,
1731 Type::getInt64Ty(Context
));
1732 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
1735 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
1739 NewIndices
.push_back(Combined
);
1740 NewIndices
.insert(NewIndices
.end(), Idxs
+1, Idxs
+NumIdx
);
1741 return ConstantExpr::getGetElementPtr(CE
->getOperand(0),
1747 // Implement folding of:
1748 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1750 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1752 if (CE
->isCast() && NumIdx
> 1 && Idx0
->isNullValue()) {
1753 if (const PointerType
*SPT
=
1754 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType()))
1755 if (const ArrayType
*SAT
= dyn_cast
<ArrayType
>(SPT
->getElementType()))
1756 if (const ArrayType
*CAT
=
1757 dyn_cast
<ArrayType
>(cast
<PointerType
>(C
->getType())->getElementType()))
1758 if (CAT
->getElementType() == SAT
->getElementType())
1759 return ConstantExpr::getGetElementPtr(
1760 (Constant
*)CE
->getOperand(0), Idxs
, NumIdx
);
1763 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1764 // Into: inttoptr (i64 0 to i8*)
1765 // This happens with pointers to member functions in C++.
1766 if (CE
->getOpcode() == Instruction::IntToPtr
&& NumIdx
== 1 &&
1767 isa
<ConstantInt
>(CE
->getOperand(0)) && isa
<ConstantInt
>(Idxs
[0]) &&
1768 cast
<PointerType
>(CE
->getType())->getElementType() == Type::getInt8Ty(Context
)) {
1769 Constant
*Base
= CE
->getOperand(0);
1770 Constant
*Offset
= Idxs
[0];
1772 // Convert the smaller integer to the larger type.
1773 if (Offset
->getType()->getPrimitiveSizeInBits() <
1774 Base
->getType()->getPrimitiveSizeInBits())
1775 Offset
= ConstantExpr::getSExt(Offset
, Base
->getType());
1776 else if (Base
->getType()->getPrimitiveSizeInBits() <
1777 Offset
->getType()->getPrimitiveSizeInBits())
1778 Base
= ConstantExpr::getZExt(Base
, Offset
->getType());
1780 Base
= ConstantExpr::getAdd(Base
, Offset
);
1781 return ConstantExpr::getIntToPtr(Base
, CE
->getType());