1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constants.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/System/Mutex.h"
31 #include "llvm/System/RWMutex.h"
32 #include "llvm/System/Threading.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/SmallVector.h"
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
43 // Constructor to create a '0' constant of arbitrary type...
44 static const uint64_t zero
[2] = {0, 0};
45 Constant
* Constant::getNullValue(const Type
* Ty
) {
46 switch (Ty
->getTypeID()) {
47 case Type::IntegerTyID
:
48 return ConstantInt::get(Ty
, 0);
50 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(32, 0)));
51 case Type::DoubleTyID
:
52 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(64, 0)));
53 case Type::X86_FP80TyID
:
54 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(80, 2, zero
)));
56 return ConstantFP::get(Ty
->getContext(),
57 APFloat(APInt(128, 2, zero
), true));
58 case Type::PPC_FP128TyID
:
59 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(128, 2, zero
)));
60 case Type::PointerTyID
:
61 return ConstantPointerNull::get(cast
<PointerType
>(Ty
));
62 case Type::StructTyID
:
64 case Type::VectorTyID
:
65 return ConstantAggregateZero::get(Ty
);
67 // Function, Label, or Opaque type?
68 assert(!"Cannot create a null constant of that type!");
73 Constant
* Constant::getIntegerValue(const Type
* Ty
, const APInt
&V
) {
74 const Type
*ScalarTy
= Ty
->getScalarType();
76 // Create the base integer constant.
77 Constant
*C
= ConstantInt::get(Ty
->getContext(), V
);
79 // Convert an integer to a pointer, if necessary.
80 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(ScalarTy
))
81 C
= ConstantExpr::getIntToPtr(C
, PTy
);
83 // Broadcast a scalar to a vector, if necessary.
84 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
85 C
= ConstantVector::get(std::vector
<Constant
*>(VTy
->getNumElements(), C
));
90 Constant
* Constant::getAllOnesValue(const Type
* Ty
) {
91 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
))
92 return ConstantInt::get(Ty
->getContext(),
93 APInt::getAllOnesValue(ITy
->getBitWidth()));
95 std::vector
<Constant
*> Elts
;
96 const VectorType
* VTy
= cast
<VectorType
>(Ty
);
97 Elts
.resize(VTy
->getNumElements(), getAllOnesValue(VTy
->getElementType()));
98 assert(Elts
[0] && "Not a vector integer type!");
99 return cast
<ConstantVector
>(ConstantVector::get(Elts
));
102 void Constant::destroyConstantImpl() {
103 // When a Constant is destroyed, there may be lingering
104 // references to the constant by other constants in the constant pool. These
105 // constants are implicitly dependent on the module that is being deleted,
106 // but they don't know that. Because we only find out when the CPV is
107 // deleted, we must now notify all of our users (that should only be
108 // Constants) that they are, in fact, invalid now and should be deleted.
110 while (!use_empty()) {
111 Value
*V
= use_back();
112 #ifndef NDEBUG // Only in -g mode...
113 if (!isa
<Constant
>(V
))
114 DOUT
<< "While deleting: " << *this
115 << "\n\nUse still stuck around after Def is destroyed: "
118 assert(isa
<Constant
>(V
) && "References remain to Constant being destroyed");
119 Constant
*CV
= cast
<Constant
>(V
);
120 CV
->destroyConstant();
122 // The constant should remove itself from our use list...
123 assert((use_empty() || use_back() != V
) && "Constant not removed!");
126 // Value has no outstanding references it is safe to delete it now...
130 /// canTrap - Return true if evaluation of this constant could trap. This is
131 /// true for things like constant expressions that could divide by zero.
132 bool Constant::canTrap() const {
133 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
134 // The only thing that could possibly trap are constant exprs.
135 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(this);
136 if (!CE
) return false;
138 // ConstantExpr traps if any operands can trap.
139 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
140 if (getOperand(i
)->canTrap())
143 // Otherwise, only specific operations can trap.
144 switch (CE
->getOpcode()) {
147 case Instruction::UDiv
:
148 case Instruction::SDiv
:
149 case Instruction::FDiv
:
150 case Instruction::URem
:
151 case Instruction::SRem
:
152 case Instruction::FRem
:
153 // Div and rem can trap if the RHS is not known to be non-zero.
154 if (!isa
<ConstantInt
>(getOperand(1)) || getOperand(1)->isNullValue())
161 /// getRelocationInfo - This method classifies the entry according to
162 /// whether or not it may generate a relocation entry. This must be
163 /// conservative, so if it might codegen to a relocatable entry, it should say
164 /// so. The return values are:
166 /// NoRelocation: This constant pool entry is guaranteed to never have a
167 /// relocation applied to it (because it holds a simple constant like
169 /// LocalRelocation: This entry has relocations, but the entries are
170 /// guaranteed to be resolvable by the static linker, so the dynamic
171 /// linker will never see them.
172 /// GlobalRelocations: This entry may have arbitrary relocations.
174 /// FIXME: This really should not be in VMCore.
175 Constant::PossibleRelocationsTy
Constant::getRelocationInfo() const {
176 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
177 if (GV
->hasLocalLinkage() || GV
->hasHiddenVisibility())
178 return LocalRelocation
; // Local to this file/library.
179 return GlobalRelocations
; // Global reference.
182 PossibleRelocationsTy Result
= NoRelocation
;
183 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
184 Result
= std::max(Result
, getOperand(i
)->getRelocationInfo());
190 /// getVectorElements - This method, which is only valid on constant of vector
191 /// type, returns the elements of the vector in the specified smallvector.
192 /// This handles breaking down a vector undef into undef elements, etc. For
193 /// constant exprs and other cases we can't handle, we return an empty vector.
194 void Constant::getVectorElements(LLVMContext
&Context
,
195 SmallVectorImpl
<Constant
*> &Elts
) const {
196 assert(isa
<VectorType
>(getType()) && "Not a vector constant!");
198 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this)) {
199 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
)
200 Elts
.push_back(CV
->getOperand(i
));
204 const VectorType
*VT
= cast
<VectorType
>(getType());
205 if (isa
<ConstantAggregateZero
>(this)) {
206 Elts
.assign(VT
->getNumElements(),
207 Constant::getNullValue(VT
->getElementType()));
211 if (isa
<UndefValue
>(this)) {
212 Elts
.assign(VT
->getNumElements(), UndefValue::get(VT
->getElementType()));
216 // Unknown type, must be constant expr etc.
221 //===----------------------------------------------------------------------===//
223 //===----------------------------------------------------------------------===//
225 ConstantInt::ConstantInt(const IntegerType
*Ty
, const APInt
& V
)
226 : Constant(Ty
, ConstantIntVal
, 0, 0), Val(V
) {
227 assert(V
.getBitWidth() == Ty
->getBitWidth() && "Invalid constant for type");
230 ConstantInt
* ConstantInt::getTrue(LLVMContext
&Context
) {
231 LLVMContextImpl
*pImpl
= Context
.pImpl
;
232 sys::SmartScopedWriter
<true>(pImpl
->ConstantsLock
);
233 if (pImpl
->TheTrueVal
)
234 return pImpl
->TheTrueVal
;
236 return (pImpl
->TheTrueVal
=
237 ConstantInt::get(IntegerType::get(Context
, 1), 1));
240 ConstantInt
* ConstantInt::getFalse(LLVMContext
&Context
) {
241 LLVMContextImpl
*pImpl
= Context
.pImpl
;
242 sys::SmartScopedWriter
<true>(pImpl
->ConstantsLock
);
243 if (pImpl
->TheFalseVal
)
244 return pImpl
->TheFalseVal
;
246 return (pImpl
->TheFalseVal
=
247 ConstantInt::get(IntegerType::get(Context
, 1), 0));
251 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
252 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
253 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
254 // compare APInt's of different widths, which would violate an APInt class
255 // invariant which generates an assertion.
256 ConstantInt
*ConstantInt::get(LLVMContext
&Context
, const APInt
& V
) {
257 // Get the corresponding integer type for the bit width of the value.
258 const IntegerType
*ITy
= IntegerType::get(Context
, V
.getBitWidth());
259 // get an existing value or the insertion position
260 DenseMapAPIntKeyInfo::KeyTy
Key(V
, ITy
);
262 Context
.pImpl
->ConstantsLock
.reader_acquire();
263 ConstantInt
*&Slot
= Context
.pImpl
->IntConstants
[Key
];
264 Context
.pImpl
->ConstantsLock
.reader_release();
267 sys::SmartScopedWriter
<true> Writer(Context
.pImpl
->ConstantsLock
);
268 ConstantInt
*&NewSlot
= Context
.pImpl
->IntConstants
[Key
];
270 NewSlot
= new ConstantInt(ITy
, V
);
279 Constant
* ConstantInt::get(const Type
* Ty
, uint64_t V
, bool isSigned
) {
280 Constant
*C
= get(cast
<IntegerType
>(Ty
->getScalarType()),
283 // For vectors, broadcast the value.
284 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
285 return ConstantVector::get(
286 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
291 ConstantInt
* ConstantInt::get(const IntegerType
* Ty
, uint64_t V
,
293 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), V
, isSigned
));
296 ConstantInt
* ConstantInt::getSigned(const IntegerType
* Ty
, int64_t V
) {
297 return get(Ty
, V
, true);
300 Constant
*ConstantInt::getSigned(const Type
*Ty
, int64_t V
) {
301 return get(Ty
, V
, true);
304 Constant
* ConstantInt::get(const Type
* Ty
, const APInt
& V
) {
305 ConstantInt
*C
= get(Ty
->getContext(), V
);
306 assert(C
->getType() == Ty
->getScalarType() &&
307 "ConstantInt type doesn't match the type implied by its value!");
309 // For vectors, broadcast the value.
310 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
311 return ConstantVector::get(
312 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
317 //===----------------------------------------------------------------------===//
319 //===----------------------------------------------------------------------===//
321 static const fltSemantics
*TypeToFloatSemantics(const Type
*Ty
) {
322 if (Ty
== Type::getFloatTy(Ty
->getContext()))
323 return &APFloat::IEEEsingle
;
324 if (Ty
== Type::getDoubleTy(Ty
->getContext()))
325 return &APFloat::IEEEdouble
;
326 if (Ty
== Type::getX86_FP80Ty(Ty
->getContext()))
327 return &APFloat::x87DoubleExtended
;
328 else if (Ty
== Type::getFP128Ty(Ty
->getContext()))
329 return &APFloat::IEEEquad
;
331 assert(Ty
== Type::getPPC_FP128Ty(Ty
->getContext()) && "Unknown FP format");
332 return &APFloat::PPCDoubleDouble
;
335 /// get() - This returns a constant fp for the specified value in the
336 /// specified type. This should only be used for simple constant values like
337 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
338 Constant
* ConstantFP::get(const Type
* Ty
, double V
) {
339 LLVMContext
&Context
= Ty
->getContext();
343 FV
.convert(*TypeToFloatSemantics(Ty
->getScalarType()),
344 APFloat::rmNearestTiesToEven
, &ignored
);
345 Constant
*C
= get(Context
, FV
);
347 // For vectors, broadcast the value.
348 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
349 return ConstantVector::get(
350 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
355 ConstantFP
* ConstantFP::getNegativeZero(const Type
* Ty
) {
356 LLVMContext
&Context
= Ty
->getContext();
357 APFloat apf
= cast
<ConstantFP
>(Constant::getNullValue(Ty
))->getValueAPF();
359 return get(Context
, apf
);
363 Constant
* ConstantFP::getZeroValueForNegation(const Type
* Ty
) {
364 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Ty
))
365 if (PTy
->getElementType()->isFloatingPoint()) {
366 std::vector
<Constant
*> zeros(PTy
->getNumElements(),
367 getNegativeZero(PTy
->getElementType()));
368 return ConstantVector::get(PTy
, zeros
);
371 if (Ty
->isFloatingPoint())
372 return getNegativeZero(Ty
);
374 return Constant::getNullValue(Ty
);
378 // ConstantFP accessors.
379 ConstantFP
* ConstantFP::get(LLVMContext
&Context
, const APFloat
& V
) {
380 DenseMapAPFloatKeyInfo::KeyTy
Key(V
);
382 LLVMContextImpl
* pImpl
= Context
.pImpl
;
384 pImpl
->ConstantsLock
.reader_acquire();
385 ConstantFP
*&Slot
= pImpl
->FPConstants
[Key
];
386 pImpl
->ConstantsLock
.reader_release();
389 sys::SmartScopedWriter
<true> Writer(pImpl
->ConstantsLock
);
390 ConstantFP
*&NewSlot
= pImpl
->FPConstants
[Key
];
393 if (&V
.getSemantics() == &APFloat::IEEEsingle
)
394 Ty
= Type::getFloatTy(Context
);
395 else if (&V
.getSemantics() == &APFloat::IEEEdouble
)
396 Ty
= Type::getDoubleTy(Context
);
397 else if (&V
.getSemantics() == &APFloat::x87DoubleExtended
)
398 Ty
= Type::getX86_FP80Ty(Context
);
399 else if (&V
.getSemantics() == &APFloat::IEEEquad
)
400 Ty
= Type::getFP128Ty(Context
);
402 assert(&V
.getSemantics() == &APFloat::PPCDoubleDouble
&&
403 "Unknown FP format");
404 Ty
= Type::getPPC_FP128Ty(Context
);
406 NewSlot
= new ConstantFP(Ty
, V
);
415 ConstantFP::ConstantFP(const Type
*Ty
, const APFloat
& V
)
416 : Constant(Ty
, ConstantFPVal
, 0, 0), Val(V
) {
417 assert(&V
.getSemantics() == TypeToFloatSemantics(Ty
) &&
421 bool ConstantFP::isNullValue() const {
422 return Val
.isZero() && !Val
.isNegative();
425 bool ConstantFP::isExactlyValue(const APFloat
& V
) const {
426 return Val
.bitwiseIsEqual(V
);
429 //===----------------------------------------------------------------------===//
430 // ConstantXXX Classes
431 //===----------------------------------------------------------------------===//
434 ConstantArray::ConstantArray(const ArrayType
*T
,
435 const std::vector
<Constant
*> &V
)
436 : Constant(T
, ConstantArrayVal
,
437 OperandTraits
<ConstantArray
>::op_end(this) - V
.size(),
439 assert(V
.size() == T
->getNumElements() &&
440 "Invalid initializer vector for constant array");
441 Use
*OL
= OperandList
;
442 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
445 assert((C
->getType() == T
->getElementType() ||
447 C
->getType()->getTypeID() == T
->getElementType()->getTypeID())) &&
448 "Initializer for array element doesn't match array element type!");
453 Constant
*ConstantArray::get(const ArrayType
*Ty
,
454 const std::vector
<Constant
*> &V
) {
455 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
456 // If this is an all-zero array, return a ConstantAggregateZero object
459 if (!C
->isNullValue()) {
460 // Implicitly locked.
461 return pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
463 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
465 // Implicitly locked.
466 return pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
470 return ConstantAggregateZero::get(Ty
);
474 Constant
* ConstantArray::get(const ArrayType
* T
, Constant
* const* Vals
,
476 // FIXME: make this the primary ctor method.
477 return get(T
, std::vector
<Constant
*>(Vals
, Vals
+NumVals
));
480 /// ConstantArray::get(const string&) - Return an array that is initialized to
481 /// contain the specified string. If length is zero then a null terminator is
482 /// added to the specified string so that it may be used in a natural way.
483 /// Otherwise, the length parameter specifies how much of the string to use
484 /// and it won't be null terminated.
486 Constant
* ConstantArray::get(LLVMContext
&Context
, const StringRef
&Str
,
488 std::vector
<Constant
*> ElementVals
;
489 for (unsigned i
= 0; i
< Str
.size(); ++i
)
490 ElementVals
.push_back(ConstantInt::get(Type::getInt8Ty(Context
), Str
[i
]));
492 // Add a null terminator to the string...
494 ElementVals
.push_back(ConstantInt::get(Type::getInt8Ty(Context
), 0));
497 ArrayType
*ATy
= ArrayType::get(Type::getInt8Ty(Context
), ElementVals
.size());
498 return get(ATy
, ElementVals
);
503 ConstantStruct::ConstantStruct(const StructType
*T
,
504 const std::vector
<Constant
*> &V
)
505 : Constant(T
, ConstantStructVal
,
506 OperandTraits
<ConstantStruct
>::op_end(this) - V
.size(),
508 assert(V
.size() == T
->getNumElements() &&
509 "Invalid initializer vector for constant structure");
510 Use
*OL
= OperandList
;
511 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
514 assert((C
->getType() == T
->getElementType(I
-V
.begin()) ||
515 ((T
->getElementType(I
-V
.begin())->isAbstract() ||
516 C
->getType()->isAbstract()) &&
517 T
->getElementType(I
-V
.begin())->getTypeID() ==
518 C
->getType()->getTypeID())) &&
519 "Initializer for struct element doesn't match struct element type!");
524 // ConstantStruct accessors.
525 Constant
* ConstantStruct::get(const StructType
* T
,
526 const std::vector
<Constant
*>& V
) {
527 LLVMContextImpl
* pImpl
= T
->getContext().pImpl
;
529 // Create a ConstantAggregateZero value if all elements are zeros...
530 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
)
531 if (!V
[i
]->isNullValue())
532 // Implicitly locked.
533 return pImpl
->StructConstants
.getOrCreate(T
, V
);
535 return ConstantAggregateZero::get(T
);
538 Constant
* ConstantStruct::get(LLVMContext
&Context
,
539 const std::vector
<Constant
*>& V
, bool packed
) {
540 std::vector
<const Type
*> StructEls
;
541 StructEls
.reserve(V
.size());
542 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
)
543 StructEls
.push_back(V
[i
]->getType());
544 return get(StructType::get(Context
, StructEls
, packed
), V
);
547 Constant
* ConstantStruct::get(LLVMContext
&Context
,
548 Constant
* const *Vals
, unsigned NumVals
,
550 // FIXME: make this the primary ctor method.
551 return get(Context
, std::vector
<Constant
*>(Vals
, Vals
+NumVals
), Packed
);
554 ConstantVector::ConstantVector(const VectorType
*T
,
555 const std::vector
<Constant
*> &V
)
556 : Constant(T
, ConstantVectorVal
,
557 OperandTraits
<ConstantVector
>::op_end(this) - V
.size(),
559 Use
*OL
= OperandList
;
560 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
563 assert((C
->getType() == T
->getElementType() ||
565 C
->getType()->getTypeID() == T
->getElementType()->getTypeID())) &&
566 "Initializer for vector element doesn't match vector element type!");
571 // ConstantVector accessors.
572 Constant
* ConstantVector::get(const VectorType
* T
,
573 const std::vector
<Constant
*>& V
) {
574 assert(!V
.empty() && "Vectors can't be empty");
575 LLVMContext
&Context
= T
->getContext();
576 LLVMContextImpl
*pImpl
= Context
.pImpl
;
578 // If this is an all-undef or alll-zero vector, return a
579 // ConstantAggregateZero or UndefValue.
581 bool isZero
= C
->isNullValue();
582 bool isUndef
= isa
<UndefValue
>(C
);
584 if (isZero
|| isUndef
) {
585 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
587 isZero
= isUndef
= false;
593 return ConstantAggregateZero::get(T
);
595 return UndefValue::get(T
);
597 // Implicitly locked.
598 return pImpl
->VectorConstants
.getOrCreate(T
, V
);
601 Constant
* ConstantVector::get(const std::vector
<Constant
*>& V
) {
602 assert(!V
.empty() && "Cannot infer type if V is empty");
603 return get(VectorType::get(V
.front()->getType(),V
.size()), V
);
606 Constant
* ConstantVector::get(Constant
* const* Vals
, unsigned NumVals
) {
607 // FIXME: make this the primary ctor method.
608 return get(std::vector
<Constant
*>(Vals
, Vals
+NumVals
));
611 Constant
* ConstantExpr::getNSWAdd(Constant
* C1
, Constant
* C2
) {
612 Constant
*C
= getAdd(C1
, C2
);
613 // Set nsw attribute, assuming constant folding didn't eliminate the
615 if (AddOperator
*Add
= dyn_cast
<AddOperator
>(C
))
616 Add
->setHasNoSignedOverflow(true);
620 Constant
* ConstantExpr::getExactSDiv(Constant
* C1
, Constant
* C2
) {
621 Constant
*C
= getSDiv(C1
, C2
);
622 // Set exact attribute, assuming constant folding didn't eliminate the
624 if (SDivOperator
*SDiv
= dyn_cast
<SDivOperator
>(C
))
625 SDiv
->setIsExact(true);
629 // Utility function for determining if a ConstantExpr is a CastOp or not. This
630 // can't be inline because we don't want to #include Instruction.h into
632 bool ConstantExpr::isCast() const {
633 return Instruction::isCast(getOpcode());
636 bool ConstantExpr::isCompare() const {
637 return getOpcode() == Instruction::ICmp
|| getOpcode() == Instruction::FCmp
;
640 bool ConstantExpr::hasIndices() const {
641 return getOpcode() == Instruction::ExtractValue
||
642 getOpcode() == Instruction::InsertValue
;
645 const SmallVector
<unsigned, 4> &ConstantExpr::getIndices() const {
646 if (const ExtractValueConstantExpr
*EVCE
=
647 dyn_cast
<ExtractValueConstantExpr
>(this))
648 return EVCE
->Indices
;
650 return cast
<InsertValueConstantExpr
>(this)->Indices
;
653 unsigned ConstantExpr::getPredicate() const {
654 assert(getOpcode() == Instruction::FCmp
||
655 getOpcode() == Instruction::ICmp
);
656 return ((const CompareConstantExpr
*)this)->predicate
;
659 /// getWithOperandReplaced - Return a constant expression identical to this
660 /// one, but with the specified operand set to the specified value.
662 ConstantExpr::getWithOperandReplaced(unsigned OpNo
, Constant
*Op
) const {
663 assert(OpNo
< getNumOperands() && "Operand num is out of range!");
664 assert(Op
->getType() == getOperand(OpNo
)->getType() &&
665 "Replacing operand with value of different type!");
666 if (getOperand(OpNo
) == Op
)
667 return const_cast<ConstantExpr
*>(this);
669 Constant
*Op0
, *Op1
, *Op2
;
670 switch (getOpcode()) {
671 case Instruction::Trunc
:
672 case Instruction::ZExt
:
673 case Instruction::SExt
:
674 case Instruction::FPTrunc
:
675 case Instruction::FPExt
:
676 case Instruction::UIToFP
:
677 case Instruction::SIToFP
:
678 case Instruction::FPToUI
:
679 case Instruction::FPToSI
:
680 case Instruction::PtrToInt
:
681 case Instruction::IntToPtr
:
682 case Instruction::BitCast
:
683 return ConstantExpr::getCast(getOpcode(), Op
, getType());
684 case Instruction::Select
:
685 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
686 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
687 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
688 return ConstantExpr::getSelect(Op0
, Op1
, Op2
);
689 case Instruction::InsertElement
:
690 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
691 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
692 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
693 return ConstantExpr::getInsertElement(Op0
, Op1
, Op2
);
694 case Instruction::ExtractElement
:
695 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
696 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
697 return ConstantExpr::getExtractElement(Op0
, Op1
);
698 case Instruction::ShuffleVector
:
699 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
700 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
701 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
702 return ConstantExpr::getShuffleVector(Op0
, Op1
, Op2
);
703 case Instruction::GetElementPtr
: {
704 SmallVector
<Constant
*, 8> Ops
;
705 Ops
.resize(getNumOperands()-1);
706 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
)
707 Ops
[i
-1] = getOperand(i
);
709 return ConstantExpr::getGetElementPtr(Op
, &Ops
[0], Ops
.size());
711 return ConstantExpr::getGetElementPtr(getOperand(0), &Ops
[0], Ops
.size());
714 assert(getNumOperands() == 2 && "Must be binary operator?");
715 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
716 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
717 return ConstantExpr::get(getOpcode(), Op0
, Op1
);
721 /// getWithOperands - This returns the current constant expression with the
722 /// operands replaced with the specified values. The specified operands must
723 /// match count and type with the existing ones.
724 Constant
*ConstantExpr::
725 getWithOperands(Constant
* const *Ops
, unsigned NumOps
) const {
726 assert(NumOps
== getNumOperands() && "Operand count mismatch!");
727 bool AnyChange
= false;
728 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
729 assert(Ops
[i
]->getType() == getOperand(i
)->getType() &&
730 "Operand type mismatch!");
731 AnyChange
|= Ops
[i
] != getOperand(i
);
733 if (!AnyChange
) // No operands changed, return self.
734 return const_cast<ConstantExpr
*>(this);
736 switch (getOpcode()) {
737 case Instruction::Trunc
:
738 case Instruction::ZExt
:
739 case Instruction::SExt
:
740 case Instruction::FPTrunc
:
741 case Instruction::FPExt
:
742 case Instruction::UIToFP
:
743 case Instruction::SIToFP
:
744 case Instruction::FPToUI
:
745 case Instruction::FPToSI
:
746 case Instruction::PtrToInt
:
747 case Instruction::IntToPtr
:
748 case Instruction::BitCast
:
749 return ConstantExpr::getCast(getOpcode(), Ops
[0], getType());
750 case Instruction::Select
:
751 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
752 case Instruction::InsertElement
:
753 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
754 case Instruction::ExtractElement
:
755 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
756 case Instruction::ShuffleVector
:
757 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
758 case Instruction::GetElementPtr
:
759 return ConstantExpr::getGetElementPtr(Ops
[0], &Ops
[1], NumOps
-1);
760 case Instruction::ICmp
:
761 case Instruction::FCmp
:
762 return ConstantExpr::getCompare(getPredicate(), Ops
[0], Ops
[1]);
764 assert(getNumOperands() == 2 && "Must be binary operator?");
765 return ConstantExpr::get(getOpcode(), Ops
[0], Ops
[1]);
770 //===----------------------------------------------------------------------===//
771 // isValueValidForType implementations
773 bool ConstantInt::isValueValidForType(const Type
*Ty
, uint64_t Val
) {
774 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth(); // assert okay
775 if (Ty
== Type::getInt1Ty(Ty
->getContext()))
776 return Val
== 0 || Val
== 1;
778 return true; // always true, has to fit in largest type
779 uint64_t Max
= (1ll << NumBits
) - 1;
783 bool ConstantInt::isValueValidForType(const Type
*Ty
, int64_t Val
) {
784 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth(); // assert okay
785 if (Ty
== Type::getInt1Ty(Ty
->getContext()))
786 return Val
== 0 || Val
== 1 || Val
== -1;
788 return true; // always true, has to fit in largest type
789 int64_t Min
= -(1ll << (NumBits
-1));
790 int64_t Max
= (1ll << (NumBits
-1)) - 1;
791 return (Val
>= Min
&& Val
<= Max
);
794 bool ConstantFP::isValueValidForType(const Type
*Ty
, const APFloat
& Val
) {
795 // convert modifies in place, so make a copy.
796 APFloat Val2
= APFloat(Val
);
798 switch (Ty
->getTypeID()) {
800 return false; // These can't be represented as floating point!
802 // FIXME rounding mode needs to be more flexible
803 case Type::FloatTyID
: {
804 if (&Val2
.getSemantics() == &APFloat::IEEEsingle
)
806 Val2
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
, &losesInfo
);
809 case Type::DoubleTyID
: {
810 if (&Val2
.getSemantics() == &APFloat::IEEEsingle
||
811 &Val2
.getSemantics() == &APFloat::IEEEdouble
)
813 Val2
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
, &losesInfo
);
816 case Type::X86_FP80TyID
:
817 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
818 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
819 &Val2
.getSemantics() == &APFloat::x87DoubleExtended
;
820 case Type::FP128TyID
:
821 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
822 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
823 &Val2
.getSemantics() == &APFloat::IEEEquad
;
824 case Type::PPC_FP128TyID
:
825 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
826 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
827 &Val2
.getSemantics() == &APFloat::PPCDoubleDouble
;
831 //===----------------------------------------------------------------------===//
832 // Factory Function Implementation
834 static char getValType(ConstantAggregateZero
*CPZ
) { return 0; }
836 ConstantAggregateZero
* ConstantAggregateZero::get(const Type
* Ty
) {
837 assert((isa
<StructType
>(Ty
) || isa
<ArrayType
>(Ty
) || isa
<VectorType
>(Ty
)) &&
838 "Cannot create an aggregate zero of non-aggregate type!");
840 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
841 // Implicitly locked.
842 return pImpl
->AggZeroConstants
.getOrCreate(Ty
, 0);
845 /// destroyConstant - Remove the constant from the constant table...
847 void ConstantAggregateZero::destroyConstant() {
848 // Implicitly locked.
849 getType()->getContext().pImpl
->AggZeroConstants
.remove(this);
850 destroyConstantImpl();
853 /// destroyConstant - Remove the constant from the constant table...
855 void ConstantArray::destroyConstant() {
856 // Implicitly locked.
857 getType()->getContext().pImpl
->ArrayConstants
.remove(this);
858 destroyConstantImpl();
861 /// isString - This method returns true if the array is an array of i8, and
862 /// if the elements of the array are all ConstantInt's.
863 bool ConstantArray::isString() const {
864 // Check the element type for i8...
865 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
867 // Check the elements to make sure they are all integers, not constant
869 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
870 if (!isa
<ConstantInt
>(getOperand(i
)))
875 /// isCString - This method returns true if the array is a string (see
876 /// isString) and it ends in a null byte \\0 and does not contains any other
877 /// null bytes except its terminator.
878 bool ConstantArray::isCString() const {
879 // Check the element type for i8...
880 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
883 // Last element must be a null.
884 if (!getOperand(getNumOperands()-1)->isNullValue())
886 // Other elements must be non-null integers.
887 for (unsigned i
= 0, e
= getNumOperands()-1; i
!= e
; ++i
) {
888 if (!isa
<ConstantInt
>(getOperand(i
)))
890 if (getOperand(i
)->isNullValue())
897 /// getAsString - If the sub-element type of this array is i8
898 /// then this method converts the array to an std::string and returns it.
899 /// Otherwise, it asserts out.
901 std::string
ConstantArray::getAsString() const {
902 assert(isString() && "Not a string!");
904 Result
.reserve(getNumOperands());
905 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
906 Result
.push_back((char)cast
<ConstantInt
>(getOperand(i
))->getZExtValue());
911 //---- ConstantStruct::get() implementation...
918 // destroyConstant - Remove the constant from the constant table...
920 void ConstantStruct::destroyConstant() {
921 // Implicitly locked.
922 getType()->getContext().pImpl
->StructConstants
.remove(this);
923 destroyConstantImpl();
926 // destroyConstant - Remove the constant from the constant table...
928 void ConstantVector::destroyConstant() {
929 // Implicitly locked.
930 getType()->getContext().pImpl
->VectorConstants
.remove(this);
931 destroyConstantImpl();
934 /// This function will return true iff every element in this vector constant
935 /// is set to all ones.
936 /// @returns true iff this constant's emements are all set to all ones.
937 /// @brief Determine if the value is all ones.
938 bool ConstantVector::isAllOnesValue() const {
939 // Check out first element.
940 const Constant
*Elt
= getOperand(0);
941 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
942 if (!CI
|| !CI
->isAllOnesValue()) return false;
943 // Then make sure all remaining elements point to the same value.
944 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
) {
945 if (getOperand(I
) != Elt
) return false;
950 /// getSplatValue - If this is a splat constant, where all of the
951 /// elements have the same value, return that value. Otherwise return null.
952 Constant
*ConstantVector::getSplatValue() {
953 // Check out first element.
954 Constant
*Elt
= getOperand(0);
955 // Then make sure all remaining elements point to the same value.
956 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
)
957 if (getOperand(I
) != Elt
) return 0;
961 //---- ConstantPointerNull::get() implementation...
964 static char getValType(ConstantPointerNull
*) {
969 ConstantPointerNull
*ConstantPointerNull::get(const PointerType
*Ty
) {
970 // Implicitly locked.
971 return Ty
->getContext().pImpl
->NullPtrConstants
.getOrCreate(Ty
, 0);
974 // destroyConstant - Remove the constant from the constant table...
976 void ConstantPointerNull::destroyConstant() {
977 // Implicitly locked.
978 getType()->getContext().pImpl
->NullPtrConstants
.remove(this);
979 destroyConstantImpl();
983 //---- UndefValue::get() implementation...
986 static char getValType(UndefValue
*) {
990 UndefValue
*UndefValue::get(const Type
*Ty
) {
991 // Implicitly locked.
992 return Ty
->getContext().pImpl
->UndefValueConstants
.getOrCreate(Ty
, 0);
995 // destroyConstant - Remove the constant from the constant table.
997 void UndefValue::destroyConstant() {
998 // Implicitly locked.
999 getType()->getContext().pImpl
->UndefValueConstants
.remove(this);
1000 destroyConstantImpl();
1003 //---- ConstantExpr::get() implementations...
1006 static ExprMapKeyType
getValType(ConstantExpr
*CE
) {
1007 std::vector
<Constant
*> Operands
;
1008 Operands
.reserve(CE
->getNumOperands());
1009 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
1010 Operands
.push_back(cast
<Constant
>(CE
->getOperand(i
)));
1011 return ExprMapKeyType(CE
->getOpcode(), Operands
,
1012 CE
->isCompare() ? CE
->getPredicate() : 0,
1014 CE
->getIndices() : SmallVector
<unsigned, 4>());
1017 /// This is a utility function to handle folding of casts and lookup of the
1018 /// cast in the ExprConstants map. It is used by the various get* methods below.
1019 static inline Constant
*getFoldedCast(
1020 Instruction::CastOps opc
, Constant
*C
, const Type
*Ty
) {
1021 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1022 // Fold a few common cases
1023 if (Constant
*FC
= ConstantFoldCastInstruction(Ty
->getContext(), opc
, C
, Ty
))
1026 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
1028 // Look up the constant in the table first to ensure uniqueness
1029 std::vector
<Constant
*> argVec(1, C
);
1030 ExprMapKeyType
Key(opc
, argVec
);
1032 // Implicitly locked.
1033 return pImpl
->ExprConstants
.getOrCreate(Ty
, Key
);
1036 Constant
*ConstantExpr::getCast(unsigned oc
, Constant
*C
, const Type
*Ty
) {
1037 Instruction::CastOps opc
= Instruction::CastOps(oc
);
1038 assert(Instruction::isCast(opc
) && "opcode out of range");
1039 assert(C
&& Ty
&& "Null arguments to getCast");
1040 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1044 llvm_unreachable("Invalid cast opcode");
1046 case Instruction::Trunc
: return getTrunc(C
, Ty
);
1047 case Instruction::ZExt
: return getZExt(C
, Ty
);
1048 case Instruction::SExt
: return getSExt(C
, Ty
);
1049 case Instruction::FPTrunc
: return getFPTrunc(C
, Ty
);
1050 case Instruction::FPExt
: return getFPExtend(C
, Ty
);
1051 case Instruction::UIToFP
: return getUIToFP(C
, Ty
);
1052 case Instruction::SIToFP
: return getSIToFP(C
, Ty
);
1053 case Instruction::FPToUI
: return getFPToUI(C
, Ty
);
1054 case Instruction::FPToSI
: return getFPToSI(C
, Ty
);
1055 case Instruction::PtrToInt
: return getPtrToInt(C
, Ty
);
1056 case Instruction::IntToPtr
: return getIntToPtr(C
, Ty
);
1057 case Instruction::BitCast
: return getBitCast(C
, Ty
);
1062 Constant
*ConstantExpr::getZExtOrBitCast(Constant
*C
, const Type
*Ty
) {
1063 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1064 return getCast(Instruction::BitCast
, C
, Ty
);
1065 return getCast(Instruction::ZExt
, C
, Ty
);
1068 Constant
*ConstantExpr::getSExtOrBitCast(Constant
*C
, const Type
*Ty
) {
1069 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1070 return getCast(Instruction::BitCast
, C
, Ty
);
1071 return getCast(Instruction::SExt
, C
, Ty
);
1074 Constant
*ConstantExpr::getTruncOrBitCast(Constant
*C
, const Type
*Ty
) {
1075 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1076 return getCast(Instruction::BitCast
, C
, Ty
);
1077 return getCast(Instruction::Trunc
, C
, Ty
);
1080 Constant
*ConstantExpr::getPointerCast(Constant
*S
, const Type
*Ty
) {
1081 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
1082 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) && "Invalid cast");
1084 if (Ty
->isInteger())
1085 return getCast(Instruction::PtrToInt
, S
, Ty
);
1086 return getCast(Instruction::BitCast
, S
, Ty
);
1089 Constant
*ConstantExpr::getIntegerCast(Constant
*C
, const Type
*Ty
,
1091 assert(C
->getType()->isIntOrIntVector() &&
1092 Ty
->isIntOrIntVector() && "Invalid cast");
1093 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1094 unsigned DstBits
= Ty
->getScalarSizeInBits();
1095 Instruction::CastOps opcode
=
1096 (SrcBits
== DstBits
? Instruction::BitCast
:
1097 (SrcBits
> DstBits
? Instruction::Trunc
:
1098 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1099 return getCast(opcode
, C
, Ty
);
1102 Constant
*ConstantExpr::getFPCast(Constant
*C
, const Type
*Ty
) {
1103 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
1105 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1106 unsigned DstBits
= Ty
->getScalarSizeInBits();
1107 if (SrcBits
== DstBits
)
1108 return C
; // Avoid a useless cast
1109 Instruction::CastOps opcode
=
1110 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
);
1111 return getCast(opcode
, C
, Ty
);
1114 Constant
*ConstantExpr::getTrunc(Constant
*C
, const Type
*Ty
) {
1116 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1117 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1119 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1120 assert(C
->getType()->isIntOrIntVector() && "Trunc operand must be integer");
1121 assert(Ty
->isIntOrIntVector() && "Trunc produces only integral");
1122 assert(C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1123 "SrcTy must be larger than DestTy for Trunc!");
1125 return getFoldedCast(Instruction::Trunc
, C
, Ty
);
1128 Constant
*ConstantExpr::getSExt(Constant
*C
, const Type
*Ty
) {
1130 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1131 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1133 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1134 assert(C
->getType()->isIntOrIntVector() && "SExt operand must be integral");
1135 assert(Ty
->isIntOrIntVector() && "SExt produces only integer");
1136 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1137 "SrcTy must be smaller than DestTy for SExt!");
1139 return getFoldedCast(Instruction::SExt
, C
, Ty
);
1142 Constant
*ConstantExpr::getZExt(Constant
*C
, const Type
*Ty
) {
1144 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1145 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1147 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1148 assert(C
->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
1149 assert(Ty
->isIntOrIntVector() && "ZExt produces only integer");
1150 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1151 "SrcTy must be smaller than DestTy for ZExt!");
1153 return getFoldedCast(Instruction::ZExt
, C
, Ty
);
1156 Constant
*ConstantExpr::getFPTrunc(Constant
*C
, const Type
*Ty
) {
1158 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1159 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1161 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1162 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
1163 C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1164 "This is an illegal floating point truncation!");
1165 return getFoldedCast(Instruction::FPTrunc
, C
, Ty
);
1168 Constant
*ConstantExpr::getFPExtend(Constant
*C
, const Type
*Ty
) {
1170 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1171 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1173 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1174 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
1175 C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1176 "This is an illegal floating point extension!");
1177 return getFoldedCast(Instruction::FPExt
, C
, Ty
);
1180 Constant
*ConstantExpr::getUIToFP(Constant
*C
, const Type
*Ty
) {
1182 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1183 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1185 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1186 assert(C
->getType()->isIntOrIntVector() && Ty
->isFPOrFPVector() &&
1187 "This is an illegal uint to floating point cast!");
1188 return getFoldedCast(Instruction::UIToFP
, C
, Ty
);
1191 Constant
*ConstantExpr::getSIToFP(Constant
*C
, const Type
*Ty
) {
1193 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1194 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1196 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1197 assert(C
->getType()->isIntOrIntVector() && Ty
->isFPOrFPVector() &&
1198 "This is an illegal sint to floating point cast!");
1199 return getFoldedCast(Instruction::SIToFP
, C
, Ty
);
1202 Constant
*ConstantExpr::getFPToUI(Constant
*C
, const Type
*Ty
) {
1204 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1205 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1207 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1208 assert(C
->getType()->isFPOrFPVector() && Ty
->isIntOrIntVector() &&
1209 "This is an illegal floating point to uint cast!");
1210 return getFoldedCast(Instruction::FPToUI
, C
, Ty
);
1213 Constant
*ConstantExpr::getFPToSI(Constant
*C
, const Type
*Ty
) {
1215 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1216 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1218 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1219 assert(C
->getType()->isFPOrFPVector() && Ty
->isIntOrIntVector() &&
1220 "This is an illegal floating point to sint cast!");
1221 return getFoldedCast(Instruction::FPToSI
, C
, Ty
);
1224 Constant
*ConstantExpr::getPtrToInt(Constant
*C
, const Type
*DstTy
) {
1225 assert(isa
<PointerType
>(C
->getType()) && "PtrToInt source must be pointer");
1226 assert(DstTy
->isInteger() && "PtrToInt destination must be integral");
1227 return getFoldedCast(Instruction::PtrToInt
, C
, DstTy
);
1230 Constant
*ConstantExpr::getIntToPtr(Constant
*C
, const Type
*DstTy
) {
1231 assert(C
->getType()->isInteger() && "IntToPtr source must be integral");
1232 assert(isa
<PointerType
>(DstTy
) && "IntToPtr destination must be a pointer");
1233 return getFoldedCast(Instruction::IntToPtr
, C
, DstTy
);
1236 Constant
*ConstantExpr::getBitCast(Constant
*C
, const Type
*DstTy
) {
1237 // BitCast implies a no-op cast of type only. No bits change. However, you
1238 // can't cast pointers to anything but pointers.
1240 const Type
*SrcTy
= C
->getType();
1241 assert((isa
<PointerType
>(SrcTy
) == isa
<PointerType
>(DstTy
)) &&
1242 "BitCast cannot cast pointer to non-pointer and vice versa");
1244 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1245 // or nonptr->ptr). For all the other types, the cast is okay if source and
1246 // destination bit widths are identical.
1247 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1248 unsigned DstBitSize
= DstTy
->getPrimitiveSizeInBits();
1250 assert(SrcBitSize
== DstBitSize
&& "BitCast requires types of same width");
1252 // It is common to ask for a bitcast of a value to its own type, handle this
1254 if (C
->getType() == DstTy
) return C
;
1256 return getFoldedCast(Instruction::BitCast
, C
, DstTy
);
1259 Constant
*ConstantExpr::getTy(const Type
*ReqTy
, unsigned Opcode
,
1260 Constant
*C1
, Constant
*C2
) {
1261 // Check the operands for consistency first
1262 assert(Opcode
>= Instruction::BinaryOpsBegin
&&
1263 Opcode
< Instruction::BinaryOpsEnd
&&
1264 "Invalid opcode in binary constant expression");
1265 assert(C1
->getType() == C2
->getType() &&
1266 "Operand types in binary constant expression should match");
1268 if (ReqTy
== C1
->getType() || ReqTy
== Type::getInt1Ty(ReqTy
->getContext()))
1269 if (Constant
*FC
= ConstantFoldBinaryInstruction(ReqTy
->getContext(),
1271 return FC
; // Fold a few common cases...
1273 std::vector
<Constant
*> argVec(1, C1
); argVec
.push_back(C2
);
1274 ExprMapKeyType
Key(Opcode
, argVec
);
1276 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1278 // Implicitly locked.
1279 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1282 Constant
*ConstantExpr::getCompareTy(unsigned short predicate
,
1283 Constant
*C1
, Constant
*C2
) {
1284 switch (predicate
) {
1285 default: llvm_unreachable("Invalid CmpInst predicate");
1286 case CmpInst::FCMP_FALSE
: case CmpInst::FCMP_OEQ
: case CmpInst::FCMP_OGT
:
1287 case CmpInst::FCMP_OGE
: case CmpInst::FCMP_OLT
: case CmpInst::FCMP_OLE
:
1288 case CmpInst::FCMP_ONE
: case CmpInst::FCMP_ORD
: case CmpInst::FCMP_UNO
:
1289 case CmpInst::FCMP_UEQ
: case CmpInst::FCMP_UGT
: case CmpInst::FCMP_UGE
:
1290 case CmpInst::FCMP_ULT
: case CmpInst::FCMP_ULE
: case CmpInst::FCMP_UNE
:
1291 case CmpInst::FCMP_TRUE
:
1292 return getFCmp(predicate
, C1
, C2
);
1294 case CmpInst::ICMP_EQ
: case CmpInst::ICMP_NE
: case CmpInst::ICMP_UGT
:
1295 case CmpInst::ICMP_UGE
: case CmpInst::ICMP_ULT
: case CmpInst::ICMP_ULE
:
1296 case CmpInst::ICMP_SGT
: case CmpInst::ICMP_SGE
: case CmpInst::ICMP_SLT
:
1297 case CmpInst::ICMP_SLE
:
1298 return getICmp(predicate
, C1
, C2
);
1302 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C1
, Constant
*C2
) {
1303 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1304 if (C1
->getType()->isFPOrFPVector()) {
1305 if (Opcode
== Instruction::Add
) Opcode
= Instruction::FAdd
;
1306 else if (Opcode
== Instruction::Sub
) Opcode
= Instruction::FSub
;
1307 else if (Opcode
== Instruction::Mul
) Opcode
= Instruction::FMul
;
1311 case Instruction::Add
:
1312 case Instruction::Sub
:
1313 case Instruction::Mul
:
1314 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1315 assert(C1
->getType()->isIntOrIntVector() &&
1316 "Tried to create an integer operation on a non-integer type!");
1318 case Instruction::FAdd
:
1319 case Instruction::FSub
:
1320 case Instruction::FMul
:
1321 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1322 assert(C1
->getType()->isFPOrFPVector() &&
1323 "Tried to create a floating-point operation on a "
1324 "non-floating-point type!");
1326 case Instruction::UDiv
:
1327 case Instruction::SDiv
:
1328 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1329 assert(C1
->getType()->isIntOrIntVector() &&
1330 "Tried to create an arithmetic operation on a non-arithmetic type!");
1332 case Instruction::FDiv
:
1333 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1334 assert(C1
->getType()->isFPOrFPVector() &&
1335 "Tried to create an arithmetic operation on a non-arithmetic type!");
1337 case Instruction::URem
:
1338 case Instruction::SRem
:
1339 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1340 assert(C1
->getType()->isIntOrIntVector() &&
1341 "Tried to create an arithmetic operation on a non-arithmetic type!");
1343 case Instruction::FRem
:
1344 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1345 assert(C1
->getType()->isFPOrFPVector() &&
1346 "Tried to create an arithmetic operation on a non-arithmetic type!");
1348 case Instruction::And
:
1349 case Instruction::Or
:
1350 case Instruction::Xor
:
1351 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1352 assert(C1
->getType()->isIntOrIntVector() &&
1353 "Tried to create a logical operation on a non-integral type!");
1355 case Instruction::Shl
:
1356 case Instruction::LShr
:
1357 case Instruction::AShr
:
1358 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1359 assert(C1
->getType()->isIntOrIntVector() &&
1360 "Tried to create a shift operation on a non-integer type!");
1367 return getTy(C1
->getType(), Opcode
, C1
, C2
);
1370 Constant
* ConstantExpr::getSizeOf(const Type
* Ty
) {
1371 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1372 // Note that a non-inbounds gep is used, as null isn't within any object.
1373 Constant
*GEPIdx
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1374 Constant
*GEP
= getGetElementPtr(
1375 Constant::getNullValue(PointerType::getUnqual(Ty
)), &GEPIdx
, 1);
1376 return getCast(Instruction::PtrToInt
, GEP
,
1377 Type::getInt64Ty(Ty
->getContext()));
1380 Constant
* ConstantExpr::getAlignOf(const Type
* Ty
) {
1381 // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
1382 // Note that a non-inbounds gep is used, as null isn't within any object.
1383 const Type
*AligningTy
= StructType::get(Ty
->getContext(),
1384 Type::getInt8Ty(Ty
->getContext()), Ty
, NULL
);
1385 Constant
*NullPtr
= Constant::getNullValue(AligningTy
->getPointerTo());
1386 Constant
*Zero
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 0);
1387 Constant
*One
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1388 Constant
*Indices
[2] = { Zero
, One
};
1389 Constant
*GEP
= getGetElementPtr(NullPtr
, Indices
, 2);
1390 return getCast(Instruction::PtrToInt
, GEP
,
1391 Type::getInt32Ty(Ty
->getContext()));
1395 Constant
*ConstantExpr::getCompare(unsigned short pred
,
1396 Constant
*C1
, Constant
*C2
) {
1397 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1398 return getCompareTy(pred
, C1
, C2
);
1401 Constant
*ConstantExpr::getSelectTy(const Type
*ReqTy
, Constant
*C
,
1402 Constant
*V1
, Constant
*V2
) {
1403 assert(!SelectInst::areInvalidOperands(C
, V1
, V2
)&&"Invalid select operands");
1405 if (ReqTy
== V1
->getType())
1406 if (Constant
*SC
= ConstantFoldSelectInstruction(
1407 ReqTy
->getContext(), C
, V1
, V2
))
1408 return SC
; // Fold common cases
1410 std::vector
<Constant
*> argVec(3, C
);
1413 ExprMapKeyType
Key(Instruction::Select
, argVec
);
1415 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1417 // Implicitly locked.
1418 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1421 Constant
*ConstantExpr::getGetElementPtrTy(const Type
*ReqTy
, Constant
*C
,
1424 assert(GetElementPtrInst::getIndexedType(C
->getType(), Idxs
,
1426 cast
<PointerType
>(ReqTy
)->getElementType() &&
1427 "GEP indices invalid!");
1429 if (Constant
*FC
= ConstantFoldGetElementPtr(
1430 ReqTy
->getContext(), C
, (Constant
**)Idxs
, NumIdx
))
1431 return FC
; // Fold a few common cases...
1433 assert(isa
<PointerType
>(C
->getType()) &&
1434 "Non-pointer type for constant GetElementPtr expression");
1435 // Look up the constant in the table first to ensure uniqueness
1436 std::vector
<Constant
*> ArgVec
;
1437 ArgVec
.reserve(NumIdx
+1);
1438 ArgVec
.push_back(C
);
1439 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1440 ArgVec
.push_back(cast
<Constant
>(Idxs
[i
]));
1441 const ExprMapKeyType
Key(Instruction::GetElementPtr
, ArgVec
);
1443 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1445 // Implicitly locked.
1446 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1449 Constant
*ConstantExpr::getGetElementPtr(Constant
*C
, Value
* const *Idxs
,
1451 // Get the result type of the getelementptr!
1453 GetElementPtrInst::getIndexedType(C
->getType(), Idxs
, Idxs
+NumIdx
);
1454 assert(Ty
&& "GEP indices invalid!");
1455 unsigned As
= cast
<PointerType
>(C
->getType())->getAddressSpace();
1456 return getGetElementPtrTy(PointerType::get(Ty
, As
), C
, Idxs
, NumIdx
);
1459 Constant
*ConstantExpr::getInBoundsGetElementPtr(Constant
*C
,
1462 Constant
*Result
= getGetElementPtr(C
, Idxs
, NumIdx
);
1463 // Set in bounds attribute, assuming constant folding didn't eliminate the
1465 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Result
))
1466 GEP
->setIsInBounds(true);
1470 Constant
*ConstantExpr::getGetElementPtr(Constant
*C
, Constant
* const *Idxs
,
1472 return getGetElementPtr(C
, (Value
* const *)Idxs
, NumIdx
);
1475 Constant
*ConstantExpr::getInBoundsGetElementPtr(Constant
*C
,
1476 Constant
* const *Idxs
,
1478 return getInBoundsGetElementPtr(C
, (Value
* const *)Idxs
, NumIdx
);
1482 ConstantExpr::getICmp(unsigned short pred
, Constant
* LHS
, Constant
* RHS
) {
1483 assert(LHS
->getType() == RHS
->getType());
1484 assert(pred
>= ICmpInst::FIRST_ICMP_PREDICATE
&&
1485 pred
<= ICmpInst::LAST_ICMP_PREDICATE
&& "Invalid ICmp Predicate");
1487 if (Constant
*FC
= ConstantFoldCompareInstruction(
1488 LHS
->getContext(), pred
, LHS
, RHS
))
1489 return FC
; // Fold a few common cases...
1491 // Look up the constant in the table first to ensure uniqueness
1492 std::vector
<Constant
*> ArgVec
;
1493 ArgVec
.push_back(LHS
);
1494 ArgVec
.push_back(RHS
);
1495 // Get the key type with both the opcode and predicate
1496 const ExprMapKeyType
Key(Instruction::ICmp
, ArgVec
, pred
);
1498 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
1500 // Implicitly locked.
1502 pImpl
->ExprConstants
.getOrCreate(Type::getInt1Ty(LHS
->getContext()), Key
);
1506 ConstantExpr::getFCmp(unsigned short pred
, Constant
* LHS
, Constant
* RHS
) {
1507 assert(LHS
->getType() == RHS
->getType());
1508 assert(pred
<= FCmpInst::LAST_FCMP_PREDICATE
&& "Invalid FCmp Predicate");
1510 if (Constant
*FC
= ConstantFoldCompareInstruction(
1511 LHS
->getContext(), pred
, LHS
, RHS
))
1512 return FC
; // Fold a few common cases...
1514 // Look up the constant in the table first to ensure uniqueness
1515 std::vector
<Constant
*> ArgVec
;
1516 ArgVec
.push_back(LHS
);
1517 ArgVec
.push_back(RHS
);
1518 // Get the key type with both the opcode and predicate
1519 const ExprMapKeyType
Key(Instruction::FCmp
, ArgVec
, pred
);
1521 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
1523 // Implicitly locked.
1525 pImpl
->ExprConstants
.getOrCreate(Type::getInt1Ty(LHS
->getContext()), Key
);
1528 Constant
*ConstantExpr::getExtractElementTy(const Type
*ReqTy
, Constant
*Val
,
1530 if (Constant
*FC
= ConstantFoldExtractElementInstruction(
1531 ReqTy
->getContext(), Val
, Idx
))
1532 return FC
; // Fold a few common cases...
1533 // Look up the constant in the table first to ensure uniqueness
1534 std::vector
<Constant
*> ArgVec(1, Val
);
1535 ArgVec
.push_back(Idx
);
1536 const ExprMapKeyType
Key(Instruction::ExtractElement
,ArgVec
);
1538 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1540 // Implicitly locked.
1541 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1544 Constant
*ConstantExpr::getExtractElement(Constant
*Val
, Constant
*Idx
) {
1545 assert(isa
<VectorType
>(Val
->getType()) &&
1546 "Tried to create extractelement operation on non-vector type!");
1547 assert(Idx
->getType() == Type::getInt32Ty(Val
->getContext()) &&
1548 "Extractelement index must be i32 type!");
1549 return getExtractElementTy(cast
<VectorType
>(Val
->getType())->getElementType(),
1553 Constant
*ConstantExpr::getInsertElementTy(const Type
*ReqTy
, Constant
*Val
,
1554 Constant
*Elt
, Constant
*Idx
) {
1555 if (Constant
*FC
= ConstantFoldInsertElementInstruction(
1556 ReqTy
->getContext(), Val
, Elt
, Idx
))
1557 return FC
; // Fold a few common cases...
1558 // Look up the constant in the table first to ensure uniqueness
1559 std::vector
<Constant
*> ArgVec(1, Val
);
1560 ArgVec
.push_back(Elt
);
1561 ArgVec
.push_back(Idx
);
1562 const ExprMapKeyType
Key(Instruction::InsertElement
,ArgVec
);
1564 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1566 // Implicitly locked.
1567 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1570 Constant
*ConstantExpr::getInsertElement(Constant
*Val
, Constant
*Elt
,
1572 assert(isa
<VectorType
>(Val
->getType()) &&
1573 "Tried to create insertelement operation on non-vector type!");
1574 assert(Elt
->getType() == cast
<VectorType
>(Val
->getType())->getElementType()
1575 && "Insertelement types must match!");
1576 assert(Idx
->getType() == Type::getInt32Ty(Val
->getContext()) &&
1577 "Insertelement index must be i32 type!");
1578 return getInsertElementTy(Val
->getType(), Val
, Elt
, Idx
);
1581 Constant
*ConstantExpr::getShuffleVectorTy(const Type
*ReqTy
, Constant
*V1
,
1582 Constant
*V2
, Constant
*Mask
) {
1583 if (Constant
*FC
= ConstantFoldShuffleVectorInstruction(
1584 ReqTy
->getContext(), V1
, V2
, Mask
))
1585 return FC
; // Fold a few common cases...
1586 // Look up the constant in the table first to ensure uniqueness
1587 std::vector
<Constant
*> ArgVec(1, V1
);
1588 ArgVec
.push_back(V2
);
1589 ArgVec
.push_back(Mask
);
1590 const ExprMapKeyType
Key(Instruction::ShuffleVector
,ArgVec
);
1592 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1594 // Implicitly locked.
1595 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1598 Constant
*ConstantExpr::getShuffleVector(Constant
*V1
, Constant
*V2
,
1600 assert(ShuffleVectorInst::isValidOperands(V1
, V2
, Mask
) &&
1601 "Invalid shuffle vector constant expr operands!");
1603 unsigned NElts
= cast
<VectorType
>(Mask
->getType())->getNumElements();
1604 const Type
*EltTy
= cast
<VectorType
>(V1
->getType())->getElementType();
1605 const Type
*ShufTy
= VectorType::get(EltTy
, NElts
);
1606 return getShuffleVectorTy(ShufTy
, V1
, V2
, Mask
);
1609 Constant
*ConstantExpr::getInsertValueTy(const Type
*ReqTy
, Constant
*Agg
,
1611 const unsigned *Idxs
, unsigned NumIdx
) {
1612 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
,
1613 Idxs
+NumIdx
) == Val
->getType() &&
1614 "insertvalue indices invalid!");
1615 assert(Agg
->getType() == ReqTy
&&
1616 "insertvalue type invalid!");
1617 assert(Agg
->getType()->isFirstClassType() &&
1618 "Non-first-class type for constant InsertValue expression");
1619 Constant
*FC
= ConstantFoldInsertValueInstruction(
1620 ReqTy
->getContext(), Agg
, Val
, Idxs
, NumIdx
);
1621 assert(FC
&& "InsertValue constant expr couldn't be folded!");
1625 Constant
*ConstantExpr::getInsertValue(Constant
*Agg
, Constant
*Val
,
1626 const unsigned *IdxList
, unsigned NumIdx
) {
1627 assert(Agg
->getType()->isFirstClassType() &&
1628 "Tried to create insertelement operation on non-first-class type!");
1630 const Type
*ReqTy
= Agg
->getType();
1633 ExtractValueInst::getIndexedType(Agg
->getType(), IdxList
, IdxList
+NumIdx
);
1635 assert(ValTy
== Val
->getType() && "insertvalue indices invalid!");
1636 return getInsertValueTy(ReqTy
, Agg
, Val
, IdxList
, NumIdx
);
1639 Constant
*ConstantExpr::getExtractValueTy(const Type
*ReqTy
, Constant
*Agg
,
1640 const unsigned *Idxs
, unsigned NumIdx
) {
1641 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
,
1642 Idxs
+NumIdx
) == ReqTy
&&
1643 "extractvalue indices invalid!");
1644 assert(Agg
->getType()->isFirstClassType() &&
1645 "Non-first-class type for constant extractvalue expression");
1646 Constant
*FC
= ConstantFoldExtractValueInstruction(
1647 ReqTy
->getContext(), Agg
, Idxs
, NumIdx
);
1648 assert(FC
&& "ExtractValue constant expr couldn't be folded!");
1652 Constant
*ConstantExpr::getExtractValue(Constant
*Agg
,
1653 const unsigned *IdxList
, unsigned NumIdx
) {
1654 assert(Agg
->getType()->isFirstClassType() &&
1655 "Tried to create extractelement operation on non-first-class type!");
1658 ExtractValueInst::getIndexedType(Agg
->getType(), IdxList
, IdxList
+NumIdx
);
1659 assert(ReqTy
&& "extractvalue indices invalid!");
1660 return getExtractValueTy(ReqTy
, Agg
, IdxList
, NumIdx
);
1663 Constant
* ConstantExpr::getNeg(Constant
* C
) {
1664 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1665 if (C
->getType()->isFPOrFPVector())
1667 assert(C
->getType()->isIntOrIntVector() &&
1668 "Cannot NEG a nonintegral value!");
1669 return get(Instruction::Sub
,
1670 ConstantFP::getZeroValueForNegation(C
->getType()),
1674 Constant
* ConstantExpr::getFNeg(Constant
* C
) {
1675 assert(C
->getType()->isFPOrFPVector() &&
1676 "Cannot FNEG a non-floating-point value!");
1677 return get(Instruction::FSub
,
1678 ConstantFP::getZeroValueForNegation(C
->getType()),
1682 Constant
* ConstantExpr::getNot(Constant
* C
) {
1683 assert(C
->getType()->isIntOrIntVector() &&
1684 "Cannot NOT a nonintegral value!");
1685 return get(Instruction::Xor
, C
, Constant::getAllOnesValue(C
->getType()));
1688 Constant
* ConstantExpr::getAdd(Constant
* C1
, Constant
* C2
) {
1689 return get(Instruction::Add
, C1
, C2
);
1692 Constant
* ConstantExpr::getFAdd(Constant
* C1
, Constant
* C2
) {
1693 return get(Instruction::FAdd
, C1
, C2
);
1696 Constant
* ConstantExpr::getSub(Constant
* C1
, Constant
* C2
) {
1697 return get(Instruction::Sub
, C1
, C2
);
1700 Constant
* ConstantExpr::getFSub(Constant
* C1
, Constant
* C2
) {
1701 return get(Instruction::FSub
, C1
, C2
);
1704 Constant
* ConstantExpr::getMul(Constant
* C1
, Constant
* C2
) {
1705 return get(Instruction::Mul
, C1
, C2
);
1708 Constant
* ConstantExpr::getFMul(Constant
* C1
, Constant
* C2
) {
1709 return get(Instruction::FMul
, C1
, C2
);
1712 Constant
* ConstantExpr::getUDiv(Constant
* C1
, Constant
* C2
) {
1713 return get(Instruction::UDiv
, C1
, C2
);
1716 Constant
* ConstantExpr::getSDiv(Constant
* C1
, Constant
* C2
) {
1717 return get(Instruction::SDiv
, C1
, C2
);
1720 Constant
* ConstantExpr::getFDiv(Constant
* C1
, Constant
* C2
) {
1721 return get(Instruction::FDiv
, C1
, C2
);
1724 Constant
* ConstantExpr::getURem(Constant
* C1
, Constant
* C2
) {
1725 return get(Instruction::URem
, C1
, C2
);
1728 Constant
* ConstantExpr::getSRem(Constant
* C1
, Constant
* C2
) {
1729 return get(Instruction::SRem
, C1
, C2
);
1732 Constant
* ConstantExpr::getFRem(Constant
* C1
, Constant
* C2
) {
1733 return get(Instruction::FRem
, C1
, C2
);
1736 Constant
* ConstantExpr::getAnd(Constant
* C1
, Constant
* C2
) {
1737 return get(Instruction::And
, C1
, C2
);
1740 Constant
* ConstantExpr::getOr(Constant
* C1
, Constant
* C2
) {
1741 return get(Instruction::Or
, C1
, C2
);
1744 Constant
* ConstantExpr::getXor(Constant
* C1
, Constant
* C2
) {
1745 return get(Instruction::Xor
, C1
, C2
);
1748 Constant
* ConstantExpr::getShl(Constant
* C1
, Constant
* C2
) {
1749 return get(Instruction::Shl
, C1
, C2
);
1752 Constant
* ConstantExpr::getLShr(Constant
* C1
, Constant
* C2
) {
1753 return get(Instruction::LShr
, C1
, C2
);
1756 Constant
* ConstantExpr::getAShr(Constant
* C1
, Constant
* C2
) {
1757 return get(Instruction::AShr
, C1
, C2
);
1760 // destroyConstant - Remove the constant from the constant table...
1762 void ConstantExpr::destroyConstant() {
1763 // Implicitly locked.
1764 LLVMContextImpl
*pImpl
= getType()->getContext().pImpl
;
1765 pImpl
->ExprConstants
.remove(this);
1766 destroyConstantImpl();
1769 const char *ConstantExpr::getOpcodeName() const {
1770 return Instruction::getOpcodeName(getOpcode());
1773 //===----------------------------------------------------------------------===//
1774 // replaceUsesOfWithOnConstant implementations
1776 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1777 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1780 /// Note that we intentionally replace all uses of From with To here. Consider
1781 /// a large array that uses 'From' 1000 times. By handling this case all here,
1782 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1783 /// single invocation handles all 1000 uses. Handling them one at a time would
1784 /// work, but would be really slow because it would have to unique each updated
1787 static std::vector
<Constant
*> getValType(ConstantArray
*CA
) {
1788 std::vector
<Constant
*> Elements
;
1789 Elements
.reserve(CA
->getNumOperands());
1790 for (unsigned i
= 0, e
= CA
->getNumOperands(); i
!= e
; ++i
)
1791 Elements
.push_back(cast
<Constant
>(CA
->getOperand(i
)));
1796 void ConstantArray::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
1798 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
1799 Constant
*ToC
= cast
<Constant
>(To
);
1801 LLVMContext
&Context
= getType()->getContext();
1802 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1804 std::pair
<LLVMContextImpl::ArrayConstantsTy::MapKey
, Constant
*> Lookup
;
1805 Lookup
.first
.first
= getType();
1806 Lookup
.second
= this;
1808 std::vector
<Constant
*> &Values
= Lookup
.first
.second
;
1809 Values
.reserve(getNumOperands()); // Build replacement array.
1811 // Fill values with the modified operands of the constant array. Also,
1812 // compute whether this turns into an all-zeros array.
1813 bool isAllZeros
= false;
1814 unsigned NumUpdated
= 0;
1815 if (!ToC
->isNullValue()) {
1816 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
1817 Constant
*Val
= cast
<Constant
>(O
->get());
1822 Values
.push_back(Val
);
1826 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands();O
!= E
; ++O
) {
1827 Constant
*Val
= cast
<Constant
>(O
->get());
1832 Values
.push_back(Val
);
1833 if (isAllZeros
) isAllZeros
= Val
->isNullValue();
1837 Constant
*Replacement
= 0;
1839 Replacement
= ConstantAggregateZero::get(getType());
1841 // Check to see if we have this array type already.
1842 sys::SmartScopedWriter
<true> Writer(pImpl
->ConstantsLock
);
1844 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I
=
1845 pImpl
->ArrayConstants
.InsertOrGetItem(Lookup
, Exists
);
1848 Replacement
= cast
<Constant
>(I
->second
);
1850 // Okay, the new shape doesn't exist in the system yet. Instead of
1851 // creating a new constant array, inserting it, replaceallusesof'ing the
1852 // old with the new, then deleting the old... just update the current one
1854 pImpl
->ArrayConstants
.MoveConstantToNewSlot(this, I
);
1856 // Update to the new value. Optimize for the case when we have a single
1857 // operand that we're changing, but handle bulk updates efficiently.
1858 if (NumUpdated
== 1) {
1859 unsigned OperandToUpdate
= U
- OperandList
;
1860 assert(getOperand(OperandToUpdate
) == From
&&
1861 "ReplaceAllUsesWith broken!");
1862 setOperand(OperandToUpdate
, ToC
);
1864 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1865 if (getOperand(i
) == From
)
1872 // Otherwise, I do need to replace this with an existing value.
1873 assert(Replacement
!= this && "I didn't contain From!");
1875 // Everyone using this now uses the replacement.
1876 uncheckedReplaceAllUsesWith(Replacement
);
1878 // Delete the old constant!
1882 static std::vector
<Constant
*> getValType(ConstantStruct
*CS
) {
1883 std::vector
<Constant
*> Elements
;
1884 Elements
.reserve(CS
->getNumOperands());
1885 for (unsigned i
= 0, e
= CS
->getNumOperands(); i
!= e
; ++i
)
1886 Elements
.push_back(cast
<Constant
>(CS
->getOperand(i
)));
1890 void ConstantStruct::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
1892 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
1893 Constant
*ToC
= cast
<Constant
>(To
);
1895 unsigned OperandToUpdate
= U
-OperandList
;
1896 assert(getOperand(OperandToUpdate
) == From
&& "ReplaceAllUsesWith broken!");
1898 std::pair
<LLVMContextImpl::StructConstantsTy::MapKey
, Constant
*> Lookup
;
1899 Lookup
.first
.first
= getType();
1900 Lookup
.second
= this;
1901 std::vector
<Constant
*> &Values
= Lookup
.first
.second
;
1902 Values
.reserve(getNumOperands()); // Build replacement struct.
1905 // Fill values with the modified operands of the constant struct. Also,
1906 // compute whether this turns into an all-zeros struct.
1907 bool isAllZeros
= false;
1908 if (!ToC
->isNullValue()) {
1909 for (Use
*O
= OperandList
, *E
= OperandList
+ getNumOperands(); O
!= E
; ++O
)
1910 Values
.push_back(cast
<Constant
>(O
->get()));
1913 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
1914 Constant
*Val
= cast
<Constant
>(O
->get());
1915 Values
.push_back(Val
);
1916 if (isAllZeros
) isAllZeros
= Val
->isNullValue();
1919 Values
[OperandToUpdate
] = ToC
;
1921 LLVMContext
&Context
= getType()->getContext();
1922 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1924 Constant
*Replacement
= 0;
1926 Replacement
= ConstantAggregateZero::get(getType());
1928 // Check to see if we have this array type already.
1929 sys::SmartScopedWriter
<true> Writer(pImpl
->ConstantsLock
);
1931 LLVMContextImpl::StructConstantsTy::MapTy::iterator I
=
1932 pImpl
->StructConstants
.InsertOrGetItem(Lookup
, Exists
);
1935 Replacement
= cast
<Constant
>(I
->second
);
1937 // Okay, the new shape doesn't exist in the system yet. Instead of
1938 // creating a new constant struct, inserting it, replaceallusesof'ing the
1939 // old with the new, then deleting the old... just update the current one
1941 pImpl
->StructConstants
.MoveConstantToNewSlot(this, I
);
1943 // Update to the new value.
1944 setOperand(OperandToUpdate
, ToC
);
1949 assert(Replacement
!= this && "I didn't contain From!");
1951 // Everyone using this now uses the replacement.
1952 uncheckedReplaceAllUsesWith(Replacement
);
1954 // Delete the old constant!
1958 static std::vector
<Constant
*> getValType(ConstantVector
*CP
) {
1959 std::vector
<Constant
*> Elements
;
1960 Elements
.reserve(CP
->getNumOperands());
1961 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
1962 Elements
.push_back(CP
->getOperand(i
));
1966 void ConstantVector::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
1968 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
1970 std::vector
<Constant
*> Values
;
1971 Values
.reserve(getNumOperands()); // Build replacement array...
1972 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1973 Constant
*Val
= getOperand(i
);
1974 if (Val
== From
) Val
= cast
<Constant
>(To
);
1975 Values
.push_back(Val
);
1978 Constant
*Replacement
= get(getType(), Values
);
1979 assert(Replacement
!= this && "I didn't contain From!");
1981 // Everyone using this now uses the replacement.
1982 uncheckedReplaceAllUsesWith(Replacement
);
1984 // Delete the old constant!
1988 void ConstantExpr::replaceUsesOfWithOnConstant(Value
*From
, Value
*ToV
,
1990 assert(isa
<Constant
>(ToV
) && "Cannot make Constant refer to non-constant!");
1991 Constant
*To
= cast
<Constant
>(ToV
);
1993 Constant
*Replacement
= 0;
1994 if (getOpcode() == Instruction::GetElementPtr
) {
1995 SmallVector
<Constant
*, 8> Indices
;
1996 Constant
*Pointer
= getOperand(0);
1997 Indices
.reserve(getNumOperands()-1);
1998 if (Pointer
== From
) Pointer
= To
;
2000 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
2001 Constant
*Val
= getOperand(i
);
2002 if (Val
== From
) Val
= To
;
2003 Indices
.push_back(Val
);
2005 Replacement
= ConstantExpr::getGetElementPtr(Pointer
,
2006 &Indices
[0], Indices
.size());
2007 } else if (getOpcode() == Instruction::ExtractValue
) {
2008 Constant
*Agg
= getOperand(0);
2009 if (Agg
== From
) Agg
= To
;
2011 const SmallVector
<unsigned, 4> &Indices
= getIndices();
2012 Replacement
= ConstantExpr::getExtractValue(Agg
,
2013 &Indices
[0], Indices
.size());
2014 } else if (getOpcode() == Instruction::InsertValue
) {
2015 Constant
*Agg
= getOperand(0);
2016 Constant
*Val
= getOperand(1);
2017 if (Agg
== From
) Agg
= To
;
2018 if (Val
== From
) Val
= To
;
2020 const SmallVector
<unsigned, 4> &Indices
= getIndices();
2021 Replacement
= ConstantExpr::getInsertValue(Agg
, Val
,
2022 &Indices
[0], Indices
.size());
2023 } else if (isCast()) {
2024 assert(getOperand(0) == From
&& "Cast only has one use!");
2025 Replacement
= ConstantExpr::getCast(getOpcode(), To
, getType());
2026 } else if (getOpcode() == Instruction::Select
) {
2027 Constant
*C1
= getOperand(0);
2028 Constant
*C2
= getOperand(1);
2029 Constant
*C3
= getOperand(2);
2030 if (C1
== From
) C1
= To
;
2031 if (C2
== From
) C2
= To
;
2032 if (C3
== From
) C3
= To
;
2033 Replacement
= ConstantExpr::getSelect(C1
, C2
, C3
);
2034 } else if (getOpcode() == Instruction::ExtractElement
) {
2035 Constant
*C1
= getOperand(0);
2036 Constant
*C2
= getOperand(1);
2037 if (C1
== From
) C1
= To
;
2038 if (C2
== From
) C2
= To
;
2039 Replacement
= ConstantExpr::getExtractElement(C1
, C2
);
2040 } else if (getOpcode() == Instruction::InsertElement
) {
2041 Constant
*C1
= getOperand(0);
2042 Constant
*C2
= getOperand(1);
2043 Constant
*C3
= getOperand(1);
2044 if (C1
== From
) C1
= To
;
2045 if (C2
== From
) C2
= To
;
2046 if (C3
== From
) C3
= To
;
2047 Replacement
= ConstantExpr::getInsertElement(C1
, C2
, C3
);
2048 } else if (getOpcode() == Instruction::ShuffleVector
) {
2049 Constant
*C1
= getOperand(0);
2050 Constant
*C2
= getOperand(1);
2051 Constant
*C3
= getOperand(2);
2052 if (C1
== From
) C1
= To
;
2053 if (C2
== From
) C2
= To
;
2054 if (C3
== From
) C3
= To
;
2055 Replacement
= ConstantExpr::getShuffleVector(C1
, C2
, C3
);
2056 } else if (isCompare()) {
2057 Constant
*C1
= getOperand(0);
2058 Constant
*C2
= getOperand(1);
2059 if (C1
== From
) C1
= To
;
2060 if (C2
== From
) C2
= To
;
2061 if (getOpcode() == Instruction::ICmp
)
2062 Replacement
= ConstantExpr::getICmp(getPredicate(), C1
, C2
);
2064 assert(getOpcode() == Instruction::FCmp
);
2065 Replacement
= ConstantExpr::getFCmp(getPredicate(), C1
, C2
);
2067 } else if (getNumOperands() == 2) {
2068 Constant
*C1
= getOperand(0);
2069 Constant
*C2
= getOperand(1);
2070 if (C1
== From
) C1
= To
;
2071 if (C2
== From
) C2
= To
;
2072 Replacement
= ConstantExpr::get(getOpcode(), C1
, C2
);
2074 llvm_unreachable("Unknown ConstantExpr type!");
2078 assert(Replacement
!= this && "I didn't contain From!");
2080 // Everyone using this now uses the replacement.
2081 uncheckedReplaceAllUsesWith(Replacement
);
2083 // Delete the old constant!