grammar
[llvm/avr.git] / lib / CodeGen / MachineInstr.cpp
blobcf6597d8091b44024868ea108ce054dec8b809b9
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/InlineAsm.h"
17 #include "llvm/Value.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetInstrDesc.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Analysis/DebugInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/FoldingSet.h"
31 using namespace llvm;
33 //===----------------------------------------------------------------------===//
34 // MachineOperand Implementation
35 //===----------------------------------------------------------------------===//
37 /// AddRegOperandToRegInfo - Add this register operand to the specified
38 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
39 /// explicitly nulled out.
40 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
41 assert(isReg() && "Can only add reg operand to use lists");
43 // If the reginfo pointer is null, just explicitly null out or next/prev
44 // pointers, to ensure they are not garbage.
45 if (RegInfo == 0) {
46 Contents.Reg.Prev = 0;
47 Contents.Reg.Next = 0;
48 return;
51 // Otherwise, add this operand to the head of the registers use/def list.
52 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
54 // For SSA values, we prefer to keep the definition at the start of the list.
55 // we do this by skipping over the definition if it is at the head of the
56 // list.
57 if (*Head && (*Head)->isDef())
58 Head = &(*Head)->Contents.Reg.Next;
60 Contents.Reg.Next = *Head;
61 if (Contents.Reg.Next) {
62 assert(getReg() == Contents.Reg.Next->getReg() &&
63 "Different regs on the same list!");
64 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
67 Contents.Reg.Prev = Head;
68 *Head = this;
71 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
72 /// MachineRegisterInfo it is linked with.
73 void MachineOperand::RemoveRegOperandFromRegInfo() {
74 assert(isOnRegUseList() && "Reg operand is not on a use list");
75 // Unlink this from the doubly linked list of operands.
76 MachineOperand *NextOp = Contents.Reg.Next;
77 *Contents.Reg.Prev = NextOp;
78 if (NextOp) {
79 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
80 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
82 Contents.Reg.Prev = 0;
83 Contents.Reg.Next = 0;
86 void MachineOperand::setReg(unsigned Reg) {
87 if (getReg() == Reg) return; // No change.
89 // Otherwise, we have to change the register. If this operand is embedded
90 // into a machine function, we need to update the old and new register's
91 // use/def lists.
92 if (MachineInstr *MI = getParent())
93 if (MachineBasicBlock *MBB = MI->getParent())
94 if (MachineFunction *MF = MBB->getParent()) {
95 RemoveRegOperandFromRegInfo();
96 Contents.Reg.RegNo = Reg;
97 AddRegOperandToRegInfo(&MF->getRegInfo());
98 return;
101 // Otherwise, just change the register, no problem. :)
102 Contents.Reg.RegNo = Reg;
105 /// ChangeToImmediate - Replace this operand with a new immediate operand of
106 /// the specified value. If an operand is known to be an immediate already,
107 /// the setImm method should be used.
108 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
109 // If this operand is currently a register operand, and if this is in a
110 // function, deregister the operand from the register's use/def list.
111 if (isReg() && getParent() && getParent()->getParent() &&
112 getParent()->getParent()->getParent())
113 RemoveRegOperandFromRegInfo();
115 OpKind = MO_Immediate;
116 Contents.ImmVal = ImmVal;
119 /// ChangeToRegister - Replace this operand with a new register operand of
120 /// the specified value. If an operand is known to be an register already,
121 /// the setReg method should be used.
122 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
123 bool isKill, bool isDead, bool isUndef) {
124 // If this operand is already a register operand, use setReg to update the
125 // register's use/def lists.
126 if (isReg()) {
127 assert(!isEarlyClobber());
128 setReg(Reg);
129 } else {
130 // Otherwise, change this to a register and set the reg#.
131 OpKind = MO_Register;
132 Contents.Reg.RegNo = Reg;
134 // If this operand is embedded in a function, add the operand to the
135 // register's use/def list.
136 if (MachineInstr *MI = getParent())
137 if (MachineBasicBlock *MBB = MI->getParent())
138 if (MachineFunction *MF = MBB->getParent())
139 AddRegOperandToRegInfo(&MF->getRegInfo());
142 IsDef = isDef;
143 IsImp = isImp;
144 IsKill = isKill;
145 IsDead = isDead;
146 IsUndef = isUndef;
147 IsEarlyClobber = false;
148 SubReg = 0;
151 /// isIdenticalTo - Return true if this operand is identical to the specified
152 /// operand.
153 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
154 if (getType() != Other.getType() ||
155 getTargetFlags() != Other.getTargetFlags())
156 return false;
158 switch (getType()) {
159 default: llvm_unreachable("Unrecognized operand type");
160 case MachineOperand::MO_Register:
161 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
162 getSubReg() == Other.getSubReg();
163 case MachineOperand::MO_Immediate:
164 return getImm() == Other.getImm();
165 case MachineOperand::MO_FPImmediate:
166 return getFPImm() == Other.getFPImm();
167 case MachineOperand::MO_MachineBasicBlock:
168 return getMBB() == Other.getMBB();
169 case MachineOperand::MO_FrameIndex:
170 return getIndex() == Other.getIndex();
171 case MachineOperand::MO_ConstantPoolIndex:
172 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
173 case MachineOperand::MO_JumpTableIndex:
174 return getIndex() == Other.getIndex();
175 case MachineOperand::MO_GlobalAddress:
176 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
177 case MachineOperand::MO_ExternalSymbol:
178 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
179 getOffset() == Other.getOffset();
183 /// print - Print the specified machine operand.
185 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
186 switch (getType()) {
187 case MachineOperand::MO_Register:
188 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
189 OS << "%reg" << getReg();
190 } else {
191 // If the instruction is embedded into a basic block, we can find the
192 // target info for the instruction.
193 if (TM == 0)
194 if (const MachineInstr *MI = getParent())
195 if (const MachineBasicBlock *MBB = MI->getParent())
196 if (const MachineFunction *MF = MBB->getParent())
197 TM = &MF->getTarget();
199 if (TM)
200 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
201 else
202 OS << "%mreg" << getReg();
205 if (getSubReg() != 0)
206 OS << ':' << getSubReg();
208 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
209 isEarlyClobber()) {
210 OS << '<';
211 bool NeedComma = false;
212 if (isImplicit()) {
213 if (NeedComma) OS << ',';
214 OS << (isDef() ? "imp-def" : "imp-use");
215 NeedComma = true;
216 } else if (isDef()) {
217 if (NeedComma) OS << ',';
218 if (isEarlyClobber())
219 OS << "earlyclobber,";
220 OS << "def";
221 NeedComma = true;
223 if (isKill() || isDead() || isUndef()) {
224 if (NeedComma) OS << ',';
225 if (isKill()) OS << "kill";
226 if (isDead()) OS << "dead";
227 if (isUndef()) {
228 if (isKill() || isDead())
229 OS << ',';
230 OS << "undef";
233 OS << '>';
235 break;
236 case MachineOperand::MO_Immediate:
237 OS << getImm();
238 break;
239 case MachineOperand::MO_FPImmediate:
240 if (getFPImm()->getType() == Type::getFloatTy(getFPImm()->getContext()))
241 OS << getFPImm()->getValueAPF().convertToFloat();
242 else
243 OS << getFPImm()->getValueAPF().convertToDouble();
244 break;
245 case MachineOperand::MO_MachineBasicBlock:
246 OS << "mbb<"
247 << ((Value*)getMBB()->getBasicBlock())->getName()
248 << "," << (void*)getMBB() << '>';
249 break;
250 case MachineOperand::MO_FrameIndex:
251 OS << "<fi#" << getIndex() << '>';
252 break;
253 case MachineOperand::MO_ConstantPoolIndex:
254 OS << "<cp#" << getIndex();
255 if (getOffset()) OS << "+" << getOffset();
256 OS << '>';
257 break;
258 case MachineOperand::MO_JumpTableIndex:
259 OS << "<jt#" << getIndex() << '>';
260 break;
261 case MachineOperand::MO_GlobalAddress:
262 OS << "<ga:" << ((Value*)getGlobal())->getName();
263 if (getOffset()) OS << "+" << getOffset();
264 OS << '>';
265 break;
266 case MachineOperand::MO_ExternalSymbol:
267 OS << "<es:" << getSymbolName();
268 if (getOffset()) OS << "+" << getOffset();
269 OS << '>';
270 break;
271 default:
272 llvm_unreachable("Unrecognized operand type");
275 if (unsigned TF = getTargetFlags())
276 OS << "[TF=" << TF << ']';
279 //===----------------------------------------------------------------------===//
280 // MachineMemOperand Implementation
281 //===----------------------------------------------------------------------===//
283 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
284 int64_t o, uint64_t s, unsigned int a)
285 : Offset(o), Size(s), V(v),
286 Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
287 assert(isPowerOf2_32(a) && "Alignment is not a power of 2!");
288 assert((isLoad() || isStore()) && "Not a load/store!");
291 /// Profile - Gather unique data for the object.
293 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
294 ID.AddInteger(Offset);
295 ID.AddInteger(Size);
296 ID.AddPointer(V);
297 ID.AddInteger(Flags);
300 //===----------------------------------------------------------------------===//
301 // MachineInstr Implementation
302 //===----------------------------------------------------------------------===//
304 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
305 /// TID NULL and no operands.
306 MachineInstr::MachineInstr()
307 : TID(0), NumImplicitOps(0), Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
308 // Make sure that we get added to a machine basicblock
309 LeakDetector::addGarbageObject(this);
312 void MachineInstr::addImplicitDefUseOperands() {
313 if (TID->ImplicitDefs)
314 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
315 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
316 if (TID->ImplicitUses)
317 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
318 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
321 /// MachineInstr ctor - This constructor create a MachineInstr and add the
322 /// implicit operands. It reserves space for number of operands specified by
323 /// TargetInstrDesc or the numOperands if it is not zero. (for
324 /// instructions with variable number of operands).
325 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
326 : TID(&tid), NumImplicitOps(0), Parent(0),
327 debugLoc(DebugLoc::getUnknownLoc()) {
328 if (!NoImp && TID->getImplicitDefs())
329 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
330 NumImplicitOps++;
331 if (!NoImp && TID->getImplicitUses())
332 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
333 NumImplicitOps++;
334 Operands.reserve(NumImplicitOps + TID->getNumOperands());
335 if (!NoImp)
336 addImplicitDefUseOperands();
337 // Make sure that we get added to a machine basicblock
338 LeakDetector::addGarbageObject(this);
341 /// MachineInstr ctor - As above, but with a DebugLoc.
342 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
343 bool NoImp)
344 : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
345 if (!NoImp && TID->getImplicitDefs())
346 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
347 NumImplicitOps++;
348 if (!NoImp && TID->getImplicitUses())
349 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
350 NumImplicitOps++;
351 Operands.reserve(NumImplicitOps + TID->getNumOperands());
352 if (!NoImp)
353 addImplicitDefUseOperands();
354 // Make sure that we get added to a machine basicblock
355 LeakDetector::addGarbageObject(this);
358 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
359 /// that the MachineInstr is created and added to the end of the specified
360 /// basic block.
362 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
363 : TID(&tid), NumImplicitOps(0), Parent(0),
364 debugLoc(DebugLoc::getUnknownLoc()) {
365 assert(MBB && "Cannot use inserting ctor with null basic block!");
366 if (TID->ImplicitDefs)
367 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
368 NumImplicitOps++;
369 if (TID->ImplicitUses)
370 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
371 NumImplicitOps++;
372 Operands.reserve(NumImplicitOps + TID->getNumOperands());
373 addImplicitDefUseOperands();
374 // Make sure that we get added to a machine basicblock
375 LeakDetector::addGarbageObject(this);
376 MBB->push_back(this); // Add instruction to end of basic block!
379 /// MachineInstr ctor - As above, but with a DebugLoc.
381 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
382 const TargetInstrDesc &tid)
383 : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
384 assert(MBB && "Cannot use inserting ctor with null basic block!");
385 if (TID->ImplicitDefs)
386 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
387 NumImplicitOps++;
388 if (TID->ImplicitUses)
389 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
390 NumImplicitOps++;
391 Operands.reserve(NumImplicitOps + TID->getNumOperands());
392 addImplicitDefUseOperands();
393 // Make sure that we get added to a machine basicblock
394 LeakDetector::addGarbageObject(this);
395 MBB->push_back(this); // Add instruction to end of basic block!
398 /// MachineInstr ctor - Copies MachineInstr arg exactly
400 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
401 : TID(&MI.getDesc()), NumImplicitOps(0), Parent(0),
402 debugLoc(MI.getDebugLoc()) {
403 Operands.reserve(MI.getNumOperands());
405 // Add operands
406 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
407 addOperand(MI.getOperand(i));
408 NumImplicitOps = MI.NumImplicitOps;
410 // Add memory operands.
411 for (std::list<MachineMemOperand>::const_iterator i = MI.memoperands_begin(),
412 j = MI.memoperands_end(); i != j; ++i)
413 addMemOperand(MF, *i);
415 // Set parent to null.
416 Parent = 0;
418 LeakDetector::addGarbageObject(this);
421 MachineInstr::~MachineInstr() {
422 LeakDetector::removeGarbageObject(this);
423 assert(MemOperands.empty() &&
424 "MachineInstr being deleted with live memoperands!");
425 #ifndef NDEBUG
426 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
427 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
428 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
429 "Reg operand def/use list corrupted");
431 #endif
434 /// getRegInfo - If this instruction is embedded into a MachineFunction,
435 /// return the MachineRegisterInfo object for the current function, otherwise
436 /// return null.
437 MachineRegisterInfo *MachineInstr::getRegInfo() {
438 if (MachineBasicBlock *MBB = getParent())
439 return &MBB->getParent()->getRegInfo();
440 return 0;
443 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
444 /// this instruction from their respective use lists. This requires that the
445 /// operands already be on their use lists.
446 void MachineInstr::RemoveRegOperandsFromUseLists() {
447 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
448 if (Operands[i].isReg())
449 Operands[i].RemoveRegOperandFromRegInfo();
453 /// AddRegOperandsToUseLists - Add all of the register operands in
454 /// this instruction from their respective use lists. This requires that the
455 /// operands not be on their use lists yet.
456 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
457 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
458 if (Operands[i].isReg())
459 Operands[i].AddRegOperandToRegInfo(&RegInfo);
464 /// addOperand - Add the specified operand to the instruction. If it is an
465 /// implicit operand, it is added to the end of the operand list. If it is
466 /// an explicit operand it is added at the end of the explicit operand list
467 /// (before the first implicit operand).
468 void MachineInstr::addOperand(const MachineOperand &Op) {
469 bool isImpReg = Op.isReg() && Op.isImplicit();
470 assert((isImpReg || !OperandsComplete()) &&
471 "Trying to add an operand to a machine instr that is already done!");
473 MachineRegisterInfo *RegInfo = getRegInfo();
475 // If we are adding the operand to the end of the list, our job is simpler.
476 // This is true most of the time, so this is a reasonable optimization.
477 if (isImpReg || NumImplicitOps == 0) {
478 // We can only do this optimization if we know that the operand list won't
479 // reallocate.
480 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
481 Operands.push_back(Op);
483 // Set the parent of the operand.
484 Operands.back().ParentMI = this;
486 // If the operand is a register, update the operand's use list.
487 if (Op.isReg())
488 Operands.back().AddRegOperandToRegInfo(RegInfo);
489 return;
493 // Otherwise, we have to insert a real operand before any implicit ones.
494 unsigned OpNo = Operands.size()-NumImplicitOps;
496 // If this instruction isn't embedded into a function, then we don't need to
497 // update any operand lists.
498 if (RegInfo == 0) {
499 // Simple insertion, no reginfo update needed for other register operands.
500 Operands.insert(Operands.begin()+OpNo, Op);
501 Operands[OpNo].ParentMI = this;
503 // Do explicitly set the reginfo for this operand though, to ensure the
504 // next/prev fields are properly nulled out.
505 if (Operands[OpNo].isReg())
506 Operands[OpNo].AddRegOperandToRegInfo(0);
508 } else if (Operands.size()+1 <= Operands.capacity()) {
509 // Otherwise, we have to remove register operands from their register use
510 // list, add the operand, then add the register operands back to their use
511 // list. This also must handle the case when the operand list reallocates
512 // to somewhere else.
514 // If insertion of this operand won't cause reallocation of the operand
515 // list, just remove the implicit operands, add the operand, then re-add all
516 // the rest of the operands.
517 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
518 assert(Operands[i].isReg() && "Should only be an implicit reg!");
519 Operands[i].RemoveRegOperandFromRegInfo();
522 // Add the operand. If it is a register, add it to the reg list.
523 Operands.insert(Operands.begin()+OpNo, Op);
524 Operands[OpNo].ParentMI = this;
526 if (Operands[OpNo].isReg())
527 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
529 // Re-add all the implicit ops.
530 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
531 assert(Operands[i].isReg() && "Should only be an implicit reg!");
532 Operands[i].AddRegOperandToRegInfo(RegInfo);
534 } else {
535 // Otherwise, we will be reallocating the operand list. Remove all reg
536 // operands from their list, then readd them after the operand list is
537 // reallocated.
538 RemoveRegOperandsFromUseLists();
540 Operands.insert(Operands.begin()+OpNo, Op);
541 Operands[OpNo].ParentMI = this;
543 // Re-add all the operands.
544 AddRegOperandsToUseLists(*RegInfo);
548 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
549 /// fewer operand than it started with.
551 void MachineInstr::RemoveOperand(unsigned OpNo) {
552 assert(OpNo < Operands.size() && "Invalid operand number");
554 // Special case removing the last one.
555 if (OpNo == Operands.size()-1) {
556 // If needed, remove from the reg def/use list.
557 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
558 Operands.back().RemoveRegOperandFromRegInfo();
560 Operands.pop_back();
561 return;
564 // Otherwise, we are removing an interior operand. If we have reginfo to
565 // update, remove all operands that will be shifted down from their reg lists,
566 // move everything down, then re-add them.
567 MachineRegisterInfo *RegInfo = getRegInfo();
568 if (RegInfo) {
569 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
570 if (Operands[i].isReg())
571 Operands[i].RemoveRegOperandFromRegInfo();
575 Operands.erase(Operands.begin()+OpNo);
577 if (RegInfo) {
578 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
579 if (Operands[i].isReg())
580 Operands[i].AddRegOperandToRegInfo(RegInfo);
585 /// addMemOperand - Add a MachineMemOperand to the machine instruction,
586 /// referencing arbitrary storage.
587 void MachineInstr::addMemOperand(MachineFunction &MF,
588 const MachineMemOperand &MO) {
589 MemOperands.push_back(MO);
592 /// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands.
593 void MachineInstr::clearMemOperands(MachineFunction &MF) {
594 MemOperands.clear();
598 /// removeFromParent - This method unlinks 'this' from the containing basic
599 /// block, and returns it, but does not delete it.
600 MachineInstr *MachineInstr::removeFromParent() {
601 assert(getParent() && "Not embedded in a basic block!");
602 getParent()->remove(this);
603 return this;
607 /// eraseFromParent - This method unlinks 'this' from the containing basic
608 /// block, and deletes it.
609 void MachineInstr::eraseFromParent() {
610 assert(getParent() && "Not embedded in a basic block!");
611 getParent()->erase(this);
615 /// OperandComplete - Return true if it's illegal to add a new operand
617 bool MachineInstr::OperandsComplete() const {
618 unsigned short NumOperands = TID->getNumOperands();
619 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
620 return true; // Broken: we have all the operands of this instruction!
621 return false;
624 /// getNumExplicitOperands - Returns the number of non-implicit operands.
626 unsigned MachineInstr::getNumExplicitOperands() const {
627 unsigned NumOperands = TID->getNumOperands();
628 if (!TID->isVariadic())
629 return NumOperands;
631 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
632 const MachineOperand &MO = getOperand(i);
633 if (!MO.isReg() || !MO.isImplicit())
634 NumOperands++;
636 return NumOperands;
640 /// isLabel - Returns true if the MachineInstr represents a label.
642 bool MachineInstr::isLabel() const {
643 return getOpcode() == TargetInstrInfo::DBG_LABEL ||
644 getOpcode() == TargetInstrInfo::EH_LABEL ||
645 getOpcode() == TargetInstrInfo::GC_LABEL;
648 /// isDebugLabel - Returns true if the MachineInstr represents a debug label.
650 bool MachineInstr::isDebugLabel() const {
651 return getOpcode() == TargetInstrInfo::DBG_LABEL;
654 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
655 /// the specific register or -1 if it is not found. It further tightens
656 /// the search criteria to a use that kills the register if isKill is true.
657 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
658 const TargetRegisterInfo *TRI) const {
659 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
660 const MachineOperand &MO = getOperand(i);
661 if (!MO.isReg() || !MO.isUse())
662 continue;
663 unsigned MOReg = MO.getReg();
664 if (!MOReg)
665 continue;
666 if (MOReg == Reg ||
667 (TRI &&
668 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
669 TargetRegisterInfo::isPhysicalRegister(Reg) &&
670 TRI->isSubRegister(MOReg, Reg)))
671 if (!isKill || MO.isKill())
672 return i;
674 return -1;
677 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
678 /// the specified register or -1 if it is not found. If isDead is true, defs
679 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
680 /// also checks if there is a def of a super-register.
681 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
682 const TargetRegisterInfo *TRI) const {
683 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
684 const MachineOperand &MO = getOperand(i);
685 if (!MO.isReg() || !MO.isDef())
686 continue;
687 unsigned MOReg = MO.getReg();
688 if (MOReg == Reg ||
689 (TRI &&
690 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
691 TargetRegisterInfo::isPhysicalRegister(Reg) &&
692 TRI->isSubRegister(MOReg, Reg)))
693 if (!isDead || MO.isDead())
694 return i;
696 return -1;
699 /// findFirstPredOperandIdx() - Find the index of the first operand in the
700 /// operand list that is used to represent the predicate. It returns -1 if
701 /// none is found.
702 int MachineInstr::findFirstPredOperandIdx() const {
703 const TargetInstrDesc &TID = getDesc();
704 if (TID.isPredicable()) {
705 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
706 if (TID.OpInfo[i].isPredicate())
707 return i;
710 return -1;
713 /// isRegTiedToUseOperand - Given the index of a register def operand,
714 /// check if the register def is tied to a source operand, due to either
715 /// two-address elimination or inline assembly constraints. Returns the
716 /// first tied use operand index by reference is UseOpIdx is not null.
717 bool MachineInstr::
718 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
719 if (getOpcode() == TargetInstrInfo::INLINEASM) {
720 assert(DefOpIdx >= 2);
721 const MachineOperand &MO = getOperand(DefOpIdx);
722 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
723 return false;
724 // Determine the actual operand index that corresponds to this index.
725 unsigned DefNo = 0;
726 unsigned DefPart = 0;
727 for (unsigned i = 1, e = getNumOperands(); i < e; ) {
728 const MachineOperand &FMO = getOperand(i);
729 // After the normal asm operands there may be additional imp-def regs.
730 if (!FMO.isImm())
731 return false;
732 // Skip over this def.
733 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
734 unsigned PrevDef = i + 1;
735 i = PrevDef + NumOps;
736 if (i > DefOpIdx) {
737 DefPart = DefOpIdx - PrevDef;
738 break;
740 ++DefNo;
742 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
743 const MachineOperand &FMO = getOperand(i);
744 if (!FMO.isImm())
745 continue;
746 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
747 continue;
748 unsigned Idx;
749 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
750 Idx == DefNo) {
751 if (UseOpIdx)
752 *UseOpIdx = (unsigned)i + 1 + DefPart;
753 return true;
756 return false;
759 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
760 const TargetInstrDesc &TID = getDesc();
761 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
762 const MachineOperand &MO = getOperand(i);
763 if (MO.isReg() && MO.isUse() &&
764 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
765 if (UseOpIdx)
766 *UseOpIdx = (unsigned)i;
767 return true;
770 return false;
773 /// isRegTiedToDefOperand - Return true if the operand of the specified index
774 /// is a register use and it is tied to an def operand. It also returns the def
775 /// operand index by reference.
776 bool MachineInstr::
777 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
778 if (getOpcode() == TargetInstrInfo::INLINEASM) {
779 const MachineOperand &MO = getOperand(UseOpIdx);
780 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
781 return false;
783 // Find the flag operand corresponding to UseOpIdx
784 unsigned FlagIdx, NumOps=0;
785 for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
786 const MachineOperand &UFMO = getOperand(FlagIdx);
787 // After the normal asm operands there may be additional imp-def regs.
788 if (!UFMO.isImm())
789 return false;
790 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
791 assert(NumOps < getNumOperands() && "Invalid inline asm flag");
792 if (UseOpIdx < FlagIdx+NumOps+1)
793 break;
795 if (FlagIdx >= UseOpIdx)
796 return false;
797 const MachineOperand &UFMO = getOperand(FlagIdx);
798 unsigned DefNo;
799 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
800 if (!DefOpIdx)
801 return true;
803 unsigned DefIdx = 1;
804 // Remember to adjust the index. First operand is asm string, then there
805 // is a flag for each.
806 while (DefNo) {
807 const MachineOperand &FMO = getOperand(DefIdx);
808 assert(FMO.isImm());
809 // Skip over this def.
810 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
811 --DefNo;
813 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
814 return true;
816 return false;
819 const TargetInstrDesc &TID = getDesc();
820 if (UseOpIdx >= TID.getNumOperands())
821 return false;
822 const MachineOperand &MO = getOperand(UseOpIdx);
823 if (!MO.isReg() || !MO.isUse())
824 return false;
825 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
826 if (DefIdx == -1)
827 return false;
828 if (DefOpIdx)
829 *DefOpIdx = (unsigned)DefIdx;
830 return true;
833 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
835 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
836 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
837 const MachineOperand &MO = MI->getOperand(i);
838 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
839 continue;
840 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
841 MachineOperand &MOp = getOperand(j);
842 if (!MOp.isIdenticalTo(MO))
843 continue;
844 if (MO.isKill())
845 MOp.setIsKill();
846 else
847 MOp.setIsDead();
848 break;
853 /// copyPredicates - Copies predicate operand(s) from MI.
854 void MachineInstr::copyPredicates(const MachineInstr *MI) {
855 const TargetInstrDesc &TID = MI->getDesc();
856 if (!TID.isPredicable())
857 return;
858 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
859 if (TID.OpInfo[i].isPredicate()) {
860 // Predicated operands must be last operands.
861 addOperand(MI->getOperand(i));
866 /// isSafeToMove - Return true if it is safe to move this instruction. If
867 /// SawStore is set to true, it means that there is a store (or call) between
868 /// the instruction's location and its intended destination.
869 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
870 bool &SawStore) const {
871 // Ignore stuff that we obviously can't move.
872 if (TID->mayStore() || TID->isCall()) {
873 SawStore = true;
874 return false;
876 if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
877 return false;
879 // See if this instruction does a load. If so, we have to guarantee that the
880 // loaded value doesn't change between the load and the its intended
881 // destination. The check for isInvariantLoad gives the targe the chance to
882 // classify the load as always returning a constant, e.g. a constant pool
883 // load.
884 if (TID->mayLoad() && !TII->isInvariantLoad(this))
885 // Otherwise, this is a real load. If there is a store between the load and
886 // end of block, or if the load is volatile, we can't move it.
887 return !SawStore && !hasVolatileMemoryRef();
889 return true;
892 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
893 /// instruction which defined the specified register instead of copying it.
894 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
895 unsigned DstReg) const {
896 bool SawStore = false;
897 if (!getDesc().isRematerializable() ||
898 !TII->isTriviallyReMaterializable(this) ||
899 !isSafeToMove(TII, SawStore))
900 return false;
901 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
902 const MachineOperand &MO = getOperand(i);
903 if (!MO.isReg())
904 continue;
905 // FIXME: For now, do not remat any instruction with register operands.
906 // Later on, we can loosen the restriction is the register operands have
907 // not been modified between the def and use. Note, this is different from
908 // MachineSink because the code is no longer in two-address form (at least
909 // partially).
910 if (MO.isUse())
911 return false;
912 else if (!MO.isDead() && MO.getReg() != DstReg)
913 return false;
915 return true;
918 /// hasVolatileMemoryRef - Return true if this instruction may have a
919 /// volatile memory reference, or if the information describing the
920 /// memory reference is not available. Return false if it is known to
921 /// have no volatile memory references.
922 bool MachineInstr::hasVolatileMemoryRef() const {
923 // An instruction known never to access memory won't have a volatile access.
924 if (!TID->mayStore() &&
925 !TID->mayLoad() &&
926 !TID->isCall() &&
927 !TID->hasUnmodeledSideEffects())
928 return false;
930 // Otherwise, if the instruction has no memory reference information,
931 // conservatively assume it wasn't preserved.
932 if (memoperands_empty())
933 return true;
935 // Check the memory reference information for volatile references.
936 for (std::list<MachineMemOperand>::const_iterator I = memoperands_begin(),
937 E = memoperands_end(); I != E; ++I)
938 if (I->isVolatile())
939 return true;
941 return false;
944 void MachineInstr::dump() const {
945 errs() << " " << *this;
948 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
949 // Specialize printing if op#0 is definition
950 unsigned StartOp = 0;
951 if (getNumOperands() && getOperand(0).isReg() && getOperand(0).isDef()) {
952 getOperand(0).print(OS, TM);
953 OS << " = ";
954 ++StartOp; // Don't print this operand again!
957 OS << getDesc().getName();
959 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
960 if (i != StartOp)
961 OS << ",";
962 OS << " ";
963 getOperand(i).print(OS, TM);
966 if (!memoperands_empty()) {
967 OS << ", Mem:";
968 for (std::list<MachineMemOperand>::const_iterator i = memoperands_begin(),
969 e = memoperands_end(); i != e; ++i) {
970 const MachineMemOperand &MRO = *i;
971 const Value *V = MRO.getValue();
973 assert((MRO.isLoad() || MRO.isStore()) &&
974 "SV has to be a load, store or both.");
976 if (MRO.isVolatile())
977 OS << "Volatile ";
979 if (MRO.isLoad())
980 OS << "LD";
981 if (MRO.isStore())
982 OS << "ST";
984 OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") [";
986 if (!V)
987 OS << "<unknown>";
988 else if (!V->getName().empty())
989 OS << V->getName();
990 else if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
991 PSV->print(OS);
992 } else
993 OS << V;
995 OS << " + " << MRO.getOffset() << "]";
999 if (!debugLoc.isUnknown()) {
1000 const MachineFunction *MF = getParent()->getParent();
1001 DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
1002 DICompileUnit CU(DLT.CompileUnit);
1003 std::string Dir, Fn;
1004 OS << " [dbg: "
1005 << CU.getDirectory(Dir) << '/' << CU.getFilename(Fn) << ","
1006 << DLT.Line << ","
1007 << DLT.Col << "]";
1010 OS << "\n";
1013 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1014 const TargetRegisterInfo *RegInfo,
1015 bool AddIfNotFound) {
1016 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1017 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1018 bool Found = false;
1019 SmallVector<unsigned,4> DeadOps;
1020 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1021 MachineOperand &MO = getOperand(i);
1022 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1023 continue;
1024 unsigned Reg = MO.getReg();
1025 if (!Reg)
1026 continue;
1028 if (Reg == IncomingReg) {
1029 if (!Found) {
1030 if (MO.isKill())
1031 // The register is already marked kill.
1032 return true;
1033 if (isPhysReg && isRegTiedToDefOperand(i))
1034 // Two-address uses of physregs must not be marked kill.
1035 return true;
1036 MO.setIsKill();
1037 Found = true;
1039 } else if (hasAliases && MO.isKill() &&
1040 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1041 // A super-register kill already exists.
1042 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1043 return true;
1044 if (RegInfo->isSubRegister(IncomingReg, Reg))
1045 DeadOps.push_back(i);
1049 // Trim unneeded kill operands.
1050 while (!DeadOps.empty()) {
1051 unsigned OpIdx = DeadOps.back();
1052 if (getOperand(OpIdx).isImplicit())
1053 RemoveOperand(OpIdx);
1054 else
1055 getOperand(OpIdx).setIsKill(false);
1056 DeadOps.pop_back();
1059 // If not found, this means an alias of one of the operands is killed. Add a
1060 // new implicit operand if required.
1061 if (!Found && AddIfNotFound) {
1062 addOperand(MachineOperand::CreateReg(IncomingReg,
1063 false /*IsDef*/,
1064 true /*IsImp*/,
1065 true /*IsKill*/));
1066 return true;
1068 return Found;
1071 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1072 const TargetRegisterInfo *RegInfo,
1073 bool AddIfNotFound) {
1074 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1075 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1076 bool Found = false;
1077 SmallVector<unsigned,4> DeadOps;
1078 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1079 MachineOperand &MO = getOperand(i);
1080 if (!MO.isReg() || !MO.isDef())
1081 continue;
1082 unsigned Reg = MO.getReg();
1083 if (!Reg)
1084 continue;
1086 if (Reg == IncomingReg) {
1087 if (!Found) {
1088 if (MO.isDead())
1089 // The register is already marked dead.
1090 return true;
1091 MO.setIsDead();
1092 Found = true;
1094 } else if (hasAliases && MO.isDead() &&
1095 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1096 // There exists a super-register that's marked dead.
1097 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1098 return true;
1099 if (RegInfo->getSubRegisters(IncomingReg) &&
1100 RegInfo->getSuperRegisters(Reg) &&
1101 RegInfo->isSubRegister(IncomingReg, Reg))
1102 DeadOps.push_back(i);
1106 // Trim unneeded dead operands.
1107 while (!DeadOps.empty()) {
1108 unsigned OpIdx = DeadOps.back();
1109 if (getOperand(OpIdx).isImplicit())
1110 RemoveOperand(OpIdx);
1111 else
1112 getOperand(OpIdx).setIsDead(false);
1113 DeadOps.pop_back();
1116 // If not found, this means an alias of one of the operands is dead. Add a
1117 // new implicit operand if required.
1118 if (Found || !AddIfNotFound)
1119 return Found;
1121 addOperand(MachineOperand::CreateReg(IncomingReg,
1122 true /*IsDef*/,
1123 true /*IsImp*/,
1124 false /*IsKill*/,
1125 true /*IsDead*/));
1126 return true;