this is failing on linux hosts, force a triple.
[llvm/avr.git] / lib / Analysis / LoopDependenceAnalysis.cpp
blob32d22662c341586e2be6a5a51c8d9a37e17da650
1 //===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the (beginning) of an implementation of a loop dependence analysis
11 // framework, which is used to detect dependences in memory accesses in loops.
13 // Please note that this is work in progress and the interface is subject to
14 // change.
16 // TODO: adapt as implementation progresses.
18 // TODO: document lingo (pair, subscript, index)
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "lda"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/LoopDependenceAnalysis.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Instructions.h"
31 #include "llvm/Operator.h"
32 #include "llvm/Support/Allocator.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetData.h"
37 using namespace llvm;
39 STATISTIC(NumAnswered, "Number of dependence queries answered");
40 STATISTIC(NumAnalysed, "Number of distinct dependence pairs analysed");
41 STATISTIC(NumDependent, "Number of pairs with dependent accesses");
42 STATISTIC(NumIndependent, "Number of pairs with independent accesses");
43 STATISTIC(NumUnknown, "Number of pairs with unknown accesses");
45 LoopPass *llvm::createLoopDependenceAnalysisPass() {
46 return new LoopDependenceAnalysis();
49 static RegisterPass<LoopDependenceAnalysis>
50 R("lda", "Loop Dependence Analysis", false, true);
51 char LoopDependenceAnalysis::ID = 0;
53 //===----------------------------------------------------------------------===//
54 // Utility Functions
55 //===----------------------------------------------------------------------===//
57 static inline bool IsMemRefInstr(const Value *V) {
58 const Instruction *I = dyn_cast<const Instruction>(V);
59 return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
62 static void GetMemRefInstrs(const Loop *L,
63 SmallVectorImpl<Instruction*> &Memrefs) {
64 for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
65 b != be; ++b)
66 for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
67 i != ie; ++i)
68 if (IsMemRefInstr(i))
69 Memrefs.push_back(i);
72 static bool IsLoadOrStoreInst(Value *I) {
73 return isa<LoadInst>(I) || isa<StoreInst>(I);
76 static Value *GetPointerOperand(Value *I) {
77 if (LoadInst *i = dyn_cast<LoadInst>(I))
78 return i->getPointerOperand();
79 if (StoreInst *i = dyn_cast<StoreInst>(I))
80 return i->getPointerOperand();
81 llvm_unreachable("Value is no load or store instruction!");
82 // Never reached.
83 return 0;
86 static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA,
87 const Value *A,
88 const Value *B) {
89 const Value *aObj = A->getUnderlyingObject();
90 const Value *bObj = B->getUnderlyingObject();
91 return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()),
92 bObj, AA->getTypeStoreSize(bObj->getType()));
95 static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) {
96 return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L);
99 //===----------------------------------------------------------------------===//
100 // Dependence Testing
101 //===----------------------------------------------------------------------===//
103 bool LoopDependenceAnalysis::isDependencePair(const Value *A,
104 const Value *B) const {
105 return IsMemRefInstr(A) &&
106 IsMemRefInstr(B) &&
107 (cast<const Instruction>(A)->mayWriteToMemory() ||
108 cast<const Instruction>(B)->mayWriteToMemory());
111 bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A,
112 Value *B,
113 DependencePair *&P) {
114 void *insertPos = 0;
115 FoldingSetNodeID id;
116 id.AddPointer(A);
117 id.AddPointer(B);
119 P = Pairs.FindNodeOrInsertPos(id, insertPos);
120 if (P) return true;
122 P = PairAllocator.Allocate<DependencePair>();
123 new (P) DependencePair(id, A, B);
124 Pairs.InsertNode(P, insertPos);
125 return false;
128 void LoopDependenceAnalysis::getLoops(const SCEV *S,
129 DenseSet<const Loop*>* Loops) const {
130 // Refactor this into an SCEVVisitor, if efficiency becomes a concern.
131 for (const Loop *L = this->L; L != 0; L = L->getParentLoop())
132 if (!S->isLoopInvariant(L))
133 Loops->insert(L);
136 bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const {
137 DenseSet<const Loop*> loops;
138 getLoops(S, &loops);
139 return loops.empty();
142 bool LoopDependenceAnalysis::isAffine(const SCEV *S) const {
143 const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S);
144 return isLoopInvariant(S) || (rec && rec->isAffine());
147 bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const {
148 return isLoopInvariant(A) && isLoopInvariant(B);
151 bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const {
152 DenseSet<const Loop*> loops;
153 getLoops(A, &loops);
154 getLoops(B, &loops);
155 return loops.size() == 1;
158 LoopDependenceAnalysis::DependenceResult
159 LoopDependenceAnalysis::analyseZIV(const SCEV *A,
160 const SCEV *B,
161 Subscript *S) const {
162 assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!");
163 return A == B ? Dependent : Independent;
166 LoopDependenceAnalysis::DependenceResult
167 LoopDependenceAnalysis::analyseSIV(const SCEV *A,
168 const SCEV *B,
169 Subscript *S) const {
170 return Unknown; // TODO: Implement.
173 LoopDependenceAnalysis::DependenceResult
174 LoopDependenceAnalysis::analyseMIV(const SCEV *A,
175 const SCEV *B,
176 Subscript *S) const {
177 return Unknown; // TODO: Implement.
180 LoopDependenceAnalysis::DependenceResult
181 LoopDependenceAnalysis::analyseSubscript(const SCEV *A,
182 const SCEV *B,
183 Subscript *S) const {
184 DEBUG(errs() << " Testing subscript: " << *A << ", " << *B << "\n");
186 if (A == B) {
187 DEBUG(errs() << " -> [D] same SCEV\n");
188 return Dependent;
191 if (!isAffine(A) || !isAffine(B)) {
192 DEBUG(errs() << " -> [?] not affine\n");
193 return Unknown;
196 if (isZIVPair(A, B))
197 return analyseZIV(A, B, S);
199 if (isSIVPair(A, B))
200 return analyseSIV(A, B, S);
202 return analyseMIV(A, B, S);
205 LoopDependenceAnalysis::DependenceResult
206 LoopDependenceAnalysis::analysePair(DependencePair *P) const {
207 DEBUG(errs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n");
209 // We only analyse loads and stores but no possible memory accesses by e.g.
210 // free, call, or invoke instructions.
211 if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
212 DEBUG(errs() << "--> [?] no load/store\n");
213 return Unknown;
216 Value *aPtr = GetPointerOperand(P->A);
217 Value *bPtr = GetPointerOperand(P->B);
219 switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) {
220 case AliasAnalysis::MayAlias:
221 // We can not analyse objects if we do not know about their aliasing.
222 DEBUG(errs() << "---> [?] may alias\n");
223 return Unknown;
225 case AliasAnalysis::NoAlias:
226 // If the objects noalias, they are distinct, accesses are independent.
227 DEBUG(errs() << "---> [I] no alias\n");
228 return Independent;
230 case AliasAnalysis::MustAlias:
231 break; // The underlying objects alias, test accesses for dependence.
234 const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr);
235 const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr);
237 if (!aGEP || !bGEP)
238 return Unknown;
240 // FIXME: Is filtering coupled subscripts necessary?
242 // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding
243 // trailing zeroes to the smaller GEP, if needed.
244 typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy;
245 GEPOpdPairsTy opds;
246 for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(),
247 aEnd = aGEP->idx_end(),
248 bIdx = bGEP->idx_begin(),
249 bEnd = bGEP->idx_end();
250 aIdx != aEnd && bIdx != bEnd;
251 aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) {
252 const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE);
253 const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE);
254 opds.push_back(std::make_pair(aSCEV, bSCEV));
257 if (!opds.empty() && opds[0].first != opds[0].second) {
258 // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting
260 // TODO: this could be relaxed by adding the size of the underlying object
261 // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we
262 // know that x is a [100 x i8]*, we could modify the first subscript to be
263 // (i, 200-i) instead of (i, -i).
264 return Unknown;
267 // Now analyse the collected operand pairs (skipping the GEP ptr offsets).
268 for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end();
269 i != end; ++i) {
270 Subscript subscript;
271 DependenceResult result = analyseSubscript(i->first, i->second, &subscript);
272 if (result != Dependent) {
273 // We either proved independence or failed to analyse this subscript.
274 // Further subscripts will not improve the situation, so abort early.
275 return result;
277 P->Subscripts.push_back(subscript);
279 // We successfully analysed all subscripts but failed to prove independence.
280 return Dependent;
283 bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
284 assert(isDependencePair(A, B) && "Values form no dependence pair!");
285 ++NumAnswered;
287 DependencePair *p;
288 if (!findOrInsertDependencePair(A, B, p)) {
289 // The pair is not cached, so analyse it.
290 ++NumAnalysed;
291 switch (p->Result = analysePair(p)) {
292 case Dependent: ++NumDependent; break;
293 case Independent: ++NumIndependent; break;
294 case Unknown: ++NumUnknown; break;
297 return p->Result != Independent;
300 //===----------------------------------------------------------------------===//
301 // LoopDependenceAnalysis Implementation
302 //===----------------------------------------------------------------------===//
304 bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
305 this->L = L;
306 AA = &getAnalysis<AliasAnalysis>();
307 SE = &getAnalysis<ScalarEvolution>();
308 return false;
311 void LoopDependenceAnalysis::releaseMemory() {
312 Pairs.clear();
313 PairAllocator.Reset();
316 void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
317 AU.setPreservesAll();
318 AU.addRequiredTransitive<AliasAnalysis>();
319 AU.addRequiredTransitive<ScalarEvolution>();
322 static void PrintLoopInfo(raw_ostream &OS,
323 LoopDependenceAnalysis *LDA, const Loop *L) {
324 if (!L->empty()) return; // ignore non-innermost loops
326 SmallVector<Instruction*, 8> memrefs;
327 GetMemRefInstrs(L, memrefs);
329 OS << "Loop at depth " << L->getLoopDepth() << ", header block: ";
330 WriteAsOperand(OS, L->getHeader(), false);
331 OS << "\n";
333 OS << " Load/store instructions: " << memrefs.size() << "\n";
334 for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
335 end = memrefs.end(); x != end; ++x)
336 OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n";
338 OS << " Pairwise dependence results:\n";
339 for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
340 end = memrefs.end(); x != end; ++x)
341 for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
342 y != end; ++y)
343 if (LDA->isDependencePair(*x, *y))
344 OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
345 << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
346 << "\n";
349 void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
350 // TODO: doc why const_cast is safe
351 PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);