1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Function.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/PredIteratorCache.h"
26 #include "llvm/Support/Debug.h"
29 STATISTIC(NumCacheNonLocal
, "Number of fully cached non-local responses");
30 STATISTIC(NumCacheDirtyNonLocal
, "Number of dirty cached non-local responses");
31 STATISTIC(NumUncacheNonLocal
, "Number of uncached non-local responses");
33 STATISTIC(NumCacheNonLocalPtr
,
34 "Number of fully cached non-local ptr responses");
35 STATISTIC(NumCacheDirtyNonLocalPtr
,
36 "Number of cached, but dirty, non-local ptr responses");
37 STATISTIC(NumUncacheNonLocalPtr
,
38 "Number of uncached non-local ptr responses");
39 STATISTIC(NumCacheCompleteNonLocalPtr
,
40 "Number of block queries that were completely cached");
42 char MemoryDependenceAnalysis::ID
= 0;
44 // Register this pass...
45 static RegisterPass
<MemoryDependenceAnalysis
> X("memdep",
46 "Memory Dependence Analysis", false, true);
48 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
49 : FunctionPass(&ID
), PredCache(0) {
51 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
54 /// Clean up memory in between runs
55 void MemoryDependenceAnalysis::releaseMemory() {
58 NonLocalPointerDeps
.clear();
59 ReverseLocalDeps
.clear();
60 ReverseNonLocalDeps
.clear();
61 ReverseNonLocalPtrDeps
.clear();
67 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
69 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
71 AU
.addRequiredTransitive
<AliasAnalysis
>();
74 bool MemoryDependenceAnalysis::runOnFunction(Function
&) {
75 AA
= &getAnalysis
<AliasAnalysis
>();
77 PredCache
.reset(new PredIteratorCache());
81 /// RemoveFromReverseMap - This is a helper function that removes Val from
82 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
83 template <typename KeyTy
>
84 static void RemoveFromReverseMap(DenseMap
<Instruction
*,
85 SmallPtrSet
<KeyTy
, 4> > &ReverseMap
,
86 Instruction
*Inst
, KeyTy Val
) {
87 typename DenseMap
<Instruction
*, SmallPtrSet
<KeyTy
, 4> >::iterator
88 InstIt
= ReverseMap
.find(Inst
);
89 assert(InstIt
!= ReverseMap
.end() && "Reverse map out of sync?");
90 bool Found
= InstIt
->second
.erase(Val
);
91 assert(Found
&& "Invalid reverse map!"); Found
=Found
;
92 if (InstIt
->second
.empty())
93 ReverseMap
.erase(InstIt
);
97 /// getCallSiteDependencyFrom - Private helper for finding the local
98 /// dependencies of a call site.
99 MemDepResult
MemoryDependenceAnalysis::
100 getCallSiteDependencyFrom(CallSite CS
, bool isReadOnlyCall
,
101 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
102 // Walk backwards through the block, looking for dependencies
103 while (ScanIt
!= BB
->begin()) {
104 Instruction
*Inst
= --ScanIt
;
106 // If this inst is a memory op, get the pointer it accessed
108 uint64_t PointerSize
= 0;
109 if (StoreInst
*S
= dyn_cast
<StoreInst
>(Inst
)) {
110 Pointer
= S
->getPointerOperand();
111 PointerSize
= AA
->getTypeStoreSize(S
->getOperand(0)->getType());
112 } else if (VAArgInst
*V
= dyn_cast
<VAArgInst
>(Inst
)) {
113 Pointer
= V
->getOperand(0);
114 PointerSize
= AA
->getTypeStoreSize(V
->getType());
115 } else if (FreeInst
*F
= dyn_cast
<FreeInst
>(Inst
)) {
116 Pointer
= F
->getPointerOperand();
118 // FreeInsts erase the entire structure
120 } else if (isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) {
121 // Debug intrinsics don't cause dependences.
122 if (isa
<DbgInfoIntrinsic
>(Inst
)) continue;
123 CallSite InstCS
= CallSite::get(Inst
);
124 // If these two calls do not interfere, look past it.
125 switch (AA
->getModRefInfo(CS
, InstCS
)) {
126 case AliasAnalysis::NoModRef
:
127 // If the two calls don't interact (e.g. InstCS is readnone) keep
130 case AliasAnalysis::Ref
:
131 // If the two calls read the same memory locations and CS is a readonly
132 // function, then we have two cases: 1) the calls may not interfere with
133 // each other at all. 2) the calls may produce the same value. In case
134 // #1 we want to ignore the values, in case #2, we want to return Inst
135 // as a Def dependence. This allows us to CSE in cases like:
138 // Y = strlen(P); // Y = X
139 if (isReadOnlyCall
) {
140 if (CS
.getCalledFunction() != 0 &&
141 CS
.getCalledFunction() == InstCS
.getCalledFunction())
142 return MemDepResult::getDef(Inst
);
143 // Ignore unrelated read/read call dependences.
148 return MemDepResult::getClobber(Inst
);
151 // Non-memory instruction.
155 if (AA
->getModRefInfo(CS
, Pointer
, PointerSize
) != AliasAnalysis::NoModRef
)
156 return MemDepResult::getClobber(Inst
);
159 // No dependence found. If this is the entry block of the function, it is a
160 // clobber, otherwise it is non-local.
161 if (BB
!= &BB
->getParent()->getEntryBlock())
162 return MemDepResult::getNonLocal();
163 return MemDepResult::getClobber(ScanIt
);
166 /// getPointerDependencyFrom - Return the instruction on which a memory
167 /// location depends. If isLoad is true, this routine ignore may-aliases with
168 /// read-only operations.
169 MemDepResult
MemoryDependenceAnalysis::
170 getPointerDependencyFrom(Value
*MemPtr
, uint64_t MemSize
, bool isLoad
,
171 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
173 // Walk backwards through the basic block, looking for dependencies.
174 while (ScanIt
!= BB
->begin()) {
175 Instruction
*Inst
= --ScanIt
;
177 // Debug intrinsics don't cause dependences.
178 if (isa
<DbgInfoIntrinsic
>(Inst
)) continue;
180 // Values depend on loads if the pointers are must aliased. This means that
181 // a load depends on another must aliased load from the same value.
182 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
183 Value
*Pointer
= LI
->getPointerOperand();
184 uint64_t PointerSize
= AA
->getTypeStoreSize(LI
->getType());
186 // If we found a pointer, check if it could be the same as our pointer.
187 AliasAnalysis::AliasResult R
=
188 AA
->alias(Pointer
, PointerSize
, MemPtr
, MemSize
);
189 if (R
== AliasAnalysis::NoAlias
)
192 // May-alias loads don't depend on each other without a dependence.
193 if (isLoad
&& R
== AliasAnalysis::MayAlias
)
195 // Stores depend on may and must aliased loads, loads depend on must-alias
197 return MemDepResult::getDef(Inst
);
200 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
201 // If alias analysis can tell that this store is guaranteed to not modify
202 // the query pointer, ignore it. Use getModRefInfo to handle cases where
203 // the query pointer points to constant memory etc.
204 if (AA
->getModRefInfo(SI
, MemPtr
, MemSize
) == AliasAnalysis::NoModRef
)
207 // Ok, this store might clobber the query pointer. Check to see if it is
208 // a must alias: in this case, we want to return this as a def.
209 Value
*Pointer
= SI
->getPointerOperand();
210 uint64_t PointerSize
= AA
->getTypeStoreSize(SI
->getOperand(0)->getType());
212 // If we found a pointer, check if it could be the same as our pointer.
213 AliasAnalysis::AliasResult R
=
214 AA
->alias(Pointer
, PointerSize
, MemPtr
, MemSize
);
216 if (R
== AliasAnalysis::NoAlias
)
218 if (R
== AliasAnalysis::MayAlias
)
219 return MemDepResult::getClobber(Inst
);
220 return MemDepResult::getDef(Inst
);
223 // If this is an allocation, and if we know that the accessed pointer is to
224 // the allocation, return Def. This means that there is no dependence and
225 // the access can be optimized based on that. For example, a load could
227 if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(Inst
)) {
228 Value
*AccessPtr
= MemPtr
->getUnderlyingObject();
230 if (AccessPtr
== AI
||
231 AA
->alias(AI
, 1, AccessPtr
, 1) == AliasAnalysis::MustAlias
)
232 return MemDepResult::getDef(AI
);
236 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
237 switch (AA
->getModRefInfo(Inst
, MemPtr
, MemSize
)) {
238 case AliasAnalysis::NoModRef
:
239 // If the call has no effect on the queried pointer, just ignore it.
241 case AliasAnalysis::Ref
:
242 // If the call is known to never store to the pointer, and if this is a
243 // load query, we can safely ignore it (scan past it).
248 // Otherwise, there is a potential dependence. Return a clobber.
249 return MemDepResult::getClobber(Inst
);
253 // No dependence found. If this is the entry block of the function, it is a
254 // clobber, otherwise it is non-local.
255 if (BB
!= &BB
->getParent()->getEntryBlock())
256 return MemDepResult::getNonLocal();
257 return MemDepResult::getClobber(ScanIt
);
260 /// getDependency - Return the instruction on which a memory operation
262 MemDepResult
MemoryDependenceAnalysis::getDependency(Instruction
*QueryInst
) {
263 Instruction
*ScanPos
= QueryInst
;
265 // Check for a cached result
266 MemDepResult
&LocalCache
= LocalDeps
[QueryInst
];
268 // If the cached entry is non-dirty, just return it. Note that this depends
269 // on MemDepResult's default constructing to 'dirty'.
270 if (!LocalCache
.isDirty())
273 // Otherwise, if we have a dirty entry, we know we can start the scan at that
274 // instruction, which may save us some work.
275 if (Instruction
*Inst
= LocalCache
.getInst()) {
278 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, QueryInst
);
281 BasicBlock
*QueryParent
= QueryInst
->getParent();
284 uint64_t MemSize
= 0;
287 if (BasicBlock::iterator(QueryInst
) == QueryParent
->begin()) {
288 // No dependence found. If this is the entry block of the function, it is a
289 // clobber, otherwise it is non-local.
290 if (QueryParent
!= &QueryParent
->getParent()->getEntryBlock())
291 LocalCache
= MemDepResult::getNonLocal();
293 LocalCache
= MemDepResult::getClobber(QueryInst
);
294 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(QueryInst
)) {
295 // If this is a volatile store, don't mess around with it. Just return the
296 // previous instruction as a clobber.
297 if (SI
->isVolatile())
298 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
300 MemPtr
= SI
->getPointerOperand();
301 MemSize
= AA
->getTypeStoreSize(SI
->getOperand(0)->getType());
303 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(QueryInst
)) {
304 // If this is a volatile load, don't mess around with it. Just return the
305 // previous instruction as a clobber.
306 if (LI
->isVolatile())
307 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
309 MemPtr
= LI
->getPointerOperand();
310 MemSize
= AA
->getTypeStoreSize(LI
->getType());
312 } else if (isa
<CallInst
>(QueryInst
) || isa
<InvokeInst
>(QueryInst
)) {
313 CallSite QueryCS
= CallSite::get(QueryInst
);
314 bool isReadOnly
= AA
->onlyReadsMemory(QueryCS
);
315 LocalCache
= getCallSiteDependencyFrom(QueryCS
, isReadOnly
, ScanPos
,
317 } else if (FreeInst
*FI
= dyn_cast
<FreeInst
>(QueryInst
)) {
318 MemPtr
= FI
->getPointerOperand();
319 // FreeInsts erase the entire structure, not just a field.
322 // Non-memory instruction.
323 LocalCache
= MemDepResult::getClobber(--BasicBlock::iterator(ScanPos
));
326 // If we need to do a pointer scan, make it happen.
328 LocalCache
= getPointerDependencyFrom(MemPtr
, MemSize
,
329 isa
<LoadInst
>(QueryInst
),
330 ScanPos
, QueryParent
);
332 // Remember the result!
333 if (Instruction
*I
= LocalCache
.getInst())
334 ReverseLocalDeps
[I
].insert(QueryInst
);
340 /// AssertSorted - This method is used when -debug is specified to verify that
341 /// cache arrays are properly kept sorted.
342 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
344 if (Count
== -1) Count
= Cache
.size();
345 if (Count
== 0) return;
347 for (unsigned i
= 1; i
!= unsigned(Count
); ++i
)
348 assert(Cache
[i
-1] <= Cache
[i
] && "Cache isn't sorted!");
352 /// getNonLocalCallDependency - Perform a full dependency query for the
353 /// specified call, returning the set of blocks that the value is
354 /// potentially live across. The returned set of results will include a
355 /// "NonLocal" result for all blocks where the value is live across.
357 /// This method assumes the instruction returns a "NonLocal" dependency
358 /// within its own block.
360 /// This returns a reference to an internal data structure that may be
361 /// invalidated on the next non-local query or when an instruction is
362 /// removed. Clients must copy this data if they want it around longer than
364 const MemoryDependenceAnalysis::NonLocalDepInfo
&
365 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS
) {
366 assert(getDependency(QueryCS
.getInstruction()).isNonLocal() &&
367 "getNonLocalCallDependency should only be used on calls with non-local deps!");
368 PerInstNLInfo
&CacheP
= NonLocalDeps
[QueryCS
.getInstruction()];
369 NonLocalDepInfo
&Cache
= CacheP
.first
;
371 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
372 /// the cached case, this can happen due to instructions being deleted etc. In
373 /// the uncached case, this starts out as the set of predecessors we care
375 SmallVector
<BasicBlock
*, 32> DirtyBlocks
;
377 if (!Cache
.empty()) {
378 // Okay, we have a cache entry. If we know it is not dirty, just return it
379 // with no computation.
380 if (!CacheP
.second
) {
385 // If we already have a partially computed set of results, scan them to
386 // determine what is dirty, seeding our initial DirtyBlocks worklist.
387 for (NonLocalDepInfo::iterator I
= Cache
.begin(), E
= Cache
.end();
389 if (I
->second
.isDirty())
390 DirtyBlocks
.push_back(I
->first
);
392 // Sort the cache so that we can do fast binary search lookups below.
393 std::sort(Cache
.begin(), Cache
.end());
395 ++NumCacheDirtyNonLocal
;
396 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
397 // << Cache.size() << " cached: " << *QueryInst;
399 // Seed DirtyBlocks with each of the preds of QueryInst's block.
400 BasicBlock
*QueryBB
= QueryCS
.getInstruction()->getParent();
401 for (BasicBlock
**PI
= PredCache
->GetPreds(QueryBB
); *PI
; ++PI
)
402 DirtyBlocks
.push_back(*PI
);
403 NumUncacheNonLocal
++;
406 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
407 bool isReadonlyCall
= AA
->onlyReadsMemory(QueryCS
);
409 SmallPtrSet
<BasicBlock
*, 64> Visited
;
411 unsigned NumSortedEntries
= Cache
.size();
412 DEBUG(AssertSorted(Cache
));
414 // Iterate while we still have blocks to update.
415 while (!DirtyBlocks
.empty()) {
416 BasicBlock
*DirtyBB
= DirtyBlocks
.back();
417 DirtyBlocks
.pop_back();
419 // Already processed this block?
420 if (!Visited
.insert(DirtyBB
))
423 // Do a binary search to see if we already have an entry for this block in
424 // the cache set. If so, find it.
425 DEBUG(AssertSorted(Cache
, NumSortedEntries
));
426 NonLocalDepInfo::iterator Entry
=
427 std::upper_bound(Cache
.begin(), Cache
.begin()+NumSortedEntries
,
428 std::make_pair(DirtyBB
, MemDepResult()));
429 if (Entry
!= Cache
.begin() && prior(Entry
)->first
== DirtyBB
)
432 MemDepResult
*ExistingResult
= 0;
433 if (Entry
!= Cache
.begin()+NumSortedEntries
&&
434 Entry
->first
== DirtyBB
) {
435 // If we already have an entry, and if it isn't already dirty, the block
437 if (!Entry
->second
.isDirty())
440 // Otherwise, remember this slot so we can update the value.
441 ExistingResult
= &Entry
->second
;
444 // If the dirty entry has a pointer, start scanning from it so we don't have
445 // to rescan the entire block.
446 BasicBlock::iterator ScanPos
= DirtyBB
->end();
447 if (ExistingResult
) {
448 if (Instruction
*Inst
= ExistingResult
->getInst()) {
450 // We're removing QueryInst's use of Inst.
451 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
,
452 QueryCS
.getInstruction());
456 // Find out if this block has a local dependency for QueryInst.
459 if (ScanPos
!= DirtyBB
->begin()) {
460 Dep
= getCallSiteDependencyFrom(QueryCS
, isReadonlyCall
,ScanPos
, DirtyBB
);
461 } else if (DirtyBB
!= &DirtyBB
->getParent()->getEntryBlock()) {
462 // No dependence found. If this is the entry block of the function, it is
463 // a clobber, otherwise it is non-local.
464 Dep
= MemDepResult::getNonLocal();
466 Dep
= MemDepResult::getClobber(ScanPos
);
469 // If we had a dirty entry for the block, update it. Otherwise, just add
472 *ExistingResult
= Dep
;
474 Cache
.push_back(std::make_pair(DirtyBB
, Dep
));
476 // If the block has a dependency (i.e. it isn't completely transparent to
477 // the value), remember the association!
478 if (!Dep
.isNonLocal()) {
479 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
480 // update this when we remove instructions.
481 if (Instruction
*Inst
= Dep
.getInst())
482 ReverseNonLocalDeps
[Inst
].insert(QueryCS
.getInstruction());
485 // If the block *is* completely transparent to the load, we need to check
486 // the predecessors of this block. Add them to our worklist.
487 for (BasicBlock
**PI
= PredCache
->GetPreds(DirtyBB
); *PI
; ++PI
)
488 DirtyBlocks
.push_back(*PI
);
495 /// getNonLocalPointerDependency - Perform a full dependency query for an
496 /// access to the specified (non-volatile) memory location, returning the
497 /// set of instructions that either define or clobber the value.
499 /// This method assumes the pointer has a "NonLocal" dependency within its
502 void MemoryDependenceAnalysis::
503 getNonLocalPointerDependency(Value
*Pointer
, bool isLoad
, BasicBlock
*FromBB
,
504 SmallVectorImpl
<NonLocalDepEntry
> &Result
) {
505 assert(isa
<PointerType
>(Pointer
->getType()) &&
506 "Can't get pointer deps of a non-pointer!");
509 // We know that the pointer value is live into FromBB find the def/clobbers
510 // from presecessors.
511 const Type
*EltTy
= cast
<PointerType
>(Pointer
->getType())->getElementType();
512 uint64_t PointeeSize
= AA
->getTypeStoreSize(EltTy
);
514 // This is the set of blocks we've inspected, and the pointer we consider in
515 // each block. Because of critical edges, we currently bail out if querying
516 // a block with multiple different pointers. This can happen during PHI
518 DenseMap
<BasicBlock
*, Value
*> Visited
;
519 if (!getNonLocalPointerDepFromBB(Pointer
, PointeeSize
, isLoad
, FromBB
,
520 Result
, Visited
, true))
523 Result
.push_back(std::make_pair(FromBB
,
524 MemDepResult::getClobber(FromBB
->begin())));
527 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
528 /// Pointer/PointeeSize using either cached information in Cache or by doing a
529 /// lookup (which may use dirty cache info if available). If we do a lookup,
530 /// add the result to the cache.
531 MemDepResult
MemoryDependenceAnalysis::
532 GetNonLocalInfoForBlock(Value
*Pointer
, uint64_t PointeeSize
,
533 bool isLoad
, BasicBlock
*BB
,
534 NonLocalDepInfo
*Cache
, unsigned NumSortedEntries
) {
536 // Do a binary search to see if we already have an entry for this block in
537 // the cache set. If so, find it.
538 NonLocalDepInfo::iterator Entry
=
539 std::upper_bound(Cache
->begin(), Cache
->begin()+NumSortedEntries
,
540 std::make_pair(BB
, MemDepResult()));
541 if (Entry
!= Cache
->begin() && prior(Entry
)->first
== BB
)
544 MemDepResult
*ExistingResult
= 0;
545 if (Entry
!= Cache
->begin()+NumSortedEntries
&& Entry
->first
== BB
)
546 ExistingResult
= &Entry
->second
;
548 // If we have a cached entry, and it is non-dirty, use it as the value for
550 if (ExistingResult
&& !ExistingResult
->isDirty()) {
551 ++NumCacheNonLocalPtr
;
552 return *ExistingResult
;
555 // Otherwise, we have to scan for the value. If we have a dirty cache
556 // entry, start scanning from its position, otherwise we scan from the end
558 BasicBlock::iterator ScanPos
= BB
->end();
559 if (ExistingResult
&& ExistingResult
->getInst()) {
560 assert(ExistingResult
->getInst()->getParent() == BB
&&
561 "Instruction invalidated?");
562 ++NumCacheDirtyNonLocalPtr
;
563 ScanPos
= ExistingResult
->getInst();
565 // Eliminating the dirty entry from 'Cache', so update the reverse info.
566 ValueIsLoadPair
CacheKey(Pointer
, isLoad
);
567 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, ScanPos
, CacheKey
);
569 ++NumUncacheNonLocalPtr
;
572 // Scan the block for the dependency.
573 MemDepResult Dep
= getPointerDependencyFrom(Pointer
, PointeeSize
, isLoad
,
576 // If we had a dirty entry for the block, update it. Otherwise, just add
579 *ExistingResult
= Dep
;
581 Cache
->push_back(std::make_pair(BB
, Dep
));
583 // If the block has a dependency (i.e. it isn't completely transparent to
584 // the value), remember the reverse association because we just added it
586 if (Dep
.isNonLocal())
589 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
590 // update MemDep when we remove instructions.
591 Instruction
*Inst
= Dep
.getInst();
592 assert(Inst
&& "Didn't depend on anything?");
593 ValueIsLoadPair
CacheKey(Pointer
, isLoad
);
594 ReverseNonLocalPtrDeps
[Inst
].insert(CacheKey
);
598 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
599 /// number of elements in the array that are already properly ordered. This is
600 /// optimized for the case when only a few entries are added.
602 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
603 unsigned NumSortedEntries
) {
604 switch (Cache
.size() - NumSortedEntries
) {
606 // done, no new entries.
609 // Two new entries, insert the last one into place.
610 MemoryDependenceAnalysis::NonLocalDepEntry Val
= Cache
.back();
612 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry
=
613 std::upper_bound(Cache
.begin(), Cache
.end()-1, Val
);
614 Cache
.insert(Entry
, Val
);
618 // One new entry, Just insert the new value at the appropriate position.
619 if (Cache
.size() != 1) {
620 MemoryDependenceAnalysis::NonLocalDepEntry Val
= Cache
.back();
622 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry
=
623 std::upper_bound(Cache
.begin(), Cache
.end(), Val
);
624 Cache
.insert(Entry
, Val
);
628 // Added many values, do a full scale sort.
629 std::sort(Cache
.begin(), Cache
.end());
635 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
636 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
637 /// results to the results vector and keep track of which blocks are visited in
640 /// This has special behavior for the first block queries (when SkipFirstBlock
641 /// is true). In this special case, it ignores the contents of the specified
642 /// block and starts returning dependence info for its predecessors.
644 /// This function returns false on success, or true to indicate that it could
645 /// not compute dependence information for some reason. This should be treated
646 /// as a clobber dependence on the first instruction in the predecessor block.
647 bool MemoryDependenceAnalysis::
648 getNonLocalPointerDepFromBB(Value
*Pointer
, uint64_t PointeeSize
,
649 bool isLoad
, BasicBlock
*StartBB
,
650 SmallVectorImpl
<NonLocalDepEntry
> &Result
,
651 DenseMap
<BasicBlock
*, Value
*> &Visited
,
652 bool SkipFirstBlock
) {
654 // Look up the cached info for Pointer.
655 ValueIsLoadPair
CacheKey(Pointer
, isLoad
);
657 std::pair
<BBSkipFirstBlockPair
, NonLocalDepInfo
> *CacheInfo
=
658 &NonLocalPointerDeps
[CacheKey
];
659 NonLocalDepInfo
*Cache
= &CacheInfo
->second
;
661 // If we have valid cached information for exactly the block we are
662 // investigating, just return it with no recomputation.
663 if (CacheInfo
->first
== BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
)) {
664 // We have a fully cached result for this query then we can just return the
665 // cached results and populate the visited set. However, we have to verify
666 // that we don't already have conflicting results for these blocks. Check
667 // to ensure that if a block in the results set is in the visited set that
668 // it was for the same pointer query.
669 if (!Visited
.empty()) {
670 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
672 DenseMap
<BasicBlock
*, Value
*>::iterator VI
= Visited
.find(I
->first
);
673 if (VI
== Visited
.end() || VI
->second
== Pointer
) continue;
675 // We have a pointer mismatch in a block. Just return clobber, saying
676 // that something was clobbered in this result. We could also do a
677 // non-fully cached query, but there is little point in doing this.
682 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
684 Visited
.insert(std::make_pair(I
->first
, Pointer
));
685 if (!I
->second
.isNonLocal())
686 Result
.push_back(*I
);
688 ++NumCacheCompleteNonLocalPtr
;
692 // Otherwise, either this is a new block, a block with an invalid cache
693 // pointer or one that we're about to invalidate by putting more info into it
694 // than its valid cache info. If empty, the result will be valid cache info,
695 // otherwise it isn't.
697 CacheInfo
->first
= BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
);
699 CacheInfo
->first
= BBSkipFirstBlockPair();
701 SmallVector
<BasicBlock
*, 32> Worklist
;
702 Worklist
.push_back(StartBB
);
704 // Keep track of the entries that we know are sorted. Previously cached
705 // entries will all be sorted. The entries we add we only sort on demand (we
706 // don't insert every element into its sorted position). We know that we
707 // won't get any reuse from currently inserted values, because we don't
708 // revisit blocks after we insert info for them.
709 unsigned NumSortedEntries
= Cache
->size();
710 DEBUG(AssertSorted(*Cache
));
712 while (!Worklist
.empty()) {
713 BasicBlock
*BB
= Worklist
.pop_back_val();
715 // Skip the first block if we have it.
716 if (!SkipFirstBlock
) {
717 // Analyze the dependency of *Pointer in FromBB. See if we already have
719 assert(Visited
.count(BB
) && "Should check 'visited' before adding to WL");
721 // Get the dependency info for Pointer in BB. If we have cached
722 // information, we will use it, otherwise we compute it.
723 DEBUG(AssertSorted(*Cache
, NumSortedEntries
));
724 MemDepResult Dep
= GetNonLocalInfoForBlock(Pointer
, PointeeSize
, isLoad
,
725 BB
, Cache
, NumSortedEntries
);
727 // If we got a Def or Clobber, add this to the list of results.
728 if (!Dep
.isNonLocal()) {
729 Result
.push_back(NonLocalDepEntry(BB
, Dep
));
734 // If 'Pointer' is an instruction defined in this block, then we need to do
735 // phi translation to change it into a value live in the predecessor block.
736 // If phi translation fails, then we can't continue dependence analysis.
737 Instruction
*PtrInst
= dyn_cast
<Instruction
>(Pointer
);
738 bool NeedsPHITranslation
= PtrInst
&& PtrInst
->getParent() == BB
;
740 // If no PHI translation is needed, just add all the predecessors of this
741 // block to scan them as well.
742 if (!NeedsPHITranslation
) {
743 SkipFirstBlock
= false;
744 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
745 // Verify that we haven't looked at this block yet.
746 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
747 InsertRes
= Visited
.insert(std::make_pair(*PI
, Pointer
));
748 if (InsertRes
.second
) {
749 // First time we've looked at *PI.
750 Worklist
.push_back(*PI
);
754 // If we have seen this block before, but it was with a different
755 // pointer then we have a phi translation failure and we have to treat
756 // this as a clobber.
757 if (InsertRes
.first
->second
!= Pointer
)
758 goto PredTranslationFailure
;
763 // If we do need to do phi translation, then there are a bunch of different
764 // cases, because we have to find a Value* live in the predecessor block. We
765 // know that PtrInst is defined in this block at least.
767 // We may have added values to the cache list before this PHI translation.
768 // If so, we haven't done anything to ensure that the cache remains sorted.
769 // Sort it now (if needed) so that recursive invocations of
770 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
771 // value will only see properly sorted cache arrays.
772 if (Cache
&& NumSortedEntries
!= Cache
->size()) {
773 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
774 NumSortedEntries
= Cache
->size();
777 // If this is directly a PHI node, just use the incoming values for each
778 // pred as the phi translated version.
779 if (PHINode
*PtrPHI
= dyn_cast
<PHINode
>(PtrInst
)) {
782 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
783 BasicBlock
*Pred
= *PI
;
784 Value
*PredPtr
= PtrPHI
->getIncomingValueForBlock(Pred
);
786 // Check to see if we have already visited this pred block with another
787 // pointer. If so, we can't do this lookup. This failure can occur
788 // with PHI translation when a critical edge exists and the PHI node in
789 // the successor translates to a pointer value different than the
790 // pointer the block was first analyzed with.
791 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
792 InsertRes
= Visited
.insert(std::make_pair(Pred
, PredPtr
));
794 if (!InsertRes
.second
) {
795 // If the predecessor was visited with PredPtr, then we already did
796 // the analysis and can ignore it.
797 if (InsertRes
.first
->second
== PredPtr
)
800 // Otherwise, the block was previously analyzed with a different
801 // pointer. We can't represent the result of this case, so we just
802 // treat this as a phi translation failure.
803 goto PredTranslationFailure
;
806 // FIXME: it is entirely possible that PHI translating will end up with
807 // the same value. Consider PHI translating something like:
808 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
809 // to recurse here, pedantically speaking.
811 // If we have a problem phi translating, fall through to the code below
812 // to handle the failure condition.
813 if (getNonLocalPointerDepFromBB(PredPtr
, PointeeSize
, isLoad
, Pred
,
815 goto PredTranslationFailure
;
818 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
819 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
820 Cache
= &CacheInfo
->second
;
821 NumSortedEntries
= Cache
->size();
823 // Since we did phi translation, the "Cache" set won't contain all of the
824 // results for the query. This is ok (we can still use it to accelerate
825 // specific block queries) but we can't do the fastpath "return all
826 // results from the set" Clear out the indicator for this.
827 CacheInfo
->first
= BBSkipFirstBlockPair();
828 SkipFirstBlock
= false;
832 // TODO: BITCAST, GEP.
834 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
835 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
836 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
837 PredTranslationFailure
:
840 // Refresh the CacheInfo/Cache pointer if it got invalidated.
841 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
842 Cache
= &CacheInfo
->second
;
843 NumSortedEntries
= Cache
->size();
846 // Since we did phi translation, the "Cache" set won't contain all of the
847 // results for the query. This is ok (we can still use it to accelerate
848 // specific block queries) but we can't do the fastpath "return all
849 // results from the set" Clear out the indicator for this.
850 CacheInfo
->first
= BBSkipFirstBlockPair();
852 // If *nothing* works, mark the pointer as being clobbered by the first
853 // instruction in this block.
855 // If this is the magic first block, return this as a clobber of the whole
856 // incoming value. Since we can't phi translate to one of the predecessors,
857 // we have to bail out.
861 for (NonLocalDepInfo::reverse_iterator I
= Cache
->rbegin(); ; ++I
) {
862 assert(I
!= Cache
->rend() && "Didn't find current block??");
866 assert(I
->second
.isNonLocal() &&
867 "Should only be here with transparent block");
868 I
->second
= MemDepResult::getClobber(BB
->begin());
869 ReverseNonLocalPtrDeps
[BB
->begin()].insert(CacheKey
);
870 Result
.push_back(*I
);
875 // Okay, we're done now. If we added new values to the cache, re-sort it.
876 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
877 DEBUG(AssertSorted(*Cache
));
881 /// RemoveCachedNonLocalPointerDependencies - If P exists in
882 /// CachedNonLocalPointerInfo, remove it.
883 void MemoryDependenceAnalysis::
884 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P
) {
885 CachedNonLocalPointerInfo::iterator It
=
886 NonLocalPointerDeps
.find(P
);
887 if (It
== NonLocalPointerDeps
.end()) return;
889 // Remove all of the entries in the BB->val map. This involves removing
890 // instructions from the reverse map.
891 NonLocalDepInfo
&PInfo
= It
->second
.second
;
893 for (unsigned i
= 0, e
= PInfo
.size(); i
!= e
; ++i
) {
894 Instruction
*Target
= PInfo
[i
].second
.getInst();
895 if (Target
== 0) continue; // Ignore non-local dep results.
896 assert(Target
->getParent() == PInfo
[i
].first
);
898 // Eliminating the dirty entry from 'Cache', so update the reverse info.
899 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Target
, P
);
902 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
903 NonLocalPointerDeps
.erase(It
);
907 /// invalidateCachedPointerInfo - This method is used to invalidate cached
908 /// information about the specified pointer, because it may be too
909 /// conservative in memdep. This is an optional call that can be used when
910 /// the client detects an equivalence between the pointer and some other
911 /// value and replaces the other value with ptr. This can make Ptr available
912 /// in more places that cached info does not necessarily keep.
913 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value
*Ptr
) {
914 // If Ptr isn't really a pointer, just ignore it.
915 if (!isa
<PointerType
>(Ptr
->getType())) return;
916 // Flush store info for the pointer.
917 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, false));
918 // Flush load info for the pointer.
919 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, true));
922 /// removeInstruction - Remove an instruction from the dependence analysis,
923 /// updating the dependence of instructions that previously depended on it.
924 /// This method attempts to keep the cache coherent using the reverse map.
925 void MemoryDependenceAnalysis::removeInstruction(Instruction
*RemInst
) {
926 // Walk through the Non-local dependencies, removing this one as the value
927 // for any cached queries.
928 NonLocalDepMapType::iterator NLDI
= NonLocalDeps
.find(RemInst
);
929 if (NLDI
!= NonLocalDeps
.end()) {
930 NonLocalDepInfo
&BlockMap
= NLDI
->second
.first
;
931 for (NonLocalDepInfo::iterator DI
= BlockMap
.begin(), DE
= BlockMap
.end();
933 if (Instruction
*Inst
= DI
->second
.getInst())
934 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
, RemInst
);
935 NonLocalDeps
.erase(NLDI
);
938 // If we have a cached local dependence query for this instruction, remove it.
940 LocalDepMapType::iterator LocalDepEntry
= LocalDeps
.find(RemInst
);
941 if (LocalDepEntry
!= LocalDeps
.end()) {
942 // Remove us from DepInst's reverse set now that the local dep info is gone.
943 if (Instruction
*Inst
= LocalDepEntry
->second
.getInst())
944 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, RemInst
);
946 // Remove this local dependency info.
947 LocalDeps
.erase(LocalDepEntry
);
950 // If we have any cached pointer dependencies on this instruction, remove
951 // them. If the instruction has non-pointer type, then it can't be a pointer
954 // Remove it from both the load info and the store info. The instruction
955 // can't be in either of these maps if it is non-pointer.
956 if (isa
<PointerType
>(RemInst
->getType())) {
957 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, false));
958 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, true));
961 // Loop over all of the things that depend on the instruction we're removing.
963 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 8> ReverseDepsToAdd
;
965 // If we find RemInst as a clobber or Def in any of the maps for other values,
966 // we need to replace its entry with a dirty version of the instruction after
967 // it. If RemInst is a terminator, we use a null dirty value.
969 // Using a dirty version of the instruction after RemInst saves having to scan
970 // the entire block to get to this point.
971 MemDepResult NewDirtyVal
;
972 if (!RemInst
->isTerminator())
973 NewDirtyVal
= MemDepResult::getDirty(++BasicBlock::iterator(RemInst
));
975 ReverseDepMapType::iterator ReverseDepIt
= ReverseLocalDeps
.find(RemInst
);
976 if (ReverseDepIt
!= ReverseLocalDeps
.end()) {
977 SmallPtrSet
<Instruction
*, 4> &ReverseDeps
= ReverseDepIt
->second
;
978 // RemInst can't be the terminator if it has local stuff depending on it.
979 assert(!ReverseDeps
.empty() && !isa
<TerminatorInst
>(RemInst
) &&
980 "Nothing can locally depend on a terminator");
982 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= ReverseDeps
.begin(),
983 E
= ReverseDeps
.end(); I
!= E
; ++I
) {
984 Instruction
*InstDependingOnRemInst
= *I
;
985 assert(InstDependingOnRemInst
!= RemInst
&&
986 "Already removed our local dep info");
988 LocalDeps
[InstDependingOnRemInst
] = NewDirtyVal
;
990 // Make sure to remember that new things depend on NewDepInst.
991 assert(NewDirtyVal
.getInst() && "There is no way something else can have "
992 "a local dep on this if it is a terminator!");
993 ReverseDepsToAdd
.push_back(std::make_pair(NewDirtyVal
.getInst(),
994 InstDependingOnRemInst
));
997 ReverseLocalDeps
.erase(ReverseDepIt
);
999 // Add new reverse deps after scanning the set, to avoid invalidating the
1000 // 'ReverseDeps' reference.
1001 while (!ReverseDepsToAdd
.empty()) {
1002 ReverseLocalDeps
[ReverseDepsToAdd
.back().first
]
1003 .insert(ReverseDepsToAdd
.back().second
);
1004 ReverseDepsToAdd
.pop_back();
1008 ReverseDepIt
= ReverseNonLocalDeps
.find(RemInst
);
1009 if (ReverseDepIt
!= ReverseNonLocalDeps
.end()) {
1010 SmallPtrSet
<Instruction
*, 4> &Set
= ReverseDepIt
->second
;
1011 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= Set
.begin(), E
= Set
.end();
1013 assert(*I
!= RemInst
&& "Already removed NonLocalDep info for RemInst");
1015 PerInstNLInfo
&INLD
= NonLocalDeps
[*I
];
1016 // The information is now dirty!
1019 for (NonLocalDepInfo::iterator DI
= INLD
.first
.begin(),
1020 DE
= INLD
.first
.end(); DI
!= DE
; ++DI
) {
1021 if (DI
->second
.getInst() != RemInst
) continue;
1023 // Convert to a dirty entry for the subsequent instruction.
1024 DI
->second
= NewDirtyVal
;
1026 if (Instruction
*NextI
= NewDirtyVal
.getInst())
1027 ReverseDepsToAdd
.push_back(std::make_pair(NextI
, *I
));
1031 ReverseNonLocalDeps
.erase(ReverseDepIt
);
1033 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1034 while (!ReverseDepsToAdd
.empty()) {
1035 ReverseNonLocalDeps
[ReverseDepsToAdd
.back().first
]
1036 .insert(ReverseDepsToAdd
.back().second
);
1037 ReverseDepsToAdd
.pop_back();
1041 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1042 // value in the NonLocalPointerDeps info.
1043 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt
=
1044 ReverseNonLocalPtrDeps
.find(RemInst
);
1045 if (ReversePtrDepIt
!= ReverseNonLocalPtrDeps
.end()) {
1046 SmallPtrSet
<ValueIsLoadPair
, 4> &Set
= ReversePtrDepIt
->second
;
1047 SmallVector
<std::pair
<Instruction
*, ValueIsLoadPair
>,8> ReversePtrDepsToAdd
;
1049 for (SmallPtrSet
<ValueIsLoadPair
, 4>::iterator I
= Set
.begin(),
1050 E
= Set
.end(); I
!= E
; ++I
) {
1051 ValueIsLoadPair P
= *I
;
1052 assert(P
.getPointer() != RemInst
&&
1053 "Already removed NonLocalPointerDeps info for RemInst");
1055 NonLocalDepInfo
&NLPDI
= NonLocalPointerDeps
[P
].second
;
1057 // The cache is not valid for any specific block anymore.
1058 NonLocalPointerDeps
[P
].first
= BBSkipFirstBlockPair();
1060 // Update any entries for RemInst to use the instruction after it.
1061 for (NonLocalDepInfo::iterator DI
= NLPDI
.begin(), DE
= NLPDI
.end();
1063 if (DI
->second
.getInst() != RemInst
) continue;
1065 // Convert to a dirty entry for the subsequent instruction.
1066 DI
->second
= NewDirtyVal
;
1068 if (Instruction
*NewDirtyInst
= NewDirtyVal
.getInst())
1069 ReversePtrDepsToAdd
.push_back(std::make_pair(NewDirtyInst
, P
));
1072 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1073 // subsequent value may invalidate the sortedness.
1074 std::sort(NLPDI
.begin(), NLPDI
.end());
1077 ReverseNonLocalPtrDeps
.erase(ReversePtrDepIt
);
1079 while (!ReversePtrDepsToAdd
.empty()) {
1080 ReverseNonLocalPtrDeps
[ReversePtrDepsToAdd
.back().first
]
1081 .insert(ReversePtrDepsToAdd
.back().second
);
1082 ReversePtrDepsToAdd
.pop_back();
1087 assert(!NonLocalDeps
.count(RemInst
) && "RemInst got reinserted?");
1088 AA
->deleteValue(RemInst
);
1089 DEBUG(verifyRemoved(RemInst
));
1091 /// verifyRemoved - Verify that the specified instruction does not occur
1092 /// in our internal data structures.
1093 void MemoryDependenceAnalysis::verifyRemoved(Instruction
*D
) const {
1094 for (LocalDepMapType::const_iterator I
= LocalDeps
.begin(),
1095 E
= LocalDeps
.end(); I
!= E
; ++I
) {
1096 assert(I
->first
!= D
&& "Inst occurs in data structures");
1097 assert(I
->second
.getInst() != D
&&
1098 "Inst occurs in data structures");
1101 for (CachedNonLocalPointerInfo::const_iterator I
=NonLocalPointerDeps
.begin(),
1102 E
= NonLocalPointerDeps
.end(); I
!= E
; ++I
) {
1103 assert(I
->first
.getPointer() != D
&& "Inst occurs in NLPD map key");
1104 const NonLocalDepInfo
&Val
= I
->second
.second
;
1105 for (NonLocalDepInfo::const_iterator II
= Val
.begin(), E
= Val
.end();
1107 assert(II
->second
.getInst() != D
&& "Inst occurs as NLPD value");
1110 for (NonLocalDepMapType::const_iterator I
= NonLocalDeps
.begin(),
1111 E
= NonLocalDeps
.end(); I
!= E
; ++I
) {
1112 assert(I
->first
!= D
&& "Inst occurs in data structures");
1113 const PerInstNLInfo
&INLD
= I
->second
;
1114 for (NonLocalDepInfo::const_iterator II
= INLD
.first
.begin(),
1115 EE
= INLD
.first
.end(); II
!= EE
; ++II
)
1116 assert(II
->second
.getInst() != D
&& "Inst occurs in data structures");
1119 for (ReverseDepMapType::const_iterator I
= ReverseLocalDeps
.begin(),
1120 E
= ReverseLocalDeps
.end(); I
!= E
; ++I
) {
1121 assert(I
->first
!= D
&& "Inst occurs in data structures");
1122 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1123 EE
= I
->second
.end(); II
!= EE
; ++II
)
1124 assert(*II
!= D
&& "Inst occurs in data structures");
1127 for (ReverseDepMapType::const_iterator I
= ReverseNonLocalDeps
.begin(),
1128 E
= ReverseNonLocalDeps
.end();
1130 assert(I
->first
!= D
&& "Inst occurs in data structures");
1131 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1132 EE
= I
->second
.end(); II
!= EE
; ++II
)
1133 assert(*II
!= D
&& "Inst occurs in data structures");
1136 for (ReverseNonLocalPtrDepTy::const_iterator
1137 I
= ReverseNonLocalPtrDeps
.begin(),
1138 E
= ReverseNonLocalPtrDeps
.end(); I
!= E
; ++I
) {
1139 assert(I
->first
!= D
&& "Inst occurs in rev NLPD map");
1141 for (SmallPtrSet
<ValueIsLoadPair
, 4>::const_iterator II
= I
->second
.begin(),
1142 E
= I
->second
.end(); II
!= E
; ++II
)
1143 assert(*II
!= ValueIsLoadPair(D
, false) &&
1144 *II
!= ValueIsLoadPair(D
, true) &&
1145 "Inst occurs in ReverseNonLocalPtrDeps map");