this is failing on linux hosts, force a triple.
[llvm/avr.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blob2ac101e678d07c5a8b7f60d78196e99a0755529d
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Function.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/PredIteratorCache.h"
26 #include "llvm/Support/Debug.h"
27 using namespace llvm;
29 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
30 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
31 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33 STATISTIC(NumCacheNonLocalPtr,
34 "Number of fully cached non-local ptr responses");
35 STATISTIC(NumCacheDirtyNonLocalPtr,
36 "Number of cached, but dirty, non-local ptr responses");
37 STATISTIC(NumUncacheNonLocalPtr,
38 "Number of uncached non-local ptr responses");
39 STATISTIC(NumCacheCompleteNonLocalPtr,
40 "Number of block queries that were completely cached");
42 char MemoryDependenceAnalysis::ID = 0;
44 // Register this pass...
45 static RegisterPass<MemoryDependenceAnalysis> X("memdep",
46 "Memory Dependence Analysis", false, true);
48 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
49 : FunctionPass(&ID), PredCache(0) {
51 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
54 /// Clean up memory in between runs
55 void MemoryDependenceAnalysis::releaseMemory() {
56 LocalDeps.clear();
57 NonLocalDeps.clear();
58 NonLocalPointerDeps.clear();
59 ReverseLocalDeps.clear();
60 ReverseNonLocalDeps.clear();
61 ReverseNonLocalPtrDeps.clear();
62 PredCache->clear();
67 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
68 ///
69 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
70 AU.setPreservesAll();
71 AU.addRequiredTransitive<AliasAnalysis>();
74 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
75 AA = &getAnalysis<AliasAnalysis>();
76 if (PredCache == 0)
77 PredCache.reset(new PredIteratorCache());
78 return false;
81 /// RemoveFromReverseMap - This is a helper function that removes Val from
82 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
83 template <typename KeyTy>
84 static void RemoveFromReverseMap(DenseMap<Instruction*,
85 SmallPtrSet<KeyTy, 4> > &ReverseMap,
86 Instruction *Inst, KeyTy Val) {
87 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
88 InstIt = ReverseMap.find(Inst);
89 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
90 bool Found = InstIt->second.erase(Val);
91 assert(Found && "Invalid reverse map!"); Found=Found;
92 if (InstIt->second.empty())
93 ReverseMap.erase(InstIt);
97 /// getCallSiteDependencyFrom - Private helper for finding the local
98 /// dependencies of a call site.
99 MemDepResult MemoryDependenceAnalysis::
100 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
101 BasicBlock::iterator ScanIt, BasicBlock *BB) {
102 // Walk backwards through the block, looking for dependencies
103 while (ScanIt != BB->begin()) {
104 Instruction *Inst = --ScanIt;
106 // If this inst is a memory op, get the pointer it accessed
107 Value *Pointer = 0;
108 uint64_t PointerSize = 0;
109 if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
110 Pointer = S->getPointerOperand();
111 PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
112 } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
113 Pointer = V->getOperand(0);
114 PointerSize = AA->getTypeStoreSize(V->getType());
115 } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
116 Pointer = F->getPointerOperand();
118 // FreeInsts erase the entire structure
119 PointerSize = ~0ULL;
120 } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
121 // Debug intrinsics don't cause dependences.
122 if (isa<DbgInfoIntrinsic>(Inst)) continue;
123 CallSite InstCS = CallSite::get(Inst);
124 // If these two calls do not interfere, look past it.
125 switch (AA->getModRefInfo(CS, InstCS)) {
126 case AliasAnalysis::NoModRef:
127 // If the two calls don't interact (e.g. InstCS is readnone) keep
128 // scanning.
129 continue;
130 case AliasAnalysis::Ref:
131 // If the two calls read the same memory locations and CS is a readonly
132 // function, then we have two cases: 1) the calls may not interfere with
133 // each other at all. 2) the calls may produce the same value. In case
134 // #1 we want to ignore the values, in case #2, we want to return Inst
135 // as a Def dependence. This allows us to CSE in cases like:
136 // X = strlen(P);
137 // memchr(...);
138 // Y = strlen(P); // Y = X
139 if (isReadOnlyCall) {
140 if (CS.getCalledFunction() != 0 &&
141 CS.getCalledFunction() == InstCS.getCalledFunction())
142 return MemDepResult::getDef(Inst);
143 // Ignore unrelated read/read call dependences.
144 continue;
146 // FALL THROUGH
147 default:
148 return MemDepResult::getClobber(Inst);
150 } else {
151 // Non-memory instruction.
152 continue;
155 if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
156 return MemDepResult::getClobber(Inst);
159 // No dependence found. If this is the entry block of the function, it is a
160 // clobber, otherwise it is non-local.
161 if (BB != &BB->getParent()->getEntryBlock())
162 return MemDepResult::getNonLocal();
163 return MemDepResult::getClobber(ScanIt);
166 /// getPointerDependencyFrom - Return the instruction on which a memory
167 /// location depends. If isLoad is true, this routine ignore may-aliases with
168 /// read-only operations.
169 MemDepResult MemoryDependenceAnalysis::
170 getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
171 BasicBlock::iterator ScanIt, BasicBlock *BB) {
173 // Walk backwards through the basic block, looking for dependencies.
174 while (ScanIt != BB->begin()) {
175 Instruction *Inst = --ScanIt;
177 // Debug intrinsics don't cause dependences.
178 if (isa<DbgInfoIntrinsic>(Inst)) continue;
180 // Values depend on loads if the pointers are must aliased. This means that
181 // a load depends on another must aliased load from the same value.
182 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
183 Value *Pointer = LI->getPointerOperand();
184 uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
186 // If we found a pointer, check if it could be the same as our pointer.
187 AliasAnalysis::AliasResult R =
188 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
189 if (R == AliasAnalysis::NoAlias)
190 continue;
192 // May-alias loads don't depend on each other without a dependence.
193 if (isLoad && R == AliasAnalysis::MayAlias)
194 continue;
195 // Stores depend on may and must aliased loads, loads depend on must-alias
196 // loads.
197 return MemDepResult::getDef(Inst);
200 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
201 // If alias analysis can tell that this store is guaranteed to not modify
202 // the query pointer, ignore it. Use getModRefInfo to handle cases where
203 // the query pointer points to constant memory etc.
204 if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
205 continue;
207 // Ok, this store might clobber the query pointer. Check to see if it is
208 // a must alias: in this case, we want to return this as a def.
209 Value *Pointer = SI->getPointerOperand();
210 uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
212 // If we found a pointer, check if it could be the same as our pointer.
213 AliasAnalysis::AliasResult R =
214 AA->alias(Pointer, PointerSize, MemPtr, MemSize);
216 if (R == AliasAnalysis::NoAlias)
217 continue;
218 if (R == AliasAnalysis::MayAlias)
219 return MemDepResult::getClobber(Inst);
220 return MemDepResult::getDef(Inst);
223 // If this is an allocation, and if we know that the accessed pointer is to
224 // the allocation, return Def. This means that there is no dependence and
225 // the access can be optimized based on that. For example, a load could
226 // turn into undef.
227 if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
228 Value *AccessPtr = MemPtr->getUnderlyingObject();
230 if (AccessPtr == AI ||
231 AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
232 return MemDepResult::getDef(AI);
233 continue;
236 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
237 switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
238 case AliasAnalysis::NoModRef:
239 // If the call has no effect on the queried pointer, just ignore it.
240 continue;
241 case AliasAnalysis::Ref:
242 // If the call is known to never store to the pointer, and if this is a
243 // load query, we can safely ignore it (scan past it).
244 if (isLoad)
245 continue;
246 // FALL THROUGH.
247 default:
248 // Otherwise, there is a potential dependence. Return a clobber.
249 return MemDepResult::getClobber(Inst);
253 // No dependence found. If this is the entry block of the function, it is a
254 // clobber, otherwise it is non-local.
255 if (BB != &BB->getParent()->getEntryBlock())
256 return MemDepResult::getNonLocal();
257 return MemDepResult::getClobber(ScanIt);
260 /// getDependency - Return the instruction on which a memory operation
261 /// depends.
262 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
263 Instruction *ScanPos = QueryInst;
265 // Check for a cached result
266 MemDepResult &LocalCache = LocalDeps[QueryInst];
268 // If the cached entry is non-dirty, just return it. Note that this depends
269 // on MemDepResult's default constructing to 'dirty'.
270 if (!LocalCache.isDirty())
271 return LocalCache;
273 // Otherwise, if we have a dirty entry, we know we can start the scan at that
274 // instruction, which may save us some work.
275 if (Instruction *Inst = LocalCache.getInst()) {
276 ScanPos = Inst;
278 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
281 BasicBlock *QueryParent = QueryInst->getParent();
283 Value *MemPtr = 0;
284 uint64_t MemSize = 0;
286 // Do the scan.
287 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
288 // No dependence found. If this is the entry block of the function, it is a
289 // clobber, otherwise it is non-local.
290 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
291 LocalCache = MemDepResult::getNonLocal();
292 else
293 LocalCache = MemDepResult::getClobber(QueryInst);
294 } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
295 // If this is a volatile store, don't mess around with it. Just return the
296 // previous instruction as a clobber.
297 if (SI->isVolatile())
298 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
299 else {
300 MemPtr = SI->getPointerOperand();
301 MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
303 } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
304 // If this is a volatile load, don't mess around with it. Just return the
305 // previous instruction as a clobber.
306 if (LI->isVolatile())
307 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
308 else {
309 MemPtr = LI->getPointerOperand();
310 MemSize = AA->getTypeStoreSize(LI->getType());
312 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
313 CallSite QueryCS = CallSite::get(QueryInst);
314 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
315 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
316 QueryParent);
317 } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
318 MemPtr = FI->getPointerOperand();
319 // FreeInsts erase the entire structure, not just a field.
320 MemSize = ~0UL;
321 } else {
322 // Non-memory instruction.
323 LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
326 // If we need to do a pointer scan, make it happen.
327 if (MemPtr)
328 LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
329 isa<LoadInst>(QueryInst),
330 ScanPos, QueryParent);
332 // Remember the result!
333 if (Instruction *I = LocalCache.getInst())
334 ReverseLocalDeps[I].insert(QueryInst);
336 return LocalCache;
339 #ifndef NDEBUG
340 /// AssertSorted - This method is used when -debug is specified to verify that
341 /// cache arrays are properly kept sorted.
342 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
343 int Count = -1) {
344 if (Count == -1) Count = Cache.size();
345 if (Count == 0) return;
347 for (unsigned i = 1; i != unsigned(Count); ++i)
348 assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
350 #endif
352 /// getNonLocalCallDependency - Perform a full dependency query for the
353 /// specified call, returning the set of blocks that the value is
354 /// potentially live across. The returned set of results will include a
355 /// "NonLocal" result for all blocks where the value is live across.
357 /// This method assumes the instruction returns a "NonLocal" dependency
358 /// within its own block.
360 /// This returns a reference to an internal data structure that may be
361 /// invalidated on the next non-local query or when an instruction is
362 /// removed. Clients must copy this data if they want it around longer than
363 /// that.
364 const MemoryDependenceAnalysis::NonLocalDepInfo &
365 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
366 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
367 "getNonLocalCallDependency should only be used on calls with non-local deps!");
368 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
369 NonLocalDepInfo &Cache = CacheP.first;
371 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
372 /// the cached case, this can happen due to instructions being deleted etc. In
373 /// the uncached case, this starts out as the set of predecessors we care
374 /// about.
375 SmallVector<BasicBlock*, 32> DirtyBlocks;
377 if (!Cache.empty()) {
378 // Okay, we have a cache entry. If we know it is not dirty, just return it
379 // with no computation.
380 if (!CacheP.second) {
381 NumCacheNonLocal++;
382 return Cache;
385 // If we already have a partially computed set of results, scan them to
386 // determine what is dirty, seeding our initial DirtyBlocks worklist.
387 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
388 I != E; ++I)
389 if (I->second.isDirty())
390 DirtyBlocks.push_back(I->first);
392 // Sort the cache so that we can do fast binary search lookups below.
393 std::sort(Cache.begin(), Cache.end());
395 ++NumCacheDirtyNonLocal;
396 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
397 // << Cache.size() << " cached: " << *QueryInst;
398 } else {
399 // Seed DirtyBlocks with each of the preds of QueryInst's block.
400 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
401 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
402 DirtyBlocks.push_back(*PI);
403 NumUncacheNonLocal++;
406 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
407 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
409 SmallPtrSet<BasicBlock*, 64> Visited;
411 unsigned NumSortedEntries = Cache.size();
412 DEBUG(AssertSorted(Cache));
414 // Iterate while we still have blocks to update.
415 while (!DirtyBlocks.empty()) {
416 BasicBlock *DirtyBB = DirtyBlocks.back();
417 DirtyBlocks.pop_back();
419 // Already processed this block?
420 if (!Visited.insert(DirtyBB))
421 continue;
423 // Do a binary search to see if we already have an entry for this block in
424 // the cache set. If so, find it.
425 DEBUG(AssertSorted(Cache, NumSortedEntries));
426 NonLocalDepInfo::iterator Entry =
427 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
428 std::make_pair(DirtyBB, MemDepResult()));
429 if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
430 --Entry;
432 MemDepResult *ExistingResult = 0;
433 if (Entry != Cache.begin()+NumSortedEntries &&
434 Entry->first == DirtyBB) {
435 // If we already have an entry, and if it isn't already dirty, the block
436 // is done.
437 if (!Entry->second.isDirty())
438 continue;
440 // Otherwise, remember this slot so we can update the value.
441 ExistingResult = &Entry->second;
444 // If the dirty entry has a pointer, start scanning from it so we don't have
445 // to rescan the entire block.
446 BasicBlock::iterator ScanPos = DirtyBB->end();
447 if (ExistingResult) {
448 if (Instruction *Inst = ExistingResult->getInst()) {
449 ScanPos = Inst;
450 // We're removing QueryInst's use of Inst.
451 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
452 QueryCS.getInstruction());
456 // Find out if this block has a local dependency for QueryInst.
457 MemDepResult Dep;
459 if (ScanPos != DirtyBB->begin()) {
460 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
461 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
462 // No dependence found. If this is the entry block of the function, it is
463 // a clobber, otherwise it is non-local.
464 Dep = MemDepResult::getNonLocal();
465 } else {
466 Dep = MemDepResult::getClobber(ScanPos);
469 // If we had a dirty entry for the block, update it. Otherwise, just add
470 // a new entry.
471 if (ExistingResult)
472 *ExistingResult = Dep;
473 else
474 Cache.push_back(std::make_pair(DirtyBB, Dep));
476 // If the block has a dependency (i.e. it isn't completely transparent to
477 // the value), remember the association!
478 if (!Dep.isNonLocal()) {
479 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
480 // update this when we remove instructions.
481 if (Instruction *Inst = Dep.getInst())
482 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
483 } else {
485 // If the block *is* completely transparent to the load, we need to check
486 // the predecessors of this block. Add them to our worklist.
487 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
488 DirtyBlocks.push_back(*PI);
492 return Cache;
495 /// getNonLocalPointerDependency - Perform a full dependency query for an
496 /// access to the specified (non-volatile) memory location, returning the
497 /// set of instructions that either define or clobber the value.
499 /// This method assumes the pointer has a "NonLocal" dependency within its
500 /// own block.
502 void MemoryDependenceAnalysis::
503 getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
504 SmallVectorImpl<NonLocalDepEntry> &Result) {
505 assert(isa<PointerType>(Pointer->getType()) &&
506 "Can't get pointer deps of a non-pointer!");
507 Result.clear();
509 // We know that the pointer value is live into FromBB find the def/clobbers
510 // from presecessors.
511 const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
512 uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
514 // This is the set of blocks we've inspected, and the pointer we consider in
515 // each block. Because of critical edges, we currently bail out if querying
516 // a block with multiple different pointers. This can happen during PHI
517 // translation.
518 DenseMap<BasicBlock*, Value*> Visited;
519 if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
520 Result, Visited, true))
521 return;
522 Result.clear();
523 Result.push_back(std::make_pair(FromBB,
524 MemDepResult::getClobber(FromBB->begin())));
527 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
528 /// Pointer/PointeeSize using either cached information in Cache or by doing a
529 /// lookup (which may use dirty cache info if available). If we do a lookup,
530 /// add the result to the cache.
531 MemDepResult MemoryDependenceAnalysis::
532 GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
533 bool isLoad, BasicBlock *BB,
534 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
536 // Do a binary search to see if we already have an entry for this block in
537 // the cache set. If so, find it.
538 NonLocalDepInfo::iterator Entry =
539 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
540 std::make_pair(BB, MemDepResult()));
541 if (Entry != Cache->begin() && prior(Entry)->first == BB)
542 --Entry;
544 MemDepResult *ExistingResult = 0;
545 if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
546 ExistingResult = &Entry->second;
548 // If we have a cached entry, and it is non-dirty, use it as the value for
549 // this dependency.
550 if (ExistingResult && !ExistingResult->isDirty()) {
551 ++NumCacheNonLocalPtr;
552 return *ExistingResult;
555 // Otherwise, we have to scan for the value. If we have a dirty cache
556 // entry, start scanning from its position, otherwise we scan from the end
557 // of the block.
558 BasicBlock::iterator ScanPos = BB->end();
559 if (ExistingResult && ExistingResult->getInst()) {
560 assert(ExistingResult->getInst()->getParent() == BB &&
561 "Instruction invalidated?");
562 ++NumCacheDirtyNonLocalPtr;
563 ScanPos = ExistingResult->getInst();
565 // Eliminating the dirty entry from 'Cache', so update the reverse info.
566 ValueIsLoadPair CacheKey(Pointer, isLoad);
567 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
568 } else {
569 ++NumUncacheNonLocalPtr;
572 // Scan the block for the dependency.
573 MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
574 ScanPos, BB);
576 // If we had a dirty entry for the block, update it. Otherwise, just add
577 // a new entry.
578 if (ExistingResult)
579 *ExistingResult = Dep;
580 else
581 Cache->push_back(std::make_pair(BB, Dep));
583 // If the block has a dependency (i.e. it isn't completely transparent to
584 // the value), remember the reverse association because we just added it
585 // to Cache!
586 if (Dep.isNonLocal())
587 return Dep;
589 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
590 // update MemDep when we remove instructions.
591 Instruction *Inst = Dep.getInst();
592 assert(Inst && "Didn't depend on anything?");
593 ValueIsLoadPair CacheKey(Pointer, isLoad);
594 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
595 return Dep;
598 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
599 /// number of elements in the array that are already properly ordered. This is
600 /// optimized for the case when only a few entries are added.
601 static void
602 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
603 unsigned NumSortedEntries) {
604 switch (Cache.size() - NumSortedEntries) {
605 case 0:
606 // done, no new entries.
607 break;
608 case 2: {
609 // Two new entries, insert the last one into place.
610 MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
611 Cache.pop_back();
612 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
613 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
614 Cache.insert(Entry, Val);
615 // FALL THROUGH.
617 case 1:
618 // One new entry, Just insert the new value at the appropriate position.
619 if (Cache.size() != 1) {
620 MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
621 Cache.pop_back();
622 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
623 std::upper_bound(Cache.begin(), Cache.end(), Val);
624 Cache.insert(Entry, Val);
626 break;
627 default:
628 // Added many values, do a full scale sort.
629 std::sort(Cache.begin(), Cache.end());
630 break;
635 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
636 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
637 /// results to the results vector and keep track of which blocks are visited in
638 /// 'Visited'.
640 /// This has special behavior for the first block queries (when SkipFirstBlock
641 /// is true). In this special case, it ignores the contents of the specified
642 /// block and starts returning dependence info for its predecessors.
644 /// This function returns false on success, or true to indicate that it could
645 /// not compute dependence information for some reason. This should be treated
646 /// as a clobber dependence on the first instruction in the predecessor block.
647 bool MemoryDependenceAnalysis::
648 getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
649 bool isLoad, BasicBlock *StartBB,
650 SmallVectorImpl<NonLocalDepEntry> &Result,
651 DenseMap<BasicBlock*, Value*> &Visited,
652 bool SkipFirstBlock) {
654 // Look up the cached info for Pointer.
655 ValueIsLoadPair CacheKey(Pointer, isLoad);
657 std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
658 &NonLocalPointerDeps[CacheKey];
659 NonLocalDepInfo *Cache = &CacheInfo->second;
661 // If we have valid cached information for exactly the block we are
662 // investigating, just return it with no recomputation.
663 if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
664 // We have a fully cached result for this query then we can just return the
665 // cached results and populate the visited set. However, we have to verify
666 // that we don't already have conflicting results for these blocks. Check
667 // to ensure that if a block in the results set is in the visited set that
668 // it was for the same pointer query.
669 if (!Visited.empty()) {
670 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
671 I != E; ++I) {
672 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
673 if (VI == Visited.end() || VI->second == Pointer) continue;
675 // We have a pointer mismatch in a block. Just return clobber, saying
676 // that something was clobbered in this result. We could also do a
677 // non-fully cached query, but there is little point in doing this.
678 return true;
682 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
683 I != E; ++I) {
684 Visited.insert(std::make_pair(I->first, Pointer));
685 if (!I->second.isNonLocal())
686 Result.push_back(*I);
688 ++NumCacheCompleteNonLocalPtr;
689 return false;
692 // Otherwise, either this is a new block, a block with an invalid cache
693 // pointer or one that we're about to invalidate by putting more info into it
694 // than its valid cache info. If empty, the result will be valid cache info,
695 // otherwise it isn't.
696 if (Cache->empty())
697 CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
698 else
699 CacheInfo->first = BBSkipFirstBlockPair();
701 SmallVector<BasicBlock*, 32> Worklist;
702 Worklist.push_back(StartBB);
704 // Keep track of the entries that we know are sorted. Previously cached
705 // entries will all be sorted. The entries we add we only sort on demand (we
706 // don't insert every element into its sorted position). We know that we
707 // won't get any reuse from currently inserted values, because we don't
708 // revisit blocks after we insert info for them.
709 unsigned NumSortedEntries = Cache->size();
710 DEBUG(AssertSorted(*Cache));
712 while (!Worklist.empty()) {
713 BasicBlock *BB = Worklist.pop_back_val();
715 // Skip the first block if we have it.
716 if (!SkipFirstBlock) {
717 // Analyze the dependency of *Pointer in FromBB. See if we already have
718 // been here.
719 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
721 // Get the dependency info for Pointer in BB. If we have cached
722 // information, we will use it, otherwise we compute it.
723 DEBUG(AssertSorted(*Cache, NumSortedEntries));
724 MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
725 BB, Cache, NumSortedEntries);
727 // If we got a Def or Clobber, add this to the list of results.
728 if (!Dep.isNonLocal()) {
729 Result.push_back(NonLocalDepEntry(BB, Dep));
730 continue;
734 // If 'Pointer' is an instruction defined in this block, then we need to do
735 // phi translation to change it into a value live in the predecessor block.
736 // If phi translation fails, then we can't continue dependence analysis.
737 Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
738 bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
740 // If no PHI translation is needed, just add all the predecessors of this
741 // block to scan them as well.
742 if (!NeedsPHITranslation) {
743 SkipFirstBlock = false;
744 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
745 // Verify that we haven't looked at this block yet.
746 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
747 InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
748 if (InsertRes.second) {
749 // First time we've looked at *PI.
750 Worklist.push_back(*PI);
751 continue;
754 // If we have seen this block before, but it was with a different
755 // pointer then we have a phi translation failure and we have to treat
756 // this as a clobber.
757 if (InsertRes.first->second != Pointer)
758 goto PredTranslationFailure;
760 continue;
763 // If we do need to do phi translation, then there are a bunch of different
764 // cases, because we have to find a Value* live in the predecessor block. We
765 // know that PtrInst is defined in this block at least.
767 // We may have added values to the cache list before this PHI translation.
768 // If so, we haven't done anything to ensure that the cache remains sorted.
769 // Sort it now (if needed) so that recursive invocations of
770 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
771 // value will only see properly sorted cache arrays.
772 if (Cache && NumSortedEntries != Cache->size()) {
773 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
774 NumSortedEntries = Cache->size();
777 // If this is directly a PHI node, just use the incoming values for each
778 // pred as the phi translated version.
779 if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
780 Cache = 0;
782 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
783 BasicBlock *Pred = *PI;
784 Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
786 // Check to see if we have already visited this pred block with another
787 // pointer. If so, we can't do this lookup. This failure can occur
788 // with PHI translation when a critical edge exists and the PHI node in
789 // the successor translates to a pointer value different than the
790 // pointer the block was first analyzed with.
791 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
792 InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
794 if (!InsertRes.second) {
795 // If the predecessor was visited with PredPtr, then we already did
796 // the analysis and can ignore it.
797 if (InsertRes.first->second == PredPtr)
798 continue;
800 // Otherwise, the block was previously analyzed with a different
801 // pointer. We can't represent the result of this case, so we just
802 // treat this as a phi translation failure.
803 goto PredTranslationFailure;
806 // FIXME: it is entirely possible that PHI translating will end up with
807 // the same value. Consider PHI translating something like:
808 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
809 // to recurse here, pedantically speaking.
811 // If we have a problem phi translating, fall through to the code below
812 // to handle the failure condition.
813 if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
814 Result, Visited))
815 goto PredTranslationFailure;
818 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
819 CacheInfo = &NonLocalPointerDeps[CacheKey];
820 Cache = &CacheInfo->second;
821 NumSortedEntries = Cache->size();
823 // Since we did phi translation, the "Cache" set won't contain all of the
824 // results for the query. This is ok (we can still use it to accelerate
825 // specific block queries) but we can't do the fastpath "return all
826 // results from the set" Clear out the indicator for this.
827 CacheInfo->first = BBSkipFirstBlockPair();
828 SkipFirstBlock = false;
829 continue;
832 // TODO: BITCAST, GEP.
834 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
835 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
836 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
837 PredTranslationFailure:
839 if (Cache == 0) {
840 // Refresh the CacheInfo/Cache pointer if it got invalidated.
841 CacheInfo = &NonLocalPointerDeps[CacheKey];
842 Cache = &CacheInfo->second;
843 NumSortedEntries = Cache->size();
846 // Since we did phi translation, the "Cache" set won't contain all of the
847 // results for the query. This is ok (we can still use it to accelerate
848 // specific block queries) but we can't do the fastpath "return all
849 // results from the set" Clear out the indicator for this.
850 CacheInfo->first = BBSkipFirstBlockPair();
852 // If *nothing* works, mark the pointer as being clobbered by the first
853 // instruction in this block.
855 // If this is the magic first block, return this as a clobber of the whole
856 // incoming value. Since we can't phi translate to one of the predecessors,
857 // we have to bail out.
858 if (SkipFirstBlock)
859 return true;
861 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
862 assert(I != Cache->rend() && "Didn't find current block??");
863 if (I->first != BB)
864 continue;
866 assert(I->second.isNonLocal() &&
867 "Should only be here with transparent block");
868 I->second = MemDepResult::getClobber(BB->begin());
869 ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
870 Result.push_back(*I);
871 break;
875 // Okay, we're done now. If we added new values to the cache, re-sort it.
876 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
877 DEBUG(AssertSorted(*Cache));
878 return false;
881 /// RemoveCachedNonLocalPointerDependencies - If P exists in
882 /// CachedNonLocalPointerInfo, remove it.
883 void MemoryDependenceAnalysis::
884 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
885 CachedNonLocalPointerInfo::iterator It =
886 NonLocalPointerDeps.find(P);
887 if (It == NonLocalPointerDeps.end()) return;
889 // Remove all of the entries in the BB->val map. This involves removing
890 // instructions from the reverse map.
891 NonLocalDepInfo &PInfo = It->second.second;
893 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
894 Instruction *Target = PInfo[i].second.getInst();
895 if (Target == 0) continue; // Ignore non-local dep results.
896 assert(Target->getParent() == PInfo[i].first);
898 // Eliminating the dirty entry from 'Cache', so update the reverse info.
899 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
902 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
903 NonLocalPointerDeps.erase(It);
907 /// invalidateCachedPointerInfo - This method is used to invalidate cached
908 /// information about the specified pointer, because it may be too
909 /// conservative in memdep. This is an optional call that can be used when
910 /// the client detects an equivalence between the pointer and some other
911 /// value and replaces the other value with ptr. This can make Ptr available
912 /// in more places that cached info does not necessarily keep.
913 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
914 // If Ptr isn't really a pointer, just ignore it.
915 if (!isa<PointerType>(Ptr->getType())) return;
916 // Flush store info for the pointer.
917 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
918 // Flush load info for the pointer.
919 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
922 /// removeInstruction - Remove an instruction from the dependence analysis,
923 /// updating the dependence of instructions that previously depended on it.
924 /// This method attempts to keep the cache coherent using the reverse map.
925 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
926 // Walk through the Non-local dependencies, removing this one as the value
927 // for any cached queries.
928 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
929 if (NLDI != NonLocalDeps.end()) {
930 NonLocalDepInfo &BlockMap = NLDI->second.first;
931 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
932 DI != DE; ++DI)
933 if (Instruction *Inst = DI->second.getInst())
934 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
935 NonLocalDeps.erase(NLDI);
938 // If we have a cached local dependence query for this instruction, remove it.
940 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
941 if (LocalDepEntry != LocalDeps.end()) {
942 // Remove us from DepInst's reverse set now that the local dep info is gone.
943 if (Instruction *Inst = LocalDepEntry->second.getInst())
944 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
946 // Remove this local dependency info.
947 LocalDeps.erase(LocalDepEntry);
950 // If we have any cached pointer dependencies on this instruction, remove
951 // them. If the instruction has non-pointer type, then it can't be a pointer
952 // base.
954 // Remove it from both the load info and the store info. The instruction
955 // can't be in either of these maps if it is non-pointer.
956 if (isa<PointerType>(RemInst->getType())) {
957 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
958 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
961 // Loop over all of the things that depend on the instruction we're removing.
963 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
965 // If we find RemInst as a clobber or Def in any of the maps for other values,
966 // we need to replace its entry with a dirty version of the instruction after
967 // it. If RemInst is a terminator, we use a null dirty value.
969 // Using a dirty version of the instruction after RemInst saves having to scan
970 // the entire block to get to this point.
971 MemDepResult NewDirtyVal;
972 if (!RemInst->isTerminator())
973 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
975 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
976 if (ReverseDepIt != ReverseLocalDeps.end()) {
977 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
978 // RemInst can't be the terminator if it has local stuff depending on it.
979 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
980 "Nothing can locally depend on a terminator");
982 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
983 E = ReverseDeps.end(); I != E; ++I) {
984 Instruction *InstDependingOnRemInst = *I;
985 assert(InstDependingOnRemInst != RemInst &&
986 "Already removed our local dep info");
988 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
990 // Make sure to remember that new things depend on NewDepInst.
991 assert(NewDirtyVal.getInst() && "There is no way something else can have "
992 "a local dep on this if it is a terminator!");
993 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
994 InstDependingOnRemInst));
997 ReverseLocalDeps.erase(ReverseDepIt);
999 // Add new reverse deps after scanning the set, to avoid invalidating the
1000 // 'ReverseDeps' reference.
1001 while (!ReverseDepsToAdd.empty()) {
1002 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1003 .insert(ReverseDepsToAdd.back().second);
1004 ReverseDepsToAdd.pop_back();
1008 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1009 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1010 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1011 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1012 I != E; ++I) {
1013 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1015 PerInstNLInfo &INLD = NonLocalDeps[*I];
1016 // The information is now dirty!
1017 INLD.second = true;
1019 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1020 DE = INLD.first.end(); DI != DE; ++DI) {
1021 if (DI->second.getInst() != RemInst) continue;
1023 // Convert to a dirty entry for the subsequent instruction.
1024 DI->second = NewDirtyVal;
1026 if (Instruction *NextI = NewDirtyVal.getInst())
1027 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1031 ReverseNonLocalDeps.erase(ReverseDepIt);
1033 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1034 while (!ReverseDepsToAdd.empty()) {
1035 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1036 .insert(ReverseDepsToAdd.back().second);
1037 ReverseDepsToAdd.pop_back();
1041 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1042 // value in the NonLocalPointerDeps info.
1043 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1044 ReverseNonLocalPtrDeps.find(RemInst);
1045 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1046 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1047 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1049 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1050 E = Set.end(); I != E; ++I) {
1051 ValueIsLoadPair P = *I;
1052 assert(P.getPointer() != RemInst &&
1053 "Already removed NonLocalPointerDeps info for RemInst");
1055 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1057 // The cache is not valid for any specific block anymore.
1058 NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1060 // Update any entries for RemInst to use the instruction after it.
1061 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1062 DI != DE; ++DI) {
1063 if (DI->second.getInst() != RemInst) continue;
1065 // Convert to a dirty entry for the subsequent instruction.
1066 DI->second = NewDirtyVal;
1068 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1069 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1072 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1073 // subsequent value may invalidate the sortedness.
1074 std::sort(NLPDI.begin(), NLPDI.end());
1077 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1079 while (!ReversePtrDepsToAdd.empty()) {
1080 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1081 .insert(ReversePtrDepsToAdd.back().second);
1082 ReversePtrDepsToAdd.pop_back();
1087 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1088 AA->deleteValue(RemInst);
1089 DEBUG(verifyRemoved(RemInst));
1091 /// verifyRemoved - Verify that the specified instruction does not occur
1092 /// in our internal data structures.
1093 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1094 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1095 E = LocalDeps.end(); I != E; ++I) {
1096 assert(I->first != D && "Inst occurs in data structures");
1097 assert(I->second.getInst() != D &&
1098 "Inst occurs in data structures");
1101 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1102 E = NonLocalPointerDeps.end(); I != E; ++I) {
1103 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1104 const NonLocalDepInfo &Val = I->second.second;
1105 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1106 II != E; ++II)
1107 assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1110 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1111 E = NonLocalDeps.end(); I != E; ++I) {
1112 assert(I->first != D && "Inst occurs in data structures");
1113 const PerInstNLInfo &INLD = I->second;
1114 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1115 EE = INLD.first.end(); II != EE; ++II)
1116 assert(II->second.getInst() != D && "Inst occurs in data structures");
1119 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1120 E = ReverseLocalDeps.end(); I != E; ++I) {
1121 assert(I->first != D && "Inst occurs in data structures");
1122 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1123 EE = I->second.end(); II != EE; ++II)
1124 assert(*II != D && "Inst occurs in data structures");
1127 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1128 E = ReverseNonLocalDeps.end();
1129 I != E; ++I) {
1130 assert(I->first != D && "Inst occurs in data structures");
1131 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1132 EE = I->second.end(); II != EE; ++II)
1133 assert(*II != D && "Inst occurs in data structures");
1136 for (ReverseNonLocalPtrDepTy::const_iterator
1137 I = ReverseNonLocalPtrDeps.begin(),
1138 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1139 assert(I->first != D && "Inst occurs in rev NLPD map");
1141 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1142 E = I->second.end(); II != E; ++II)
1143 assert(*II != ValueIsLoadPair(D, false) &&
1144 *II != ValueIsLoadPair(D, true) &&
1145 "Inst occurs in ReverseNonLocalPtrDeps map");