1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #define DEBUG_TYPE "scalar-evolution"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/Constants.h"
64 #include "llvm/DerivedTypes.h"
65 #include "llvm/GlobalVariable.h"
66 #include "llvm/GlobalAlias.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/LLVMContext.h"
69 #include "llvm/Operator.h"
70 #include "llvm/Analysis/ConstantFolding.h"
71 #include "llvm/Analysis/Dominators.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/ValueTracking.h"
74 #include "llvm/Assembly/Writer.h"
75 #include "llvm/Target/TargetData.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/ConstantRange.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/GetElementPtrTypeIterator.h"
81 #include "llvm/Support/InstIterator.h"
82 #include "llvm/Support/MathExtras.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/ADT/Statistic.h"
85 #include "llvm/ADT/STLExtras.h"
86 #include "llvm/ADT/SmallPtrSet.h"
90 STATISTIC(NumArrayLenItCounts
,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed
,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed
,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed
,
97 "Number of loops with trip counts computed by force");
99 static cl::opt
<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant "
106 static RegisterPass
<ScalarEvolution
>
107 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108 char ScalarEvolution::ID
= 0;
110 //===----------------------------------------------------------------------===//
111 // SCEV class definitions
112 //===----------------------------------------------------------------------===//
114 //===----------------------------------------------------------------------===//
115 // Implementation of the SCEV class.
120 void SCEV::dump() const {
125 bool SCEV::isZero() const {
126 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
127 return SC
->getValue()->isZero();
131 bool SCEV::isOne() const {
132 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
133 return SC
->getValue()->isOne();
137 bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
139 return SC
->getValue()->isAllOnesValue();
143 SCEVCouldNotCompute::SCEVCouldNotCompute() :
144 SCEV(FoldingSetNodeID(), scCouldNotCompute
) {}
146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop
*L
) const {
147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
151 const Type
*SCEVCouldNotCompute::getType() const {
152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop
*L
) const {
157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
161 bool SCEVCouldNotCompute::hasOperand(const SCEV
*) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
166 void SCEVCouldNotCompute::print(raw_ostream
&OS
) const {
167 OS
<< "***COULDNOTCOMPUTE***";
170 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
171 return S
->getSCEVType() == scCouldNotCompute
;
174 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
176 ID
.AddInteger(scConstant
);
179 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
180 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVConstant
>();
181 new (S
) SCEVConstant(ID
, V
);
182 UniqueSCEVs
.InsertNode(S
, IP
);
186 const SCEV
*ScalarEvolution::getConstant(const APInt
& Val
) {
187 return getConstant(ConstantInt::get(getContext(), Val
));
191 ScalarEvolution::getConstant(const Type
*Ty
, uint64_t V
, bool isSigned
) {
193 ConstantInt::get(cast
<IntegerType
>(Ty
), V
, isSigned
));
196 const Type
*SCEVConstant::getType() const { return V
->getType(); }
198 void SCEVConstant::print(raw_ostream
&OS
) const {
199 WriteAsOperand(OS
, V
, false);
202 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID
&ID
,
203 unsigned SCEVTy
, const SCEV
*op
, const Type
*ty
)
204 : SCEV(ID
, SCEVTy
), Op(op
), Ty(ty
) {}
206 bool SCEVCastExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
207 return Op
->dominates(BB
, DT
);
210 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID
&ID
,
211 const SCEV
*op
, const Type
*ty
)
212 : SCEVCastExpr(ID
, scTruncate
, op
, ty
) {
213 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
214 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
215 "Cannot truncate non-integer value!");
218 void SCEVTruncateExpr::print(raw_ostream
&OS
) const {
219 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
222 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID
&ID
,
223 const SCEV
*op
, const Type
*ty
)
224 : SCEVCastExpr(ID
, scZeroExtend
, op
, ty
) {
225 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
226 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
227 "Cannot zero extend non-integer value!");
230 void SCEVZeroExtendExpr::print(raw_ostream
&OS
) const {
231 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
234 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID
&ID
,
235 const SCEV
*op
, const Type
*ty
)
236 : SCEVCastExpr(ID
, scSignExtend
, op
, ty
) {
237 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
238 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
239 "Cannot sign extend non-integer value!");
242 void SCEVSignExtendExpr::print(raw_ostream
&OS
) const {
243 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
246 void SCEVCommutativeExpr::print(raw_ostream
&OS
) const {
247 assert(Operands
.size() > 1 && "This plus expr shouldn't exist!");
248 const char *OpStr
= getOperationStr();
249 OS
<< "(" << *Operands
[0];
250 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
251 OS
<< OpStr
<< *Operands
[i
];
255 bool SCEVNAryExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
256 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
257 if (!getOperand(i
)->dominates(BB
, DT
))
263 bool SCEVUDivExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
264 return LHS
->dominates(BB
, DT
) && RHS
->dominates(BB
, DT
);
267 void SCEVUDivExpr::print(raw_ostream
&OS
) const {
268 OS
<< "(" << *LHS
<< " /u " << *RHS
<< ")";
271 const Type
*SCEVUDivExpr::getType() const {
272 // In most cases the types of LHS and RHS will be the same, but in some
273 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
274 // depend on the type for correctness, but handling types carefully can
275 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
276 // a pointer type than the RHS, so use the RHS' type here.
277 return RHS
->getType();
280 bool SCEVAddRecExpr::isLoopInvariant(const Loop
*QueryLoop
) const {
281 // Add recurrences are never invariant in the function-body (null loop).
285 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
286 if (QueryLoop
->contains(L
->getHeader()))
289 // This recurrence is variant w.r.t. QueryLoop if any of its operands
291 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
292 if (!getOperand(i
)->isLoopInvariant(QueryLoop
))
295 // Otherwise it's loop-invariant.
299 void SCEVAddRecExpr::print(raw_ostream
&OS
) const {
300 OS
<< "{" << *Operands
[0];
301 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
302 OS
<< ",+," << *Operands
[i
];
303 OS
<< "}<" << L
->getHeader()->getName() + ">";
306 void SCEVFieldOffsetExpr::print(raw_ostream
&OS
) const {
307 // LLVM struct fields don't have names, so just print the field number.
308 OS
<< "offsetof(" << *STy
<< ", " << FieldNo
<< ")";
311 void SCEVAllocSizeExpr::print(raw_ostream
&OS
) const {
312 OS
<< "sizeof(" << *AllocTy
<< ")";
315 bool SCEVUnknown::isLoopInvariant(const Loop
*L
) const {
316 // All non-instruction values are loop invariant. All instructions are loop
317 // invariant if they are not contained in the specified loop.
318 // Instructions are never considered invariant in the function body
319 // (null loop) because they are defined within the "loop".
320 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
321 return L
&& !L
->contains(I
->getParent());
325 bool SCEVUnknown::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
326 if (Instruction
*I
= dyn_cast
<Instruction
>(getValue()))
327 return DT
->dominates(I
->getParent(), BB
);
331 const Type
*SCEVUnknown::getType() const {
335 void SCEVUnknown::print(raw_ostream
&OS
) const {
336 WriteAsOperand(OS
, V
, false);
339 //===----------------------------------------------------------------------===//
341 //===----------------------------------------------------------------------===//
343 static bool CompareTypes(const Type
*A
, const Type
*B
) {
344 if (A
->getTypeID() != B
->getTypeID())
345 return A
->getTypeID() < B
->getTypeID();
346 if (const IntegerType
*AI
= dyn_cast
<IntegerType
>(A
)) {
347 const IntegerType
*BI
= cast
<IntegerType
>(B
);
348 return AI
->getBitWidth() < BI
->getBitWidth();
350 if (const PointerType
*AI
= dyn_cast
<PointerType
>(A
)) {
351 const PointerType
*BI
= cast
<PointerType
>(B
);
352 return CompareTypes(AI
->getElementType(), BI
->getElementType());
354 if (const ArrayType
*AI
= dyn_cast
<ArrayType
>(A
)) {
355 const ArrayType
*BI
= cast
<ArrayType
>(B
);
356 if (AI
->getNumElements() != BI
->getNumElements())
357 return AI
->getNumElements() < BI
->getNumElements();
358 return CompareTypes(AI
->getElementType(), BI
->getElementType());
360 if (const VectorType
*AI
= dyn_cast
<VectorType
>(A
)) {
361 const VectorType
*BI
= cast
<VectorType
>(B
);
362 if (AI
->getNumElements() != BI
->getNumElements())
363 return AI
->getNumElements() < BI
->getNumElements();
364 return CompareTypes(AI
->getElementType(), BI
->getElementType());
366 if (const StructType
*AI
= dyn_cast
<StructType
>(A
)) {
367 const StructType
*BI
= cast
<StructType
>(B
);
368 if (AI
->getNumElements() != BI
->getNumElements())
369 return AI
->getNumElements() < BI
->getNumElements();
370 for (unsigned i
= 0, e
= AI
->getNumElements(); i
!= e
; ++i
)
371 if (CompareTypes(AI
->getElementType(i
), BI
->getElementType(i
)) ||
372 CompareTypes(BI
->getElementType(i
), AI
->getElementType(i
)))
373 return CompareTypes(AI
->getElementType(i
), BI
->getElementType(i
));
379 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
380 /// than the complexity of the RHS. This comparator is used to canonicalize
382 class VISIBILITY_HIDDEN SCEVComplexityCompare
{
385 explicit SCEVComplexityCompare(LoopInfo
*li
) : LI(li
) {}
387 bool operator()(const SCEV
*LHS
, const SCEV
*RHS
) const {
388 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
392 // Primarily, sort the SCEVs by their getSCEVType().
393 if (LHS
->getSCEVType() != RHS
->getSCEVType())
394 return LHS
->getSCEVType() < RHS
->getSCEVType();
396 // Aside from the getSCEVType() ordering, the particular ordering
397 // isn't very important except that it's beneficial to be consistent,
398 // so that (a + b) and (b + a) don't end up as different expressions.
400 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
401 // not as complete as it could be.
402 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
)) {
403 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
405 // Order pointer values after integer values. This helps SCEVExpander
407 if (isa
<PointerType
>(LU
->getType()) && !isa
<PointerType
>(RU
->getType()))
409 if (isa
<PointerType
>(RU
->getType()) && !isa
<PointerType
>(LU
->getType()))
412 // Compare getValueID values.
413 if (LU
->getValue()->getValueID() != RU
->getValue()->getValueID())
414 return LU
->getValue()->getValueID() < RU
->getValue()->getValueID();
416 // Sort arguments by their position.
417 if (const Argument
*LA
= dyn_cast
<Argument
>(LU
->getValue())) {
418 const Argument
*RA
= cast
<Argument
>(RU
->getValue());
419 return LA
->getArgNo() < RA
->getArgNo();
422 // For instructions, compare their loop depth, and their opcode.
423 // This is pretty loose.
424 if (Instruction
*LV
= dyn_cast
<Instruction
>(LU
->getValue())) {
425 Instruction
*RV
= cast
<Instruction
>(RU
->getValue());
427 // Compare loop depths.
428 if (LI
->getLoopDepth(LV
->getParent()) !=
429 LI
->getLoopDepth(RV
->getParent()))
430 return LI
->getLoopDepth(LV
->getParent()) <
431 LI
->getLoopDepth(RV
->getParent());
434 if (LV
->getOpcode() != RV
->getOpcode())
435 return LV
->getOpcode() < RV
->getOpcode();
437 // Compare the number of operands.
438 if (LV
->getNumOperands() != RV
->getNumOperands())
439 return LV
->getNumOperands() < RV
->getNumOperands();
445 // Compare constant values.
446 if (const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(LHS
)) {
447 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
448 if (LC
->getValue()->getBitWidth() != RC
->getValue()->getBitWidth())
449 return LC
->getValue()->getBitWidth() < RC
->getValue()->getBitWidth();
450 return LC
->getValue()->getValue().ult(RC
->getValue()->getValue());
453 // Compare addrec loop depths.
454 if (const SCEVAddRecExpr
*LA
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
455 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
456 if (LA
->getLoop()->getLoopDepth() != RA
->getLoop()->getLoopDepth())
457 return LA
->getLoop()->getLoopDepth() < RA
->getLoop()->getLoopDepth();
460 // Lexicographically compare n-ary expressions.
461 if (const SCEVNAryExpr
*LC
= dyn_cast
<SCEVNAryExpr
>(LHS
)) {
462 const SCEVNAryExpr
*RC
= cast
<SCEVNAryExpr
>(RHS
);
463 for (unsigned i
= 0, e
= LC
->getNumOperands(); i
!= e
; ++i
) {
464 if (i
>= RC
->getNumOperands())
466 if (operator()(LC
->getOperand(i
), RC
->getOperand(i
)))
468 if (operator()(RC
->getOperand(i
), LC
->getOperand(i
)))
471 return LC
->getNumOperands() < RC
->getNumOperands();
474 // Lexicographically compare udiv expressions.
475 if (const SCEVUDivExpr
*LC
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
476 const SCEVUDivExpr
*RC
= cast
<SCEVUDivExpr
>(RHS
);
477 if (operator()(LC
->getLHS(), RC
->getLHS()))
479 if (operator()(RC
->getLHS(), LC
->getLHS()))
481 if (operator()(LC
->getRHS(), RC
->getRHS()))
483 if (operator()(RC
->getRHS(), LC
->getRHS()))
488 // Compare cast expressions by operand.
489 if (const SCEVCastExpr
*LC
= dyn_cast
<SCEVCastExpr
>(LHS
)) {
490 const SCEVCastExpr
*RC
= cast
<SCEVCastExpr
>(RHS
);
491 return operator()(LC
->getOperand(), RC
->getOperand());
494 // Compare offsetof expressions.
495 if (const SCEVFieldOffsetExpr
*LA
= dyn_cast
<SCEVFieldOffsetExpr
>(LHS
)) {
496 const SCEVFieldOffsetExpr
*RA
= cast
<SCEVFieldOffsetExpr
>(RHS
);
497 if (CompareTypes(LA
->getStructType(), RA
->getStructType()) ||
498 CompareTypes(RA
->getStructType(), LA
->getStructType()))
499 return CompareTypes(LA
->getStructType(), RA
->getStructType());
500 return LA
->getFieldNo() < RA
->getFieldNo();
503 // Compare sizeof expressions by the allocation type.
504 if (const SCEVAllocSizeExpr
*LA
= dyn_cast
<SCEVAllocSizeExpr
>(LHS
)) {
505 const SCEVAllocSizeExpr
*RA
= cast
<SCEVAllocSizeExpr
>(RHS
);
506 return CompareTypes(LA
->getAllocType(), RA
->getAllocType());
509 llvm_unreachable("Unknown SCEV kind!");
515 /// GroupByComplexity - Given a list of SCEV objects, order them by their
516 /// complexity, and group objects of the same complexity together by value.
517 /// When this routine is finished, we know that any duplicates in the vector are
518 /// consecutive and that complexity is monotonically increasing.
520 /// Note that we go take special precautions to ensure that we get determinstic
521 /// results from this routine. In other words, we don't want the results of
522 /// this to depend on where the addresses of various SCEV objects happened to
525 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
527 if (Ops
.size() < 2) return; // Noop
528 if (Ops
.size() == 2) {
529 // This is the common case, which also happens to be trivially simple.
531 if (SCEVComplexityCompare(LI
)(Ops
[1], Ops
[0]))
532 std::swap(Ops
[0], Ops
[1]);
536 // Do the rough sort by complexity.
537 std::stable_sort(Ops
.begin(), Ops
.end(), SCEVComplexityCompare(LI
));
539 // Now that we are sorted by complexity, group elements of the same
540 // complexity. Note that this is, at worst, N^2, but the vector is likely to
541 // be extremely short in practice. Note that we take this approach because we
542 // do not want to depend on the addresses of the objects we are grouping.
543 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
544 const SCEV
*S
= Ops
[i
];
545 unsigned Complexity
= S
->getSCEVType();
547 // If there are any objects of the same complexity and same value as this
549 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
550 if (Ops
[j
] == S
) { // Found a duplicate.
551 // Move it to immediately after i'th element.
552 std::swap(Ops
[i
+1], Ops
[j
]);
553 ++i
; // no need to rescan it.
554 if (i
== e
-2) return; // Done!
562 //===----------------------------------------------------------------------===//
563 // Simple SCEV method implementations
564 //===----------------------------------------------------------------------===//
566 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
568 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
570 const Type
* ResultTy
) {
571 // Handle the simplest case efficiently.
573 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
575 // We are using the following formula for BC(It, K):
577 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
579 // Suppose, W is the bitwidth of the return value. We must be prepared for
580 // overflow. Hence, we must assure that the result of our computation is
581 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
582 // safe in modular arithmetic.
584 // However, this code doesn't use exactly that formula; the formula it uses
585 // is something like the following, where T is the number of factors of 2 in
586 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
589 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
591 // This formula is trivially equivalent to the previous formula. However,
592 // this formula can be implemented much more efficiently. The trick is that
593 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
594 // arithmetic. To do exact division in modular arithmetic, all we have
595 // to do is multiply by the inverse. Therefore, this step can be done at
598 // The next issue is how to safely do the division by 2^T. The way this
599 // is done is by doing the multiplication step at a width of at least W + T
600 // bits. This way, the bottom W+T bits of the product are accurate. Then,
601 // when we perform the division by 2^T (which is equivalent to a right shift
602 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
603 // truncated out after the division by 2^T.
605 // In comparison to just directly using the first formula, this technique
606 // is much more efficient; using the first formula requires W * K bits,
607 // but this formula less than W + K bits. Also, the first formula requires
608 // a division step, whereas this formula only requires multiplies and shifts.
610 // It doesn't matter whether the subtraction step is done in the calculation
611 // width or the input iteration count's width; if the subtraction overflows,
612 // the result must be zero anyway. We prefer here to do it in the width of
613 // the induction variable because it helps a lot for certain cases; CodeGen
614 // isn't smart enough to ignore the overflow, which leads to much less
615 // efficient code if the width of the subtraction is wider than the native
618 // (It's possible to not widen at all by pulling out factors of 2 before
619 // the multiplication; for example, K=2 can be calculated as
620 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
621 // extra arithmetic, so it's not an obvious win, and it gets
622 // much more complicated for K > 3.)
624 // Protection from insane SCEVs; this bound is conservative,
625 // but it probably doesn't matter.
627 return SE
.getCouldNotCompute();
629 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
631 // Calculate K! / 2^T and T; we divide out the factors of two before
632 // multiplying for calculating K! / 2^T to avoid overflow.
633 // Other overflow doesn't matter because we only care about the bottom
634 // W bits of the result.
635 APInt
OddFactorial(W
, 1);
637 for (unsigned i
= 3; i
<= K
; ++i
) {
639 unsigned TwoFactors
= Mult
.countTrailingZeros();
641 Mult
= Mult
.lshr(TwoFactors
);
642 OddFactorial
*= Mult
;
645 // We need at least W + T bits for the multiplication step
646 unsigned CalculationBits
= W
+ T
;
648 // Calcuate 2^T, at width T+W.
649 APInt DivFactor
= APInt(CalculationBits
, 1).shl(T
);
651 // Calculate the multiplicative inverse of K! / 2^T;
652 // this multiplication factor will perform the exact division by
654 APInt Mod
= APInt::getSignedMinValue(W
+1);
655 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
656 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
657 MultiplyFactor
= MultiplyFactor
.trunc(W
);
659 // Calculate the product, at width T+W
660 const IntegerType
*CalculationTy
= IntegerType::get(SE
.getContext(),
662 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
663 for (unsigned i
= 1; i
!= K
; ++i
) {
664 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getIntegerSCEV(i
, It
->getType()));
665 Dividend
= SE
.getMulExpr(Dividend
,
666 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
670 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
672 // Truncate the result, and divide by K! / 2^T.
674 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
675 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
678 /// evaluateAtIteration - Return the value of this chain of recurrences at
679 /// the specified iteration number. We can evaluate this recurrence by
680 /// multiplying each element in the chain by the binomial coefficient
681 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
683 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
685 /// where BC(It, k) stands for binomial coefficient.
687 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
688 ScalarEvolution
&SE
) const {
689 const SCEV
*Result
= getStart();
690 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
691 // The computation is correct in the face of overflow provided that the
692 // multiplication is performed _after_ the evaluation of the binomial
694 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
695 if (isa
<SCEVCouldNotCompute
>(Coeff
))
698 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
703 //===----------------------------------------------------------------------===//
704 // SCEV Expression folder implementations
705 //===----------------------------------------------------------------------===//
707 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
,
709 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
710 "This is not a truncating conversion!");
711 assert(isSCEVable(Ty
) &&
712 "This is not a conversion to a SCEVable type!");
713 Ty
= getEffectiveSCEVType(Ty
);
716 ID
.AddInteger(scTruncate
);
720 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
722 // Fold if the operand is constant.
723 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
725 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
727 // trunc(trunc(x)) --> trunc(x)
728 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
729 return getTruncateExpr(ST
->getOperand(), Ty
);
731 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
732 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
733 return getTruncateOrSignExtend(SS
->getOperand(), Ty
);
735 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
736 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
737 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
);
739 // If the input value is a chrec scev, truncate the chrec's operands.
740 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
741 SmallVector
<const SCEV
*, 4> Operands
;
742 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
743 Operands
.push_back(getTruncateExpr(AddRec
->getOperand(i
), Ty
));
744 return getAddRecExpr(Operands
, AddRec
->getLoop());
747 // The cast wasn't folded; create an explicit cast node.
748 // Recompute the insert position, as it may have been invalidated.
749 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
750 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVTruncateExpr
>();
751 new (S
) SCEVTruncateExpr(ID
, Op
, Ty
);
752 UniqueSCEVs
.InsertNode(S
, IP
);
756 const SCEV
*ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
,
758 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
759 "This is not an extending conversion!");
760 assert(isSCEVable(Ty
) &&
761 "This is not a conversion to a SCEVable type!");
762 Ty
= getEffectiveSCEVType(Ty
);
764 // Fold if the operand is constant.
765 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
766 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
767 Constant
*C
= ConstantExpr::getZExt(SC
->getValue(), IntTy
);
768 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
769 return getConstant(cast
<ConstantInt
>(C
));
772 // zext(zext(x)) --> zext(x)
773 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
774 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
776 // Before doing any expensive analysis, check to see if we've already
777 // computed a SCEV for this Op and Ty.
779 ID
.AddInteger(scZeroExtend
);
783 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
785 // If the input value is a chrec scev, and we can prove that the value
786 // did not overflow the old, smaller, value, we can zero extend all of the
787 // operands (often constants). This allows analysis of something like
788 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
789 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
790 if (AR
->isAffine()) {
791 const SCEV
*Start
= AR
->getStart();
792 const SCEV
*Step
= AR
->getStepRecurrence(*this);
793 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
794 const Loop
*L
= AR
->getLoop();
796 // If we have special knowledge that this addrec won't overflow,
797 // we don't need to do any further analysis.
798 if (AR
->hasNoUnsignedWrap())
799 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
800 getZeroExtendExpr(Step
, Ty
),
803 // Check whether the backedge-taken count is SCEVCouldNotCompute.
804 // Note that this serves two purposes: It filters out loops that are
805 // simply not analyzable, and it covers the case where this code is
806 // being called from within backedge-taken count analysis, such that
807 // attempting to ask for the backedge-taken count would likely result
808 // in infinite recursion. In the later case, the analysis code will
809 // cope with a conservative value, and it will take care to purge
810 // that value once it has finished.
811 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
812 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
813 // Manually compute the final value for AR, checking for
816 // Check whether the backedge-taken count can be losslessly casted to
817 // the addrec's type. The count is always unsigned.
818 const SCEV
*CastedMaxBECount
=
819 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
820 const SCEV
*RecastedMaxBECount
=
821 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
822 if (MaxBECount
== RecastedMaxBECount
) {
823 const Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
824 // Check whether Start+Step*MaxBECount has no unsigned overflow.
826 getMulExpr(CastedMaxBECount
,
827 getTruncateOrZeroExtend(Step
, Start
->getType()));
828 const SCEV
*Add
= getAddExpr(Start
, ZMul
);
829 const SCEV
*OperandExtendedAdd
=
830 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
831 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
832 getZeroExtendExpr(Step
, WideTy
)));
833 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
834 // Return the expression with the addrec on the outside.
835 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
836 getZeroExtendExpr(Step
, Ty
),
839 // Similar to above, only this time treat the step value as signed.
840 // This covers loops that count down.
842 getMulExpr(CastedMaxBECount
,
843 getTruncateOrSignExtend(Step
, Start
->getType()));
844 Add
= getAddExpr(Start
, SMul
);
846 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
847 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
848 getSignExtendExpr(Step
, WideTy
)));
849 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
850 // Return the expression with the addrec on the outside.
851 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
852 getSignExtendExpr(Step
, Ty
),
856 // If the backedge is guarded by a comparison with the pre-inc value
857 // the addrec is safe. Also, if the entry is guarded by a comparison
858 // with the start value and the backedge is guarded by a comparison
859 // with the post-inc value, the addrec is safe.
860 if (isKnownPositive(Step
)) {
861 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
862 getUnsignedRange(Step
).getUnsignedMax());
863 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
864 (isLoopGuardedByCond(L
, ICmpInst::ICMP_ULT
, Start
, N
) &&
865 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
,
866 AR
->getPostIncExpr(*this), N
)))
867 // Return the expression with the addrec on the outside.
868 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
869 getZeroExtendExpr(Step
, Ty
),
871 } else if (isKnownNegative(Step
)) {
872 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
873 getSignedRange(Step
).getSignedMin());
874 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) &&
875 (isLoopGuardedByCond(L
, ICmpInst::ICMP_UGT
, Start
, N
) ||
876 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
,
877 AR
->getPostIncExpr(*this), N
)))
878 // Return the expression with the addrec on the outside.
879 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
880 getSignExtendExpr(Step
, Ty
),
886 // The cast wasn't folded; create an explicit cast node.
887 // Recompute the insert position, as it may have been invalidated.
888 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
889 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVZeroExtendExpr
>();
890 new (S
) SCEVZeroExtendExpr(ID
, Op
, Ty
);
891 UniqueSCEVs
.InsertNode(S
, IP
);
895 const SCEV
*ScalarEvolution::getSignExtendExpr(const SCEV
*Op
,
897 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
898 "This is not an extending conversion!");
899 assert(isSCEVable(Ty
) &&
900 "This is not a conversion to a SCEVable type!");
901 Ty
= getEffectiveSCEVType(Ty
);
903 // Fold if the operand is constant.
904 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
905 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
906 Constant
*C
= ConstantExpr::getSExt(SC
->getValue(), IntTy
);
907 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
908 return getConstant(cast
<ConstantInt
>(C
));
911 // sext(sext(x)) --> sext(x)
912 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
913 return getSignExtendExpr(SS
->getOperand(), Ty
);
915 // Before doing any expensive analysis, check to see if we've already
916 // computed a SCEV for this Op and Ty.
918 ID
.AddInteger(scSignExtend
);
922 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
924 // If the input value is a chrec scev, and we can prove that the value
925 // did not overflow the old, smaller, value, we can sign extend all of the
926 // operands (often constants). This allows analysis of something like
927 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
928 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
929 if (AR
->isAffine()) {
930 const SCEV
*Start
= AR
->getStart();
931 const SCEV
*Step
= AR
->getStepRecurrence(*this);
932 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
933 const Loop
*L
= AR
->getLoop();
935 // If we have special knowledge that this addrec won't overflow,
936 // we don't need to do any further analysis.
937 if (AR
->hasNoSignedWrap())
938 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
939 getSignExtendExpr(Step
, Ty
),
942 // Check whether the backedge-taken count is SCEVCouldNotCompute.
943 // Note that this serves two purposes: It filters out loops that are
944 // simply not analyzable, and it covers the case where this code is
945 // being called from within backedge-taken count analysis, such that
946 // attempting to ask for the backedge-taken count would likely result
947 // in infinite recursion. In the later case, the analysis code will
948 // cope with a conservative value, and it will take care to purge
949 // that value once it has finished.
950 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
951 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
952 // Manually compute the final value for AR, checking for
955 // Check whether the backedge-taken count can be losslessly casted to
956 // the addrec's type. The count is always unsigned.
957 const SCEV
*CastedMaxBECount
=
958 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
959 const SCEV
*RecastedMaxBECount
=
960 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
961 if (MaxBECount
== RecastedMaxBECount
) {
962 const Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
963 // Check whether Start+Step*MaxBECount has no signed overflow.
965 getMulExpr(CastedMaxBECount
,
966 getTruncateOrSignExtend(Step
, Start
->getType()));
967 const SCEV
*Add
= getAddExpr(Start
, SMul
);
968 const SCEV
*OperandExtendedAdd
=
969 getAddExpr(getSignExtendExpr(Start
, WideTy
),
970 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
971 getSignExtendExpr(Step
, WideTy
)));
972 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
973 // Return the expression with the addrec on the outside.
974 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
975 getSignExtendExpr(Step
, Ty
),
978 // Similar to above, only this time treat the step value as unsigned.
979 // This covers loops that count up with an unsigned step.
981 getMulExpr(CastedMaxBECount
,
982 getTruncateOrZeroExtend(Step
, Start
->getType()));
983 Add
= getAddExpr(Start
, UMul
);
985 getAddExpr(getSignExtendExpr(Start
, WideTy
),
986 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
987 getZeroExtendExpr(Step
, WideTy
)));
988 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
989 // Return the expression with the addrec on the outside.
990 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
991 getZeroExtendExpr(Step
, Ty
),
995 // If the backedge is guarded by a comparison with the pre-inc value
996 // the addrec is safe. Also, if the entry is guarded by a comparison
997 // with the start value and the backedge is guarded by a comparison
998 // with the post-inc value, the addrec is safe.
999 if (isKnownPositive(Step
)) {
1000 const SCEV
*N
= getConstant(APInt::getSignedMinValue(BitWidth
) -
1001 getSignedRange(Step
).getSignedMax());
1002 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SLT
, AR
, N
) ||
1003 (isLoopGuardedByCond(L
, ICmpInst::ICMP_SLT
, Start
, N
) &&
1004 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SLT
,
1005 AR
->getPostIncExpr(*this), N
)))
1006 // Return the expression with the addrec on the outside.
1007 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
1008 getSignExtendExpr(Step
, Ty
),
1010 } else if (isKnownNegative(Step
)) {
1011 const SCEV
*N
= getConstant(APInt::getSignedMaxValue(BitWidth
) -
1012 getSignedRange(Step
).getSignedMin());
1013 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SGT
, AR
, N
) ||
1014 (isLoopGuardedByCond(L
, ICmpInst::ICMP_SGT
, Start
, N
) &&
1015 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SGT
,
1016 AR
->getPostIncExpr(*this), N
)))
1017 // Return the expression with the addrec on the outside.
1018 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
1019 getSignExtendExpr(Step
, Ty
),
1025 // The cast wasn't folded; create an explicit cast node.
1026 // Recompute the insert position, as it may have been invalidated.
1027 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1028 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVSignExtendExpr
>();
1029 new (S
) SCEVSignExtendExpr(ID
, Op
, Ty
);
1030 UniqueSCEVs
.InsertNode(S
, IP
);
1034 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1035 /// unspecified bits out to the given type.
1037 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
1039 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1040 "This is not an extending conversion!");
1041 assert(isSCEVable(Ty
) &&
1042 "This is not a conversion to a SCEVable type!");
1043 Ty
= getEffectiveSCEVType(Ty
);
1045 // Sign-extend negative constants.
1046 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1047 if (SC
->getValue()->getValue().isNegative())
1048 return getSignExtendExpr(Op
, Ty
);
1050 // Peel off a truncate cast.
1051 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1052 const SCEV
*NewOp
= T
->getOperand();
1053 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
1054 return getAnyExtendExpr(NewOp
, Ty
);
1055 return getTruncateOrNoop(NewOp
, Ty
);
1058 // Next try a zext cast. If the cast is folded, use it.
1059 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
1060 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
1063 // Next try a sext cast. If the cast is folded, use it.
1064 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
1065 if (!isa
<SCEVSignExtendExpr
>(SExt
))
1068 // If the expression is obviously signed, use the sext cast value.
1069 if (isa
<SCEVSMaxExpr
>(Op
))
1072 // Absent any other information, use the zext cast value.
1076 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1077 /// a list of operands to be added under the given scale, update the given
1078 /// map. This is a helper function for getAddRecExpr. As an example of
1079 /// what it does, given a sequence of operands that would form an add
1080 /// expression like this:
1082 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1084 /// where A and B are constants, update the map with these values:
1086 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1088 /// and add 13 + A*B*29 to AccumulatedConstant.
1089 /// This will allow getAddRecExpr to produce this:
1091 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1093 /// This form often exposes folding opportunities that are hidden in
1094 /// the original operand list.
1096 /// Return true iff it appears that any interesting folding opportunities
1097 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1098 /// the common case where no interesting opportunities are present, and
1099 /// is also used as a check to avoid infinite recursion.
1102 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
1103 SmallVector
<const SCEV
*, 8> &NewOps
,
1104 APInt
&AccumulatedConstant
,
1105 const SmallVectorImpl
<const SCEV
*> &Ops
,
1107 ScalarEvolution
&SE
) {
1108 bool Interesting
= false;
1110 // Iterate over the add operands.
1111 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1112 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
1113 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
1115 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getValue()->getValue();
1116 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
1117 // A multiplication of a constant with another add; recurse.
1119 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1120 cast
<SCEVAddExpr
>(Mul
->getOperand(1))
1124 // A multiplication of a constant with some other value. Update
1126 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin()+1, Mul
->op_end());
1127 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
1128 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1129 M
.insert(std::make_pair(Key
, NewScale
));
1131 NewOps
.push_back(Pair
.first
->first
);
1133 Pair
.first
->second
+= NewScale
;
1134 // The map already had an entry for this value, which may indicate
1135 // a folding opportunity.
1139 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1140 // Pull a buried constant out to the outside.
1141 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->isZero())
1143 AccumulatedConstant
+= Scale
* C
->getValue()->getValue();
1145 // An ordinary operand. Update the map.
1146 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1147 M
.insert(std::make_pair(Ops
[i
], Scale
));
1149 NewOps
.push_back(Pair
.first
->first
);
1151 Pair
.first
->second
+= Scale
;
1152 // The map already had an entry for this value, which may indicate
1153 // a folding opportunity.
1163 struct APIntCompare
{
1164 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
1165 return LHS
.ult(RHS
);
1170 /// getAddExpr - Get a canonical add expression, or something simpler if
1172 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1173 assert(!Ops
.empty() && "Cannot get empty add!");
1174 if (Ops
.size() == 1) return Ops
[0];
1176 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1177 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1178 getEffectiveSCEVType(Ops
[0]->getType()) &&
1179 "SCEVAddExpr operand types don't match!");
1182 // Sort by complexity, this groups all similar expression types together.
1183 GroupByComplexity(Ops
, LI
);
1185 // If there are any constants, fold them together.
1187 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1189 assert(Idx
< Ops
.size());
1190 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1191 // We found two constants, fold them together!
1192 Ops
[0] = getConstant(LHSC
->getValue()->getValue() +
1193 RHSC
->getValue()->getValue());
1194 if (Ops
.size() == 2) return Ops
[0];
1195 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1196 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1199 // If we are left with a constant zero being added, strip it off.
1200 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1201 Ops
.erase(Ops
.begin());
1206 if (Ops
.size() == 1) return Ops
[0];
1208 // Okay, check to see if the same value occurs in the operand list twice. If
1209 // so, merge them together into an multiply expression. Since we sorted the
1210 // list, these values are required to be adjacent.
1211 const Type
*Ty
= Ops
[0]->getType();
1212 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1213 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
1214 // Found a match, merge the two values into a multiply, and add any
1215 // remaining values to the result.
1216 const SCEV
*Two
= getIntegerSCEV(2, Ty
);
1217 const SCEV
*Mul
= getMulExpr(Ops
[i
], Two
);
1218 if (Ops
.size() == 2)
1220 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
1222 return getAddExpr(Ops
);
1225 // Check for truncates. If all the operands are truncated from the same
1226 // type, see if factoring out the truncate would permit the result to be
1227 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1228 // if the contents of the resulting outer trunc fold to something simple.
1229 for (; Idx
< Ops
.size() && isa
<SCEVTruncateExpr
>(Ops
[Idx
]); ++Idx
) {
1230 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(Ops
[Idx
]);
1231 const Type
*DstType
= Trunc
->getType();
1232 const Type
*SrcType
= Trunc
->getOperand()->getType();
1233 SmallVector
<const SCEV
*, 8> LargeOps
;
1235 // Check all the operands to see if they can be represented in the
1236 // source type of the truncate.
1237 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1238 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
1239 if (T
->getOperand()->getType() != SrcType
) {
1243 LargeOps
.push_back(T
->getOperand());
1244 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1245 // This could be either sign or zero extension, but sign extension
1246 // is much more likely to be foldable here.
1247 LargeOps
.push_back(getSignExtendExpr(C
, SrcType
));
1248 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
1249 SmallVector
<const SCEV
*, 8> LargeMulOps
;
1250 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
1251 if (const SCEVTruncateExpr
*T
=
1252 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
1253 if (T
->getOperand()->getType() != SrcType
) {
1257 LargeMulOps
.push_back(T
->getOperand());
1258 } else if (const SCEVConstant
*C
=
1259 dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
1260 // This could be either sign or zero extension, but sign extension
1261 // is much more likely to be foldable here.
1262 LargeMulOps
.push_back(getSignExtendExpr(C
, SrcType
));
1269 LargeOps
.push_back(getMulExpr(LargeMulOps
));
1276 // Evaluate the expression in the larger type.
1277 const SCEV
*Fold
= getAddExpr(LargeOps
);
1278 // If it folds to something simple, use it. Otherwise, don't.
1279 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
1280 return getTruncateExpr(Fold
, DstType
);
1284 // Skip past any other cast SCEVs.
1285 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
1288 // If there are add operands they would be next.
1289 if (Idx
< Ops
.size()) {
1290 bool DeletedAdd
= false;
1291 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
1292 // If we have an add, expand the add operands onto the end of the operands
1294 Ops
.insert(Ops
.end(), Add
->op_begin(), Add
->op_end());
1295 Ops
.erase(Ops
.begin()+Idx
);
1299 // If we deleted at least one add, we added operands to the end of the list,
1300 // and they are not necessarily sorted. Recurse to resort and resimplify
1301 // any operands we just aquired.
1303 return getAddExpr(Ops
);
1306 // Skip over the add expression until we get to a multiply.
1307 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1310 // Check to see if there are any folding opportunities present with
1311 // operands multiplied by constant values.
1312 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
1313 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
1314 DenseMap
<const SCEV
*, APInt
> M
;
1315 SmallVector
<const SCEV
*, 8> NewOps
;
1316 APInt
AccumulatedConstant(BitWidth
, 0);
1317 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1318 Ops
, APInt(BitWidth
, 1), *this)) {
1319 // Some interesting folding opportunity is present, so its worthwhile to
1320 // re-generate the operands list. Group the operands by constant scale,
1321 // to avoid multiplying by the same constant scale multiple times.
1322 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
1323 for (SmallVector
<const SCEV
*, 8>::iterator I
= NewOps
.begin(),
1324 E
= NewOps
.end(); I
!= E
; ++I
)
1325 MulOpLists
[M
.find(*I
)->second
].push_back(*I
);
1326 // Re-generate the operands list.
1328 if (AccumulatedConstant
!= 0)
1329 Ops
.push_back(getConstant(AccumulatedConstant
));
1330 for (std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
>::iterator
1331 I
= MulOpLists
.begin(), E
= MulOpLists
.end(); I
!= E
; ++I
)
1333 Ops
.push_back(getMulExpr(getConstant(I
->first
),
1334 getAddExpr(I
->second
)));
1336 return getIntegerSCEV(0, Ty
);
1337 if (Ops
.size() == 1)
1339 return getAddExpr(Ops
);
1343 // If we are adding something to a multiply expression, make sure the
1344 // something is not already an operand of the multiply. If so, merge it into
1346 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
1347 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
1348 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
1349 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
1350 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
1351 if (MulOpSCEV
== Ops
[AddOp
] && !isa
<SCEVConstant
>(Ops
[AddOp
])) {
1352 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1353 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
1354 if (Mul
->getNumOperands() != 2) {
1355 // If the multiply has more than two operands, we must get the
1357 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(), Mul
->op_end());
1358 MulOps
.erase(MulOps
.begin()+MulOp
);
1359 InnerMul
= getMulExpr(MulOps
);
1361 const SCEV
*One
= getIntegerSCEV(1, Ty
);
1362 const SCEV
*AddOne
= getAddExpr(InnerMul
, One
);
1363 const SCEV
*OuterMul
= getMulExpr(AddOne
, Ops
[AddOp
]);
1364 if (Ops
.size() == 2) return OuterMul
;
1366 Ops
.erase(Ops
.begin()+AddOp
);
1367 Ops
.erase(Ops
.begin()+Idx
-1);
1369 Ops
.erase(Ops
.begin()+Idx
);
1370 Ops
.erase(Ops
.begin()+AddOp
-1);
1372 Ops
.push_back(OuterMul
);
1373 return getAddExpr(Ops
);
1376 // Check this multiply against other multiplies being added together.
1377 for (unsigned OtherMulIdx
= Idx
+1;
1378 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1380 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1381 // If MulOp occurs in OtherMul, we can fold the two multiplies
1383 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
1384 OMulOp
!= e
; ++OMulOp
)
1385 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
1386 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1387 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
1388 if (Mul
->getNumOperands() != 2) {
1389 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
1391 MulOps
.erase(MulOps
.begin()+MulOp
);
1392 InnerMul1
= getMulExpr(MulOps
);
1394 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
1395 if (OtherMul
->getNumOperands() != 2) {
1396 SmallVector
<const SCEV
*, 4> MulOps(OtherMul
->op_begin(),
1397 OtherMul
->op_end());
1398 MulOps
.erase(MulOps
.begin()+OMulOp
);
1399 InnerMul2
= getMulExpr(MulOps
);
1401 const SCEV
*InnerMulSum
= getAddExpr(InnerMul1
,InnerMul2
);
1402 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
);
1403 if (Ops
.size() == 2) return OuterMul
;
1404 Ops
.erase(Ops
.begin()+Idx
);
1405 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
1406 Ops
.push_back(OuterMul
);
1407 return getAddExpr(Ops
);
1413 // If there are any add recurrences in the operands list, see if any other
1414 // added values are loop invariant. If so, we can fold them into the
1416 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1419 // Scan over all recurrences, trying to fold loop invariants into them.
1420 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1421 // Scan all of the other operands to this add and add them to the vector if
1422 // they are loop invariant w.r.t. the recurrence.
1423 SmallVector
<const SCEV
*, 8> LIOps
;
1424 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1425 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1426 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1427 LIOps
.push_back(Ops
[i
]);
1428 Ops
.erase(Ops
.begin()+i
);
1432 // If we found some loop invariants, fold them into the recurrence.
1433 if (!LIOps
.empty()) {
1434 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1435 LIOps
.push_back(AddRec
->getStart());
1437 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
1439 AddRecOps
[0] = getAddExpr(LIOps
);
1441 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop());
1442 // If all of the other operands were loop invariant, we are done.
1443 if (Ops
.size() == 1) return NewRec
;
1445 // Otherwise, add the folded AddRec by the non-liv parts.
1446 for (unsigned i
= 0;; ++i
)
1447 if (Ops
[i
] == AddRec
) {
1451 return getAddExpr(Ops
);
1454 // Okay, if there weren't any loop invariants to be folded, check to see if
1455 // there are multiple AddRec's with the same loop induction variable being
1456 // added together. If so, we can fold them.
1457 for (unsigned OtherIdx
= Idx
+1;
1458 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1459 if (OtherIdx
!= Idx
) {
1460 const SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1461 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1462 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1463 SmallVector
<const SCEV
*, 4> NewOps(AddRec
->op_begin(),
1465 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands(); i
!= e
; ++i
) {
1466 if (i
>= NewOps
.size()) {
1467 NewOps
.insert(NewOps
.end(), OtherAddRec
->op_begin()+i
,
1468 OtherAddRec
->op_end());
1471 NewOps
[i
] = getAddExpr(NewOps
[i
], OtherAddRec
->getOperand(i
));
1473 const SCEV
*NewAddRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1475 if (Ops
.size() == 2) return NewAddRec
;
1477 Ops
.erase(Ops
.begin()+Idx
);
1478 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1479 Ops
.push_back(NewAddRec
);
1480 return getAddExpr(Ops
);
1484 // Otherwise couldn't fold anything into this recurrence. Move onto the
1488 // Okay, it looks like we really DO need an add expr. Check to see if we
1489 // already have one, otherwise create a new one.
1490 FoldingSetNodeID ID
;
1491 ID
.AddInteger(scAddExpr
);
1492 ID
.AddInteger(Ops
.size());
1493 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1494 ID
.AddPointer(Ops
[i
]);
1496 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1497 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAddExpr
>();
1498 new (S
) SCEVAddExpr(ID
, Ops
);
1499 UniqueSCEVs
.InsertNode(S
, IP
);
1504 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1506 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1507 assert(!Ops
.empty() && "Cannot get empty mul!");
1509 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1510 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1511 getEffectiveSCEVType(Ops
[0]->getType()) &&
1512 "SCEVMulExpr operand types don't match!");
1515 // Sort by complexity, this groups all similar expression types together.
1516 GroupByComplexity(Ops
, LI
);
1518 // If there are any constants, fold them together.
1520 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1522 // C1*(C2+V) -> C1*C2 + C1*V
1523 if (Ops
.size() == 2)
1524 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
1525 if (Add
->getNumOperands() == 2 &&
1526 isa
<SCEVConstant
>(Add
->getOperand(0)))
1527 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0)),
1528 getMulExpr(LHSC
, Add
->getOperand(1)));
1532 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1533 // We found two constants, fold them together!
1534 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1535 LHSC
->getValue()->getValue() *
1536 RHSC
->getValue()->getValue());
1537 Ops
[0] = getConstant(Fold
);
1538 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1539 if (Ops
.size() == 1) return Ops
[0];
1540 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1543 // If we are left with a constant one being multiplied, strip it off.
1544 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->equalsInt(1)) {
1545 Ops
.erase(Ops
.begin());
1547 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1548 // If we have a multiply of zero, it will always be zero.
1553 // Skip over the add expression until we get to a multiply.
1554 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1557 if (Ops
.size() == 1)
1560 // If there are mul operands inline them all into this expression.
1561 if (Idx
< Ops
.size()) {
1562 bool DeletedMul
= false;
1563 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
1564 // If we have an mul, expand the mul operands onto the end of the operands
1566 Ops
.insert(Ops
.end(), Mul
->op_begin(), Mul
->op_end());
1567 Ops
.erase(Ops
.begin()+Idx
);
1571 // If we deleted at least one mul, we added operands to the end of the list,
1572 // and they are not necessarily sorted. Recurse to resort and resimplify
1573 // any operands we just aquired.
1575 return getMulExpr(Ops
);
1578 // If there are any add recurrences in the operands list, see if any other
1579 // added values are loop invariant. If so, we can fold them into the
1581 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1584 // Scan over all recurrences, trying to fold loop invariants into them.
1585 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1586 // Scan all of the other operands to this mul and add them to the vector if
1587 // they are loop invariant w.r.t. the recurrence.
1588 SmallVector
<const SCEV
*, 8> LIOps
;
1589 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1590 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1591 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1592 LIOps
.push_back(Ops
[i
]);
1593 Ops
.erase(Ops
.begin()+i
);
1597 // If we found some loop invariants, fold them into the recurrence.
1598 if (!LIOps
.empty()) {
1599 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1600 SmallVector
<const SCEV
*, 4> NewOps
;
1601 NewOps
.reserve(AddRec
->getNumOperands());
1602 if (LIOps
.size() == 1) {
1603 const SCEV
*Scale
= LIOps
[0];
1604 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
1605 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
)));
1607 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
1608 SmallVector
<const SCEV
*, 4> MulOps(LIOps
.begin(), LIOps
.end());
1609 MulOps
.push_back(AddRec
->getOperand(i
));
1610 NewOps
.push_back(getMulExpr(MulOps
));
1614 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1616 // If all of the other operands were loop invariant, we are done.
1617 if (Ops
.size() == 1) return NewRec
;
1619 // Otherwise, multiply the folded AddRec by the non-liv parts.
1620 for (unsigned i
= 0;; ++i
)
1621 if (Ops
[i
] == AddRec
) {
1625 return getMulExpr(Ops
);
1628 // Okay, if there weren't any loop invariants to be folded, check to see if
1629 // there are multiple AddRec's with the same loop induction variable being
1630 // multiplied together. If so, we can fold them.
1631 for (unsigned OtherIdx
= Idx
+1;
1632 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1633 if (OtherIdx
!= Idx
) {
1634 const SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1635 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1636 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1637 const SCEVAddRecExpr
*F
= AddRec
, *G
= OtherAddRec
;
1638 const SCEV
*NewStart
= getMulExpr(F
->getStart(),
1640 const SCEV
*B
= F
->getStepRecurrence(*this);
1641 const SCEV
*D
= G
->getStepRecurrence(*this);
1642 const SCEV
*NewStep
= getAddExpr(getMulExpr(F
, D
),
1645 const SCEV
*NewAddRec
= getAddRecExpr(NewStart
, NewStep
,
1647 if (Ops
.size() == 2) return NewAddRec
;
1649 Ops
.erase(Ops
.begin()+Idx
);
1650 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1651 Ops
.push_back(NewAddRec
);
1652 return getMulExpr(Ops
);
1656 // Otherwise couldn't fold anything into this recurrence. Move onto the
1660 // Okay, it looks like we really DO need an mul expr. Check to see if we
1661 // already have one, otherwise create a new one.
1662 FoldingSetNodeID ID
;
1663 ID
.AddInteger(scMulExpr
);
1664 ID
.AddInteger(Ops
.size());
1665 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1666 ID
.AddPointer(Ops
[i
]);
1668 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1669 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVMulExpr
>();
1670 new (S
) SCEVMulExpr(ID
, Ops
);
1671 UniqueSCEVs
.InsertNode(S
, IP
);
1675 /// getUDivExpr - Get a canonical unsigned division expression, or something
1676 /// simpler if possible.
1677 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
1679 assert(getEffectiveSCEVType(LHS
->getType()) ==
1680 getEffectiveSCEVType(RHS
->getType()) &&
1681 "SCEVUDivExpr operand types don't match!");
1683 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
1684 if (RHSC
->getValue()->equalsInt(1))
1685 return LHS
; // X udiv 1 --> x
1687 return getIntegerSCEV(0, LHS
->getType()); // value is undefined
1689 // Determine if the division can be folded into the operands of
1691 // TODO: Generalize this to non-constants by using known-bits information.
1692 const Type
*Ty
= LHS
->getType();
1693 unsigned LZ
= RHSC
->getValue()->getValue().countLeadingZeros();
1694 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
;
1695 // For non-power-of-two values, effectively round the value up to the
1696 // nearest power of two.
1697 if (!RHSC
->getValue()->getValue().isPowerOf2())
1699 const IntegerType
*ExtTy
=
1700 IntegerType::get(getContext(), getTypeSizeInBits(Ty
) + MaxShiftAmt
);
1701 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1702 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
1703 if (const SCEVConstant
*Step
=
1704 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this)))
1705 if (!Step
->getValue()->getValue()
1706 .urem(RHSC
->getValue()->getValue()) &&
1707 getZeroExtendExpr(AR
, ExtTy
) ==
1708 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
1709 getZeroExtendExpr(Step
, ExtTy
),
1711 SmallVector
<const SCEV
*, 4> Operands
;
1712 for (unsigned i
= 0, e
= AR
->getNumOperands(); i
!= e
; ++i
)
1713 Operands
.push_back(getUDivExpr(AR
->getOperand(i
), RHS
));
1714 return getAddRecExpr(Operands
, AR
->getLoop());
1716 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1717 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
1718 SmallVector
<const SCEV
*, 4> Operands
;
1719 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
)
1720 Operands
.push_back(getZeroExtendExpr(M
->getOperand(i
), ExtTy
));
1721 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
1722 // Find an operand that's safely divisible.
1723 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
1724 const SCEV
*Op
= M
->getOperand(i
);
1725 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
1726 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
1727 const SmallVectorImpl
<const SCEV
*> &MOperands
= M
->getOperands();
1728 Operands
= SmallVector
<const SCEV
*, 4>(MOperands
.begin(),
1731 return getMulExpr(Operands
);
1735 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1736 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
1737 SmallVector
<const SCEV
*, 4> Operands
;
1738 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
)
1739 Operands
.push_back(getZeroExtendExpr(A
->getOperand(i
), ExtTy
));
1740 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
1742 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
1743 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
1744 if (isa
<SCEVUDivExpr
>(Op
) || getMulExpr(Op
, RHS
) != A
->getOperand(i
))
1746 Operands
.push_back(Op
);
1748 if (Operands
.size() == A
->getNumOperands())
1749 return getAddExpr(Operands
);
1753 // Fold if both operands are constant.
1754 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
1755 Constant
*LHSCV
= LHSC
->getValue();
1756 Constant
*RHSCV
= RHSC
->getValue();
1757 return getConstant(cast
<ConstantInt
>(ConstantExpr::getUDiv(LHSCV
,
1762 FoldingSetNodeID ID
;
1763 ID
.AddInteger(scUDivExpr
);
1767 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1768 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUDivExpr
>();
1769 new (S
) SCEVUDivExpr(ID
, LHS
, RHS
);
1770 UniqueSCEVs
.InsertNode(S
, IP
);
1775 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1776 /// Simplify the expression as much as possible.
1777 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
,
1778 const SCEV
*Step
, const Loop
*L
) {
1779 SmallVector
<const SCEV
*, 4> Operands
;
1780 Operands
.push_back(Start
);
1781 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
1782 if (StepChrec
->getLoop() == L
) {
1783 Operands
.insert(Operands
.end(), StepChrec
->op_begin(),
1784 StepChrec
->op_end());
1785 return getAddRecExpr(Operands
, L
);
1788 Operands
.push_back(Step
);
1789 return getAddRecExpr(Operands
, L
);
1792 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1793 /// Simplify the expression as much as possible.
1795 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
1797 if (Operands
.size() == 1) return Operands
[0];
1799 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
1800 assert(getEffectiveSCEVType(Operands
[i
]->getType()) ==
1801 getEffectiveSCEVType(Operands
[0]->getType()) &&
1802 "SCEVAddRecExpr operand types don't match!");
1805 if (Operands
.back()->isZero()) {
1806 Operands
.pop_back();
1807 return getAddRecExpr(Operands
, L
); // {X,+,0} --> X
1810 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1811 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
1812 const Loop
* NestedLoop
= NestedAR
->getLoop();
1813 if (L
->getLoopDepth() < NestedLoop
->getLoopDepth()) {
1814 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->op_begin(),
1815 NestedAR
->op_end());
1816 Operands
[0] = NestedAR
->getStart();
1817 // AddRecs require their operands be loop-invariant with respect to their
1818 // loops. Don't perform this transformation if it would break this
1820 bool AllInvariant
= true;
1821 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
1822 if (!Operands
[i
]->isLoopInvariant(L
)) {
1823 AllInvariant
= false;
1827 NestedOperands
[0] = getAddRecExpr(Operands
, L
);
1828 AllInvariant
= true;
1829 for (unsigned i
= 0, e
= NestedOperands
.size(); i
!= e
; ++i
)
1830 if (!NestedOperands
[i
]->isLoopInvariant(NestedLoop
)) {
1831 AllInvariant
= false;
1835 // Ok, both add recurrences are valid after the transformation.
1836 return getAddRecExpr(NestedOperands
, NestedLoop
);
1838 // Reset Operands to its original state.
1839 Operands
[0] = NestedAR
;
1843 FoldingSetNodeID ID
;
1844 ID
.AddInteger(scAddRecExpr
);
1845 ID
.AddInteger(Operands
.size());
1846 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
1847 ID
.AddPointer(Operands
[i
]);
1850 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1851 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAddRecExpr
>();
1852 new (S
) SCEVAddRecExpr(ID
, Operands
, L
);
1853 UniqueSCEVs
.InsertNode(S
, IP
);
1857 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
,
1859 SmallVector
<const SCEV
*, 2> Ops
;
1862 return getSMaxExpr(Ops
);
1866 ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1867 assert(!Ops
.empty() && "Cannot get empty smax!");
1868 if (Ops
.size() == 1) return Ops
[0];
1870 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1871 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1872 getEffectiveSCEVType(Ops
[0]->getType()) &&
1873 "SCEVSMaxExpr operand types don't match!");
1876 // Sort by complexity, this groups all similar expression types together.
1877 GroupByComplexity(Ops
, LI
);
1879 // If there are any constants, fold them together.
1881 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1883 assert(Idx
< Ops
.size());
1884 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1885 // We found two constants, fold them together!
1886 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1887 APIntOps::smax(LHSC
->getValue()->getValue(),
1888 RHSC
->getValue()->getValue()));
1889 Ops
[0] = getConstant(Fold
);
1890 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1891 if (Ops
.size() == 1) return Ops
[0];
1892 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1895 // If we are left with a constant minimum-int, strip it off.
1896 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(true)) {
1897 Ops
.erase(Ops
.begin());
1899 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(true)) {
1900 // If we have an smax with a constant maximum-int, it will always be
1906 if (Ops
.size() == 1) return Ops
[0];
1908 // Find the first SMax
1909 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scSMaxExpr
)
1912 // Check to see if one of the operands is an SMax. If so, expand its operands
1913 // onto our operand list, and recurse to simplify.
1914 if (Idx
< Ops
.size()) {
1915 bool DeletedSMax
= false;
1916 while (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(Ops
[Idx
])) {
1917 Ops
.insert(Ops
.end(), SMax
->op_begin(), SMax
->op_end());
1918 Ops
.erase(Ops
.begin()+Idx
);
1923 return getSMaxExpr(Ops
);
1926 // Okay, check to see if the same value occurs in the operand list twice. If
1927 // so, delete one. Since we sorted the list, these values are required to
1929 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1930 if (Ops
[i
] == Ops
[i
+1]) { // X smax Y smax Y --> X smax Y
1931 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1935 if (Ops
.size() == 1) return Ops
[0];
1937 assert(!Ops
.empty() && "Reduced smax down to nothing!");
1939 // Okay, it looks like we really DO need an smax expr. Check to see if we
1940 // already have one, otherwise create a new one.
1941 FoldingSetNodeID ID
;
1942 ID
.AddInteger(scSMaxExpr
);
1943 ID
.AddInteger(Ops
.size());
1944 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1945 ID
.AddPointer(Ops
[i
]);
1947 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1948 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVSMaxExpr
>();
1949 new (S
) SCEVSMaxExpr(ID
, Ops
);
1950 UniqueSCEVs
.InsertNode(S
, IP
);
1954 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
,
1956 SmallVector
<const SCEV
*, 2> Ops
;
1959 return getUMaxExpr(Ops
);
1963 ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1964 assert(!Ops
.empty() && "Cannot get empty umax!");
1965 if (Ops
.size() == 1) return Ops
[0];
1967 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1968 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1969 getEffectiveSCEVType(Ops
[0]->getType()) &&
1970 "SCEVUMaxExpr operand types don't match!");
1973 // Sort by complexity, this groups all similar expression types together.
1974 GroupByComplexity(Ops
, LI
);
1976 // If there are any constants, fold them together.
1978 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1980 assert(Idx
< Ops
.size());
1981 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1982 // We found two constants, fold them together!
1983 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1984 APIntOps::umax(LHSC
->getValue()->getValue(),
1985 RHSC
->getValue()->getValue()));
1986 Ops
[0] = getConstant(Fold
);
1987 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1988 if (Ops
.size() == 1) return Ops
[0];
1989 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1992 // If we are left with a constant minimum-int, strip it off.
1993 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(false)) {
1994 Ops
.erase(Ops
.begin());
1996 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(false)) {
1997 // If we have an umax with a constant maximum-int, it will always be
2003 if (Ops
.size() == 1) return Ops
[0];
2005 // Find the first UMax
2006 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scUMaxExpr
)
2009 // Check to see if one of the operands is a UMax. If so, expand its operands
2010 // onto our operand list, and recurse to simplify.
2011 if (Idx
< Ops
.size()) {
2012 bool DeletedUMax
= false;
2013 while (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(Ops
[Idx
])) {
2014 Ops
.insert(Ops
.end(), UMax
->op_begin(), UMax
->op_end());
2015 Ops
.erase(Ops
.begin()+Idx
);
2020 return getUMaxExpr(Ops
);
2023 // Okay, check to see if the same value occurs in the operand list twice. If
2024 // so, delete one. Since we sorted the list, these values are required to
2026 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
2027 if (Ops
[i
] == Ops
[i
+1]) { // X umax Y umax Y --> X umax Y
2028 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
2032 if (Ops
.size() == 1) return Ops
[0];
2034 assert(!Ops
.empty() && "Reduced umax down to nothing!");
2036 // Okay, it looks like we really DO need a umax expr. Check to see if we
2037 // already have one, otherwise create a new one.
2038 FoldingSetNodeID ID
;
2039 ID
.AddInteger(scUMaxExpr
);
2040 ID
.AddInteger(Ops
.size());
2041 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2042 ID
.AddPointer(Ops
[i
]);
2044 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2045 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUMaxExpr
>();
2046 new (S
) SCEVUMaxExpr(ID
, Ops
);
2047 UniqueSCEVs
.InsertNode(S
, IP
);
2051 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
2053 // ~smax(~x, ~y) == smin(x, y).
2054 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2057 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
,
2059 // ~umax(~x, ~y) == umin(x, y)
2060 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2063 const SCEV
*ScalarEvolution::getFieldOffsetExpr(const StructType
*STy
,
2065 // If we have TargetData we can determine the constant offset.
2067 const Type
*IntPtrTy
= TD
->getIntPtrType(getContext());
2068 const StructLayout
&SL
= *TD
->getStructLayout(STy
);
2069 uint64_t Offset
= SL
.getElementOffset(FieldNo
);
2070 return getIntegerSCEV(Offset
, IntPtrTy
);
2073 // Field 0 is always at offset 0.
2075 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(STy
));
2076 return getIntegerSCEV(0, Ty
);
2079 // Okay, it looks like we really DO need an offsetof expr. Check to see if we
2080 // already have one, otherwise create a new one.
2081 FoldingSetNodeID ID
;
2082 ID
.AddInteger(scFieldOffset
);
2084 ID
.AddInteger(FieldNo
);
2086 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2087 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVFieldOffsetExpr
>();
2088 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(STy
));
2089 new (S
) SCEVFieldOffsetExpr(ID
, Ty
, STy
, FieldNo
);
2090 UniqueSCEVs
.InsertNode(S
, IP
);
2094 const SCEV
*ScalarEvolution::getAllocSizeExpr(const Type
*AllocTy
) {
2095 // If we have TargetData we can determine the constant size.
2096 if (TD
&& AllocTy
->isSized()) {
2097 const Type
*IntPtrTy
= TD
->getIntPtrType(getContext());
2098 return getIntegerSCEV(TD
->getTypeAllocSize(AllocTy
), IntPtrTy
);
2101 // Expand an array size into the element size times the number
2103 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(AllocTy
)) {
2104 const SCEV
*E
= getAllocSizeExpr(ATy
->getElementType());
2106 E
, getConstant(ConstantInt::get(cast
<IntegerType
>(E
->getType()),
2107 ATy
->getNumElements())));
2110 // Expand a vector size into the element size times the number
2112 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(AllocTy
)) {
2113 const SCEV
*E
= getAllocSizeExpr(VTy
->getElementType());
2115 E
, getConstant(ConstantInt::get(cast
<IntegerType
>(E
->getType()),
2116 VTy
->getNumElements())));
2119 // Okay, it looks like we really DO need a sizeof expr. Check to see if we
2120 // already have one, otherwise create a new one.
2121 FoldingSetNodeID ID
;
2122 ID
.AddInteger(scAllocSize
);
2123 ID
.AddPointer(AllocTy
);
2125 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2126 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAllocSizeExpr
>();
2127 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(AllocTy
));
2128 new (S
) SCEVAllocSizeExpr(ID
, Ty
, AllocTy
);
2129 UniqueSCEVs
.InsertNode(S
, IP
);
2133 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
2134 // Don't attempt to do anything other than create a SCEVUnknown object
2135 // here. createSCEV only calls getUnknown after checking for all other
2136 // interesting possibilities, and any other code that calls getUnknown
2137 // is doing so in order to hide a value from SCEV canonicalization.
2139 FoldingSetNodeID ID
;
2140 ID
.AddInteger(scUnknown
);
2143 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2144 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUnknown
>();
2145 new (S
) SCEVUnknown(ID
, V
);
2146 UniqueSCEVs
.InsertNode(S
, IP
);
2150 //===----------------------------------------------------------------------===//
2151 // Basic SCEV Analysis and PHI Idiom Recognition Code
2154 /// isSCEVable - Test if values of the given type are analyzable within
2155 /// the SCEV framework. This primarily includes integer types, and it
2156 /// can optionally include pointer types if the ScalarEvolution class
2157 /// has access to target-specific information.
2158 bool ScalarEvolution::isSCEVable(const Type
*Ty
) const {
2159 // Integers and pointers are always SCEVable.
2160 return Ty
->isInteger() || isa
<PointerType
>(Ty
);
2163 /// getTypeSizeInBits - Return the size in bits of the specified type,
2164 /// for which isSCEVable must return true.
2165 uint64_t ScalarEvolution::getTypeSizeInBits(const Type
*Ty
) const {
2166 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2168 // If we have a TargetData, use it!
2170 return TD
->getTypeSizeInBits(Ty
);
2172 // Integer types have fixed sizes.
2173 if (Ty
->isInteger())
2174 return Ty
->getPrimitiveSizeInBits();
2176 // The only other support type is pointer. Without TargetData, conservatively
2177 // assume pointers are 64-bit.
2178 assert(isa
<PointerType
>(Ty
) && "isSCEVable permitted a non-SCEVable type!");
2182 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2183 /// the given type and which represents how SCEV will treat the given
2184 /// type, for which isSCEVable must return true. For pointer types,
2185 /// this is the pointer-sized integer type.
2186 const Type
*ScalarEvolution::getEffectiveSCEVType(const Type
*Ty
) const {
2187 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2189 if (Ty
->isInteger())
2192 // The only other support type is pointer.
2193 assert(isa
<PointerType
>(Ty
) && "Unexpected non-pointer non-integer type!");
2194 if (TD
) return TD
->getIntPtrType(getContext());
2196 // Without TargetData, conservatively assume pointers are 64-bit.
2197 return Type::getInt64Ty(getContext());
2200 const SCEV
*ScalarEvolution::getCouldNotCompute() {
2201 return &CouldNotCompute
;
2204 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2205 /// expression and create a new one.
2206 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
2207 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
2209 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator I
= Scalars
.find(V
);
2210 if (I
!= Scalars
.end()) return I
->second
;
2211 const SCEV
*S
= createSCEV(V
);
2212 Scalars
.insert(std::make_pair(SCEVCallbackVH(V
, this), S
));
2216 /// getIntegerSCEV - Given a SCEVable type, create a constant for the
2217 /// specified signed integer value and return a SCEV for the constant.
2218 const SCEV
*ScalarEvolution::getIntegerSCEV(int Val
, const Type
*Ty
) {
2219 const IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
2220 return getConstant(ConstantInt::get(ITy
, Val
));
2223 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2225 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
) {
2226 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2228 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
2230 const Type
*Ty
= V
->getType();
2231 Ty
= getEffectiveSCEVType(Ty
);
2232 return getMulExpr(V
,
2233 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
))));
2236 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2237 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
2238 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2240 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
2242 const Type
*Ty
= V
->getType();
2243 Ty
= getEffectiveSCEVType(Ty
);
2244 const SCEV
*AllOnes
=
2245 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
)));
2246 return getMinusSCEV(AllOnes
, V
);
2249 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2251 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
,
2254 return getAddExpr(LHS
, getNegativeSCEV(RHS
));
2257 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2258 /// input value to the specified type. If the type must be extended, it is zero
2261 ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
,
2263 const Type
*SrcTy
= V
->getType();
2264 assert((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
2265 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2266 "Cannot truncate or zero extend with non-integer arguments!");
2267 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2268 return V
; // No conversion
2269 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2270 return getTruncateExpr(V
, Ty
);
2271 return getZeroExtendExpr(V
, Ty
);
2274 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2275 /// input value to the specified type. If the type must be extended, it is sign
2278 ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
,
2280 const Type
*SrcTy
= V
->getType();
2281 assert((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
2282 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2283 "Cannot truncate or zero extend with non-integer arguments!");
2284 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2285 return V
; // No conversion
2286 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2287 return getTruncateExpr(V
, Ty
);
2288 return getSignExtendExpr(V
, Ty
);
2291 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2292 /// input value to the specified type. If the type must be extended, it is zero
2293 /// extended. The conversion must not be narrowing.
2295 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, const Type
*Ty
) {
2296 const Type
*SrcTy
= V
->getType();
2297 assert((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
2298 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2299 "Cannot noop or zero extend with non-integer arguments!");
2300 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2301 "getNoopOrZeroExtend cannot truncate!");
2302 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2303 return V
; // No conversion
2304 return getZeroExtendExpr(V
, Ty
);
2307 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2308 /// input value to the specified type. If the type must be extended, it is sign
2309 /// extended. The conversion must not be narrowing.
2311 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, const Type
*Ty
) {
2312 const Type
*SrcTy
= V
->getType();
2313 assert((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
2314 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2315 "Cannot noop or sign extend with non-integer arguments!");
2316 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2317 "getNoopOrSignExtend cannot truncate!");
2318 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2319 return V
; // No conversion
2320 return getSignExtendExpr(V
, Ty
);
2323 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2324 /// the input value to the specified type. If the type must be extended,
2325 /// it is extended with unspecified bits. The conversion must not be
2328 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, const Type
*Ty
) {
2329 const Type
*SrcTy
= V
->getType();
2330 assert((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
2331 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2332 "Cannot noop or any extend with non-integer arguments!");
2333 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2334 "getNoopOrAnyExtend cannot truncate!");
2335 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2336 return V
; // No conversion
2337 return getAnyExtendExpr(V
, Ty
);
2340 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2341 /// input value to the specified type. The conversion must not be widening.
2343 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, const Type
*Ty
) {
2344 const Type
*SrcTy
= V
->getType();
2345 assert((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
2346 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2347 "Cannot truncate or noop with non-integer arguments!");
2348 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
2349 "getTruncateOrNoop cannot extend!");
2350 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2351 return V
; // No conversion
2352 return getTruncateExpr(V
, Ty
);
2355 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2356 /// the types using zero-extension, and then perform a umax operation
2358 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
2360 const SCEV
*PromotedLHS
= LHS
;
2361 const SCEV
*PromotedRHS
= RHS
;
2363 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2364 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2366 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2368 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
2371 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2372 /// the types using zero-extension, and then perform a umin operation
2374 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
2376 const SCEV
*PromotedLHS
= LHS
;
2377 const SCEV
*PromotedRHS
= RHS
;
2379 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2380 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2382 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2384 return getUMinExpr(PromotedLHS
, PromotedRHS
);
2387 /// PushDefUseChildren - Push users of the given Instruction
2388 /// onto the given Worklist.
2390 PushDefUseChildren(Instruction
*I
,
2391 SmallVectorImpl
<Instruction
*> &Worklist
) {
2392 // Push the def-use children onto the Worklist stack.
2393 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
2395 Worklist
.push_back(cast
<Instruction
>(UI
));
2398 /// ForgetSymbolicValue - This looks up computed SCEV values for all
2399 /// instructions that depend on the given instruction and removes them from
2400 /// the Scalars map if they reference SymName. This is used during PHI
2403 ScalarEvolution::ForgetSymbolicName(Instruction
*I
, const SCEV
*SymName
) {
2404 SmallVector
<Instruction
*, 16> Worklist
;
2405 PushDefUseChildren(I
, Worklist
);
2407 SmallPtrSet
<Instruction
*, 8> Visited
;
2409 while (!Worklist
.empty()) {
2410 Instruction
*I
= Worklist
.pop_back_val();
2411 if (!Visited
.insert(I
)) continue;
2413 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
2414 Scalars
.find(static_cast<Value
*>(I
));
2415 if (It
!= Scalars
.end()) {
2416 // Short-circuit the def-use traversal if the symbolic name
2417 // ceases to appear in expressions.
2418 if (!It
->second
->hasOperand(SymName
))
2421 // SCEVUnknown for a PHI either means that it has an unrecognized
2422 // structure, or it's a PHI that's in the progress of being computed
2423 // by createNodeForPHI. In the former case, additional loop trip
2424 // count information isn't going to change anything. In the later
2425 // case, createNodeForPHI will perform the necessary updates on its
2426 // own when it gets to that point.
2427 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(It
->second
)) {
2428 ValuesAtScopes
.erase(It
->second
);
2433 PushDefUseChildren(I
, Worklist
);
2437 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2438 /// a loop header, making it a potential recurrence, or it doesn't.
2440 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
2441 if (PN
->getNumIncomingValues() == 2) // The loops have been canonicalized.
2442 if (const Loop
*L
= LI
->getLoopFor(PN
->getParent()))
2443 if (L
->getHeader() == PN
->getParent()) {
2444 // If it lives in the loop header, it has two incoming values, one
2445 // from outside the loop, and one from inside.
2446 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
2447 unsigned BackEdge
= IncomingEdge
^1;
2449 // While we are analyzing this PHI node, handle its value symbolically.
2450 const SCEV
*SymbolicName
= getUnknown(PN
);
2451 assert(Scalars
.find(PN
) == Scalars
.end() &&
2452 "PHI node already processed?");
2453 Scalars
.insert(std::make_pair(SCEVCallbackVH(PN
, this), SymbolicName
));
2455 // Using this symbolic name for the PHI, analyze the value coming around
2457 Value
*BEValueV
= PN
->getIncomingValue(BackEdge
);
2458 const SCEV
*BEValue
= getSCEV(BEValueV
);
2460 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2461 // has a special value for the first iteration of the loop.
2463 // If the value coming around the backedge is an add with the symbolic
2464 // value we just inserted, then we found a simple induction variable!
2465 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
2466 // If there is a single occurrence of the symbolic value, replace it
2467 // with a recurrence.
2468 unsigned FoundIndex
= Add
->getNumOperands();
2469 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2470 if (Add
->getOperand(i
) == SymbolicName
)
2471 if (FoundIndex
== e
) {
2476 if (FoundIndex
!= Add
->getNumOperands()) {
2477 // Create an add with everything but the specified operand.
2478 SmallVector
<const SCEV
*, 8> Ops
;
2479 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2480 if (i
!= FoundIndex
)
2481 Ops
.push_back(Add
->getOperand(i
));
2482 const SCEV
*Accum
= getAddExpr(Ops
);
2484 // This is not a valid addrec if the step amount is varying each
2485 // loop iteration, but is not itself an addrec in this loop.
2486 if (Accum
->isLoopInvariant(L
) ||
2487 (isa
<SCEVAddRecExpr
>(Accum
) &&
2488 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
2489 const SCEV
*StartVal
=
2490 getSCEV(PN
->getIncomingValue(IncomingEdge
));
2491 const SCEVAddRecExpr
*PHISCEV
=
2492 cast
<SCEVAddRecExpr
>(getAddRecExpr(StartVal
, Accum
, L
));
2494 // If the increment doesn't overflow, then neither the addrec nor the
2495 // post-increment will overflow.
2496 if (const AddOperator
*OBO
= dyn_cast
<AddOperator
>(BEValueV
))
2497 if (OBO
->getOperand(0) == PN
&&
2498 getSCEV(OBO
->getOperand(1)) ==
2499 PHISCEV
->getStepRecurrence(*this)) {
2500 const SCEVAddRecExpr
*PostInc
= PHISCEV
->getPostIncExpr(*this);
2501 if (OBO
->hasNoUnsignedWrap()) {
2502 const_cast<SCEVAddRecExpr
*>(PHISCEV
)
2503 ->setHasNoUnsignedWrap(true);
2504 const_cast<SCEVAddRecExpr
*>(PostInc
)
2505 ->setHasNoUnsignedWrap(true);
2507 if (OBO
->hasNoSignedWrap()) {
2508 const_cast<SCEVAddRecExpr
*>(PHISCEV
)
2509 ->setHasNoSignedWrap(true);
2510 const_cast<SCEVAddRecExpr
*>(PostInc
)
2511 ->setHasNoSignedWrap(true);
2515 // Okay, for the entire analysis of this edge we assumed the PHI
2516 // to be symbolic. We now need to go back and purge all of the
2517 // entries for the scalars that use the symbolic expression.
2518 ForgetSymbolicName(PN
, SymbolicName
);
2519 Scalars
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
2523 } else if (const SCEVAddRecExpr
*AddRec
=
2524 dyn_cast
<SCEVAddRecExpr
>(BEValue
)) {
2525 // Otherwise, this could be a loop like this:
2526 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2527 // In this case, j = {1,+,1} and BEValue is j.
2528 // Because the other in-value of i (0) fits the evolution of BEValue
2529 // i really is an addrec evolution.
2530 if (AddRec
->getLoop() == L
&& AddRec
->isAffine()) {
2531 const SCEV
*StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
2533 // If StartVal = j.start - j.stride, we can use StartVal as the
2534 // initial step of the addrec evolution.
2535 if (StartVal
== getMinusSCEV(AddRec
->getOperand(0),
2536 AddRec
->getOperand(1))) {
2537 const SCEV
*PHISCEV
=
2538 getAddRecExpr(StartVal
, AddRec
->getOperand(1), L
);
2540 // Okay, for the entire analysis of this edge we assumed the PHI
2541 // to be symbolic. We now need to go back and purge all of the
2542 // entries for the scalars that use the symbolic expression.
2543 ForgetSymbolicName(PN
, SymbolicName
);
2544 Scalars
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
2550 return SymbolicName
;
2553 // It's tempting to recognize PHIs with a unique incoming value, however
2554 // this leads passes like indvars to break LCSSA form. Fortunately, such
2555 // PHIs are rare, as instcombine zaps them.
2557 // If it's not a loop phi, we can't handle it yet.
2558 return getUnknown(PN
);
2561 /// createNodeForGEP - Expand GEP instructions into add and multiply
2562 /// operations. This allows them to be analyzed by regular SCEV code.
2564 const SCEV
*ScalarEvolution::createNodeForGEP(Operator
*GEP
) {
2566 const Type
*IntPtrTy
= getEffectiveSCEVType(GEP
->getType());
2567 Value
*Base
= GEP
->getOperand(0);
2568 // Don't attempt to analyze GEPs over unsized objects.
2569 if (!cast
<PointerType
>(Base
->getType())->getElementType()->isSized())
2570 return getUnknown(GEP
);
2571 const SCEV
*TotalOffset
= getIntegerSCEV(0, IntPtrTy
);
2572 gep_type_iterator GTI
= gep_type_begin(GEP
);
2573 for (GetElementPtrInst::op_iterator I
= next(GEP
->op_begin()),
2577 // Compute the (potentially symbolic) offset in bytes for this index.
2578 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
2579 // For a struct, add the member offset.
2580 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
2581 TotalOffset
= getAddExpr(TotalOffset
,
2582 getFieldOffsetExpr(STy
, FieldNo
));
2584 // For an array, add the element offset, explicitly scaled.
2585 const SCEV
*LocalOffset
= getSCEV(Index
);
2586 if (!isa
<PointerType
>(LocalOffset
->getType()))
2587 // Getelementptr indicies are signed.
2588 LocalOffset
= getTruncateOrSignExtend(LocalOffset
, IntPtrTy
);
2589 LocalOffset
= getMulExpr(LocalOffset
, getAllocSizeExpr(*GTI
));
2590 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
2593 return getAddExpr(getSCEV(Base
), TotalOffset
);
2596 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2597 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2598 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2599 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2601 ScalarEvolution::GetMinTrailingZeros(const SCEV
*S
) {
2602 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2603 return C
->getValue()->getValue().countTrailingZeros();
2605 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
2606 return std::min(GetMinTrailingZeros(T
->getOperand()),
2607 (uint32_t)getTypeSizeInBits(T
->getType()));
2609 if (const SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2610 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
2611 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
2612 getTypeSizeInBits(E
->getType()) : OpRes
;
2615 if (const SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2616 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
2617 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
2618 getTypeSizeInBits(E
->getType()) : OpRes
;
2621 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
2622 // The result is the min of all operands results.
2623 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
2624 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2625 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
2629 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
2630 // The result is the sum of all operands results.
2631 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2632 uint32_t BitWidth
= getTypeSizeInBits(M
->getType());
2633 for (unsigned i
= 1, e
= M
->getNumOperands();
2634 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
2635 SumOpRes
= std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
)),
2640 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2641 // The result is the min of all operands results.
2642 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
2643 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2644 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
2648 if (const SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2649 // The result is the min of all operands results.
2650 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2651 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2652 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
2656 if (const SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2657 // The result is the min of all operands results.
2658 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2659 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2660 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
2664 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2665 // For a SCEVUnknown, ask ValueTracking.
2666 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2667 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
2668 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
2669 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
);
2670 return Zeros
.countTrailingOnes();
2677 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2680 ScalarEvolution::getUnsignedRange(const SCEV
*S
) {
2682 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2683 return ConstantRange(C
->getValue()->getValue());
2685 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2686 ConstantRange X
= getUnsignedRange(Add
->getOperand(0));
2687 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2688 X
= X
.add(getUnsignedRange(Add
->getOperand(i
)));
2692 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2693 ConstantRange X
= getUnsignedRange(Mul
->getOperand(0));
2694 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
2695 X
= X
.multiply(getUnsignedRange(Mul
->getOperand(i
)));
2699 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2700 ConstantRange X
= getUnsignedRange(SMax
->getOperand(0));
2701 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
2702 X
= X
.smax(getUnsignedRange(SMax
->getOperand(i
)));
2706 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2707 ConstantRange X
= getUnsignedRange(UMax
->getOperand(0));
2708 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
2709 X
= X
.umax(getUnsignedRange(UMax
->getOperand(i
)));
2713 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2714 ConstantRange X
= getUnsignedRange(UDiv
->getLHS());
2715 ConstantRange Y
= getUnsignedRange(UDiv
->getRHS());
2719 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2720 ConstantRange X
= getUnsignedRange(ZExt
->getOperand());
2721 return X
.zeroExtend(cast
<IntegerType
>(ZExt
->getType())->getBitWidth());
2724 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2725 ConstantRange X
= getUnsignedRange(SExt
->getOperand());
2726 return X
.signExtend(cast
<IntegerType
>(SExt
->getType())->getBitWidth());
2729 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
2730 ConstantRange X
= getUnsignedRange(Trunc
->getOperand());
2731 return X
.truncate(cast
<IntegerType
>(Trunc
->getType())->getBitWidth());
2734 ConstantRange
FullSet(getTypeSizeInBits(S
->getType()), true);
2736 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2737 const SCEV
*T
= getBackedgeTakenCount(AddRec
->getLoop());
2738 const SCEVConstant
*Trip
= dyn_cast
<SCEVConstant
>(T
);
2739 if (!Trip
) return FullSet
;
2741 // TODO: non-affine addrec
2742 if (AddRec
->isAffine()) {
2743 const Type
*Ty
= AddRec
->getType();
2744 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
2745 if (getTypeSizeInBits(MaxBECount
->getType()) <= getTypeSizeInBits(Ty
)) {
2746 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
2748 const SCEV
*Start
= AddRec
->getStart();
2749 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
2750 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
2752 // Check for overflow.
2753 // TODO: This is very conservative.
2754 if (!(Step
->isOne() &&
2755 isKnownPredicate(ICmpInst::ICMP_ULT
, Start
, End
)) &&
2756 !(Step
->isAllOnesValue() &&
2757 isKnownPredicate(ICmpInst::ICMP_UGT
, Start
, End
)))
2760 ConstantRange StartRange
= getUnsignedRange(Start
);
2761 ConstantRange EndRange
= getUnsignedRange(End
);
2762 APInt Min
= APIntOps::umin(StartRange
.getUnsignedMin(),
2763 EndRange
.getUnsignedMin());
2764 APInt Max
= APIntOps::umax(StartRange
.getUnsignedMax(),
2765 EndRange
.getUnsignedMax());
2766 if (Min
.isMinValue() && Max
.isMaxValue())
2768 return ConstantRange(Min
, Max
+1);
2773 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2774 // For a SCEVUnknown, ask ValueTracking.
2775 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2776 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
2777 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
2778 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
, TD
);
2779 if (Ones
== ~Zeros
+ 1)
2781 return ConstantRange(Ones
, ~Zeros
+ 1);
2787 /// getSignedRange - Determine the signed range for a particular SCEV.
2790 ScalarEvolution::getSignedRange(const SCEV
*S
) {
2792 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2793 return ConstantRange(C
->getValue()->getValue());
2795 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2796 ConstantRange X
= getSignedRange(Add
->getOperand(0));
2797 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2798 X
= X
.add(getSignedRange(Add
->getOperand(i
)));
2802 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2803 ConstantRange X
= getSignedRange(Mul
->getOperand(0));
2804 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
2805 X
= X
.multiply(getSignedRange(Mul
->getOperand(i
)));
2809 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2810 ConstantRange X
= getSignedRange(SMax
->getOperand(0));
2811 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
2812 X
= X
.smax(getSignedRange(SMax
->getOperand(i
)));
2816 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2817 ConstantRange X
= getSignedRange(UMax
->getOperand(0));
2818 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
2819 X
= X
.umax(getSignedRange(UMax
->getOperand(i
)));
2823 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2824 ConstantRange X
= getSignedRange(UDiv
->getLHS());
2825 ConstantRange Y
= getSignedRange(UDiv
->getRHS());
2829 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2830 ConstantRange X
= getSignedRange(ZExt
->getOperand());
2831 return X
.zeroExtend(cast
<IntegerType
>(ZExt
->getType())->getBitWidth());
2834 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2835 ConstantRange X
= getSignedRange(SExt
->getOperand());
2836 return X
.signExtend(cast
<IntegerType
>(SExt
->getType())->getBitWidth());
2839 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
2840 ConstantRange X
= getSignedRange(Trunc
->getOperand());
2841 return X
.truncate(cast
<IntegerType
>(Trunc
->getType())->getBitWidth());
2844 ConstantRange
FullSet(getTypeSizeInBits(S
->getType()), true);
2846 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2847 const SCEV
*T
= getBackedgeTakenCount(AddRec
->getLoop());
2848 const SCEVConstant
*Trip
= dyn_cast
<SCEVConstant
>(T
);
2849 if (!Trip
) return FullSet
;
2851 // TODO: non-affine addrec
2852 if (AddRec
->isAffine()) {
2853 const Type
*Ty
= AddRec
->getType();
2854 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
2855 if (getTypeSizeInBits(MaxBECount
->getType()) <= getTypeSizeInBits(Ty
)) {
2856 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
2858 const SCEV
*Start
= AddRec
->getStart();
2859 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
2860 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
2862 // Check for overflow.
2863 // TODO: This is very conservative.
2864 if (!(Step
->isOne() &&
2865 isKnownPredicate(ICmpInst::ICMP_SLT
, Start
, End
)) &&
2866 !(Step
->isAllOnesValue() &&
2867 isKnownPredicate(ICmpInst::ICMP_SGT
, Start
, End
)))
2870 ConstantRange StartRange
= getSignedRange(Start
);
2871 ConstantRange EndRange
= getSignedRange(End
);
2872 APInt Min
= APIntOps::smin(StartRange
.getSignedMin(),
2873 EndRange
.getSignedMin());
2874 APInt Max
= APIntOps::smax(StartRange
.getSignedMax(),
2875 EndRange
.getSignedMax());
2876 if (Min
.isMinSignedValue() && Max
.isMaxSignedValue())
2878 return ConstantRange(Min
, Max
+1);
2883 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2884 // For a SCEVUnknown, ask ValueTracking.
2885 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2886 unsigned NS
= ComputeNumSignBits(U
->getValue(), TD
);
2890 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
2891 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1)+1);
2897 /// createSCEV - We know that there is no SCEV for the specified value.
2898 /// Analyze the expression.
2900 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
2901 if (!isSCEVable(V
->getType()))
2902 return getUnknown(V
);
2904 unsigned Opcode
= Instruction::UserOp1
;
2905 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
2906 Opcode
= I
->getOpcode();
2907 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
2908 Opcode
= CE
->getOpcode();
2909 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
2910 return getConstant(CI
);
2911 else if (isa
<ConstantPointerNull
>(V
))
2912 return getIntegerSCEV(0, V
->getType());
2913 else if (isa
<UndefValue
>(V
))
2914 return getIntegerSCEV(0, V
->getType());
2915 else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
2916 return GA
->mayBeOverridden() ? getUnknown(V
) : getSCEV(GA
->getAliasee());
2918 return getUnknown(V
);
2920 Operator
*U
= cast
<Operator
>(V
);
2922 case Instruction::Add
:
2923 return getAddExpr(getSCEV(U
->getOperand(0)),
2924 getSCEV(U
->getOperand(1)));
2925 case Instruction::Mul
:
2926 return getMulExpr(getSCEV(U
->getOperand(0)),
2927 getSCEV(U
->getOperand(1)));
2928 case Instruction::UDiv
:
2929 return getUDivExpr(getSCEV(U
->getOperand(0)),
2930 getSCEV(U
->getOperand(1)));
2931 case Instruction::Sub
:
2932 return getMinusSCEV(getSCEV(U
->getOperand(0)),
2933 getSCEV(U
->getOperand(1)));
2934 case Instruction::And
:
2935 // For an expression like x&255 that merely masks off the high bits,
2936 // use zext(trunc(x)) as the SCEV expression.
2937 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2938 if (CI
->isNullValue())
2939 return getSCEV(U
->getOperand(1));
2940 if (CI
->isAllOnesValue())
2941 return getSCEV(U
->getOperand(0));
2942 const APInt
&A
= CI
->getValue();
2944 // Instcombine's ShrinkDemandedConstant may strip bits out of
2945 // constants, obscuring what would otherwise be a low-bits mask.
2946 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2947 // knew about to reconstruct a low-bits mask value.
2948 unsigned LZ
= A
.countLeadingZeros();
2949 unsigned BitWidth
= A
.getBitWidth();
2950 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
2951 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
2952 ComputeMaskedBits(U
->getOperand(0), AllOnes
, KnownZero
, KnownOne
, TD
);
2954 APInt EffectiveMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
);
2956 if (LZ
!= 0 && !((~A
& ~KnownZero
) & EffectiveMask
))
2958 getZeroExtendExpr(getTruncateExpr(getSCEV(U
->getOperand(0)),
2959 IntegerType::get(getContext(), BitWidth
- LZ
)),
2964 case Instruction::Or
:
2965 // If the RHS of the Or is a constant, we may have something like:
2966 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2967 // optimizations will transparently handle this case.
2969 // In order for this transformation to be safe, the LHS must be of the
2970 // form X*(2^n) and the Or constant must be less than 2^n.
2971 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2972 const SCEV
*LHS
= getSCEV(U
->getOperand(0));
2973 const APInt
&CIVal
= CI
->getValue();
2974 if (GetMinTrailingZeros(LHS
) >=
2975 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros()))
2976 return getAddExpr(LHS
, getSCEV(U
->getOperand(1)));
2979 case Instruction::Xor
:
2980 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2981 // If the RHS of the xor is a signbit, then this is just an add.
2982 // Instcombine turns add of signbit into xor as a strength reduction step.
2983 if (CI
->getValue().isSignBit())
2984 return getAddExpr(getSCEV(U
->getOperand(0)),
2985 getSCEV(U
->getOperand(1)));
2987 // If the RHS of xor is -1, then this is a not operation.
2988 if (CI
->isAllOnesValue())
2989 return getNotSCEV(getSCEV(U
->getOperand(0)));
2991 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2992 // This is a variant of the check for xor with -1, and it handles
2993 // the case where instcombine has trimmed non-demanded bits out
2994 // of an xor with -1.
2995 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
->getOperand(0)))
2996 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2997 if (BO
->getOpcode() == Instruction::And
&&
2998 LCI
->getValue() == CI
->getValue())
2999 if (const SCEVZeroExtendExpr
*Z
=
3000 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(U
->getOperand(0)))) {
3001 const Type
*UTy
= U
->getType();
3002 const SCEV
*Z0
= Z
->getOperand();
3003 const Type
*Z0Ty
= Z0
->getType();
3004 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
3006 // If C is a low-bits mask, the zero extend is zerving to
3007 // mask off the high bits. Complement the operand and
3008 // re-apply the zext.
3009 if (APIntOps::isMask(Z0TySize
, CI
->getValue()))
3010 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
3012 // If C is a single bit, it may be in the sign-bit position
3013 // before the zero-extend. In this case, represent the xor
3014 // using an add, which is equivalent, and re-apply the zext.
3015 APInt Trunc
= APInt(CI
->getValue()).trunc(Z0TySize
);
3016 if (APInt(Trunc
).zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
3018 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
3024 case Instruction::Shl
:
3025 // Turn shift left of a constant amount into a multiply.
3026 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3027 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
3028 Constant
*X
= ConstantInt::get(getContext(),
3029 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
3030 return getMulExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
3034 case Instruction::LShr
:
3035 // Turn logical shift right of a constant into a unsigned divide.
3036 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3037 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
3038 Constant
*X
= ConstantInt::get(getContext(),
3039 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
3040 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
3044 case Instruction::AShr
:
3045 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3046 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
3047 if (Instruction
*L
= dyn_cast
<Instruction
>(U
->getOperand(0)))
3048 if (L
->getOpcode() == Instruction::Shl
&&
3049 L
->getOperand(1) == U
->getOperand(1)) {
3050 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
3051 uint64_t Amt
= BitWidth
- CI
->getZExtValue();
3052 if (Amt
== BitWidth
)
3053 return getSCEV(L
->getOperand(0)); // shift by zero --> noop
3055 return getIntegerSCEV(0, U
->getType()); // value is undefined
3057 getSignExtendExpr(getTruncateExpr(getSCEV(L
->getOperand(0)),
3058 IntegerType::get(getContext(), Amt
)),
3063 case Instruction::Trunc
:
3064 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
3066 case Instruction::ZExt
:
3067 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
3069 case Instruction::SExt
:
3070 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
3072 case Instruction::BitCast
:
3073 // BitCasts are no-op casts so we just eliminate the cast.
3074 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
3075 return getSCEV(U
->getOperand(0));
3078 // It's tempting to handle inttoptr and ptrtoint, however this can
3079 // lead to pointer expressions which cannot be expanded to GEPs
3080 // (because they may overflow). For now, the only pointer-typed
3081 // expressions we handle are GEPs and address literals.
3083 case Instruction::GetElementPtr
:
3084 return createNodeForGEP(U
);
3086 case Instruction::PHI
:
3087 return createNodeForPHI(cast
<PHINode
>(U
));
3089 case Instruction::Select
:
3090 // This could be a smax or umax that was lowered earlier.
3091 // Try to recover it.
3092 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0))) {
3093 Value
*LHS
= ICI
->getOperand(0);
3094 Value
*RHS
= ICI
->getOperand(1);
3095 switch (ICI
->getPredicate()) {
3096 case ICmpInst::ICMP_SLT
:
3097 case ICmpInst::ICMP_SLE
:
3098 std::swap(LHS
, RHS
);
3100 case ICmpInst::ICMP_SGT
:
3101 case ICmpInst::ICMP_SGE
:
3102 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
3103 return getSMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
3104 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
3105 return getSMinExpr(getSCEV(LHS
), getSCEV(RHS
));
3107 case ICmpInst::ICMP_ULT
:
3108 case ICmpInst::ICMP_ULE
:
3109 std::swap(LHS
, RHS
);
3111 case ICmpInst::ICMP_UGT
:
3112 case ICmpInst::ICMP_UGE
:
3113 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
3114 return getUMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
3115 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
3116 return getUMinExpr(getSCEV(LHS
), getSCEV(RHS
));
3118 case ICmpInst::ICMP_NE
:
3119 // n != 0 ? n : 1 -> umax(n, 1)
3120 if (LHS
== U
->getOperand(1) &&
3121 isa
<ConstantInt
>(U
->getOperand(2)) &&
3122 cast
<ConstantInt
>(U
->getOperand(2))->isOne() &&
3123 isa
<ConstantInt
>(RHS
) &&
3124 cast
<ConstantInt
>(RHS
)->isZero())
3125 return getUMaxExpr(getSCEV(LHS
), getSCEV(U
->getOperand(2)));
3127 case ICmpInst::ICMP_EQ
:
3128 // n == 0 ? 1 : n -> umax(n, 1)
3129 if (LHS
== U
->getOperand(2) &&
3130 isa
<ConstantInt
>(U
->getOperand(1)) &&
3131 cast
<ConstantInt
>(U
->getOperand(1))->isOne() &&
3132 isa
<ConstantInt
>(RHS
) &&
3133 cast
<ConstantInt
>(RHS
)->isZero())
3134 return getUMaxExpr(getSCEV(LHS
), getSCEV(U
->getOperand(1)));
3141 default: // We cannot analyze this expression.
3145 return getUnknown(V
);
3150 //===----------------------------------------------------------------------===//
3151 // Iteration Count Computation Code
3154 /// getBackedgeTakenCount - If the specified loop has a predictable
3155 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3156 /// object. The backedge-taken count is the number of times the loop header
3157 /// will be branched to from within the loop. This is one less than the
3158 /// trip count of the loop, since it doesn't count the first iteration,
3159 /// when the header is branched to from outside the loop.
3161 /// Note that it is not valid to call this method on a loop without a
3162 /// loop-invariant backedge-taken count (see
3163 /// hasLoopInvariantBackedgeTakenCount).
3165 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
3166 return getBackedgeTakenInfo(L
).Exact
;
3169 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3170 /// return the least SCEV value that is known never to be less than the
3171 /// actual backedge taken count.
3172 const SCEV
*ScalarEvolution::getMaxBackedgeTakenCount(const Loop
*L
) {
3173 return getBackedgeTakenInfo(L
).Max
;
3176 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3177 /// onto the given Worklist.
3179 PushLoopPHIs(const Loop
*L
, SmallVectorImpl
<Instruction
*> &Worklist
) {
3180 BasicBlock
*Header
= L
->getHeader();
3182 // Push all Loop-header PHIs onto the Worklist stack.
3183 for (BasicBlock::iterator I
= Header
->begin();
3184 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
3185 Worklist
.push_back(PN
);
3188 const ScalarEvolution::BackedgeTakenInfo
&
3189 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
3190 // Initially insert a CouldNotCompute for this loop. If the insertion
3191 // succeeds, procede to actually compute a backedge-taken count and
3192 // update the value. The temporary CouldNotCompute value tells SCEV
3193 // code elsewhere that it shouldn't attempt to request a new
3194 // backedge-taken count, which could result in infinite recursion.
3195 std::pair
<std::map
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
3196 BackedgeTakenCounts
.insert(std::make_pair(L
, getCouldNotCompute()));
3198 BackedgeTakenInfo ItCount
= ComputeBackedgeTakenCount(L
);
3199 if (ItCount
.Exact
!= getCouldNotCompute()) {
3200 assert(ItCount
.Exact
->isLoopInvariant(L
) &&
3201 ItCount
.Max
->isLoopInvariant(L
) &&
3202 "Computed trip count isn't loop invariant for loop!");
3203 ++NumTripCountsComputed
;
3205 // Update the value in the map.
3206 Pair
.first
->second
= ItCount
;
3208 if (ItCount
.Max
!= getCouldNotCompute())
3209 // Update the value in the map.
3210 Pair
.first
->second
= ItCount
;
3211 if (isa
<PHINode
>(L
->getHeader()->begin()))
3212 // Only count loops that have phi nodes as not being computable.
3213 ++NumTripCountsNotComputed
;
3216 // Now that we know more about the trip count for this loop, forget any
3217 // existing SCEV values for PHI nodes in this loop since they are only
3218 // conservative estimates made without the benefit of trip count
3219 // information. This is similar to the code in
3220 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3222 if (ItCount
.hasAnyInfo()) {
3223 SmallVector
<Instruction
*, 16> Worklist
;
3224 PushLoopPHIs(L
, Worklist
);
3226 SmallPtrSet
<Instruction
*, 8> Visited
;
3227 while (!Worklist
.empty()) {
3228 Instruction
*I
= Worklist
.pop_back_val();
3229 if (!Visited
.insert(I
)) continue;
3231 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
3232 Scalars
.find(static_cast<Value
*>(I
));
3233 if (It
!= Scalars
.end()) {
3234 // SCEVUnknown for a PHI either means that it has an unrecognized
3235 // structure, or it's a PHI that's in the progress of being computed
3236 // by createNodeForPHI. In the former case, additional loop trip
3237 // count information isn't going to change anything. In the later
3238 // case, createNodeForPHI will perform the necessary updates on its
3239 // own when it gets to that point.
3240 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(It
->second
)) {
3241 ValuesAtScopes
.erase(It
->second
);
3244 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3245 ConstantEvolutionLoopExitValue
.erase(PN
);
3248 PushDefUseChildren(I
, Worklist
);
3252 return Pair
.first
->second
;
3255 /// forgetLoopBackedgeTakenCount - This method should be called by the
3256 /// client when it has changed a loop in a way that may effect
3257 /// ScalarEvolution's ability to compute a trip count, or if the loop
3259 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop
*L
) {
3260 BackedgeTakenCounts
.erase(L
);
3262 SmallVector
<Instruction
*, 16> Worklist
;
3263 PushLoopPHIs(L
, Worklist
);
3265 SmallPtrSet
<Instruction
*, 8> Visited
;
3266 while (!Worklist
.empty()) {
3267 Instruction
*I
= Worklist
.pop_back_val();
3268 if (!Visited
.insert(I
)) continue;
3270 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
3271 Scalars
.find(static_cast<Value
*>(I
));
3272 if (It
!= Scalars
.end()) {
3273 ValuesAtScopes
.erase(It
->second
);
3275 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3276 ConstantEvolutionLoopExitValue
.erase(PN
);
3279 PushDefUseChildren(I
, Worklist
);
3283 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3284 /// of the specified loop will execute.
3285 ScalarEvolution::BackedgeTakenInfo
3286 ScalarEvolution::ComputeBackedgeTakenCount(const Loop
*L
) {
3287 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
3288 L
->getExitingBlocks(ExitingBlocks
);
3290 // Examine all exits and pick the most conservative values.
3291 const SCEV
*BECount
= getCouldNotCompute();
3292 const SCEV
*MaxBECount
= getCouldNotCompute();
3293 bool CouldNotComputeBECount
= false;
3294 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
3295 BackedgeTakenInfo NewBTI
=
3296 ComputeBackedgeTakenCountFromExit(L
, ExitingBlocks
[i
]);
3298 if (NewBTI
.Exact
== getCouldNotCompute()) {
3299 // We couldn't compute an exact value for this exit, so
3300 // we won't be able to compute an exact value for the loop.
3301 CouldNotComputeBECount
= true;
3302 BECount
= getCouldNotCompute();
3303 } else if (!CouldNotComputeBECount
) {
3304 if (BECount
== getCouldNotCompute())
3305 BECount
= NewBTI
.Exact
;
3307 BECount
= getUMinFromMismatchedTypes(BECount
, NewBTI
.Exact
);
3309 if (MaxBECount
== getCouldNotCompute())
3310 MaxBECount
= NewBTI
.Max
;
3311 else if (NewBTI
.Max
!= getCouldNotCompute())
3312 MaxBECount
= getUMinFromMismatchedTypes(MaxBECount
, NewBTI
.Max
);
3315 return BackedgeTakenInfo(BECount
, MaxBECount
);
3318 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3319 /// of the specified loop will execute if it exits via the specified block.
3320 ScalarEvolution::BackedgeTakenInfo
3321 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop
*L
,
3322 BasicBlock
*ExitingBlock
) {
3324 // Okay, we've chosen an exiting block. See what condition causes us to
3325 // exit at this block.
3327 // FIXME: we should be able to handle switch instructions (with a single exit)
3328 BranchInst
*ExitBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
3329 if (ExitBr
== 0) return getCouldNotCompute();
3330 assert(ExitBr
->isConditional() && "If unconditional, it can't be in loop!");
3332 // At this point, we know we have a conditional branch that determines whether
3333 // the loop is exited. However, we don't know if the branch is executed each
3334 // time through the loop. If not, then the execution count of the branch will
3335 // not be equal to the trip count of the loop.
3337 // Currently we check for this by checking to see if the Exit branch goes to
3338 // the loop header. If so, we know it will always execute the same number of
3339 // times as the loop. We also handle the case where the exit block *is* the
3340 // loop header. This is common for un-rotated loops.
3342 // If both of those tests fail, walk up the unique predecessor chain to the
3343 // header, stopping if there is an edge that doesn't exit the loop. If the
3344 // header is reached, the execution count of the branch will be equal to the
3345 // trip count of the loop.
3347 // More extensive analysis could be done to handle more cases here.
3349 if (ExitBr
->getSuccessor(0) != L
->getHeader() &&
3350 ExitBr
->getSuccessor(1) != L
->getHeader() &&
3351 ExitBr
->getParent() != L
->getHeader()) {
3352 // The simple checks failed, try climbing the unique predecessor chain
3353 // up to the header.
3355 for (BasicBlock
*BB
= ExitBr
->getParent(); BB
; ) {
3356 BasicBlock
*Pred
= BB
->getUniquePredecessor();
3358 return getCouldNotCompute();
3359 TerminatorInst
*PredTerm
= Pred
->getTerminator();
3360 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
) {
3361 BasicBlock
*PredSucc
= PredTerm
->getSuccessor(i
);
3364 // If the predecessor has a successor that isn't BB and isn't
3365 // outside the loop, assume the worst.
3366 if (L
->contains(PredSucc
))
3367 return getCouldNotCompute();
3369 if (Pred
== L
->getHeader()) {
3376 return getCouldNotCompute();
3379 // Procede to the next level to examine the exit condition expression.
3380 return ComputeBackedgeTakenCountFromExitCond(L
, ExitBr
->getCondition(),
3381 ExitBr
->getSuccessor(0),
3382 ExitBr
->getSuccessor(1));
3385 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3386 /// backedge of the specified loop will execute if its exit condition
3387 /// were a conditional branch of ExitCond, TBB, and FBB.
3388 ScalarEvolution::BackedgeTakenInfo
3389 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop
*L
,
3393 // Check if the controlling expression for this loop is an And or Or.
3394 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(ExitCond
)) {
3395 if (BO
->getOpcode() == Instruction::And
) {
3396 // Recurse on the operands of the and.
3397 BackedgeTakenInfo BTI0
=
3398 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
3399 BackedgeTakenInfo BTI1
=
3400 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
3401 const SCEV
*BECount
= getCouldNotCompute();
3402 const SCEV
*MaxBECount
= getCouldNotCompute();
3403 if (L
->contains(TBB
)) {
3404 // Both conditions must be true for the loop to continue executing.
3405 // Choose the less conservative count.
3406 if (BTI0
.Exact
== getCouldNotCompute() ||
3407 BTI1
.Exact
== getCouldNotCompute())
3408 BECount
= getCouldNotCompute();
3410 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3411 if (BTI0
.Max
== getCouldNotCompute())
3412 MaxBECount
= BTI1
.Max
;
3413 else if (BTI1
.Max
== getCouldNotCompute())
3414 MaxBECount
= BTI0
.Max
;
3416 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3418 // Both conditions must be true for the loop to exit.
3419 assert(L
->contains(FBB
) && "Loop block has no successor in loop!");
3420 if (BTI0
.Exact
!= getCouldNotCompute() &&
3421 BTI1
.Exact
!= getCouldNotCompute())
3422 BECount
= getUMaxFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3423 if (BTI0
.Max
!= getCouldNotCompute() &&
3424 BTI1
.Max
!= getCouldNotCompute())
3425 MaxBECount
= getUMaxFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3428 return BackedgeTakenInfo(BECount
, MaxBECount
);
3430 if (BO
->getOpcode() == Instruction::Or
) {
3431 // Recurse on the operands of the or.
3432 BackedgeTakenInfo BTI0
=
3433 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
3434 BackedgeTakenInfo BTI1
=
3435 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
3436 const SCEV
*BECount
= getCouldNotCompute();
3437 const SCEV
*MaxBECount
= getCouldNotCompute();
3438 if (L
->contains(FBB
)) {
3439 // Both conditions must be false for the loop to continue executing.
3440 // Choose the less conservative count.
3441 if (BTI0
.Exact
== getCouldNotCompute() ||
3442 BTI1
.Exact
== getCouldNotCompute())
3443 BECount
= getCouldNotCompute();
3445 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3446 if (BTI0
.Max
== getCouldNotCompute())
3447 MaxBECount
= BTI1
.Max
;
3448 else if (BTI1
.Max
== getCouldNotCompute())
3449 MaxBECount
= BTI0
.Max
;
3451 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3453 // Both conditions must be false for the loop to exit.
3454 assert(L
->contains(TBB
) && "Loop block has no successor in loop!");
3455 if (BTI0
.Exact
!= getCouldNotCompute() &&
3456 BTI1
.Exact
!= getCouldNotCompute())
3457 BECount
= getUMaxFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3458 if (BTI0
.Max
!= getCouldNotCompute() &&
3459 BTI1
.Max
!= getCouldNotCompute())
3460 MaxBECount
= getUMaxFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3463 return BackedgeTakenInfo(BECount
, MaxBECount
);
3467 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3468 // Procede to the next level to examine the icmp.
3469 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
))
3470 return ComputeBackedgeTakenCountFromExitCondICmp(L
, ExitCondICmp
, TBB
, FBB
);
3472 // If it's not an integer or pointer comparison then compute it the hard way.
3473 return ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
3476 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3477 /// backedge of the specified loop will execute if its exit condition
3478 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3479 ScalarEvolution::BackedgeTakenInfo
3480 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop
*L
,
3485 // If the condition was exit on true, convert the condition to exit on false
3486 ICmpInst::Predicate Cond
;
3487 if (!L
->contains(FBB
))
3488 Cond
= ExitCond
->getPredicate();
3490 Cond
= ExitCond
->getInversePredicate();
3492 // Handle common loops like: for (X = "string"; *X; ++X)
3493 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
3494 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
3496 ComputeLoadConstantCompareBackedgeTakenCount(LI
, RHS
, L
, Cond
);
3497 if (!isa
<SCEVCouldNotCompute
>(ItCnt
)) {
3498 unsigned BitWidth
= getTypeSizeInBits(ItCnt
->getType());
3499 return BackedgeTakenInfo(ItCnt
,
3500 isa
<SCEVConstant
>(ItCnt
) ? ItCnt
:
3501 getConstant(APInt::getMaxValue(BitWidth
)-1));
3505 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
3506 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
3508 // Try to evaluate any dependencies out of the loop.
3509 LHS
= getSCEVAtScope(LHS
, L
);
3510 RHS
= getSCEVAtScope(RHS
, L
);
3512 // At this point, we would like to compute how many iterations of the
3513 // loop the predicate will return true for these inputs.
3514 if (LHS
->isLoopInvariant(L
) && !RHS
->isLoopInvariant(L
)) {
3515 // If there is a loop-invariant, force it into the RHS.
3516 std::swap(LHS
, RHS
);
3517 Cond
= ICmpInst::getSwappedPredicate(Cond
);
3520 // If we have a comparison of a chrec against a constant, try to use value
3521 // ranges to answer this query.
3522 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
3523 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3524 if (AddRec
->getLoop() == L
) {
3525 // Form the constant range.
3526 ConstantRange
CompRange(
3527 ICmpInst::makeConstantRange(Cond
, RHSC
->getValue()->getValue()));
3529 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
3530 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
3534 case ICmpInst::ICMP_NE
: { // while (X != Y)
3535 // Convert to: while (X-Y != 0)
3536 const SCEV
*TC
= HowFarToZero(getMinusSCEV(LHS
, RHS
), L
);
3537 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
3540 case ICmpInst::ICMP_EQ
: { // while (X == Y)
3541 // Convert to: while (X-Y == 0)
3542 const SCEV
*TC
= HowFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
3543 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
3546 case ICmpInst::ICMP_SLT
: {
3547 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, true);
3548 if (BTI
.hasAnyInfo()) return BTI
;
3551 case ICmpInst::ICMP_SGT
: {
3552 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
3553 getNotSCEV(RHS
), L
, true);
3554 if (BTI
.hasAnyInfo()) return BTI
;
3557 case ICmpInst::ICMP_ULT
: {
3558 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, false);
3559 if (BTI
.hasAnyInfo()) return BTI
;
3562 case ICmpInst::ICMP_UGT
: {
3563 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
3564 getNotSCEV(RHS
), L
, false);
3565 if (BTI
.hasAnyInfo()) return BTI
;
3570 errs() << "ComputeBackedgeTakenCount ";
3571 if (ExitCond
->getOperand(0)->getType()->isUnsigned())
3572 errs() << "[unsigned] ";
3573 errs() << *LHS
<< " "
3574 << Instruction::getOpcodeName(Instruction::ICmp
)
3575 << " " << *RHS
<< "\n";
3580 ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
3583 static ConstantInt
*
3584 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
3585 ScalarEvolution
&SE
) {
3586 const SCEV
*InVal
= SE
.getConstant(C
);
3587 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
3588 assert(isa
<SCEVConstant
>(Val
) &&
3589 "Evaluation of SCEV at constant didn't fold correctly?");
3590 return cast
<SCEVConstant
>(Val
)->getValue();
3593 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3594 /// and a GEP expression (missing the pointer index) indexing into it, return
3595 /// the addressed element of the initializer or null if the index expression is
3598 GetAddressedElementFromGlobal(LLVMContext
&Context
, GlobalVariable
*GV
,
3599 const std::vector
<ConstantInt
*> &Indices
) {
3600 Constant
*Init
= GV
->getInitializer();
3601 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
) {
3602 uint64_t Idx
= Indices
[i
]->getZExtValue();
3603 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
3604 assert(Idx
< CS
->getNumOperands() && "Bad struct index!");
3605 Init
= cast
<Constant
>(CS
->getOperand(Idx
));
3606 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
3607 if (Idx
>= CA
->getNumOperands()) return 0; // Bogus program
3608 Init
= cast
<Constant
>(CA
->getOperand(Idx
));
3609 } else if (isa
<ConstantAggregateZero
>(Init
)) {
3610 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
3611 assert(Idx
< STy
->getNumElements() && "Bad struct index!");
3612 Init
= Constant::getNullValue(STy
->getElementType(Idx
));
3613 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType())) {
3614 if (Idx
>= ATy
->getNumElements()) return 0; // Bogus program
3615 Init
= Constant::getNullValue(ATy
->getElementType());
3617 llvm_unreachable("Unknown constant aggregate type!");
3621 return 0; // Unknown initializer type
3627 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3628 /// 'icmp op load X, cst', try to see if we can compute the backedge
3629 /// execution count.
3631 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3635 ICmpInst::Predicate predicate
) {
3636 if (LI
->isVolatile()) return getCouldNotCompute();
3638 // Check to see if the loaded pointer is a getelementptr of a global.
3639 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
3640 if (!GEP
) return getCouldNotCompute();
3642 // Make sure that it is really a constant global we are gepping, with an
3643 // initializer, and make sure the first IDX is really 0.
3644 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
3645 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
3646 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
3647 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
3648 return getCouldNotCompute();
3650 // Okay, we allow one non-constant index into the GEP instruction.
3652 std::vector
<ConstantInt
*> Indexes
;
3653 unsigned VarIdxNum
= 0;
3654 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
3655 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
3656 Indexes
.push_back(CI
);
3657 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
3658 if (VarIdx
) return getCouldNotCompute(); // Multiple non-constant idx's.
3659 VarIdx
= GEP
->getOperand(i
);
3661 Indexes
.push_back(0);
3664 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3665 // Check to see if X is a loop variant variable value now.
3666 const SCEV
*Idx
= getSCEV(VarIdx
);
3667 Idx
= getSCEVAtScope(Idx
, L
);
3669 // We can only recognize very limited forms of loop index expressions, in
3670 // particular, only affine AddRec's like {C1,+,C2}.
3671 const SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
3672 if (!IdxExpr
|| !IdxExpr
->isAffine() || IdxExpr
->isLoopInvariant(L
) ||
3673 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
3674 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
3675 return getCouldNotCompute();
3677 unsigned MaxSteps
= MaxBruteForceIterations
;
3678 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
3679 ConstantInt
*ItCst
= ConstantInt::get(
3680 cast
<IntegerType
>(IdxExpr
->getType()), IterationNum
);
3681 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
3683 // Form the GEP offset.
3684 Indexes
[VarIdxNum
] = Val
;
3686 Constant
*Result
= GetAddressedElementFromGlobal(getContext(), GV
, Indexes
);
3687 if (Result
== 0) break; // Cannot compute!
3689 // Evaluate the condition for this iteration.
3690 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
3691 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
3692 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
3694 errs() << "\n***\n*** Computed loop count " << *ItCst
3695 << "\n*** From global " << *GV
<< "*** BB: " << *L
->getHeader()
3698 ++NumArrayLenItCounts
;
3699 return getConstant(ItCst
); // Found terminating iteration!
3702 return getCouldNotCompute();
3706 /// CanConstantFold - Return true if we can constant fold an instruction of the
3707 /// specified type, assuming that all operands were constants.
3708 static bool CanConstantFold(const Instruction
*I
) {
3709 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
3710 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
))
3713 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
3714 if (const Function
*F
= CI
->getCalledFunction())
3715 return canConstantFoldCallTo(F
);
3719 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3720 /// in the loop that V is derived from. We allow arbitrary operations along the
3721 /// way, but the operands of an operation must either be constants or a value
3722 /// derived from a constant PHI. If this expression does not fit with these
3723 /// constraints, return null.
3724 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
3725 // If this is not an instruction, or if this is an instruction outside of the
3726 // loop, it can't be derived from a loop PHI.
3727 Instruction
*I
= dyn_cast
<Instruction
>(V
);
3728 if (I
== 0 || !L
->contains(I
->getParent())) return 0;
3730 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
3731 if (L
->getHeader() == I
->getParent())
3734 // We don't currently keep track of the control flow needed to evaluate
3735 // PHIs, so we cannot handle PHIs inside of loops.
3739 // If we won't be able to constant fold this expression even if the operands
3740 // are constants, return early.
3741 if (!CanConstantFold(I
)) return 0;
3743 // Otherwise, we can evaluate this instruction if all of its operands are
3744 // constant or derived from a PHI node themselves.
3746 for (unsigned Op
= 0, e
= I
->getNumOperands(); Op
!= e
; ++Op
)
3747 if (!(isa
<Constant
>(I
->getOperand(Op
)) ||
3748 isa
<GlobalValue
>(I
->getOperand(Op
)))) {
3749 PHINode
*P
= getConstantEvolvingPHI(I
->getOperand(Op
), L
);
3750 if (P
== 0) return 0; // Not evolving from PHI
3754 return 0; // Evolving from multiple different PHIs.
3757 // This is a expression evolving from a constant PHI!
3761 /// EvaluateExpression - Given an expression that passes the
3762 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3763 /// in the loop has the value PHIVal. If we can't fold this expression for some
3764 /// reason, return null.
3765 static Constant
*EvaluateExpression(Value
*V
, Constant
*PHIVal
) {
3766 if (isa
<PHINode
>(V
)) return PHIVal
;
3767 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
3768 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) return GV
;
3769 Instruction
*I
= cast
<Instruction
>(V
);
3770 LLVMContext
&Context
= I
->getParent()->getContext();
3772 std::vector
<Constant
*> Operands
;
3773 Operands
.resize(I
->getNumOperands());
3775 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3776 Operands
[i
] = EvaluateExpression(I
->getOperand(i
), PHIVal
);
3777 if (Operands
[i
] == 0) return 0;
3780 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
3781 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
3782 &Operands
[0], Operands
.size(),
3785 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
3786 &Operands
[0], Operands
.size(),
3790 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3791 /// in the header of its containing loop, we know the loop executes a
3792 /// constant number of times, and the PHI node is just a recurrence
3793 /// involving constants, fold it.
3795 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
3798 std::map
<PHINode
*, Constant
*>::iterator I
=
3799 ConstantEvolutionLoopExitValue
.find(PN
);
3800 if (I
!= ConstantEvolutionLoopExitValue
.end())
3803 if (BEs
.ugt(APInt(BEs
.getBitWidth(),MaxBruteForceIterations
)))
3804 return ConstantEvolutionLoopExitValue
[PN
] = 0; // Not going to evaluate it.
3806 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
3808 // Since the loop is canonicalized, the PHI node must have two entries. One
3809 // entry must be a constant (coming in from outside of the loop), and the
3810 // second must be derived from the same PHI.
3811 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
3812 Constant
*StartCST
=
3813 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
3815 return RetVal
= 0; // Must be a constant.
3817 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
3818 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
3820 return RetVal
= 0; // Not derived from same PHI.
3822 // Execute the loop symbolically to determine the exit value.
3823 if (BEs
.getActiveBits() >= 32)
3824 return RetVal
= 0; // More than 2^32-1 iterations?? Not doing it!
3826 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
3827 unsigned IterationNum
= 0;
3828 for (Constant
*PHIVal
= StartCST
; ; ++IterationNum
) {
3829 if (IterationNum
== NumIterations
)
3830 return RetVal
= PHIVal
; // Got exit value!
3832 // Compute the value of the PHI node for the next iteration.
3833 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
3834 if (NextPHI
== PHIVal
)
3835 return RetVal
= NextPHI
; // Stopped evolving!
3837 return 0; // Couldn't evaluate!
3842 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3843 /// constant number of times (the condition evolves only from constants),
3844 /// try to evaluate a few iterations of the loop until we get the exit
3845 /// condition gets a value of ExitWhen (true or false). If we cannot
3846 /// evaluate the trip count of the loop, return getCouldNotCompute().
3848 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop
*L
,
3851 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
3852 if (PN
== 0) return getCouldNotCompute();
3854 // Since the loop is canonicalized, the PHI node must have two entries. One
3855 // entry must be a constant (coming in from outside of the loop), and the
3856 // second must be derived from the same PHI.
3857 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
3858 Constant
*StartCST
=
3859 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
3860 if (StartCST
== 0) return getCouldNotCompute(); // Must be a constant.
3862 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
3863 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
3864 if (PN2
!= PN
) return getCouldNotCompute(); // Not derived from same PHI.
3866 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3867 // the loop symbolically to determine when the condition gets a value of
3869 unsigned IterationNum
= 0;
3870 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
3871 for (Constant
*PHIVal
= StartCST
;
3872 IterationNum
!= MaxIterations
; ++IterationNum
) {
3873 ConstantInt
*CondVal
=
3874 dyn_cast_or_null
<ConstantInt
>(EvaluateExpression(Cond
, PHIVal
));
3876 // Couldn't symbolically evaluate.
3877 if (!CondVal
) return getCouldNotCompute();
3879 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
3880 ++NumBruteForceTripCountsComputed
;
3881 return getConstant(Type::getInt32Ty(getContext()), IterationNum
);
3884 // Compute the value of the PHI node for the next iteration.
3885 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
3886 if (NextPHI
== 0 || NextPHI
== PHIVal
)
3887 return getCouldNotCompute();// Couldn't evaluate or not making progress...
3891 // Too many iterations were needed to evaluate.
3892 return getCouldNotCompute();
3895 /// getSCEVAtScope - Return a SCEV expression for the specified value
3896 /// at the specified scope in the program. The L value specifies a loop
3897 /// nest to evaluate the expression at, where null is the top-level or a
3898 /// specified loop is immediately inside of the loop.
3900 /// This method can be used to compute the exit value for a variable defined
3901 /// in a loop by querying what the value will hold in the parent loop.
3903 /// In the case that a relevant loop exit value cannot be computed, the
3904 /// original value V is returned.
3905 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
3906 // Check to see if we've folded this expression at this loop before.
3907 std::map
<const Loop
*, const SCEV
*> &Values
= ValuesAtScopes
[V
];
3908 std::pair
<std::map
<const Loop
*, const SCEV
*>::iterator
, bool> Pair
=
3909 Values
.insert(std::make_pair(L
, static_cast<const SCEV
*>(0)));
3911 return Pair
.first
->second
? Pair
.first
->second
: V
;
3913 // Otherwise compute it.
3914 const SCEV
*C
= computeSCEVAtScope(V
, L
);
3915 ValuesAtScopes
[V
][L
] = C
;
3919 const SCEV
*ScalarEvolution::computeSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
3920 if (isa
<SCEVConstant
>(V
)) return V
;
3922 // If this instruction is evolved from a constant-evolving PHI, compute the
3923 // exit value from the loop without using SCEVs.
3924 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
3925 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
3926 const Loop
*LI
= (*this->LI
)[I
->getParent()];
3927 if (LI
&& LI
->getParentLoop() == L
) // Looking for loop exit value.
3928 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3929 if (PN
->getParent() == LI
->getHeader()) {
3930 // Okay, there is no closed form solution for the PHI node. Check
3931 // to see if the loop that contains it has a known backedge-taken
3932 // count. If so, we may be able to force computation of the exit
3934 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(LI
);
3935 if (const SCEVConstant
*BTCC
=
3936 dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
3937 // Okay, we know how many times the containing loop executes. If
3938 // this is a constant evolving PHI node, get the final value at
3939 // the specified iteration number.
3940 Constant
*RV
= getConstantEvolutionLoopExitValue(PN
,
3941 BTCC
->getValue()->getValue(),
3943 if (RV
) return getSCEV(RV
);
3947 // Okay, this is an expression that we cannot symbolically evaluate
3948 // into a SCEV. Check to see if it's possible to symbolically evaluate
3949 // the arguments into constants, and if so, try to constant propagate the
3950 // result. This is particularly useful for computing loop exit values.
3951 if (CanConstantFold(I
)) {
3952 std::vector
<Constant
*> Operands
;
3953 Operands
.reserve(I
->getNumOperands());
3954 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3955 Value
*Op
= I
->getOperand(i
);
3956 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
3957 Operands
.push_back(C
);
3959 // If any of the operands is non-constant and if they are
3960 // non-integer and non-pointer, don't even try to analyze them
3961 // with scev techniques.
3962 if (!isSCEVable(Op
->getType()))
3965 const SCEV
* OpV
= getSCEVAtScope(Op
, L
);
3966 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(OpV
)) {
3967 Constant
*C
= SC
->getValue();
3968 if (C
->getType() != Op
->getType())
3969 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3973 Operands
.push_back(C
);
3974 } else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(OpV
)) {
3975 if (Constant
*C
= dyn_cast
<Constant
>(SU
->getValue())) {
3976 if (C
->getType() != Op
->getType())
3978 ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3982 Operands
.push_back(C
);
3992 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
3993 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(),
3994 &Operands
[0], Operands
.size(),
3997 C
= ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
3998 &Operands
[0], Operands
.size(),
4004 // This is some other type of SCEVUnknown, just return it.
4008 if (const SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
4009 // Avoid performing the look-up in the common case where the specified
4010 // expression has no loop-variant portions.
4011 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
4012 const SCEV
*OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
4013 if (OpAtScope
!= Comm
->getOperand(i
)) {
4014 // Okay, at least one of these operands is loop variant but might be
4015 // foldable. Build a new instance of the folded commutative expression.
4016 SmallVector
<const SCEV
*, 8> NewOps(Comm
->op_begin(),
4017 Comm
->op_begin()+i
);
4018 NewOps
.push_back(OpAtScope
);
4020 for (++i
; i
!= e
; ++i
) {
4021 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
4022 NewOps
.push_back(OpAtScope
);
4024 if (isa
<SCEVAddExpr
>(Comm
))
4025 return getAddExpr(NewOps
);
4026 if (isa
<SCEVMulExpr
>(Comm
))
4027 return getMulExpr(NewOps
);
4028 if (isa
<SCEVSMaxExpr
>(Comm
))
4029 return getSMaxExpr(NewOps
);
4030 if (isa
<SCEVUMaxExpr
>(Comm
))
4031 return getUMaxExpr(NewOps
);
4032 llvm_unreachable("Unknown commutative SCEV type!");
4035 // If we got here, all operands are loop invariant.
4039 if (const SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
4040 const SCEV
*LHS
= getSCEVAtScope(Div
->getLHS(), L
);
4041 const SCEV
*RHS
= getSCEVAtScope(Div
->getRHS(), L
);
4042 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
4043 return Div
; // must be loop invariant
4044 return getUDivExpr(LHS
, RHS
);
4047 // If this is a loop recurrence for a loop that does not contain L, then we
4048 // are dealing with the final value computed by the loop.
4049 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
4050 if (!L
|| !AddRec
->getLoop()->contains(L
->getHeader())) {
4051 // To evaluate this recurrence, we need to know how many times the AddRec
4052 // loop iterates. Compute this now.
4053 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
4054 if (BackedgeTakenCount
== getCouldNotCompute()) return AddRec
;
4056 // Then, evaluate the AddRec.
4057 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
4062 if (const SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
4063 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
4064 if (Op
== Cast
->getOperand())
4065 return Cast
; // must be loop invariant
4066 return getZeroExtendExpr(Op
, Cast
->getType());
4069 if (const SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
4070 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
4071 if (Op
== Cast
->getOperand())
4072 return Cast
; // must be loop invariant
4073 return getSignExtendExpr(Op
, Cast
->getType());
4076 if (const SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
4077 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
4078 if (Op
== Cast
->getOperand())
4079 return Cast
; // must be loop invariant
4080 return getTruncateExpr(Op
, Cast
->getType());
4083 if (isa
<SCEVTargetDataConstant
>(V
))
4086 llvm_unreachable("Unknown SCEV type!");
4090 /// getSCEVAtScope - This is a convenience function which does
4091 /// getSCEVAtScope(getSCEV(V), L).
4092 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
4093 return getSCEVAtScope(getSCEV(V
), L
);
4096 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4097 /// following equation:
4099 /// A * X = B (mod N)
4101 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4102 /// A and B isn't important.
4104 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4105 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const APInt
&B
,
4106 ScalarEvolution
&SE
) {
4107 uint32_t BW
= A
.getBitWidth();
4108 assert(BW
== B
.getBitWidth() && "Bit widths must be the same.");
4109 assert(A
!= 0 && "A must be non-zero.");
4113 // The gcd of A and N may have only one prime factor: 2. The number of
4114 // trailing zeros in A is its multiplicity
4115 uint32_t Mult2
= A
.countTrailingZeros();
4118 // 2. Check if B is divisible by D.
4120 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4121 // is not less than multiplicity of this prime factor for D.
4122 if (B
.countTrailingZeros() < Mult2
)
4123 return SE
.getCouldNotCompute();
4125 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4128 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4129 // bit width during computations.
4130 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
4131 APInt
Mod(BW
+ 1, 0);
4132 Mod
.set(BW
- Mult2
); // Mod = N / D
4133 APInt I
= AD
.multiplicativeInverse(Mod
);
4135 // 4. Compute the minimum unsigned root of the equation:
4136 // I * (B / D) mod (N / D)
4137 APInt Result
= (I
* B
.lshr(Mult2
).zext(BW
+ 1)).urem(Mod
);
4139 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4141 return SE
.getConstant(Result
.trunc(BW
));
4144 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4145 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4146 /// might be the same) or two SCEVCouldNotCompute objects.
4148 static std::pair
<const SCEV
*,const SCEV
*>
4149 SolveQuadraticEquation(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
4150 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
4151 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
4152 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
4153 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
4155 // We currently can only solve this if the coefficients are constants.
4156 if (!LC
|| !MC
|| !NC
) {
4157 const SCEV
*CNC
= SE
.getCouldNotCompute();
4158 return std::make_pair(CNC
, CNC
);
4161 uint32_t BitWidth
= LC
->getValue()->getValue().getBitWidth();
4162 const APInt
&L
= LC
->getValue()->getValue();
4163 const APInt
&M
= MC
->getValue()->getValue();
4164 const APInt
&N
= NC
->getValue()->getValue();
4165 APInt
Two(BitWidth
, 2);
4166 APInt
Four(BitWidth
, 4);
4169 using namespace APIntOps
;
4171 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4172 // The B coefficient is M-N/2
4176 // The A coefficient is N/2
4177 APInt
A(N
.sdiv(Two
));
4179 // Compute the B^2-4ac term.
4182 SqrtTerm
-= Four
* (A
* C
);
4184 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4185 // integer value or else APInt::sqrt() will assert.
4186 APInt
SqrtVal(SqrtTerm
.sqrt());
4188 // Compute the two solutions for the quadratic formula.
4189 // The divisions must be performed as signed divisions.
4191 APInt
TwoA( A
<< 1 );
4192 if (TwoA
.isMinValue()) {
4193 const SCEV
*CNC
= SE
.getCouldNotCompute();
4194 return std::make_pair(CNC
, CNC
);
4197 LLVMContext
&Context
= SE
.getContext();
4199 ConstantInt
*Solution1
=
4200 ConstantInt::get(Context
, (NegB
+ SqrtVal
).sdiv(TwoA
));
4201 ConstantInt
*Solution2
=
4202 ConstantInt::get(Context
, (NegB
- SqrtVal
).sdiv(TwoA
));
4204 return std::make_pair(SE
.getConstant(Solution1
),
4205 SE
.getConstant(Solution2
));
4206 } // end APIntOps namespace
4209 /// HowFarToZero - Return the number of times a backedge comparing the specified
4210 /// value to zero will execute. If not computable, return CouldNotCompute.
4211 const SCEV
*ScalarEvolution::HowFarToZero(const SCEV
*V
, const Loop
*L
) {
4212 // If the value is a constant
4213 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4214 // If the value is already zero, the branch will execute zero times.
4215 if (C
->getValue()->isZero()) return C
;
4216 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4219 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
);
4220 if (!AddRec
|| AddRec
->getLoop() != L
)
4221 return getCouldNotCompute();
4223 if (AddRec
->isAffine()) {
4224 // If this is an affine expression, the execution count of this branch is
4225 // the minimum unsigned root of the following equation:
4227 // Start + Step*N = 0 (mod 2^BW)
4231 // Step*N = -Start (mod 2^BW)
4233 // where BW is the common bit width of Start and Step.
4235 // Get the initial value for the loop.
4236 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(),
4237 L
->getParentLoop());
4238 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1),
4239 L
->getParentLoop());
4241 if (const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
)) {
4242 // For now we handle only constant steps.
4244 // First, handle unitary steps.
4245 if (StepC
->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4246 return getNegativeSCEV(Start
); // N = -Start (as unsigned)
4247 if (StepC
->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4248 return Start
; // N = Start (as unsigned)
4250 // Then, try to solve the above equation provided that Start is constant.
4251 if (const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
))
4252 return SolveLinEquationWithOverflow(StepC
->getValue()->getValue(),
4253 -StartC
->getValue()->getValue(),
4256 } else if (AddRec
->isQuadratic() && AddRec
->getType()->isInteger()) {
4257 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4258 // the quadratic equation to solve it.
4259 std::pair
<const SCEV
*,const SCEV
*> Roots
= SolveQuadraticEquation(AddRec
,
4261 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4262 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4265 errs() << "HFTZ: " << *V
<< " - sol#1: " << *R1
4266 << " sol#2: " << *R2
<< "\n";
4268 // Pick the smallest positive root value.
4269 if (ConstantInt
*CB
=
4270 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
4271 R1
->getValue(), R2
->getValue()))) {
4272 if (CB
->getZExtValue() == false)
4273 std::swap(R1
, R2
); // R1 is the minimum root now.
4275 // We can only use this value if the chrec ends up with an exact zero
4276 // value at this index. When solving for "X*X != 5", for example, we
4277 // should not accept a root of 2.
4278 const SCEV
*Val
= AddRec
->evaluateAtIteration(R1
, *this);
4280 return R1
; // We found a quadratic root!
4285 return getCouldNotCompute();
4288 /// HowFarToNonZero - Return the number of times a backedge checking the
4289 /// specified value for nonzero will execute. If not computable, return
4291 const SCEV
*ScalarEvolution::HowFarToNonZero(const SCEV
*V
, const Loop
*L
) {
4292 // Loops that look like: while (X == 0) are very strange indeed. We don't
4293 // handle them yet except for the trivial case. This could be expanded in the
4294 // future as needed.
4296 // If the value is a constant, check to see if it is known to be non-zero
4297 // already. If so, the backedge will execute zero times.
4298 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4299 if (!C
->getValue()->isNullValue())
4300 return getIntegerSCEV(0, C
->getType());
4301 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4304 // We could implement others, but I really doubt anyone writes loops like
4305 // this, and if they did, they would already be constant folded.
4306 return getCouldNotCompute();
4309 /// getLoopPredecessor - If the given loop's header has exactly one unique
4310 /// predecessor outside the loop, return it. Otherwise return null.
4312 BasicBlock
*ScalarEvolution::getLoopPredecessor(const Loop
*L
) {
4313 BasicBlock
*Header
= L
->getHeader();
4314 BasicBlock
*Pred
= 0;
4315 for (pred_iterator PI
= pred_begin(Header
), E
= pred_end(Header
);
4317 if (!L
->contains(*PI
)) {
4318 if (Pred
&& Pred
!= *PI
) return 0; // Multiple predecessors.
4324 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4325 /// (which may not be an immediate predecessor) which has exactly one
4326 /// successor from which BB is reachable, or null if no such block is
4330 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
4331 // If the block has a unique predecessor, then there is no path from the
4332 // predecessor to the block that does not go through the direct edge
4333 // from the predecessor to the block.
4334 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
4337 // A loop's header is defined to be a block that dominates the loop.
4338 // If the header has a unique predecessor outside the loop, it must be
4339 // a block that has exactly one successor that can reach the loop.
4340 if (Loop
*L
= LI
->getLoopFor(BB
))
4341 return getLoopPredecessor(L
);
4346 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4347 /// testing whether two expressions are equal, however for the purposes of
4348 /// looking for a condition guarding a loop, it can be useful to be a little
4349 /// more general, since a front-end may have replicated the controlling
4352 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
4353 // Quick check to see if they are the same SCEV.
4354 if (A
== B
) return true;
4356 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4357 // two different instructions with the same value. Check for this case.
4358 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
4359 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
4360 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
4361 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
4362 if (AI
->isIdenticalTo(BI
) && !AI
->mayReadFromMemory())
4365 // Otherwise assume they may have a different value.
4369 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
4370 return getSignedRange(S
).getSignedMax().isNegative();
4373 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
4374 return getSignedRange(S
).getSignedMin().isStrictlyPositive();
4377 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
4378 return !getSignedRange(S
).getSignedMin().isNegative();
4381 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
4382 return !getSignedRange(S
).getSignedMax().isStrictlyPositive();
4385 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
4386 return isKnownNegative(S
) || isKnownPositive(S
);
4389 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
4390 const SCEV
*LHS
, const SCEV
*RHS
) {
4392 if (HasSameValue(LHS
, RHS
))
4393 return ICmpInst::isTrueWhenEqual(Pred
);
4397 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4399 case ICmpInst::ICMP_SGT
:
4400 Pred
= ICmpInst::ICMP_SLT
;
4401 std::swap(LHS
, RHS
);
4402 case ICmpInst::ICMP_SLT
: {
4403 ConstantRange LHSRange
= getSignedRange(LHS
);
4404 ConstantRange RHSRange
= getSignedRange(RHS
);
4405 if (LHSRange
.getSignedMax().slt(RHSRange
.getSignedMin()))
4407 if (LHSRange
.getSignedMin().sge(RHSRange
.getSignedMax()))
4411 case ICmpInst::ICMP_SGE
:
4412 Pred
= ICmpInst::ICMP_SLE
;
4413 std::swap(LHS
, RHS
);
4414 case ICmpInst::ICMP_SLE
: {
4415 ConstantRange LHSRange
= getSignedRange(LHS
);
4416 ConstantRange RHSRange
= getSignedRange(RHS
);
4417 if (LHSRange
.getSignedMax().sle(RHSRange
.getSignedMin()))
4419 if (LHSRange
.getSignedMin().sgt(RHSRange
.getSignedMax()))
4423 case ICmpInst::ICMP_UGT
:
4424 Pred
= ICmpInst::ICMP_ULT
;
4425 std::swap(LHS
, RHS
);
4426 case ICmpInst::ICMP_ULT
: {
4427 ConstantRange LHSRange
= getUnsignedRange(LHS
);
4428 ConstantRange RHSRange
= getUnsignedRange(RHS
);
4429 if (LHSRange
.getUnsignedMax().ult(RHSRange
.getUnsignedMin()))
4431 if (LHSRange
.getUnsignedMin().uge(RHSRange
.getUnsignedMax()))
4435 case ICmpInst::ICMP_UGE
:
4436 Pred
= ICmpInst::ICMP_ULE
;
4437 std::swap(LHS
, RHS
);
4438 case ICmpInst::ICMP_ULE
: {
4439 ConstantRange LHSRange
= getUnsignedRange(LHS
);
4440 ConstantRange RHSRange
= getUnsignedRange(RHS
);
4441 if (LHSRange
.getUnsignedMax().ule(RHSRange
.getUnsignedMin()))
4443 if (LHSRange
.getUnsignedMin().ugt(RHSRange
.getUnsignedMax()))
4447 case ICmpInst::ICMP_NE
: {
4448 if (getUnsignedRange(LHS
).intersectWith(getUnsignedRange(RHS
)).isEmptySet())
4450 if (getSignedRange(LHS
).intersectWith(getSignedRange(RHS
)).isEmptySet())
4453 const SCEV
*Diff
= getMinusSCEV(LHS
, RHS
);
4454 if (isKnownNonZero(Diff
))
4458 case ICmpInst::ICMP_EQ
:
4459 // The check at the top of the function catches the case where
4460 // the values are known to be equal.
4466 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4467 /// protected by a conditional between LHS and RHS. This is used to
4468 /// to eliminate casts.
4470 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
4471 ICmpInst::Predicate Pred
,
4472 const SCEV
*LHS
, const SCEV
*RHS
) {
4473 // Interpret a null as meaning no loop, where there is obviously no guard
4474 // (interprocedural conditions notwithstanding).
4475 if (!L
) return true;
4477 BasicBlock
*Latch
= L
->getLoopLatch();
4481 BranchInst
*LoopContinuePredicate
=
4482 dyn_cast
<BranchInst
>(Latch
->getTerminator());
4483 if (!LoopContinuePredicate
||
4484 LoopContinuePredicate
->isUnconditional())
4487 return isImpliedCond(LoopContinuePredicate
->getCondition(), Pred
, LHS
, RHS
,
4488 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader());
4491 /// isLoopGuardedByCond - Test whether entry to the loop is protected
4492 /// by a conditional between LHS and RHS. This is used to help avoid max
4493 /// expressions in loop trip counts, and to eliminate casts.
4495 ScalarEvolution::isLoopGuardedByCond(const Loop
*L
,
4496 ICmpInst::Predicate Pred
,
4497 const SCEV
*LHS
, const SCEV
*RHS
) {
4498 // Interpret a null as meaning no loop, where there is obviously no guard
4499 // (interprocedural conditions notwithstanding).
4500 if (!L
) return false;
4502 BasicBlock
*Predecessor
= getLoopPredecessor(L
);
4503 BasicBlock
*PredecessorDest
= L
->getHeader();
4505 // Starting at the loop predecessor, climb up the predecessor chain, as long
4506 // as there are predecessors that can be found that have unique successors
4507 // leading to the original header.
4509 PredecessorDest
= Predecessor
,
4510 Predecessor
= getPredecessorWithUniqueSuccessorForBB(Predecessor
)) {
4512 BranchInst
*LoopEntryPredicate
=
4513 dyn_cast
<BranchInst
>(Predecessor
->getTerminator());
4514 if (!LoopEntryPredicate
||
4515 LoopEntryPredicate
->isUnconditional())
4518 if (isImpliedCond(LoopEntryPredicate
->getCondition(), Pred
, LHS
, RHS
,
4519 LoopEntryPredicate
->getSuccessor(0) != PredecessorDest
))
4526 /// isImpliedCond - Test whether the condition described by Pred, LHS,
4527 /// and RHS is true whenever the given Cond value evaluates to true.
4528 bool ScalarEvolution::isImpliedCond(Value
*CondValue
,
4529 ICmpInst::Predicate Pred
,
4530 const SCEV
*LHS
, const SCEV
*RHS
,
4532 // Recursivly handle And and Or conditions.
4533 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CondValue
)) {
4534 if (BO
->getOpcode() == Instruction::And
) {
4536 return isImpliedCond(BO
->getOperand(0), Pred
, LHS
, RHS
, Inverse
) ||
4537 isImpliedCond(BO
->getOperand(1), Pred
, LHS
, RHS
, Inverse
);
4538 } else if (BO
->getOpcode() == Instruction::Or
) {
4540 return isImpliedCond(BO
->getOperand(0), Pred
, LHS
, RHS
, Inverse
) ||
4541 isImpliedCond(BO
->getOperand(1), Pred
, LHS
, RHS
, Inverse
);
4545 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondValue
);
4546 if (!ICI
) return false;
4548 // Bail if the ICmp's operands' types are wider than the needed type
4549 // before attempting to call getSCEV on them. This avoids infinite
4550 // recursion, since the analysis of widening casts can require loop
4551 // exit condition information for overflow checking, which would
4553 if (getTypeSizeInBits(LHS
->getType()) <
4554 getTypeSizeInBits(ICI
->getOperand(0)->getType()))
4557 // Now that we found a conditional branch that dominates the loop, check to
4558 // see if it is the comparison we are looking for.
4559 ICmpInst::Predicate FoundPred
;
4561 FoundPred
= ICI
->getInversePredicate();
4563 FoundPred
= ICI
->getPredicate();
4565 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
4566 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
4568 // Balance the types. The case where FoundLHS' type is wider than
4569 // LHS' type is checked for above.
4570 if (getTypeSizeInBits(LHS
->getType()) >
4571 getTypeSizeInBits(FoundLHS
->getType())) {
4572 if (CmpInst::isSigned(Pred
)) {
4573 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
4574 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
4576 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
4577 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
4581 // Canonicalize the query to match the way instcombine will have
4582 // canonicalized the comparison.
4583 // First, put a constant operand on the right.
4584 if (isa
<SCEVConstant
>(LHS
)) {
4585 std::swap(LHS
, RHS
);
4586 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4588 // Then, canonicalize comparisons with boundary cases.
4589 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
4590 const APInt
&RA
= RC
->getValue()->getValue();
4592 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4593 case ICmpInst::ICMP_EQ
:
4594 case ICmpInst::ICMP_NE
:
4596 case ICmpInst::ICMP_UGE
:
4597 if ((RA
- 1).isMinValue()) {
4598 Pred
= ICmpInst::ICMP_NE
;
4599 RHS
= getConstant(RA
- 1);
4602 if (RA
.isMaxValue()) {
4603 Pred
= ICmpInst::ICMP_EQ
;
4606 if (RA
.isMinValue()) return true;
4608 case ICmpInst::ICMP_ULE
:
4609 if ((RA
+ 1).isMaxValue()) {
4610 Pred
= ICmpInst::ICMP_NE
;
4611 RHS
= getConstant(RA
+ 1);
4614 if (RA
.isMinValue()) {
4615 Pred
= ICmpInst::ICMP_EQ
;
4618 if (RA
.isMaxValue()) return true;
4620 case ICmpInst::ICMP_SGE
:
4621 if ((RA
- 1).isMinSignedValue()) {
4622 Pred
= ICmpInst::ICMP_NE
;
4623 RHS
= getConstant(RA
- 1);
4626 if (RA
.isMaxSignedValue()) {
4627 Pred
= ICmpInst::ICMP_EQ
;
4630 if (RA
.isMinSignedValue()) return true;
4632 case ICmpInst::ICMP_SLE
:
4633 if ((RA
+ 1).isMaxSignedValue()) {
4634 Pred
= ICmpInst::ICMP_NE
;
4635 RHS
= getConstant(RA
+ 1);
4638 if (RA
.isMinSignedValue()) {
4639 Pred
= ICmpInst::ICMP_EQ
;
4642 if (RA
.isMaxSignedValue()) return true;
4644 case ICmpInst::ICMP_UGT
:
4645 if (RA
.isMinValue()) {
4646 Pred
= ICmpInst::ICMP_NE
;
4649 if ((RA
+ 1).isMaxValue()) {
4650 Pred
= ICmpInst::ICMP_EQ
;
4651 RHS
= getConstant(RA
+ 1);
4654 if (RA
.isMaxValue()) return false;
4656 case ICmpInst::ICMP_ULT
:
4657 if (RA
.isMaxValue()) {
4658 Pred
= ICmpInst::ICMP_NE
;
4661 if ((RA
- 1).isMinValue()) {
4662 Pred
= ICmpInst::ICMP_EQ
;
4663 RHS
= getConstant(RA
- 1);
4666 if (RA
.isMinValue()) return false;
4668 case ICmpInst::ICMP_SGT
:
4669 if (RA
.isMinSignedValue()) {
4670 Pred
= ICmpInst::ICMP_NE
;
4673 if ((RA
+ 1).isMaxSignedValue()) {
4674 Pred
= ICmpInst::ICMP_EQ
;
4675 RHS
= getConstant(RA
+ 1);
4678 if (RA
.isMaxSignedValue()) return false;
4680 case ICmpInst::ICMP_SLT
:
4681 if (RA
.isMaxSignedValue()) {
4682 Pred
= ICmpInst::ICMP_NE
;
4685 if ((RA
- 1).isMinSignedValue()) {
4686 Pred
= ICmpInst::ICMP_EQ
;
4687 RHS
= getConstant(RA
- 1);
4690 if (RA
.isMinSignedValue()) return false;
4695 // Check to see if we can make the LHS or RHS match.
4696 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
4697 if (isa
<SCEVConstant
>(RHS
)) {
4698 std::swap(FoundLHS
, FoundRHS
);
4699 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
4701 std::swap(LHS
, RHS
);
4702 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4706 // Check whether the found predicate is the same as the desired predicate.
4707 if (FoundPred
== Pred
)
4708 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
);
4710 // Check whether swapping the found predicate makes it the same as the
4711 // desired predicate.
4712 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
4713 if (isa
<SCEVConstant
>(RHS
))
4714 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
);
4716 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred
),
4717 RHS
, LHS
, FoundLHS
, FoundRHS
);
4720 // Check whether the actual condition is beyond sufficient.
4721 if (FoundPred
== ICmpInst::ICMP_EQ
)
4722 if (ICmpInst::isTrueWhenEqual(Pred
))
4723 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
4725 if (Pred
== ICmpInst::ICMP_NE
)
4726 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
4727 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
4730 // Otherwise assume the worst.
4734 /// isImpliedCondOperands - Test whether the condition described by Pred,
4735 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4736 /// and FoundRHS is true.
4737 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
4738 const SCEV
*LHS
, const SCEV
*RHS
,
4739 const SCEV
*FoundLHS
,
4740 const SCEV
*FoundRHS
) {
4741 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
4742 FoundLHS
, FoundRHS
) ||
4743 // ~x < ~y --> x > y
4744 isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
4745 getNotSCEV(FoundRHS
),
4746 getNotSCEV(FoundLHS
));
4749 /// isImpliedCondOperandsHelper - Test whether the condition described by
4750 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4751 /// FoundLHS, and FoundRHS is true.
4753 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
4754 const SCEV
*LHS
, const SCEV
*RHS
,
4755 const SCEV
*FoundLHS
,
4756 const SCEV
*FoundRHS
) {
4758 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4759 case ICmpInst::ICMP_EQ
:
4760 case ICmpInst::ICMP_NE
:
4761 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
4764 case ICmpInst::ICMP_SLT
:
4765 case ICmpInst::ICMP_SLE
:
4766 if (isKnownPredicate(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
4767 isKnownPredicate(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
4770 case ICmpInst::ICMP_SGT
:
4771 case ICmpInst::ICMP_SGE
:
4772 if (isKnownPredicate(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
4773 isKnownPredicate(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
4776 case ICmpInst::ICMP_ULT
:
4777 case ICmpInst::ICMP_ULE
:
4778 if (isKnownPredicate(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
4779 isKnownPredicate(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
4782 case ICmpInst::ICMP_UGT
:
4783 case ICmpInst::ICMP_UGE
:
4784 if (isKnownPredicate(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
4785 isKnownPredicate(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
4793 /// getBECount - Subtract the end and start values and divide by the step,
4794 /// rounding up, to get the number of times the backedge is executed. Return
4795 /// CouldNotCompute if an intermediate computation overflows.
4796 const SCEV
*ScalarEvolution::getBECount(const SCEV
*Start
,
4799 const Type
*Ty
= Start
->getType();
4800 const SCEV
*NegOne
= getIntegerSCEV(-1, Ty
);
4801 const SCEV
*Diff
= getMinusSCEV(End
, Start
);
4802 const SCEV
*RoundUp
= getAddExpr(Step
, NegOne
);
4804 // Add an adjustment to the difference between End and Start so that
4805 // the division will effectively round up.
4806 const SCEV
*Add
= getAddExpr(Diff
, RoundUp
);
4808 // Check Add for unsigned overflow.
4809 // TODO: More sophisticated things could be done here.
4810 const Type
*WideTy
= IntegerType::get(getContext(),
4811 getTypeSizeInBits(Ty
) + 1);
4812 const SCEV
*EDiff
= getZeroExtendExpr(Diff
, WideTy
);
4813 const SCEV
*ERoundUp
= getZeroExtendExpr(RoundUp
, WideTy
);
4814 const SCEV
*OperandExtendedAdd
= getAddExpr(EDiff
, ERoundUp
);
4815 if (getZeroExtendExpr(Add
, WideTy
) != OperandExtendedAdd
)
4816 return getCouldNotCompute();
4818 return getUDivExpr(Add
, Step
);
4821 /// HowManyLessThans - Return the number of times a backedge containing the
4822 /// specified less-than comparison will execute. If not computable, return
4823 /// CouldNotCompute.
4824 ScalarEvolution::BackedgeTakenInfo
4825 ScalarEvolution::HowManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
4826 const Loop
*L
, bool isSigned
) {
4827 // Only handle: "ADDREC < LoopInvariant".
4828 if (!RHS
->isLoopInvariant(L
)) return getCouldNotCompute();
4830 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
4831 if (!AddRec
|| AddRec
->getLoop() != L
)
4832 return getCouldNotCompute();
4834 if (AddRec
->isAffine()) {
4835 // FORNOW: We only support unit strides.
4836 unsigned BitWidth
= getTypeSizeInBits(AddRec
->getType());
4837 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
4839 // TODO: handle non-constant strides.
4840 const SCEVConstant
*CStep
= dyn_cast
<SCEVConstant
>(Step
);
4841 if (!CStep
|| CStep
->isZero())
4842 return getCouldNotCompute();
4843 if (CStep
->isOne()) {
4844 // With unit stride, the iteration never steps past the limit value.
4845 } else if (CStep
->getValue()->getValue().isStrictlyPositive()) {
4846 if (const SCEVConstant
*CLimit
= dyn_cast
<SCEVConstant
>(RHS
)) {
4847 // Test whether a positive iteration iteration can step past the limit
4848 // value and past the maximum value for its type in a single step.
4850 APInt Max
= APInt::getSignedMaxValue(BitWidth
);
4851 if ((Max
- CStep
->getValue()->getValue())
4852 .slt(CLimit
->getValue()->getValue()))
4853 return getCouldNotCompute();
4855 APInt Max
= APInt::getMaxValue(BitWidth
);
4856 if ((Max
- CStep
->getValue()->getValue())
4857 .ult(CLimit
->getValue()->getValue()))
4858 return getCouldNotCompute();
4861 // TODO: handle non-constant limit values below.
4862 return getCouldNotCompute();
4864 // TODO: handle negative strides below.
4865 return getCouldNotCompute();
4867 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4868 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4869 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4870 // treat m-n as signed nor unsigned due to overflow possibility.
4872 // First, we get the value of the LHS in the first iteration: n
4873 const SCEV
*Start
= AddRec
->getOperand(0);
4875 // Determine the minimum constant start value.
4876 const SCEV
*MinStart
= getConstant(isSigned
?
4877 getSignedRange(Start
).getSignedMin() :
4878 getUnsignedRange(Start
).getUnsignedMin());
4880 // If we know that the condition is true in order to enter the loop,
4881 // then we know that it will run exactly (m-n)/s times. Otherwise, we
4882 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4883 // the division must round up.
4884 const SCEV
*End
= RHS
;
4885 if (!isLoopGuardedByCond(L
,
4886 isSigned
? ICmpInst::ICMP_SLT
:
4888 getMinusSCEV(Start
, Step
), RHS
))
4889 End
= isSigned
? getSMaxExpr(RHS
, Start
)
4890 : getUMaxExpr(RHS
, Start
);
4892 // Determine the maximum constant end value.
4893 const SCEV
*MaxEnd
= getConstant(isSigned
?
4894 getSignedRange(End
).getSignedMax() :
4895 getUnsignedRange(End
).getUnsignedMax());
4897 // Finally, we subtract these two values and divide, rounding up, to get
4898 // the number of times the backedge is executed.
4899 const SCEV
*BECount
= getBECount(Start
, End
, Step
);
4901 // The maximum backedge count is similar, except using the minimum start
4902 // value and the maximum end value.
4903 const SCEV
*MaxBECount
= getBECount(MinStart
, MaxEnd
, Step
);
4905 return BackedgeTakenInfo(BECount
, MaxBECount
);
4908 return getCouldNotCompute();
4911 /// getNumIterationsInRange - Return the number of iterations of this loop that
4912 /// produce values in the specified constant range. Another way of looking at
4913 /// this is that it returns the first iteration number where the value is not in
4914 /// the condition, thus computing the exit count. If the iteration count can't
4915 /// be computed, an instance of SCEVCouldNotCompute is returned.
4916 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range
,
4917 ScalarEvolution
&SE
) const {
4918 if (Range
.isFullSet()) // Infinite loop.
4919 return SE
.getCouldNotCompute();
4921 // If the start is a non-zero constant, shift the range to simplify things.
4922 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
4923 if (!SC
->getValue()->isZero()) {
4924 SmallVector
<const SCEV
*, 4> Operands(op_begin(), op_end());
4925 Operands
[0] = SE
.getIntegerSCEV(0, SC
->getType());
4926 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop());
4927 if (const SCEVAddRecExpr
*ShiftedAddRec
=
4928 dyn_cast
<SCEVAddRecExpr
>(Shifted
))
4929 return ShiftedAddRec
->getNumIterationsInRange(
4930 Range
.subtract(SC
->getValue()->getValue()), SE
);
4931 // This is strange and shouldn't happen.
4932 return SE
.getCouldNotCompute();
4935 // The only time we can solve this is when we have all constant indices.
4936 // Otherwise, we cannot determine the overflow conditions.
4937 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
4938 if (!isa
<SCEVConstant
>(getOperand(i
)))
4939 return SE
.getCouldNotCompute();
4942 // Okay at this point we know that all elements of the chrec are constants and
4943 // that the start element is zero.
4945 // First check to see if the range contains zero. If not, the first
4947 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
4948 if (!Range
.contains(APInt(BitWidth
, 0)))
4949 return SE
.getIntegerSCEV(0, getType());
4952 // If this is an affine expression then we have this situation:
4953 // Solve {0,+,A} in Range === Ax in Range
4955 // We know that zero is in the range. If A is positive then we know that
4956 // the upper value of the range must be the first possible exit value.
4957 // If A is negative then the lower of the range is the last possible loop
4958 // value. Also note that we already checked for a full range.
4959 APInt
One(BitWidth
,1);
4960 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getValue()->getValue();
4961 APInt End
= A
.sge(One
) ? (Range
.getUpper() - One
) : Range
.getLower();
4963 // The exit value should be (End+A)/A.
4964 APInt ExitVal
= (End
+ A
).udiv(A
);
4965 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
4967 // Evaluate at the exit value. If we really did fall out of the valid
4968 // range, then we computed our trip count, otherwise wrap around or other
4969 // things must have happened.
4970 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
4971 if (Range
.contains(Val
->getValue()))
4972 return SE
.getCouldNotCompute(); // Something strange happened
4974 // Ensure that the previous value is in the range. This is a sanity check.
4975 assert(Range
.contains(
4976 EvaluateConstantChrecAtConstant(this,
4977 ConstantInt::get(SE
.getContext(), ExitVal
- One
), SE
)->getValue()) &&
4978 "Linear scev computation is off in a bad way!");
4979 return SE
.getConstant(ExitValue
);
4980 } else if (isQuadratic()) {
4981 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4982 // quadratic equation to solve it. To do this, we must frame our problem in
4983 // terms of figuring out when zero is crossed, instead of when
4984 // Range.getUpper() is crossed.
4985 SmallVector
<const SCEV
*, 4> NewOps(op_begin(), op_end());
4986 NewOps
[0] = SE
.getNegativeSCEV(SE
.getConstant(Range
.getUpper()));
4987 const SCEV
*NewAddRec
= SE
.getAddRecExpr(NewOps
, getLoop());
4989 // Next, solve the constructed addrec
4990 std::pair
<const SCEV
*,const SCEV
*> Roots
=
4991 SolveQuadraticEquation(cast
<SCEVAddRecExpr
>(NewAddRec
), SE
);
4992 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4993 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4995 // Pick the smallest positive root value.
4996 if (ConstantInt
*CB
=
4997 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
4998 R1
->getValue(), R2
->getValue()))) {
4999 if (CB
->getZExtValue() == false)
5000 std::swap(R1
, R2
); // R1 is the minimum root now.
5002 // Make sure the root is not off by one. The returned iteration should
5003 // not be in the range, but the previous one should be. When solving
5004 // for "X*X < 5", for example, we should not return a root of 2.
5005 ConstantInt
*R1Val
= EvaluateConstantChrecAtConstant(this,
5008 if (Range
.contains(R1Val
->getValue())) {
5009 // The next iteration must be out of the range...
5010 ConstantInt
*NextVal
=
5011 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()+1);
5013 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
5014 if (!Range
.contains(R1Val
->getValue()))
5015 return SE
.getConstant(NextVal
);
5016 return SE
.getCouldNotCompute(); // Something strange happened
5019 // If R1 was not in the range, then it is a good return value. Make
5020 // sure that R1-1 WAS in the range though, just in case.
5021 ConstantInt
*NextVal
=
5022 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()-1);
5023 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
5024 if (Range
.contains(R1Val
->getValue()))
5026 return SE
.getCouldNotCompute(); // Something strange happened
5031 return SE
.getCouldNotCompute();
5036 //===----------------------------------------------------------------------===//
5037 // SCEVCallbackVH Class Implementation
5038 //===----------------------------------------------------------------------===//
5040 void ScalarEvolution::SCEVCallbackVH::deleted() {
5041 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
5042 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
5043 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
5044 SE
->Scalars
.erase(getValPtr());
5045 // this now dangles!
5048 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*) {
5049 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
5051 // Forget all the expressions associated with users of the old value,
5052 // so that future queries will recompute the expressions using the new
5054 SmallVector
<User
*, 16> Worklist
;
5055 SmallPtrSet
<User
*, 8> Visited
;
5056 Value
*Old
= getValPtr();
5057 bool DeleteOld
= false;
5058 for (Value::use_iterator UI
= Old
->use_begin(), UE
= Old
->use_end();
5060 Worklist
.push_back(*UI
);
5061 while (!Worklist
.empty()) {
5062 User
*U
= Worklist
.pop_back_val();
5063 // Deleting the Old value will cause this to dangle. Postpone
5064 // that until everything else is done.
5069 if (!Visited
.insert(U
))
5071 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
5072 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
5073 SE
->Scalars
.erase(U
);
5074 for (Value::use_iterator UI
= U
->use_begin(), UE
= U
->use_end();
5076 Worklist
.push_back(*UI
);
5078 // Delete the Old value if it (indirectly) references itself.
5080 if (PHINode
*PN
= dyn_cast
<PHINode
>(Old
))
5081 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
5082 SE
->Scalars
.erase(Old
);
5083 // this now dangles!
5088 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
5089 : CallbackVH(V
), SE(se
) {}
5091 //===----------------------------------------------------------------------===//
5092 // ScalarEvolution Class Implementation
5093 //===----------------------------------------------------------------------===//
5095 ScalarEvolution::ScalarEvolution()
5096 : FunctionPass(&ID
) {
5099 bool ScalarEvolution::runOnFunction(Function
&F
) {
5101 LI
= &getAnalysis
<LoopInfo
>();
5102 TD
= getAnalysisIfAvailable
<TargetData
>();
5106 void ScalarEvolution::releaseMemory() {
5108 BackedgeTakenCounts
.clear();
5109 ConstantEvolutionLoopExitValue
.clear();
5110 ValuesAtScopes
.clear();
5111 UniqueSCEVs
.clear();
5112 SCEVAllocator
.Reset();
5115 void ScalarEvolution::getAnalysisUsage(AnalysisUsage
&AU
) const {
5116 AU
.setPreservesAll();
5117 AU
.addRequiredTransitive
<LoopInfo
>();
5120 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
5121 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
5124 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
5126 // Print all inner loops first
5127 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
5128 PrintLoopInfo(OS
, SE
, *I
);
5130 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
5132 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
5133 L
->getExitBlocks(ExitBlocks
);
5134 if (ExitBlocks
.size() != 1)
5135 OS
<< "<multiple exits> ";
5137 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
5138 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
);
5140 OS
<< "Unpredictable backedge-taken count. ";
5144 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
5146 if (!isa
<SCEVCouldNotCompute
>(SE
->getMaxBackedgeTakenCount(L
))) {
5147 OS
<< "max backedge-taken count is " << *SE
->getMaxBackedgeTakenCount(L
);
5149 OS
<< "Unpredictable max backedge-taken count. ";
5155 void ScalarEvolution::print(raw_ostream
&OS
, const Module
* ) const {
5156 // ScalarEvolution's implementaiton of the print method is to print
5157 // out SCEV values of all instructions that are interesting. Doing
5158 // this potentially causes it to create new SCEV objects though,
5159 // which technically conflicts with the const qualifier. This isn't
5160 // observable from outside the class though, so casting away the
5161 // const isn't dangerous.
5162 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
5164 OS
<< "Classifying expressions for: " << F
->getName() << "\n";
5165 for (inst_iterator I
= inst_begin(F
), E
= inst_end(F
); I
!= E
; ++I
)
5166 if (isSCEVable(I
->getType())) {
5169 const SCEV
*SV
= SE
.getSCEV(&*I
);
5172 const Loop
*L
= LI
->getLoopFor((*I
).getParent());
5174 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
5181 OS
<< "\t\t" "Exits: ";
5182 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
5183 if (!ExitValue
->isLoopInvariant(L
)) {
5184 OS
<< "<<Unknown>>";
5193 OS
<< "Determining loop execution counts for: " << F
->getName() << "\n";
5194 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
5195 PrintLoopInfo(OS
, &SE
, *I
);