this is failing on linux hosts, force a triple.
[llvm/avr.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blob34724709b0fd5eff17f06f7ece4e9504dd2f31ce
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/ADT/STLExtras.h"
21 using namespace llvm;
23 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
24 /// which must be possible with a noop cast, doing what we can to share
25 /// the casts.
26 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
27 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
28 assert((Op == Instruction::BitCast ||
29 Op == Instruction::PtrToInt ||
30 Op == Instruction::IntToPtr) &&
31 "InsertNoopCastOfTo cannot perform non-noop casts!");
32 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
33 "InsertNoopCastOfTo cannot change sizes!");
35 // Short-circuit unnecessary bitcasts.
36 if (Op == Instruction::BitCast && V->getType() == Ty)
37 return V;
39 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
40 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
41 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
42 if (CastInst *CI = dyn_cast<CastInst>(V))
43 if ((CI->getOpcode() == Instruction::PtrToInt ||
44 CI->getOpcode() == Instruction::IntToPtr) &&
45 SE.getTypeSizeInBits(CI->getType()) ==
46 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
47 return CI->getOperand(0);
48 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
49 if ((CE->getOpcode() == Instruction::PtrToInt ||
50 CE->getOpcode() == Instruction::IntToPtr) &&
51 SE.getTypeSizeInBits(CE->getType()) ==
52 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
53 return CE->getOperand(0);
56 if (Constant *C = dyn_cast<Constant>(V))
57 return ConstantExpr::getCast(Op, C, Ty);
59 if (Argument *A = dyn_cast<Argument>(V)) {
60 // Check to see if there is already a cast!
61 for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
62 UI != E; ++UI)
63 if ((*UI)->getType() == Ty)
64 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
65 if (CI->getOpcode() == Op) {
66 // If the cast isn't the first instruction of the function, move it.
67 if (BasicBlock::iterator(CI) !=
68 A->getParent()->getEntryBlock().begin()) {
69 // Recreate the cast at the beginning of the entry block.
70 // The old cast is left in place in case it is being used
71 // as an insert point.
72 Instruction *NewCI =
73 CastInst::Create(Op, V, Ty, "",
74 A->getParent()->getEntryBlock().begin());
75 NewCI->takeName(CI);
76 CI->replaceAllUsesWith(NewCI);
77 return NewCI;
79 return CI;
82 Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
83 A->getParent()->getEntryBlock().begin());
84 InsertedValues.insert(I);
85 return I;
88 Instruction *I = cast<Instruction>(V);
90 // Check to see if there is already a cast. If there is, use it.
91 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
92 UI != E; ++UI) {
93 if ((*UI)->getType() == Ty)
94 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
95 if (CI->getOpcode() == Op) {
96 BasicBlock::iterator It = I; ++It;
97 if (isa<InvokeInst>(I))
98 It = cast<InvokeInst>(I)->getNormalDest()->begin();
99 while (isa<PHINode>(It)) ++It;
100 if (It != BasicBlock::iterator(CI)) {
101 // Recreate the cast at the beginning of the entry block.
102 // The old cast is left in place in case it is being used
103 // as an insert point.
104 Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
105 NewCI->takeName(CI);
106 CI->replaceAllUsesWith(NewCI);
107 return NewCI;
109 return CI;
112 BasicBlock::iterator IP = I; ++IP;
113 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
114 IP = II->getNormalDest()->begin();
115 while (isa<PHINode>(IP)) ++IP;
116 Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
117 InsertedValues.insert(CI);
118 return CI;
121 /// InsertBinop - Insert the specified binary operator, doing a small amount
122 /// of work to avoid inserting an obviously redundant operation.
123 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
124 Value *LHS, Value *RHS) {
125 // Fold a binop with constant operands.
126 if (Constant *CLHS = dyn_cast<Constant>(LHS))
127 if (Constant *CRHS = dyn_cast<Constant>(RHS))
128 return ConstantExpr::get(Opcode, CLHS, CRHS);
130 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
131 unsigned ScanLimit = 6;
132 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
133 // Scanning starts from the last instruction before the insertion point.
134 BasicBlock::iterator IP = Builder.GetInsertPoint();
135 if (IP != BlockBegin) {
136 --IP;
137 for (; ScanLimit; --IP, --ScanLimit) {
138 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
139 IP->getOperand(1) == RHS)
140 return IP;
141 if (IP == BlockBegin) break;
145 // If we haven't found this binop, insert it.
146 Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
147 InsertedValues.insert(BO);
148 return BO;
151 /// FactorOutConstant - Test if S is divisible by Factor, using signed
152 /// division. If so, update S with Factor divided out and return true.
153 /// S need not be evenly divisble if a reasonable remainder can be
154 /// computed.
155 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
156 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
157 /// check to see if the divide was folded.
158 static bool FactorOutConstant(const SCEV *&S,
159 const SCEV *&Remainder,
160 const SCEV *Factor,
161 ScalarEvolution &SE,
162 const TargetData *TD) {
163 // Everything is divisible by one.
164 if (Factor->isOne())
165 return true;
167 // x/x == 1.
168 if (S == Factor) {
169 S = SE.getIntegerSCEV(1, S->getType());
170 return true;
173 // For a Constant, check for a multiple of the given factor.
174 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
175 // 0/x == 0.
176 if (C->isZero())
177 return true;
178 // Check for divisibility.
179 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
180 ConstantInt *CI =
181 ConstantInt::get(SE.getContext(),
182 C->getValue()->getValue().sdiv(
183 FC->getValue()->getValue()));
184 // If the quotient is zero and the remainder is non-zero, reject
185 // the value at this scale. It will be considered for subsequent
186 // smaller scales.
187 if (!CI->isZero()) {
188 const SCEV *Div = SE.getConstant(CI);
189 S = Div;
190 Remainder =
191 SE.getAddExpr(Remainder,
192 SE.getConstant(C->getValue()->getValue().srem(
193 FC->getValue()->getValue())));
194 return true;
199 // In a Mul, check if there is a constant operand which is a multiple
200 // of the given factor.
201 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
202 if (TD) {
203 // With TargetData, the size is known. Check if there is a constant
204 // operand which is a multiple of the given factor. If so, we can
205 // factor it.
206 const SCEVConstant *FC = cast<SCEVConstant>(Factor);
207 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
208 if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
209 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
210 SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
211 MOperands.end());
212 NewMulOps[0] =
213 SE.getConstant(C->getValue()->getValue().sdiv(
214 FC->getValue()->getValue()));
215 S = SE.getMulExpr(NewMulOps);
216 return true;
218 } else {
219 // Without TargetData, check if Factor can be factored out of any of the
220 // Mul's operands. If so, we can just remove it.
221 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
222 const SCEV *SOp = M->getOperand(i);
223 const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
224 if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
225 Remainder->isZero()) {
226 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
227 SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
228 MOperands.end());
229 NewMulOps[i] = SOp;
230 S = SE.getMulExpr(NewMulOps);
231 return true;
237 // In an AddRec, check if both start and step are divisible.
238 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
239 const SCEV *Step = A->getStepRecurrence(SE);
240 const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
241 if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
242 return false;
243 if (!StepRem->isZero())
244 return false;
245 const SCEV *Start = A->getStart();
246 if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
247 return false;
248 S = SE.getAddRecExpr(Start, Step, A->getLoop());
249 return true;
252 return false;
255 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
256 /// is the number of SCEVAddRecExprs present, which are kept at the end of
257 /// the list.
259 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
260 const Type *Ty,
261 ScalarEvolution &SE) {
262 unsigned NumAddRecs = 0;
263 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
264 ++NumAddRecs;
265 // Group Ops into non-addrecs and addrecs.
266 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
267 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
268 // Let ScalarEvolution sort and simplify the non-addrecs list.
269 const SCEV *Sum = NoAddRecs.empty() ?
270 SE.getIntegerSCEV(0, Ty) :
271 SE.getAddExpr(NoAddRecs);
272 // If it returned an add, use the operands. Otherwise it simplified
273 // the sum into a single value, so just use that.
274 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
275 Ops = Add->getOperands();
276 else {
277 Ops.clear();
278 if (!Sum->isZero())
279 Ops.push_back(Sum);
281 // Then append the addrecs.
282 Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
285 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
286 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
287 /// This helps expose more opportunities for folding parts of the expressions
288 /// into GEP indices.
290 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
291 const Type *Ty,
292 ScalarEvolution &SE) {
293 // Find the addrecs.
294 SmallVector<const SCEV *, 8> AddRecs;
295 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
296 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
297 const SCEV *Start = A->getStart();
298 if (Start->isZero()) break;
299 const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
300 AddRecs.push_back(SE.getAddRecExpr(Zero,
301 A->getStepRecurrence(SE),
302 A->getLoop()));
303 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
304 Ops[i] = Zero;
305 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
306 e += Add->getNumOperands();
307 } else {
308 Ops[i] = Start;
311 if (!AddRecs.empty()) {
312 // Add the addrecs onto the end of the list.
313 Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
314 // Resort the operand list, moving any constants to the front.
315 SimplifyAddOperands(Ops, Ty, SE);
319 /// expandAddToGEP - Expand an addition expression with a pointer type into
320 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
321 /// BasicAliasAnalysis and other passes analyze the result. See the rules
322 /// for getelementptr vs. inttoptr in
323 /// http://llvm.org/docs/LangRef.html#pointeraliasing
324 /// for details.
326 /// Design note: The correctness of using getelmeentptr here depends on
327 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
328 /// they may introduce pointer arithmetic which may not be safely converted
329 /// into getelementptr.
331 /// Design note: It might seem desirable for this function to be more
332 /// loop-aware. If some of the indices are loop-invariant while others
333 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
334 /// loop-invariant portions of the overall computation outside the loop.
335 /// However, there are a few reasons this is not done here. Hoisting simple
336 /// arithmetic is a low-level optimization that often isn't very
337 /// important until late in the optimization process. In fact, passes
338 /// like InstructionCombining will combine GEPs, even if it means
339 /// pushing loop-invariant computation down into loops, so even if the
340 /// GEPs were split here, the work would quickly be undone. The
341 /// LoopStrengthReduction pass, which is usually run quite late (and
342 /// after the last InstructionCombining pass), takes care of hoisting
343 /// loop-invariant portions of expressions, after considering what
344 /// can be folded using target addressing modes.
346 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
347 const SCEV *const *op_end,
348 const PointerType *PTy,
349 const Type *Ty,
350 Value *V) {
351 const Type *ElTy = PTy->getElementType();
352 SmallVector<Value *, 4> GepIndices;
353 SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
354 bool AnyNonZeroIndices = false;
356 // Split AddRecs up into parts as either of the parts may be usable
357 // without the other.
358 SplitAddRecs(Ops, Ty, SE);
360 // Decend down the pointer's type and attempt to convert the other
361 // operands into GEP indices, at each level. The first index in a GEP
362 // indexes into the array implied by the pointer operand; the rest of
363 // the indices index into the element or field type selected by the
364 // preceding index.
365 for (;;) {
366 const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
367 // If the scale size is not 0, attempt to factor out a scale for
368 // array indexing.
369 SmallVector<const SCEV *, 8> ScaledOps;
370 if (ElTy->isSized() && !ElSize->isZero()) {
371 SmallVector<const SCEV *, 8> NewOps;
372 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
373 const SCEV *Op = Ops[i];
374 const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
375 if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
376 // Op now has ElSize factored out.
377 ScaledOps.push_back(Op);
378 if (!Remainder->isZero())
379 NewOps.push_back(Remainder);
380 AnyNonZeroIndices = true;
381 } else {
382 // The operand was not divisible, so add it to the list of operands
383 // we'll scan next iteration.
384 NewOps.push_back(Ops[i]);
387 // If we made any changes, update Ops.
388 if (!ScaledOps.empty()) {
389 Ops = NewOps;
390 SimplifyAddOperands(Ops, Ty, SE);
394 // Record the scaled array index for this level of the type. If
395 // we didn't find any operands that could be factored, tentatively
396 // assume that element zero was selected (since the zero offset
397 // would obviously be folded away).
398 Value *Scaled = ScaledOps.empty() ?
399 Constant::getNullValue(Ty) :
400 expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
401 GepIndices.push_back(Scaled);
403 // Collect struct field index operands.
404 while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
405 bool FoundFieldNo = false;
406 // An empty struct has no fields.
407 if (STy->getNumElements() == 0) break;
408 if (SE.TD) {
409 // With TargetData, field offsets are known. See if a constant offset
410 // falls within any of the struct fields.
411 if (Ops.empty()) break;
412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
413 if (SE.getTypeSizeInBits(C->getType()) <= 64) {
414 const StructLayout &SL = *SE.TD->getStructLayout(STy);
415 uint64_t FullOffset = C->getValue()->getZExtValue();
416 if (FullOffset < SL.getSizeInBytes()) {
417 unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
418 GepIndices.push_back(
419 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
420 ElTy = STy->getTypeAtIndex(ElIdx);
421 Ops[0] =
422 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
423 AnyNonZeroIndices = true;
424 FoundFieldNo = true;
427 } else {
428 // Without TargetData, just check for a SCEVFieldOffsetExpr of the
429 // appropriate struct type.
430 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
431 if (const SCEVFieldOffsetExpr *FO =
432 dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
433 if (FO->getStructType() == STy) {
434 unsigned FieldNo = FO->getFieldNo();
435 GepIndices.push_back(
436 ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
437 FieldNo));
438 ElTy = STy->getTypeAtIndex(FieldNo);
439 Ops[i] = SE.getConstant(Ty, 0);
440 AnyNonZeroIndices = true;
441 FoundFieldNo = true;
442 break;
445 // If no struct field offsets were found, tentatively assume that
446 // field zero was selected (since the zero offset would obviously
447 // be folded away).
448 if (!FoundFieldNo) {
449 ElTy = STy->getTypeAtIndex(0u);
450 GepIndices.push_back(
451 Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
455 if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
456 ElTy = ATy->getElementType();
457 else
458 break;
461 // If none of the operands were convertable to proper GEP indices, cast
462 // the base to i8* and do an ugly getelementptr with that. It's still
463 // better than ptrtoint+arithmetic+inttoptr at least.
464 if (!AnyNonZeroIndices) {
465 // Cast the base to i8*.
466 V = InsertNoopCastOfTo(V,
467 Type::getInt8Ty(Ty->getContext())->getPointerTo(PTy->getAddressSpace()));
469 // Expand the operands for a plain byte offset.
470 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
472 // Fold a GEP with constant operands.
473 if (Constant *CLHS = dyn_cast<Constant>(V))
474 if (Constant *CRHS = dyn_cast<Constant>(Idx))
475 return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
477 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
478 unsigned ScanLimit = 6;
479 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
480 // Scanning starts from the last instruction before the insertion point.
481 BasicBlock::iterator IP = Builder.GetInsertPoint();
482 if (IP != BlockBegin) {
483 --IP;
484 for (; ScanLimit; --IP, --ScanLimit) {
485 if (IP->getOpcode() == Instruction::GetElementPtr &&
486 IP->getOperand(0) == V && IP->getOperand(1) == Idx)
487 return IP;
488 if (IP == BlockBegin) break;
492 // Emit a GEP.
493 Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
494 InsertedValues.insert(GEP);
495 return GEP;
498 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
499 // because ScalarEvolution may have changed the address arithmetic to
500 // compute a value which is beyond the end of the allocated object.
501 Value *GEP = Builder.CreateGEP(V,
502 GepIndices.begin(),
503 GepIndices.end(),
504 "scevgep");
505 Ops.push_back(SE.getUnknown(GEP));
506 InsertedValues.insert(GEP);
507 return expand(SE.getAddExpr(Ops));
510 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
511 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
512 Value *V = expand(S->getOperand(S->getNumOperands()-1));
514 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
515 // comments on expandAddToGEP for details.
516 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
517 const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
518 return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V);
521 V = InsertNoopCastOfTo(V, Ty);
523 // Emit a bunch of add instructions
524 for (int i = S->getNumOperands()-2; i >= 0; --i) {
525 Value *W = expandCodeFor(S->getOperand(i), Ty);
526 V = InsertBinop(Instruction::Add, V, W);
528 return V;
531 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
532 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
533 int FirstOp = 0; // Set if we should emit a subtract.
534 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
535 if (SC->getValue()->isAllOnesValue())
536 FirstOp = 1;
538 int i = S->getNumOperands()-2;
539 Value *V = expandCodeFor(S->getOperand(i+1), Ty);
541 // Emit a bunch of multiply instructions
542 for (; i >= FirstOp; --i) {
543 Value *W = expandCodeFor(S->getOperand(i), Ty);
544 V = InsertBinop(Instruction::Mul, V, W);
547 // -1 * ... ---> 0 - ...
548 if (FirstOp == 1)
549 V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
550 return V;
553 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
554 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
556 Value *LHS = expandCodeFor(S->getLHS(), Ty);
557 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
558 const APInt &RHS = SC->getValue()->getValue();
559 if (RHS.isPowerOf2())
560 return InsertBinop(Instruction::LShr, LHS,
561 ConstantInt::get(Ty, RHS.logBase2()));
564 Value *RHS = expandCodeFor(S->getRHS(), Ty);
565 return InsertBinop(Instruction::UDiv, LHS, RHS);
568 /// Move parts of Base into Rest to leave Base with the minimal
569 /// expression that provides a pointer operand suitable for a
570 /// GEP expansion.
571 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
572 ScalarEvolution &SE) {
573 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
574 Base = A->getStart();
575 Rest = SE.getAddExpr(Rest,
576 SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
577 A->getStepRecurrence(SE),
578 A->getLoop()));
580 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
581 Base = A->getOperand(A->getNumOperands()-1);
582 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
583 NewAddOps.back() = Rest;
584 Rest = SE.getAddExpr(NewAddOps);
585 ExposePointerBase(Base, Rest, SE);
589 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
590 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
591 const Loop *L = S->getLoop();
593 // First check for an existing canonical IV in a suitable type.
594 PHINode *CanonicalIV = 0;
595 if (PHINode *PN = L->getCanonicalInductionVariable())
596 if (SE.isSCEVable(PN->getType()) &&
597 isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
598 SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
599 CanonicalIV = PN;
601 // Rewrite an AddRec in terms of the canonical induction variable, if
602 // its type is more narrow.
603 if (CanonicalIV &&
604 SE.getTypeSizeInBits(CanonicalIV->getType()) >
605 SE.getTypeSizeInBits(Ty)) {
606 const SCEV *Start = SE.getAnyExtendExpr(S->getStart(),
607 CanonicalIV->getType());
608 const SCEV *Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
609 CanonicalIV->getType());
610 Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
611 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
612 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
613 BasicBlock::iterator NewInsertPt =
614 next(BasicBlock::iterator(cast<Instruction>(V)));
615 while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
616 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
617 NewInsertPt);
618 Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
619 return V;
622 // {X,+,F} --> X + {0,+,F}
623 if (!S->getStart()->isZero()) {
624 const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
625 SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
626 NewOps[0] = SE.getIntegerSCEV(0, Ty);
627 const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
629 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
630 // comments on expandAddToGEP for details.
631 const SCEV *Base = S->getStart();
632 const SCEV *RestArray[1] = { Rest };
633 // Dig into the expression to find the pointer base for a GEP.
634 ExposePointerBase(Base, RestArray[0], SE);
635 // If we found a pointer, expand the AddRec with a GEP.
636 if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
637 // Make sure the Base isn't something exotic, such as a multiplied
638 // or divided pointer value. In those cases, the result type isn't
639 // actually a pointer type.
640 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
641 Value *StartV = expand(Base);
642 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
643 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
647 // Just do a normal add. Pre-expand the operands to suppress folding.
648 return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
649 SE.getUnknown(expand(Rest))));
652 // {0,+,1} --> Insert a canonical induction variable into the loop!
653 if (S->isAffine() &&
654 S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
655 // If there's a canonical IV, just use it.
656 if (CanonicalIV) {
657 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
658 "IVs with types different from the canonical IV should "
659 "already have been handled!");
660 return CanonicalIV;
663 // Create and insert the PHI node for the induction variable in the
664 // specified loop.
665 BasicBlock *Header = L->getHeader();
666 BasicBlock *Preheader = L->getLoopPreheader();
667 PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
668 InsertedValues.insert(PN);
669 PN->addIncoming(Constant::getNullValue(Ty), Preheader);
671 pred_iterator HPI = pred_begin(Header);
672 assert(HPI != pred_end(Header) && "Loop with zero preds???");
673 if (!L->contains(*HPI)) ++HPI;
674 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
675 "No backedge in loop?");
677 // Insert a unit add instruction right before the terminator corresponding
678 // to the back-edge.
679 Constant *One = ConstantInt::get(Ty, 1);
680 Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
681 (*HPI)->getTerminator());
682 InsertedValues.insert(Add);
684 pred_iterator PI = pred_begin(Header);
685 if (*PI == Preheader)
686 ++PI;
687 PN->addIncoming(Add, *PI);
688 return PN;
691 // {0,+,F} --> {0,+,1} * F
692 // Get the canonical induction variable I for this loop.
693 Value *I = CanonicalIV ?
694 CanonicalIV :
695 getOrInsertCanonicalInductionVariable(L, Ty);
697 // If this is a simple linear addrec, emit it now as a special case.
698 if (S->isAffine()) // {0,+,F} --> i*F
699 return
700 expand(SE.getTruncateOrNoop(
701 SE.getMulExpr(SE.getUnknown(I),
702 SE.getNoopOrAnyExtend(S->getOperand(1),
703 I->getType())),
704 Ty));
706 // If this is a chain of recurrences, turn it into a closed form, using the
707 // folders, then expandCodeFor the closed form. This allows the folders to
708 // simplify the expression without having to build a bunch of special code
709 // into this folder.
710 const SCEV *IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
712 // Promote S up to the canonical IV type, if the cast is foldable.
713 const SCEV *NewS = S;
714 const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
715 if (isa<SCEVAddRecExpr>(Ext))
716 NewS = Ext;
718 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
719 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
721 // Truncate the result down to the original type, if needed.
722 const SCEV *T = SE.getTruncateOrNoop(V, Ty);
723 return expand(T);
726 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
727 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
728 Value *V = expandCodeFor(S->getOperand(),
729 SE.getEffectiveSCEVType(S->getOperand()->getType()));
730 Value *I = Builder.CreateTrunc(V, Ty, "tmp");
731 InsertedValues.insert(I);
732 return I;
735 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
736 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
737 Value *V = expandCodeFor(S->getOperand(),
738 SE.getEffectiveSCEVType(S->getOperand()->getType()));
739 Value *I = Builder.CreateZExt(V, Ty, "tmp");
740 InsertedValues.insert(I);
741 return I;
744 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
745 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
746 Value *V = expandCodeFor(S->getOperand(),
747 SE.getEffectiveSCEVType(S->getOperand()->getType()));
748 Value *I = Builder.CreateSExt(V, Ty, "tmp");
749 InsertedValues.insert(I);
750 return I;
753 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
754 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
755 const Type *Ty = LHS->getType();
756 for (int i = S->getNumOperands()-2; i >= 0; --i) {
757 // In the case of mixed integer and pointer types, do the
758 // rest of the comparisons as integer.
759 if (S->getOperand(i)->getType() != Ty) {
760 Ty = SE.getEffectiveSCEVType(Ty);
761 LHS = InsertNoopCastOfTo(LHS, Ty);
763 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
764 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
765 InsertedValues.insert(ICmp);
766 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
767 InsertedValues.insert(Sel);
768 LHS = Sel;
770 // In the case of mixed integer and pointer types, cast the
771 // final result back to the pointer type.
772 if (LHS->getType() != S->getType())
773 LHS = InsertNoopCastOfTo(LHS, S->getType());
774 return LHS;
777 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
778 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
779 const Type *Ty = LHS->getType();
780 for (int i = S->getNumOperands()-2; i >= 0; --i) {
781 // In the case of mixed integer and pointer types, do the
782 // rest of the comparisons as integer.
783 if (S->getOperand(i)->getType() != Ty) {
784 Ty = SE.getEffectiveSCEVType(Ty);
785 LHS = InsertNoopCastOfTo(LHS, Ty);
787 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
788 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
789 InsertedValues.insert(ICmp);
790 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
791 InsertedValues.insert(Sel);
792 LHS = Sel;
794 // In the case of mixed integer and pointer types, cast the
795 // final result back to the pointer type.
796 if (LHS->getType() != S->getType())
797 LHS = InsertNoopCastOfTo(LHS, S->getType());
798 return LHS;
801 Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
802 return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
805 Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
806 return ConstantExpr::getSizeOf(S->getAllocType());
809 Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
810 // Expand the code for this SCEV.
811 Value *V = expand(SH);
812 if (Ty) {
813 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
814 "non-trivial casts should be done with the SCEVs directly!");
815 V = InsertNoopCastOfTo(V, Ty);
817 return V;
820 Value *SCEVExpander::expand(const SCEV *S) {
821 // Compute an insertion point for this SCEV object. Hoist the instructions
822 // as far out in the loop nest as possible.
823 Instruction *InsertPt = Builder.GetInsertPoint();
824 for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
825 L = L->getParentLoop())
826 if (S->isLoopInvariant(L)) {
827 if (!L) break;
828 if (BasicBlock *Preheader = L->getLoopPreheader())
829 InsertPt = Preheader->getTerminator();
830 } else {
831 // If the SCEV is computable at this level, insert it into the header
832 // after the PHIs (and after any other instructions that we've inserted
833 // there) so that it is guaranteed to dominate any user inside the loop.
834 if (L && S->hasComputableLoopEvolution(L))
835 InsertPt = L->getHeader()->getFirstNonPHI();
836 while (isInsertedInstruction(InsertPt))
837 InsertPt = next(BasicBlock::iterator(InsertPt));
838 break;
841 // Check to see if we already expanded this here.
842 std::map<std::pair<const SCEV *, Instruction *>,
843 AssertingVH<Value> >::iterator I =
844 InsertedExpressions.find(std::make_pair(S, InsertPt));
845 if (I != InsertedExpressions.end())
846 return I->second;
848 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
849 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
850 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
852 // Expand the expression into instructions.
853 Value *V = visit(S);
855 // Remember the expanded value for this SCEV at this location.
856 InsertedExpressions[std::make_pair(S, InsertPt)] = V;
858 Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
859 return V;
862 /// getOrInsertCanonicalInductionVariable - This method returns the
863 /// canonical induction variable of the specified type for the specified
864 /// loop (inserting one if there is none). A canonical induction variable
865 /// starts at zero and steps by one on each iteration.
866 Value *
867 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
868 const Type *Ty) {
869 assert(Ty->isInteger() && "Can only insert integer induction variables!");
870 const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
871 SE.getIntegerSCEV(1, Ty), L);
872 BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
873 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
874 Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
875 if (SaveInsertBB)
876 Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
877 return V;