this is failing on linux hosts, force a triple.
[llvm/avr.git] / lib / Analysis / ValueTracking.cpp
blob1782edee7bfc43b073e9bb3dff7da34d06239caa
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
25 #include <cstring>
26 using namespace llvm;
28 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
29 /// known to be either zero or one and return them in the KnownZero/KnownOne
30 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
31 /// processing.
32 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
33 /// we cannot optimize based on the assumption that it is zero without changing
34 /// it to be an explicit zero. If we don't change it to zero, other code could
35 /// optimized based on the contradictory assumption that it is non-zero.
36 /// Because instcombine aggressively folds operations with undef args anyway,
37 /// this won't lose us code quality.
38 ///
39 /// This function is defined on values with integer type, values with pointer
40 /// type (but only if TD is non-null), and vectors of integers. In the case
41 /// where V is a vector, the mask, known zero, and known one values are the
42 /// same width as the vector element, and the bit is set only if it is true
43 /// for all of the elements in the vector.
44 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
45 APInt &KnownZero, APInt &KnownOne,
46 const TargetData *TD, unsigned Depth) {
47 const unsigned MaxDepth = 6;
48 assert(V && "No Value?");
49 assert(Depth <= MaxDepth && "Limit Search Depth");
50 unsigned BitWidth = Mask.getBitWidth();
51 assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
52 "Not integer or pointer type!");
53 assert((!TD ||
54 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
55 (!V->getType()->isIntOrIntVector() ||
56 V->getType()->getScalarSizeInBits() == BitWidth) &&
57 KnownZero.getBitWidth() == BitWidth &&
58 KnownOne.getBitWidth() == BitWidth &&
59 "V, Mask, KnownOne and KnownZero should have same BitWidth");
61 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
62 // We know all of the bits for a constant!
63 KnownOne = CI->getValue() & Mask;
64 KnownZero = ~KnownOne & Mask;
65 return;
67 // Null and aggregate-zero are all-zeros.
68 if (isa<ConstantPointerNull>(V) ||
69 isa<ConstantAggregateZero>(V)) {
70 KnownOne.clear();
71 KnownZero = Mask;
72 return;
74 // Handle a constant vector by taking the intersection of the known bits of
75 // each element.
76 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
77 KnownZero.set(); KnownOne.set();
78 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
79 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
80 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
81 TD, Depth);
82 KnownZero &= KnownZero2;
83 KnownOne &= KnownOne2;
85 return;
87 // The address of an aligned GlobalValue has trailing zeros.
88 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
89 unsigned Align = GV->getAlignment();
90 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
91 const Type *ObjectType = GV->getType()->getElementType();
92 // If the object is defined in the current Module, we'll be giving
93 // it the preferred alignment. Otherwise, we have to assume that it
94 // may only have the minimum ABI alignment.
95 if (!GV->isDeclaration() && !GV->mayBeOverridden())
96 Align = TD->getPrefTypeAlignment(ObjectType);
97 else
98 Align = TD->getABITypeAlignment(ObjectType);
100 if (Align > 0)
101 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
102 CountTrailingZeros_32(Align));
103 else
104 KnownZero.clear();
105 KnownOne.clear();
106 return;
109 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
111 if (Depth == MaxDepth || Mask == 0)
112 return; // Limit search depth.
114 Operator *I = dyn_cast<Operator>(V);
115 if (!I) return;
117 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
118 switch (I->getOpcode()) {
119 default: break;
120 case Instruction::And: {
121 // If either the LHS or the RHS are Zero, the result is zero.
122 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
123 APInt Mask2(Mask & ~KnownZero);
124 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
125 Depth+1);
126 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
127 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
129 // Output known-1 bits are only known if set in both the LHS & RHS.
130 KnownOne &= KnownOne2;
131 // Output known-0 are known to be clear if zero in either the LHS | RHS.
132 KnownZero |= KnownZero2;
133 return;
135 case Instruction::Or: {
136 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
137 APInt Mask2(Mask & ~KnownOne);
138 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
139 Depth+1);
140 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
143 // Output known-0 bits are only known if clear in both the LHS & RHS.
144 KnownZero &= KnownZero2;
145 // Output known-1 are known to be set if set in either the LHS | RHS.
146 KnownOne |= KnownOne2;
147 return;
149 case Instruction::Xor: {
150 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
151 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
152 Depth+1);
153 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
154 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
156 // Output known-0 bits are known if clear or set in both the LHS & RHS.
157 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
158 // Output known-1 are known to be set if set in only one of the LHS, RHS.
159 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
160 KnownZero = KnownZeroOut;
161 return;
163 case Instruction::Mul: {
164 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
165 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
166 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
167 Depth+1);
168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
169 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
171 // If low bits are zero in either operand, output low known-0 bits.
172 // Also compute a conserative estimate for high known-0 bits.
173 // More trickiness is possible, but this is sufficient for the
174 // interesting case of alignment computation.
175 KnownOne.clear();
176 unsigned TrailZ = KnownZero.countTrailingOnes() +
177 KnownZero2.countTrailingOnes();
178 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
179 KnownZero2.countLeadingOnes(),
180 BitWidth) - BitWidth;
182 TrailZ = std::min(TrailZ, BitWidth);
183 LeadZ = std::min(LeadZ, BitWidth);
184 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
185 APInt::getHighBitsSet(BitWidth, LeadZ);
186 KnownZero &= Mask;
187 return;
189 case Instruction::UDiv: {
190 // For the purposes of computing leading zeros we can conservatively
191 // treat a udiv as a logical right shift by the power of 2 known to
192 // be less than the denominator.
193 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
194 ComputeMaskedBits(I->getOperand(0),
195 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
196 unsigned LeadZ = KnownZero2.countLeadingOnes();
198 KnownOne2.clear();
199 KnownZero2.clear();
200 ComputeMaskedBits(I->getOperand(1),
201 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
202 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
203 if (RHSUnknownLeadingOnes != BitWidth)
204 LeadZ = std::min(BitWidth,
205 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
207 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
208 return;
210 case Instruction::Select:
211 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
212 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
213 Depth+1);
214 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
215 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
217 // Only known if known in both the LHS and RHS.
218 KnownOne &= KnownOne2;
219 KnownZero &= KnownZero2;
220 return;
221 case Instruction::FPTrunc:
222 case Instruction::FPExt:
223 case Instruction::FPToUI:
224 case Instruction::FPToSI:
225 case Instruction::SIToFP:
226 case Instruction::UIToFP:
227 return; // Can't work with floating point.
228 case Instruction::PtrToInt:
229 case Instruction::IntToPtr:
230 // We can't handle these if we don't know the pointer size.
231 if (!TD) return;
232 // FALL THROUGH and handle them the same as zext/trunc.
233 case Instruction::ZExt:
234 case Instruction::Trunc: {
235 const Type *SrcTy = I->getOperand(0)->getType();
237 unsigned SrcBitWidth;
238 // Note that we handle pointer operands here because of inttoptr/ptrtoint
239 // which fall through here.
240 if (isa<PointerType>(SrcTy))
241 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
242 else
243 SrcBitWidth = SrcTy->getScalarSizeInBits();
245 APInt MaskIn(Mask);
246 MaskIn.zextOrTrunc(SrcBitWidth);
247 KnownZero.zextOrTrunc(SrcBitWidth);
248 KnownOne.zextOrTrunc(SrcBitWidth);
249 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
250 Depth+1);
251 KnownZero.zextOrTrunc(BitWidth);
252 KnownOne.zextOrTrunc(BitWidth);
253 // Any top bits are known to be zero.
254 if (BitWidth > SrcBitWidth)
255 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
256 return;
258 case Instruction::BitCast: {
259 const Type *SrcTy = I->getOperand(0)->getType();
260 if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
261 // TODO: For now, not handling conversions like:
262 // (bitcast i64 %x to <2 x i32>)
263 !isa<VectorType>(I->getType())) {
264 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
265 Depth+1);
266 return;
268 break;
270 case Instruction::SExt: {
271 // Compute the bits in the result that are not present in the input.
272 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
274 APInt MaskIn(Mask);
275 MaskIn.trunc(SrcBitWidth);
276 KnownZero.trunc(SrcBitWidth);
277 KnownOne.trunc(SrcBitWidth);
278 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
279 Depth+1);
280 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
281 KnownZero.zext(BitWidth);
282 KnownOne.zext(BitWidth);
284 // If the sign bit of the input is known set or clear, then we know the
285 // top bits of the result.
286 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
287 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
288 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
289 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
290 return;
292 case Instruction::Shl:
293 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
294 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
295 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
296 APInt Mask2(Mask.lshr(ShiftAmt));
297 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
298 Depth+1);
299 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
300 KnownZero <<= ShiftAmt;
301 KnownOne <<= ShiftAmt;
302 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
303 return;
305 break;
306 case Instruction::LShr:
307 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
308 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
309 // Compute the new bits that are at the top now.
310 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
312 // Unsigned shift right.
313 APInt Mask2(Mask.shl(ShiftAmt));
314 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
315 Depth+1);
316 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
317 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
318 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
319 // high bits known zero.
320 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
321 return;
323 break;
324 case Instruction::AShr:
325 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
326 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
327 // Compute the new bits that are at the top now.
328 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
330 // Signed shift right.
331 APInt Mask2(Mask.shl(ShiftAmt));
332 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
333 Depth+1);
334 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
335 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
336 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
338 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
339 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
340 KnownZero |= HighBits;
341 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
342 KnownOne |= HighBits;
343 return;
345 break;
346 case Instruction::Sub: {
347 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
348 // We know that the top bits of C-X are clear if X contains less bits
349 // than C (i.e. no wrap-around can happen). For example, 20-X is
350 // positive if we can prove that X is >= 0 and < 16.
351 if (!CLHS->getValue().isNegative()) {
352 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
353 // NLZ can't be BitWidth with no sign bit
354 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
355 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
356 TD, Depth+1);
358 // If all of the MaskV bits are known to be zero, then we know the
359 // output top bits are zero, because we now know that the output is
360 // from [0-C].
361 if ((KnownZero2 & MaskV) == MaskV) {
362 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
363 // Top bits known zero.
364 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
369 // fall through
370 case Instruction::Add: {
371 // If one of the operands has trailing zeros, than the bits that the
372 // other operand has in those bit positions will be preserved in the
373 // result. For an add, this works with either operand. For a subtract,
374 // this only works if the known zeros are in the right operand.
375 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
376 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
377 BitWidth - Mask.countLeadingZeros());
378 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
379 Depth+1);
380 assert((LHSKnownZero & LHSKnownOne) == 0 &&
381 "Bits known to be one AND zero?");
382 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
384 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
385 Depth+1);
386 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
387 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
389 // Determine which operand has more trailing zeros, and use that
390 // many bits from the other operand.
391 if (LHSKnownZeroOut > RHSKnownZeroOut) {
392 if (I->getOpcode() == Instruction::Add) {
393 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
394 KnownZero |= KnownZero2 & Mask;
395 KnownOne |= KnownOne2 & Mask;
396 } else {
397 // If the known zeros are in the left operand for a subtract,
398 // fall back to the minimum known zeros in both operands.
399 KnownZero |= APInt::getLowBitsSet(BitWidth,
400 std::min(LHSKnownZeroOut,
401 RHSKnownZeroOut));
403 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
404 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
405 KnownZero |= LHSKnownZero & Mask;
406 KnownOne |= LHSKnownOne & Mask;
408 return;
410 case Instruction::SRem:
411 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
412 APInt RA = Rem->getValue();
413 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
414 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
415 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
416 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
417 Depth+1);
419 // If the sign bit of the first operand is zero, the sign bit of
420 // the result is zero. If the first operand has no one bits below
421 // the second operand's single 1 bit, its sign will be zero.
422 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
423 KnownZero2 |= ~LowBits;
425 KnownZero |= KnownZero2 & Mask;
427 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
430 break;
431 case Instruction::URem: {
432 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
433 APInt RA = Rem->getValue();
434 if (RA.isPowerOf2()) {
435 APInt LowBits = (RA - 1);
436 APInt Mask2 = LowBits & Mask;
437 KnownZero |= ~LowBits & Mask;
438 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
439 Depth+1);
440 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
441 break;
445 // Since the result is less than or equal to either operand, any leading
446 // zero bits in either operand must also exist in the result.
447 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
448 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
449 TD, Depth+1);
450 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
451 TD, Depth+1);
453 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
454 KnownZero2.countLeadingOnes());
455 KnownOne.clear();
456 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
457 break;
460 case Instruction::Alloca:
461 case Instruction::Malloc: {
462 AllocationInst *AI = cast<AllocationInst>(V);
463 unsigned Align = AI->getAlignment();
464 if (Align == 0 && TD) {
465 if (isa<AllocaInst>(AI))
466 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
467 else if (isa<MallocInst>(AI)) {
468 // Malloc returns maximally aligned memory.
469 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
470 Align =
471 std::max(Align,
472 (unsigned)TD->getABITypeAlignment(
473 Type::getDoubleTy(V->getContext())));
474 Align =
475 std::max(Align,
476 (unsigned)TD->getABITypeAlignment(
477 Type::getInt64Ty(V->getContext())));
481 if (Align > 0)
482 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
483 CountTrailingZeros_32(Align));
484 break;
486 case Instruction::GetElementPtr: {
487 // Analyze all of the subscripts of this getelementptr instruction
488 // to determine if we can prove known low zero bits.
489 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
490 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
491 ComputeMaskedBits(I->getOperand(0), LocalMask,
492 LocalKnownZero, LocalKnownOne, TD, Depth+1);
493 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
495 gep_type_iterator GTI = gep_type_begin(I);
496 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
497 Value *Index = I->getOperand(i);
498 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
499 // Handle struct member offset arithmetic.
500 if (!TD) return;
501 const StructLayout *SL = TD->getStructLayout(STy);
502 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
503 uint64_t Offset = SL->getElementOffset(Idx);
504 TrailZ = std::min(TrailZ,
505 CountTrailingZeros_64(Offset));
506 } else {
507 // Handle array index arithmetic.
508 const Type *IndexedTy = GTI.getIndexedType();
509 if (!IndexedTy->isSized()) return;
510 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
511 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
512 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
513 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
514 ComputeMaskedBits(Index, LocalMask,
515 LocalKnownZero, LocalKnownOne, TD, Depth+1);
516 TrailZ = std::min(TrailZ,
517 unsigned(CountTrailingZeros_64(TypeSize) +
518 LocalKnownZero.countTrailingOnes()));
522 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
523 break;
525 case Instruction::PHI: {
526 PHINode *P = cast<PHINode>(I);
527 // Handle the case of a simple two-predecessor recurrence PHI.
528 // There's a lot more that could theoretically be done here, but
529 // this is sufficient to catch some interesting cases.
530 if (P->getNumIncomingValues() == 2) {
531 for (unsigned i = 0; i != 2; ++i) {
532 Value *L = P->getIncomingValue(i);
533 Value *R = P->getIncomingValue(!i);
534 Operator *LU = dyn_cast<Operator>(L);
535 if (!LU)
536 continue;
537 unsigned Opcode = LU->getOpcode();
538 // Check for operations that have the property that if
539 // both their operands have low zero bits, the result
540 // will have low zero bits.
541 if (Opcode == Instruction::Add ||
542 Opcode == Instruction::Sub ||
543 Opcode == Instruction::And ||
544 Opcode == Instruction::Or ||
545 Opcode == Instruction::Mul) {
546 Value *LL = LU->getOperand(0);
547 Value *LR = LU->getOperand(1);
548 // Find a recurrence.
549 if (LL == I)
550 L = LR;
551 else if (LR == I)
552 L = LL;
553 else
554 break;
555 // Ok, we have a PHI of the form L op= R. Check for low
556 // zero bits.
557 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
558 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
559 Mask2 = APInt::getLowBitsSet(BitWidth,
560 KnownZero2.countTrailingOnes());
562 // We need to take the minimum number of known bits
563 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
564 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
566 KnownZero = Mask &
567 APInt::getLowBitsSet(BitWidth,
568 std::min(KnownZero2.countTrailingOnes(),
569 KnownZero3.countTrailingOnes()));
570 break;
575 // Otherwise take the unions of the known bit sets of the operands,
576 // taking conservative care to avoid excessive recursion.
577 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
578 KnownZero = APInt::getAllOnesValue(BitWidth);
579 KnownOne = APInt::getAllOnesValue(BitWidth);
580 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
581 // Skip direct self references.
582 if (P->getIncomingValue(i) == P) continue;
584 KnownZero2 = APInt(BitWidth, 0);
585 KnownOne2 = APInt(BitWidth, 0);
586 // Recurse, but cap the recursion to one level, because we don't
587 // want to waste time spinning around in loops.
588 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
589 KnownZero2, KnownOne2, TD, MaxDepth-1);
590 KnownZero &= KnownZero2;
591 KnownOne &= KnownOne2;
592 // If all bits have been ruled out, there's no need to check
593 // more operands.
594 if (!KnownZero && !KnownOne)
595 break;
598 break;
600 case Instruction::Call:
601 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
602 switch (II->getIntrinsicID()) {
603 default: break;
604 case Intrinsic::ctpop:
605 case Intrinsic::ctlz:
606 case Intrinsic::cttz: {
607 unsigned LowBits = Log2_32(BitWidth)+1;
608 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
609 break;
613 break;
617 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
618 /// this predicate to simplify operations downstream. Mask is known to be zero
619 /// for bits that V cannot have.
621 /// This function is defined on values with integer type, values with pointer
622 /// type (but only if TD is non-null), and vectors of integers. In the case
623 /// where V is a vector, the mask, known zero, and known one values are the
624 /// same width as the vector element, and the bit is set only if it is true
625 /// for all of the elements in the vector.
626 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
627 const TargetData *TD, unsigned Depth) {
628 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
629 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
630 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
631 return (KnownZero & Mask) == Mask;
636 /// ComputeNumSignBits - Return the number of times the sign bit of the
637 /// register is replicated into the other bits. We know that at least 1 bit
638 /// is always equal to the sign bit (itself), but other cases can give us
639 /// information. For example, immediately after an "ashr X, 2", we know that
640 /// the top 3 bits are all equal to each other, so we return 3.
642 /// 'Op' must have a scalar integer type.
644 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
645 unsigned Depth) {
646 assert((TD || V->getType()->isIntOrIntVector()) &&
647 "ComputeNumSignBits requires a TargetData object to operate "
648 "on non-integer values!");
649 const Type *Ty = V->getType();
650 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
651 Ty->getScalarSizeInBits();
652 unsigned Tmp, Tmp2;
653 unsigned FirstAnswer = 1;
655 // Note that ConstantInt is handled by the general ComputeMaskedBits case
656 // below.
658 if (Depth == 6)
659 return 1; // Limit search depth.
661 Operator *U = dyn_cast<Operator>(V);
662 switch (Operator::getOpcode(V)) {
663 default: break;
664 case Instruction::SExt:
665 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
666 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
668 case Instruction::AShr:
669 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
670 // ashr X, C -> adds C sign bits.
671 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
672 Tmp += C->getZExtValue();
673 if (Tmp > TyBits) Tmp = TyBits;
675 return Tmp;
676 case Instruction::Shl:
677 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
678 // shl destroys sign bits.
679 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
680 if (C->getZExtValue() >= TyBits || // Bad shift.
681 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
682 return Tmp - C->getZExtValue();
684 break;
685 case Instruction::And:
686 case Instruction::Or:
687 case Instruction::Xor: // NOT is handled here.
688 // Logical binary ops preserve the number of sign bits at the worst.
689 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
690 if (Tmp != 1) {
691 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
692 FirstAnswer = std::min(Tmp, Tmp2);
693 // We computed what we know about the sign bits as our first
694 // answer. Now proceed to the generic code that uses
695 // ComputeMaskedBits, and pick whichever answer is better.
697 break;
699 case Instruction::Select:
700 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
701 if (Tmp == 1) return 1; // Early out.
702 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
703 return std::min(Tmp, Tmp2);
705 case Instruction::Add:
706 // Add can have at most one carry bit. Thus we know that the output
707 // is, at worst, one more bit than the inputs.
708 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
709 if (Tmp == 1) return 1; // Early out.
711 // Special case decrementing a value (ADD X, -1):
712 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
713 if (CRHS->isAllOnesValue()) {
714 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
715 APInt Mask = APInt::getAllOnesValue(TyBits);
716 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
717 Depth+1);
719 // If the input is known to be 0 or 1, the output is 0/-1, which is all
720 // sign bits set.
721 if ((KnownZero | APInt(TyBits, 1)) == Mask)
722 return TyBits;
724 // If we are subtracting one from a positive number, there is no carry
725 // out of the result.
726 if (KnownZero.isNegative())
727 return Tmp;
730 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
731 if (Tmp2 == 1) return 1;
732 return std::min(Tmp, Tmp2)-1;
733 break;
735 case Instruction::Sub:
736 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
737 if (Tmp2 == 1) return 1;
739 // Handle NEG.
740 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
741 if (CLHS->isNullValue()) {
742 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
743 APInt Mask = APInt::getAllOnesValue(TyBits);
744 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
745 TD, Depth+1);
746 // If the input is known to be 0 or 1, the output is 0/-1, which is all
747 // sign bits set.
748 if ((KnownZero | APInt(TyBits, 1)) == Mask)
749 return TyBits;
751 // If the input is known to be positive (the sign bit is known clear),
752 // the output of the NEG has the same number of sign bits as the input.
753 if (KnownZero.isNegative())
754 return Tmp2;
756 // Otherwise, we treat this like a SUB.
759 // Sub can have at most one carry bit. Thus we know that the output
760 // is, at worst, one more bit than the inputs.
761 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
762 if (Tmp == 1) return 1; // Early out.
763 return std::min(Tmp, Tmp2)-1;
764 break;
765 case Instruction::Trunc:
766 // FIXME: it's tricky to do anything useful for this, but it is an important
767 // case for targets like X86.
768 break;
771 // Finally, if we can prove that the top bits of the result are 0's or 1's,
772 // use this information.
773 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
774 APInt Mask = APInt::getAllOnesValue(TyBits);
775 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
777 if (KnownZero.isNegative()) { // sign bit is 0
778 Mask = KnownZero;
779 } else if (KnownOne.isNegative()) { // sign bit is 1;
780 Mask = KnownOne;
781 } else {
782 // Nothing known.
783 return FirstAnswer;
786 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
787 // the number of identical bits in the top of the input value.
788 Mask = ~Mask;
789 Mask <<= Mask.getBitWidth()-TyBits;
790 // Return # leading zeros. We use 'min' here in case Val was zero before
791 // shifting. We don't want to return '64' as for an i32 "0".
792 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
795 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
796 /// value is never equal to -0.0.
798 /// NOTE: this function will need to be revisited when we support non-default
799 /// rounding modes!
801 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
802 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
803 return !CFP->getValueAPF().isNegZero();
805 if (Depth == 6)
806 return 1; // Limit search depth.
808 const Operator *I = dyn_cast<Operator>(V);
809 if (I == 0) return false;
811 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
812 if (I->getOpcode() == Instruction::FAdd &&
813 isa<ConstantFP>(I->getOperand(1)) &&
814 cast<ConstantFP>(I->getOperand(1))->isNullValue())
815 return true;
817 // sitofp and uitofp turn into +0.0 for zero.
818 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
819 return true;
821 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
822 // sqrt(-0.0) = -0.0, no other negative results are possible.
823 if (II->getIntrinsicID() == Intrinsic::sqrt)
824 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
826 if (const CallInst *CI = dyn_cast<CallInst>(I))
827 if (const Function *F = CI->getCalledFunction()) {
828 if (F->isDeclaration()) {
829 // abs(x) != -0.0
830 if (F->getName() == "abs") return true;
831 // abs[lf](x) != -0.0
832 if (F->getName() == "absf") return true;
833 if (F->getName() == "absl") return true;
837 return false;
840 // This is the recursive version of BuildSubAggregate. It takes a few different
841 // arguments. Idxs is the index within the nested struct From that we are
842 // looking at now (which is of type IndexedType). IdxSkip is the number of
843 // indices from Idxs that should be left out when inserting into the resulting
844 // struct. To is the result struct built so far, new insertvalue instructions
845 // build on that.
846 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
847 SmallVector<unsigned, 10> &Idxs,
848 unsigned IdxSkip,
849 LLVMContext &Context,
850 Instruction *InsertBefore) {
851 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
852 if (STy) {
853 // Save the original To argument so we can modify it
854 Value *OrigTo = To;
855 // General case, the type indexed by Idxs is a struct
856 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
857 // Process each struct element recursively
858 Idxs.push_back(i);
859 Value *PrevTo = To;
860 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
861 Context, InsertBefore);
862 Idxs.pop_back();
863 if (!To) {
864 // Couldn't find any inserted value for this index? Cleanup
865 while (PrevTo != OrigTo) {
866 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
867 PrevTo = Del->getAggregateOperand();
868 Del->eraseFromParent();
870 // Stop processing elements
871 break;
874 // If we succesfully found a value for each of our subaggregates
875 if (To)
876 return To;
878 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
879 // the struct's elements had a value that was inserted directly. In the latter
880 // case, perhaps we can't determine each of the subelements individually, but
881 // we might be able to find the complete struct somewhere.
883 // Find the value that is at that particular spot
884 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
886 if (!V)
887 return NULL;
889 // Insert the value in the new (sub) aggregrate
890 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
891 Idxs.end(), "tmp", InsertBefore);
894 // This helper takes a nested struct and extracts a part of it (which is again a
895 // struct) into a new value. For example, given the struct:
896 // { a, { b, { c, d }, e } }
897 // and the indices "1, 1" this returns
898 // { c, d }.
900 // It does this by inserting an insertvalue for each element in the resulting
901 // struct, as opposed to just inserting a single struct. This will only work if
902 // each of the elements of the substruct are known (ie, inserted into From by an
903 // insertvalue instruction somewhere).
905 // All inserted insertvalue instructions are inserted before InsertBefore
906 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
907 const unsigned *idx_end, LLVMContext &Context,
908 Instruction *InsertBefore) {
909 assert(InsertBefore && "Must have someplace to insert!");
910 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
911 idx_begin,
912 idx_end);
913 Value *To = UndefValue::get(IndexedType);
914 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
915 unsigned IdxSkip = Idxs.size();
917 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
918 Context, InsertBefore);
921 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
922 /// the scalar value indexed is already around as a register, for example if it
923 /// were inserted directly into the aggregrate.
925 /// If InsertBefore is not null, this function will duplicate (modified)
926 /// insertvalues when a part of a nested struct is extracted.
927 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
928 const unsigned *idx_end, LLVMContext &Context,
929 Instruction *InsertBefore) {
930 // Nothing to index? Just return V then (this is useful at the end of our
931 // recursion)
932 if (idx_begin == idx_end)
933 return V;
934 // We have indices, so V should have an indexable type
935 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
936 && "Not looking at a struct or array?");
937 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
938 && "Invalid indices for type?");
939 const CompositeType *PTy = cast<CompositeType>(V->getType());
941 if (isa<UndefValue>(V))
942 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
943 idx_begin,
944 idx_end));
945 else if (isa<ConstantAggregateZero>(V))
946 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
947 idx_begin,
948 idx_end));
949 else if (Constant *C = dyn_cast<Constant>(V)) {
950 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
951 // Recursively process this constant
952 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
953 idx_end, Context, InsertBefore);
954 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
955 // Loop the indices for the insertvalue instruction in parallel with the
956 // requested indices
957 const unsigned *req_idx = idx_begin;
958 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
959 i != e; ++i, ++req_idx) {
960 if (req_idx == idx_end) {
961 if (InsertBefore)
962 // The requested index identifies a part of a nested aggregate. Handle
963 // this specially. For example,
964 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
965 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
966 // %C = extractvalue {i32, { i32, i32 } } %B, 1
967 // This can be changed into
968 // %A = insertvalue {i32, i32 } undef, i32 10, 0
969 // %C = insertvalue {i32, i32 } %A, i32 11, 1
970 // which allows the unused 0,0 element from the nested struct to be
971 // removed.
972 return BuildSubAggregate(V, idx_begin, req_idx,
973 Context, InsertBefore);
974 else
975 // We can't handle this without inserting insertvalues
976 return 0;
979 // This insert value inserts something else than what we are looking for.
980 // See if the (aggregrate) value inserted into has the value we are
981 // looking for, then.
982 if (*req_idx != *i)
983 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
984 Context, InsertBefore);
986 // If we end up here, the indices of the insertvalue match with those
987 // requested (though possibly only partially). Now we recursively look at
988 // the inserted value, passing any remaining indices.
989 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
990 Context, InsertBefore);
991 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
992 // If we're extracting a value from an aggregrate that was extracted from
993 // something else, we can extract from that something else directly instead.
994 // However, we will need to chain I's indices with the requested indices.
996 // Calculate the number of indices required
997 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
998 // Allocate some space to put the new indices in
999 SmallVector<unsigned, 5> Idxs;
1000 Idxs.reserve(size);
1001 // Add indices from the extract value instruction
1002 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1003 i != e; ++i)
1004 Idxs.push_back(*i);
1006 // Add requested indices
1007 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1008 Idxs.push_back(*i);
1010 assert(Idxs.size() == size
1011 && "Number of indices added not correct?");
1013 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1014 Context, InsertBefore);
1016 // Otherwise, we don't know (such as, extracting from a function return value
1017 // or load instruction)
1018 return 0;
1021 /// GetConstantStringInfo - This function computes the length of a
1022 /// null-terminated C string pointed to by V. If successful, it returns true
1023 /// and returns the string in Str. If unsuccessful, it returns false.
1024 bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1025 bool StopAtNul) {
1026 // If V is NULL then return false;
1027 if (V == NULL) return false;
1029 // Look through bitcast instructions.
1030 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1031 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1033 // If the value is not a GEP instruction nor a constant expression with a
1034 // GEP instruction, then return false because ConstantArray can't occur
1035 // any other way
1036 User *GEP = 0;
1037 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1038 GEP = GEPI;
1039 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1040 if (CE->getOpcode() == Instruction::BitCast)
1041 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1042 if (CE->getOpcode() != Instruction::GetElementPtr)
1043 return false;
1044 GEP = CE;
1047 if (GEP) {
1048 // Make sure the GEP has exactly three arguments.
1049 if (GEP->getNumOperands() != 3)
1050 return false;
1052 // Make sure the index-ee is a pointer to array of i8.
1053 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1054 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1055 if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
1056 return false;
1058 // Check to make sure that the first operand of the GEP is an integer and
1059 // has value 0 so that we are sure we're indexing into the initializer.
1060 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1061 if (FirstIdx == 0 || !FirstIdx->isZero())
1062 return false;
1064 // If the second index isn't a ConstantInt, then this is a variable index
1065 // into the array. If this occurs, we can't say anything meaningful about
1066 // the string.
1067 uint64_t StartIdx = 0;
1068 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1069 StartIdx = CI->getZExtValue();
1070 else
1071 return false;
1072 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1073 StopAtNul);
1076 if (MDString *MDStr = dyn_cast<MDString>(V)) {
1077 Str = MDStr->getString();
1078 return true;
1081 // The GEP instruction, constant or instruction, must reference a global
1082 // variable that is a constant and is initialized. The referenced constant
1083 // initializer is the array that we'll use for optimization.
1084 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1085 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1086 return false;
1087 Constant *GlobalInit = GV->getInitializer();
1089 // Handle the ConstantAggregateZero case
1090 if (isa<ConstantAggregateZero>(GlobalInit)) {
1091 // This is a degenerate case. The initializer is constant zero so the
1092 // length of the string must be zero.
1093 Str.clear();
1094 return true;
1097 // Must be a Constant Array
1098 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1099 if (Array == 0 ||
1100 Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
1101 return false;
1103 // Get the number of elements in the array
1104 uint64_t NumElts = Array->getType()->getNumElements();
1106 if (Offset > NumElts)
1107 return false;
1109 // Traverse the constant array from 'Offset' which is the place the GEP refers
1110 // to in the array.
1111 Str.reserve(NumElts-Offset);
1112 for (unsigned i = Offset; i != NumElts; ++i) {
1113 Constant *Elt = Array->getOperand(i);
1114 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1115 if (!CI) // This array isn't suitable, non-int initializer.
1116 return false;
1117 if (StopAtNul && CI->isZero())
1118 return true; // we found end of string, success!
1119 Str += (char)CI->getZExtValue();
1122 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1123 return true;