this is failing on linux hosts, force a triple.
[llvm/avr.git] / lib / Support / Allocator.cpp
blob7a3fd87c17eef50cc5b2248b5ac8e6408ac48380
1 //===--- Allocator.cpp - Simple memory allocation abstraction -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BumpPtrAllocator interface.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Support/Allocator.h"
15 #include "llvm/Support/DataTypes.h"
16 #include "llvm/Support/Recycler.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/System/Memory.h"
19 #include <cstring>
21 namespace llvm {
23 BumpPtrAllocator::BumpPtrAllocator(size_t size, size_t threshold,
24 SlabAllocator &allocator)
25 : SlabSize(size), SizeThreshold(threshold), Allocator(allocator),
26 CurSlab(0), BytesAllocated(0) {
27 StartNewSlab();
30 BumpPtrAllocator::~BumpPtrAllocator() {
31 DeallocateSlabs(CurSlab);
34 /// AlignPtr - Align Ptr to Alignment bytes, rounding up. Alignment should
35 /// be a power of two. This method rounds up, so AlignPtr(7, 4) == 8 and
36 /// AlignPtr(8, 4) == 8.
37 char *BumpPtrAllocator::AlignPtr(char *Ptr, size_t Alignment) {
38 assert(Alignment && (Alignment & (Alignment - 1)) == 0 &&
39 "Alignment is not a power of two!");
41 // Do the alignment.
42 return (char*)(((uintptr_t)Ptr + Alignment - 1) &
43 ~(uintptr_t)(Alignment - 1));
46 /// StartNewSlab - Allocate a new slab and move the bump pointers over into
47 /// the new slab. Modifies CurPtr and End.
48 void BumpPtrAllocator::StartNewSlab() {
49 MemSlab *NewSlab = Allocator.Allocate(SlabSize);
50 NewSlab->NextPtr = CurSlab;
51 CurSlab = NewSlab;
52 CurPtr = (char*)(CurSlab + 1);
53 End = ((char*)CurSlab) + CurSlab->Size;
56 /// DeallocateSlabs - Deallocate all memory slabs after and including this
57 /// one.
58 void BumpPtrAllocator::DeallocateSlabs(MemSlab *Slab) {
59 while (Slab) {
60 MemSlab *NextSlab = Slab->NextPtr;
61 #ifndef NDEBUG
62 // Poison the memory so stale pointers crash sooner. Note we must
63 // preserve the Size and NextPtr fields at the beginning.
64 sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
65 memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
66 #endif
67 Allocator.Deallocate(Slab);
68 Slab = NextSlab;
72 /// Reset - Deallocate all but the current slab and reset the current pointer
73 /// to the beginning of it, freeing all memory allocated so far.
74 void BumpPtrAllocator::Reset() {
75 DeallocateSlabs(CurSlab->NextPtr);
76 CurSlab->NextPtr = 0;
77 CurPtr = (char*)(CurSlab + 1);
78 End = ((char*)CurSlab) + CurSlab->Size;
81 /// Allocate - Allocate space at the specified alignment.
82 ///
83 void *BumpPtrAllocator::Allocate(size_t Size, size_t Alignment) {
84 // Keep track of how many bytes we've allocated.
85 BytesAllocated += Size;
87 // 0-byte alignment means 1-byte alignment.
88 if (Alignment == 0) Alignment = 1;
90 // Allocate the aligned space, going forwards from CurPtr.
91 char *Ptr = AlignPtr(CurPtr, Alignment);
93 // Check if we can hold it.
94 if (Ptr + Size <= End) {
95 CurPtr = Ptr + Size;
96 return Ptr;
99 // If Size is really big, allocate a separate slab for it.
100 size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
101 if (PaddedSize > SizeThreshold) {
102 MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
104 // Put the new slab after the current slab, since we are not allocating
105 // into it.
106 NewSlab->NextPtr = CurSlab->NextPtr;
107 CurSlab->NextPtr = NewSlab;
109 Ptr = AlignPtr((char*)(NewSlab + 1), Alignment);
110 assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
111 return Ptr;
114 // Otherwise, start a new slab and try again.
115 StartNewSlab();
116 Ptr = AlignPtr(CurPtr, Alignment);
117 CurPtr = Ptr + Size;
118 assert(CurPtr <= End && "Unable to allocate memory!");
119 return Ptr;
122 unsigned BumpPtrAllocator::GetNumSlabs() const {
123 unsigned NumSlabs = 0;
124 for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
125 ++NumSlabs;
127 return NumSlabs;
130 void BumpPtrAllocator::PrintStats() const {
131 unsigned NumSlabs = 0;
132 size_t TotalMemory = 0;
133 for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
134 TotalMemory += Slab->Size;
135 ++NumSlabs;
138 errs() << "\nNumber of memory regions: " << NumSlabs << '\n'
139 << "Bytes used: " << BytesAllocated << '\n'
140 << "Bytes allocated: " << TotalMemory << '\n'
141 << "Bytes wasted: " << (TotalMemory - BytesAllocated)
142 << " (includes alignment, etc)\n";
145 MallocSlabAllocator BumpPtrAllocator::DefaultSlabAllocator =
146 MallocSlabAllocator();
148 SlabAllocator::~SlabAllocator() { }
150 MallocSlabAllocator::~MallocSlabAllocator() { }
152 MemSlab *MallocSlabAllocator::Allocate(size_t Size) {
153 MemSlab *Slab = (MemSlab*)Allocator.Allocate(Size, 0);
154 Slab->Size = Size;
155 Slab->NextPtr = 0;
156 return Slab;
159 void MallocSlabAllocator::Deallocate(MemSlab *Slab) {
160 Allocator.Deallocate(Slab);
163 void PrintRecyclerStats(size_t Size,
164 size_t Align,
165 size_t FreeListSize) {
166 errs() << "Recycler element size: " << Size << '\n'
167 << "Recycler element alignment: " << Align << '\n'
168 << "Number of elements free for recycling: " << FreeListSize << '\n';