1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the common interface used by the various execution engine
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/ModuleProvider.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Config/alloca.h"
22 #include "llvm/ExecutionEngine/ExecutionEngine.h"
23 #include "llvm/ExecutionEngine/GenericValue.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/DynamicLibrary.h"
29 #include "llvm/System/Host.h"
30 #include "llvm/Target/TargetData.h"
35 STATISTIC(NumInitBytes
, "Number of bytes of global vars initialized");
36 STATISTIC(NumGlobals
, "Number of global vars initialized");
38 ExecutionEngine
*(*ExecutionEngine::JITCtor
)(ModuleProvider
*MP
,
39 std::string
*ErrorStr
,
40 JITMemoryManager
*JMM
,
41 CodeGenOpt::Level OptLevel
,
42 bool GVsWithCode
) = 0;
43 ExecutionEngine
*(*ExecutionEngine::InterpCtor
)(ModuleProvider
*MP
,
44 std::string
*ErrorStr
) = 0;
45 ExecutionEngine::EERegisterFn
ExecutionEngine::ExceptionTableRegister
= 0;
48 ExecutionEngine::ExecutionEngine(ModuleProvider
*P
) : LazyFunctionCreator(0) {
49 LazyCompilationDisabled
= false;
50 GVCompilationDisabled
= false;
51 SymbolSearchingDisabled
= false;
52 DlsymStubsEnabled
= false;
54 assert(P
&& "ModuleProvider is null?");
57 ExecutionEngine::~ExecutionEngine() {
58 clearAllGlobalMappings();
59 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
)
63 char* ExecutionEngine::getMemoryForGV(const GlobalVariable
* GV
) {
64 const Type
*ElTy
= GV
->getType()->getElementType();
65 size_t GVSize
= (size_t)getTargetData()->getTypeAllocSize(ElTy
);
66 return new char[GVSize
];
69 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
70 /// Relases the Module from the ModuleProvider, materializing it in the
71 /// process, and returns the materialized Module.
72 Module
* ExecutionEngine::removeModuleProvider(ModuleProvider
*P
,
73 std::string
*ErrInfo
) {
74 for(SmallVector
<ModuleProvider
*, 1>::iterator I
= Modules
.begin(),
75 E
= Modules
.end(); I
!= E
; ++I
) {
76 ModuleProvider
*MP
= *I
;
79 clearGlobalMappingsFromModule(MP
->getModule());
80 return MP
->releaseModule(ErrInfo
);
86 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
87 /// and deletes the ModuleProvider and owned Module. Avoids materializing
88 /// the underlying module.
89 void ExecutionEngine::deleteModuleProvider(ModuleProvider
*P
,
90 std::string
*ErrInfo
) {
91 for(SmallVector
<ModuleProvider
*, 1>::iterator I
= Modules
.begin(),
92 E
= Modules
.end(); I
!= E
; ++I
) {
93 ModuleProvider
*MP
= *I
;
96 clearGlobalMappingsFromModule(MP
->getModule());
103 /// FindFunctionNamed - Search all of the active modules to find the one that
104 /// defines FnName. This is very slow operation and shouldn't be used for
106 Function
*ExecutionEngine::FindFunctionNamed(const char *FnName
) {
107 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
) {
108 if (Function
*F
= Modules
[i
]->getModule()->getFunction(FnName
))
115 /// addGlobalMapping - Tell the execution engine that the specified global is
116 /// at the specified location. This is used internally as functions are JIT'd
117 /// and as global variables are laid out in memory. It can and should also be
118 /// used by clients of the EE that want to have an LLVM global overlay
119 /// existing data in memory.
120 void ExecutionEngine::addGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
121 MutexGuard
locked(lock
);
123 DEBUG(errs() << "JIT: Map \'" << GV
->getName()
124 << "\' to [" << Addr
<< "]\n";);
125 void *&CurVal
= state
.getGlobalAddressMap(locked
)[GV
];
126 assert((CurVal
== 0 || Addr
== 0) && "GlobalMapping already established!");
129 // If we are using the reverse mapping, add it too
130 if (!state
.getGlobalAddressReverseMap(locked
).empty()) {
131 const GlobalValue
*&V
= state
.getGlobalAddressReverseMap(locked
)[Addr
];
132 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
137 /// clearAllGlobalMappings - Clear all global mappings and start over again
138 /// use in dynamic compilation scenarios when you want to move globals
139 void ExecutionEngine::clearAllGlobalMappings() {
140 MutexGuard
locked(lock
);
142 state
.getGlobalAddressMap(locked
).clear();
143 state
.getGlobalAddressReverseMap(locked
).clear();
146 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
147 /// particular module, because it has been removed from the JIT.
148 void ExecutionEngine::clearGlobalMappingsFromModule(Module
*M
) {
149 MutexGuard
locked(lock
);
151 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; ++FI
) {
152 state
.getGlobalAddressMap(locked
).erase(FI
);
153 state
.getGlobalAddressReverseMap(locked
).erase(FI
);
155 for (Module::global_iterator GI
= M
->global_begin(), GE
= M
->global_end();
157 state
.getGlobalAddressMap(locked
).erase(GI
);
158 state
.getGlobalAddressReverseMap(locked
).erase(GI
);
162 /// updateGlobalMapping - Replace an existing mapping for GV with a new
163 /// address. This updates both maps as required. If "Addr" is null, the
164 /// entry for the global is removed from the mappings.
165 void *ExecutionEngine::updateGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
166 MutexGuard
locked(lock
);
168 std::map
<const GlobalValue
*, void *> &Map
= state
.getGlobalAddressMap(locked
);
170 // Deleting from the mapping?
172 std::map
<const GlobalValue
*, void *>::iterator I
= Map
.find(GV
);
181 if (!state
.getGlobalAddressReverseMap(locked
).empty())
182 state
.getGlobalAddressReverseMap(locked
).erase(OldVal
);
186 void *&CurVal
= Map
[GV
];
187 void *OldVal
= CurVal
;
189 if (CurVal
&& !state
.getGlobalAddressReverseMap(locked
).empty())
190 state
.getGlobalAddressReverseMap(locked
).erase(CurVal
);
193 // If we are using the reverse mapping, add it too
194 if (!state
.getGlobalAddressReverseMap(locked
).empty()) {
195 const GlobalValue
*&V
= state
.getGlobalAddressReverseMap(locked
)[Addr
];
196 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
202 /// getPointerToGlobalIfAvailable - This returns the address of the specified
203 /// global value if it is has already been codegen'd, otherwise it returns null.
205 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue
*GV
) {
206 MutexGuard
locked(lock
);
208 std::map
<const GlobalValue
*, void*>::iterator I
=
209 state
.getGlobalAddressMap(locked
).find(GV
);
210 return I
!= state
.getGlobalAddressMap(locked
).end() ? I
->second
: 0;
213 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
214 /// at the specified address.
216 const GlobalValue
*ExecutionEngine::getGlobalValueAtAddress(void *Addr
) {
217 MutexGuard
locked(lock
);
219 // If we haven't computed the reverse mapping yet, do so first.
220 if (state
.getGlobalAddressReverseMap(locked
).empty()) {
221 for (std::map
<const GlobalValue
*, void *>::iterator
222 I
= state
.getGlobalAddressMap(locked
).begin(),
223 E
= state
.getGlobalAddressMap(locked
).end(); I
!= E
; ++I
)
224 state
.getGlobalAddressReverseMap(locked
).insert(std::make_pair(I
->second
,
228 std::map
<void *, const GlobalValue
*>::iterator I
=
229 state
.getGlobalAddressReverseMap(locked
).find(Addr
);
230 return I
!= state
.getGlobalAddressReverseMap(locked
).end() ? I
->second
: 0;
233 // CreateArgv - Turn a vector of strings into a nice argv style array of
234 // pointers to null terminated strings.
236 static void *CreateArgv(ExecutionEngine
*EE
,
237 const std::vector
<std::string
> &InputArgv
) {
238 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
239 char *Result
= new char[(InputArgv
.size()+1)*PtrSize
];
241 DOUT
<< "JIT: ARGV = " << (void*)Result
<< "\n";
242 const Type
*SBytePtr
= PointerType::getUnqual(Type::Int8Ty
);
244 for (unsigned i
= 0; i
!= InputArgv
.size(); ++i
) {
245 unsigned Size
= InputArgv
[i
].size()+1;
246 char *Dest
= new char[Size
];
247 DOUT
<< "JIT: ARGV[" << i
<< "] = " << (void*)Dest
<< "\n";
249 std::copy(InputArgv
[i
].begin(), InputArgv
[i
].end(), Dest
);
252 // Endian safe: Result[i] = (PointerTy)Dest;
253 EE
->StoreValueToMemory(PTOGV(Dest
), (GenericValue
*)(Result
+i
*PtrSize
),
258 EE
->StoreValueToMemory(PTOGV(0),
259 (GenericValue
*)(Result
+InputArgv
.size()*PtrSize
),
265 /// runStaticConstructorsDestructors - This method is used to execute all of
266 /// the static constructors or destructors for a module, depending on the
267 /// value of isDtors.
268 void ExecutionEngine::runStaticConstructorsDestructors(Module
*module
, bool isDtors
) {
269 const char *Name
= isDtors
? "llvm.global_dtors" : "llvm.global_ctors";
271 // Execute global ctors/dtors for each module in the program.
273 GlobalVariable
*GV
= module
->getNamedGlobal(Name
);
275 // If this global has internal linkage, or if it has a use, then it must be
276 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
277 // this is the case, don't execute any of the global ctors, __main will do
279 if (!GV
|| GV
->isDeclaration() || GV
->hasLocalLinkage()) return;
281 // Should be an array of '{ int, void ()* }' structs. The first value is
282 // the init priority, which we ignore.
283 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
284 if (!InitList
) return;
285 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
286 if (ConstantStruct
*CS
=
287 dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))) {
288 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
290 Constant
*FP
= CS
->getOperand(1);
291 if (FP
->isNullValue())
292 break; // Found a null terminator, exit.
294 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(FP
))
296 FP
= CE
->getOperand(0);
297 if (Function
*F
= dyn_cast
<Function
>(FP
)) {
298 // Execute the ctor/dtor function!
299 runFunction(F
, std::vector
<GenericValue
>());
304 /// runStaticConstructorsDestructors - This method is used to execute all of
305 /// the static constructors or destructors for a program, depending on the
306 /// value of isDtors.
307 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors
) {
308 // Execute global ctors/dtors for each module in the program.
309 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
)
310 runStaticConstructorsDestructors(Modules
[m
]->getModule(), isDtors
);
314 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
315 static bool isTargetNullPtr(ExecutionEngine
*EE
, void *Loc
) {
316 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
317 for (unsigned i
= 0; i
< PtrSize
; ++i
)
318 if (*(i
+ (uint8_t*)Loc
))
324 /// runFunctionAsMain - This is a helper function which wraps runFunction to
325 /// handle the common task of starting up main with the specified argc, argv,
326 /// and envp parameters.
327 int ExecutionEngine::runFunctionAsMain(Function
*Fn
,
328 const std::vector
<std::string
> &argv
,
329 const char * const * envp
) {
330 std::vector
<GenericValue
> GVArgs
;
332 GVArgc
.IntVal
= APInt(32, argv
.size());
335 unsigned NumArgs
= Fn
->getFunctionType()->getNumParams();
336 const FunctionType
*FTy
= Fn
->getFunctionType();
337 const Type
* PPInt8Ty
=
338 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty
));
341 if (FTy
->getParamType(2) != PPInt8Ty
) {
342 llvm_report_error("Invalid type for third argument of main() supplied");
346 if (FTy
->getParamType(1) != PPInt8Ty
) {
347 llvm_report_error("Invalid type for second argument of main() supplied");
351 if (FTy
->getParamType(0) != Type::Int32Ty
) {
352 llvm_report_error("Invalid type for first argument of main() supplied");
356 if (!isa
<IntegerType
>(FTy
->getReturnType()) &&
357 FTy
->getReturnType() != Type::VoidTy
) {
358 llvm_report_error("Invalid return type of main() supplied");
362 llvm_report_error("Invalid number of arguments of main() supplied");
366 GVArgs
.push_back(GVArgc
); // Arg #0 = argc.
368 GVArgs
.push_back(PTOGV(CreateArgv(this, argv
))); // Arg #1 = argv.
369 assert(!isTargetNullPtr(this, GVTOP(GVArgs
[1])) &&
370 "argv[0] was null after CreateArgv");
372 std::vector
<std::string
> EnvVars
;
373 for (unsigned i
= 0; envp
[i
]; ++i
)
374 EnvVars
.push_back(envp
[i
]);
375 GVArgs
.push_back(PTOGV(CreateArgv(this, EnvVars
))); // Arg #2 = envp.
379 return runFunction(Fn
, GVArgs
).IntVal
.getZExtValue();
382 /// If possible, create a JIT, unless the caller specifically requests an
383 /// Interpreter or there's an error. If even an Interpreter cannot be created,
384 /// NULL is returned.
386 ExecutionEngine
*ExecutionEngine::create(ModuleProvider
*MP
,
387 bool ForceInterpreter
,
388 std::string
*ErrorStr
,
389 CodeGenOpt::Level OptLevel
,
391 return EngineBuilder(MP
)
392 .setEngineKind(ForceInterpreter
393 ? EngineKind::Interpreter
395 .setErrorStr(ErrorStr
)
396 .setOptLevel(OptLevel
)
397 .setAllocateGVsWithCode(GVsWithCode
)
401 ExecutionEngine
*ExecutionEngine::create(Module
*M
) {
402 return EngineBuilder(M
).create();
405 /// EngineBuilder - Overloaded constructor that automatically creates an
406 /// ExistingModuleProvider for an existing module.
407 EngineBuilder::EngineBuilder(Module
*m
) : MP(new ExistingModuleProvider(m
)) {
411 ExecutionEngine
*EngineBuilder::create() {
412 // Make sure we can resolve symbols in the program as well. The zero arg
413 // to the function tells DynamicLibrary to load the program, not a library.
414 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr
))
417 // If the user specified a memory manager but didn't specify which engine to
418 // create, we assume they only want the JIT, and we fail if they only want
421 if (WhichEngine
& EngineKind::JIT
) {
422 WhichEngine
= EngineKind::JIT
;
424 *ErrorStr
= "Cannot create an interpreter with a memory manager.";
428 ExecutionEngine
*EE
= 0;
430 // Unless the interpreter was explicitly selected or the JIT is not linked,
432 if (WhichEngine
& EngineKind::JIT
&& ExecutionEngine::JITCtor
) {
433 EE
= ExecutionEngine::JITCtor(MP
, ErrorStr
, JMM
, OptLevel
,
434 AllocateGVsWithCode
);
437 // If we can't make a JIT and we didn't request one specifically, try making
438 // an interpreter instead.
439 if (WhichEngine
& EngineKind::Interpreter
&& EE
== 0 &&
440 ExecutionEngine::InterpCtor
) {
441 EE
= ExecutionEngine::InterpCtor(MP
, ErrorStr
);
447 /// getPointerToGlobal - This returns the address of the specified global
448 /// value. This may involve code generation if it's a function.
450 void *ExecutionEngine::getPointerToGlobal(const GlobalValue
*GV
) {
451 if (Function
*F
= const_cast<Function
*>(dyn_cast
<Function
>(GV
)))
452 return getPointerToFunction(F
);
454 MutexGuard
locked(lock
);
455 void *p
= state
.getGlobalAddressMap(locked
)[GV
];
459 // Global variable might have been added since interpreter started.
460 if (GlobalVariable
*GVar
=
461 const_cast<GlobalVariable
*>(dyn_cast
<GlobalVariable
>(GV
)))
462 EmitGlobalVariable(GVar
);
464 llvm_unreachable("Global hasn't had an address allocated yet!");
465 return state
.getGlobalAddressMap(locked
)[GV
];
468 /// This function converts a Constant* into a GenericValue. The interesting
469 /// part is if C is a ConstantExpr.
470 /// @brief Get a GenericValue for a Constant*
471 GenericValue
ExecutionEngine::getConstantValue(const Constant
*C
) {
472 // If its undefined, return the garbage.
473 if (isa
<UndefValue
>(C
))
474 return GenericValue();
476 // If the value is a ConstantExpr
477 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
478 Constant
*Op0
= CE
->getOperand(0);
479 switch (CE
->getOpcode()) {
480 case Instruction::GetElementPtr
: {
482 GenericValue Result
= getConstantValue(Op0
);
483 SmallVector
<Value
*, 8> Indices(CE
->op_begin()+1, CE
->op_end());
485 TD
->getIndexedOffset(Op0
->getType(), &Indices
[0], Indices
.size());
487 char* tmp
= (char*) Result
.PointerVal
;
488 Result
= PTOGV(tmp
+ Offset
);
491 case Instruction::Trunc
: {
492 GenericValue GV
= getConstantValue(Op0
);
493 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
494 GV
.IntVal
= GV
.IntVal
.trunc(BitWidth
);
497 case Instruction::ZExt
: {
498 GenericValue GV
= getConstantValue(Op0
);
499 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
500 GV
.IntVal
= GV
.IntVal
.zext(BitWidth
);
503 case Instruction::SExt
: {
504 GenericValue GV
= getConstantValue(Op0
);
505 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
506 GV
.IntVal
= GV
.IntVal
.sext(BitWidth
);
509 case Instruction::FPTrunc
: {
511 GenericValue GV
= getConstantValue(Op0
);
512 GV
.FloatVal
= float(GV
.DoubleVal
);
515 case Instruction::FPExt
:{
517 GenericValue GV
= getConstantValue(Op0
);
518 GV
.DoubleVal
= double(GV
.FloatVal
);
521 case Instruction::UIToFP
: {
522 GenericValue GV
= getConstantValue(Op0
);
523 if (CE
->getType() == Type::FloatTy
)
524 GV
.FloatVal
= float(GV
.IntVal
.roundToDouble());
525 else if (CE
->getType() == Type::DoubleTy
)
526 GV
.DoubleVal
= GV
.IntVal
.roundToDouble();
527 else if (CE
->getType() == Type::X86_FP80Ty
) {
528 const uint64_t zero
[] = {0, 0};
529 APFloat apf
= APFloat(APInt(80, 2, zero
));
530 (void)apf
.convertFromAPInt(GV
.IntVal
,
532 APFloat::rmNearestTiesToEven
);
533 GV
.IntVal
= apf
.bitcastToAPInt();
537 case Instruction::SIToFP
: {
538 GenericValue GV
= getConstantValue(Op0
);
539 if (CE
->getType() == Type::FloatTy
)
540 GV
.FloatVal
= float(GV
.IntVal
.signedRoundToDouble());
541 else if (CE
->getType() == Type::DoubleTy
)
542 GV
.DoubleVal
= GV
.IntVal
.signedRoundToDouble();
543 else if (CE
->getType() == Type::X86_FP80Ty
) {
544 const uint64_t zero
[] = { 0, 0};
545 APFloat apf
= APFloat(APInt(80, 2, zero
));
546 (void)apf
.convertFromAPInt(GV
.IntVal
,
548 APFloat::rmNearestTiesToEven
);
549 GV
.IntVal
= apf
.bitcastToAPInt();
553 case Instruction::FPToUI
: // double->APInt conversion handles sign
554 case Instruction::FPToSI
: {
555 GenericValue GV
= getConstantValue(Op0
);
556 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
557 if (Op0
->getType() == Type::FloatTy
)
558 GV
.IntVal
= APIntOps::RoundFloatToAPInt(GV
.FloatVal
, BitWidth
);
559 else if (Op0
->getType() == Type::DoubleTy
)
560 GV
.IntVal
= APIntOps::RoundDoubleToAPInt(GV
.DoubleVal
, BitWidth
);
561 else if (Op0
->getType() == Type::X86_FP80Ty
) {
562 APFloat apf
= APFloat(GV
.IntVal
);
565 (void)apf
.convertToInteger(&v
, BitWidth
,
566 CE
->getOpcode()==Instruction::FPToSI
,
567 APFloat::rmTowardZero
, &ignored
);
568 GV
.IntVal
= v
; // endian?
572 case Instruction::PtrToInt
: {
573 GenericValue GV
= getConstantValue(Op0
);
574 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
575 GV
.IntVal
= APInt(PtrWidth
, uintptr_t(GV
.PointerVal
));
578 case Instruction::IntToPtr
: {
579 GenericValue GV
= getConstantValue(Op0
);
580 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
581 if (PtrWidth
!= GV
.IntVal
.getBitWidth())
582 GV
.IntVal
= GV
.IntVal
.zextOrTrunc(PtrWidth
);
583 assert(GV
.IntVal
.getBitWidth() <= 64 && "Bad pointer width");
584 GV
.PointerVal
= PointerTy(uintptr_t(GV
.IntVal
.getZExtValue()));
587 case Instruction::BitCast
: {
588 GenericValue GV
= getConstantValue(Op0
);
589 const Type
* DestTy
= CE
->getType();
590 switch (Op0
->getType()->getTypeID()) {
591 default: llvm_unreachable("Invalid bitcast operand");
592 case Type::IntegerTyID
:
593 assert(DestTy
->isFloatingPoint() && "invalid bitcast");
594 if (DestTy
== Type::FloatTy
)
595 GV
.FloatVal
= GV
.IntVal
.bitsToFloat();
596 else if (DestTy
== Type::DoubleTy
)
597 GV
.DoubleVal
= GV
.IntVal
.bitsToDouble();
599 case Type::FloatTyID
:
600 assert(DestTy
== Type::Int32Ty
&& "Invalid bitcast");
601 GV
.IntVal
.floatToBits(GV
.FloatVal
);
603 case Type::DoubleTyID
:
604 assert(DestTy
== Type::Int64Ty
&& "Invalid bitcast");
605 GV
.IntVal
.doubleToBits(GV
.DoubleVal
);
607 case Type::PointerTyID
:
608 assert(isa
<PointerType
>(DestTy
) && "Invalid bitcast");
609 break; // getConstantValue(Op0) above already converted it
613 case Instruction::Add
:
614 case Instruction::FAdd
:
615 case Instruction::Sub
:
616 case Instruction::FSub
:
617 case Instruction::Mul
:
618 case Instruction::FMul
:
619 case Instruction::UDiv
:
620 case Instruction::SDiv
:
621 case Instruction::URem
:
622 case Instruction::SRem
:
623 case Instruction::And
:
624 case Instruction::Or
:
625 case Instruction::Xor
: {
626 GenericValue LHS
= getConstantValue(Op0
);
627 GenericValue RHS
= getConstantValue(CE
->getOperand(1));
629 switch (CE
->getOperand(0)->getType()->getTypeID()) {
630 default: llvm_unreachable("Bad add type!");
631 case Type::IntegerTyID
:
632 switch (CE
->getOpcode()) {
633 default: llvm_unreachable("Invalid integer opcode");
634 case Instruction::Add
: GV
.IntVal
= LHS
.IntVal
+ RHS
.IntVal
; break;
635 case Instruction::Sub
: GV
.IntVal
= LHS
.IntVal
- RHS
.IntVal
; break;
636 case Instruction::Mul
: GV
.IntVal
= LHS
.IntVal
* RHS
.IntVal
; break;
637 case Instruction::UDiv
:GV
.IntVal
= LHS
.IntVal
.udiv(RHS
.IntVal
); break;
638 case Instruction::SDiv
:GV
.IntVal
= LHS
.IntVal
.sdiv(RHS
.IntVal
); break;
639 case Instruction::URem
:GV
.IntVal
= LHS
.IntVal
.urem(RHS
.IntVal
); break;
640 case Instruction::SRem
:GV
.IntVal
= LHS
.IntVal
.srem(RHS
.IntVal
); break;
641 case Instruction::And
: GV
.IntVal
= LHS
.IntVal
& RHS
.IntVal
; break;
642 case Instruction::Or
: GV
.IntVal
= LHS
.IntVal
| RHS
.IntVal
; break;
643 case Instruction::Xor
: GV
.IntVal
= LHS
.IntVal
^ RHS
.IntVal
; break;
646 case Type::FloatTyID
:
647 switch (CE
->getOpcode()) {
648 default: llvm_unreachable("Invalid float opcode");
649 case Instruction::FAdd
:
650 GV
.FloatVal
= LHS
.FloatVal
+ RHS
.FloatVal
; break;
651 case Instruction::FSub
:
652 GV
.FloatVal
= LHS
.FloatVal
- RHS
.FloatVal
; break;
653 case Instruction::FMul
:
654 GV
.FloatVal
= LHS
.FloatVal
* RHS
.FloatVal
; break;
655 case Instruction::FDiv
:
656 GV
.FloatVal
= LHS
.FloatVal
/ RHS
.FloatVal
; break;
657 case Instruction::FRem
:
658 GV
.FloatVal
= ::fmodf(LHS
.FloatVal
,RHS
.FloatVal
); break;
661 case Type::DoubleTyID
:
662 switch (CE
->getOpcode()) {
663 default: llvm_unreachable("Invalid double opcode");
664 case Instruction::FAdd
:
665 GV
.DoubleVal
= LHS
.DoubleVal
+ RHS
.DoubleVal
; break;
666 case Instruction::FSub
:
667 GV
.DoubleVal
= LHS
.DoubleVal
- RHS
.DoubleVal
; break;
668 case Instruction::FMul
:
669 GV
.DoubleVal
= LHS
.DoubleVal
* RHS
.DoubleVal
; break;
670 case Instruction::FDiv
:
671 GV
.DoubleVal
= LHS
.DoubleVal
/ RHS
.DoubleVal
; break;
672 case Instruction::FRem
:
673 GV
.DoubleVal
= ::fmod(LHS
.DoubleVal
,RHS
.DoubleVal
); break;
676 case Type::X86_FP80TyID
:
677 case Type::PPC_FP128TyID
:
678 case Type::FP128TyID
: {
679 APFloat apfLHS
= APFloat(LHS
.IntVal
);
680 switch (CE
->getOpcode()) {
681 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
682 case Instruction::FAdd
:
683 apfLHS
.add(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
684 GV
.IntVal
= apfLHS
.bitcastToAPInt();
686 case Instruction::FSub
:
687 apfLHS
.subtract(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
688 GV
.IntVal
= apfLHS
.bitcastToAPInt();
690 case Instruction::FMul
:
691 apfLHS
.multiply(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
692 GV
.IntVal
= apfLHS
.bitcastToAPInt();
694 case Instruction::FDiv
:
695 apfLHS
.divide(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
696 GV
.IntVal
= apfLHS
.bitcastToAPInt();
698 case Instruction::FRem
:
699 apfLHS
.mod(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
700 GV
.IntVal
= apfLHS
.bitcastToAPInt();
712 raw_string_ostream
Msg(msg
);
713 Msg
<< "ConstantExpr not handled: " << *CE
;
714 llvm_report_error(Msg
.str());
718 switch (C
->getType()->getTypeID()) {
719 case Type::FloatTyID
:
720 Result
.FloatVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToFloat();
722 case Type::DoubleTyID
:
723 Result
.DoubleVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToDouble();
725 case Type::X86_FP80TyID
:
726 case Type::FP128TyID
:
727 case Type::PPC_FP128TyID
:
728 Result
.IntVal
= cast
<ConstantFP
>(C
)->getValueAPF().bitcastToAPInt();
730 case Type::IntegerTyID
:
731 Result
.IntVal
= cast
<ConstantInt
>(C
)->getValue();
733 case Type::PointerTyID
:
734 if (isa
<ConstantPointerNull
>(C
))
735 Result
.PointerVal
= 0;
736 else if (const Function
*F
= dyn_cast
<Function
>(C
))
737 Result
= PTOGV(getPointerToFunctionOrStub(const_cast<Function
*>(F
)));
738 else if (const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(C
))
739 Result
= PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable
*>(GV
)));
741 llvm_unreachable("Unknown constant pointer type!");
745 raw_string_ostream
Msg(msg
);
746 Msg
<< "ERROR: Constant unimplemented for type: " << *C
->getType();
747 llvm_report_error(Msg
.str());
752 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
753 /// with the integer held in IntVal.
754 static void StoreIntToMemory(const APInt
&IntVal
, uint8_t *Dst
,
755 unsigned StoreBytes
) {
756 assert((IntVal
.getBitWidth()+7)/8 >= StoreBytes
&& "Integer too small!");
757 uint8_t *Src
= (uint8_t *)IntVal
.getRawData();
759 if (sys::isLittleEndianHost())
760 // Little-endian host - the source is ordered from LSB to MSB. Order the
761 // destination from LSB to MSB: Do a straight copy.
762 memcpy(Dst
, Src
, StoreBytes
);
764 // Big-endian host - the source is an array of 64 bit words ordered from
765 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
766 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
767 while (StoreBytes
> sizeof(uint64_t)) {
768 StoreBytes
-= sizeof(uint64_t);
769 // May not be aligned so use memcpy.
770 memcpy(Dst
+ StoreBytes
, Src
, sizeof(uint64_t));
771 Src
+= sizeof(uint64_t);
774 memcpy(Dst
, Src
+ sizeof(uint64_t) - StoreBytes
, StoreBytes
);
778 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
779 /// is the address of the memory at which to store Val, cast to GenericValue *.
780 /// It is not a pointer to a GenericValue containing the address at which to
782 void ExecutionEngine::StoreValueToMemory(const GenericValue
&Val
,
783 GenericValue
*Ptr
, const Type
*Ty
) {
784 const unsigned StoreBytes
= getTargetData()->getTypeStoreSize(Ty
);
786 switch (Ty
->getTypeID()) {
787 case Type::IntegerTyID
:
788 StoreIntToMemory(Val
.IntVal
, (uint8_t*)Ptr
, StoreBytes
);
790 case Type::FloatTyID
:
791 *((float*)Ptr
) = Val
.FloatVal
;
793 case Type::DoubleTyID
:
794 *((double*)Ptr
) = Val
.DoubleVal
;
796 case Type::X86_FP80TyID
:
797 memcpy(Ptr
, Val
.IntVal
.getRawData(), 10);
799 case Type::PointerTyID
:
800 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
801 if (StoreBytes
!= sizeof(PointerTy
))
802 memset(Ptr
, 0, StoreBytes
);
804 *((PointerTy
*)Ptr
) = Val
.PointerVal
;
807 cerr
<< "Cannot store value of type " << *Ty
<< "!\n";
810 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
811 // Host and target are different endian - reverse the stored bytes.
812 std::reverse((uint8_t*)Ptr
, StoreBytes
+ (uint8_t*)Ptr
);
815 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
816 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
817 static void LoadIntFromMemory(APInt
&IntVal
, uint8_t *Src
, unsigned LoadBytes
) {
818 assert((IntVal
.getBitWidth()+7)/8 >= LoadBytes
&& "Integer too small!");
819 uint8_t *Dst
= (uint8_t *)IntVal
.getRawData();
821 if (sys::isLittleEndianHost())
822 // Little-endian host - the destination must be ordered from LSB to MSB.
823 // The source is ordered from LSB to MSB: Do a straight copy.
824 memcpy(Dst
, Src
, LoadBytes
);
826 // Big-endian - the destination is an array of 64 bit words ordered from
827 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
828 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
830 while (LoadBytes
> sizeof(uint64_t)) {
831 LoadBytes
-= sizeof(uint64_t);
832 // May not be aligned so use memcpy.
833 memcpy(Dst
, Src
+ LoadBytes
, sizeof(uint64_t));
834 Dst
+= sizeof(uint64_t);
837 memcpy(Dst
+ sizeof(uint64_t) - LoadBytes
, Src
, LoadBytes
);
843 void ExecutionEngine::LoadValueFromMemory(GenericValue
&Result
,
846 const unsigned LoadBytes
= getTargetData()->getTypeStoreSize(Ty
);
848 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
849 // Host and target are different endian - reverse copy the stored
850 // bytes into a buffer, and load from that.
851 uint8_t *Src
= (uint8_t*)Ptr
;
852 uint8_t *Buf
= (uint8_t*)alloca(LoadBytes
);
853 std::reverse_copy(Src
, Src
+ LoadBytes
, Buf
);
854 Ptr
= (GenericValue
*)Buf
;
857 switch (Ty
->getTypeID()) {
858 case Type::IntegerTyID
:
859 // An APInt with all words initially zero.
860 Result
.IntVal
= APInt(cast
<IntegerType
>(Ty
)->getBitWidth(), 0);
861 LoadIntFromMemory(Result
.IntVal
, (uint8_t*)Ptr
, LoadBytes
);
863 case Type::FloatTyID
:
864 Result
.FloatVal
= *((float*)Ptr
);
866 case Type::DoubleTyID
:
867 Result
.DoubleVal
= *((double*)Ptr
);
869 case Type::PointerTyID
:
870 Result
.PointerVal
= *((PointerTy
*)Ptr
);
872 case Type::X86_FP80TyID
: {
873 // This is endian dependent, but it will only work on x86 anyway.
874 // FIXME: Will not trap if loading a signaling NaN.
877 Result
.IntVal
= APInt(80, 2, y
);
882 raw_string_ostream
Msg(msg
);
883 Msg
<< "Cannot load value of type " << *Ty
<< "!";
884 llvm_report_error(Msg
.str());
888 // InitializeMemory - Recursive function to apply a Constant value into the
889 // specified memory location...
891 void ExecutionEngine::InitializeMemory(const Constant
*Init
, void *Addr
) {
892 DOUT
<< "JIT: Initializing " << Addr
<< " ";
894 if (isa
<UndefValue
>(Init
)) {
896 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Init
)) {
897 unsigned ElementSize
=
898 getTargetData()->getTypeAllocSize(CP
->getType()->getElementType());
899 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
900 InitializeMemory(CP
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
902 } else if (isa
<ConstantAggregateZero
>(Init
)) {
903 memset(Addr
, 0, (size_t)getTargetData()->getTypeAllocSize(Init
->getType()));
905 } else if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(Init
)) {
906 unsigned ElementSize
=
907 getTargetData()->getTypeAllocSize(CPA
->getType()->getElementType());
908 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
909 InitializeMemory(CPA
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
911 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(Init
)) {
912 const StructLayout
*SL
=
913 getTargetData()->getStructLayout(cast
<StructType
>(CPS
->getType()));
914 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
915 InitializeMemory(CPS
->getOperand(i
), (char*)Addr
+SL
->getElementOffset(i
));
917 } else if (Init
->getType()->isFirstClassType()) {
918 GenericValue Val
= getConstantValue(Init
);
919 StoreValueToMemory(Val
, (GenericValue
*)Addr
, Init
->getType());
923 cerr
<< "Bad Type: " << *Init
->getType() << "\n";
924 llvm_unreachable("Unknown constant type to initialize memory with!");
927 /// EmitGlobals - Emit all of the global variables to memory, storing their
928 /// addresses into GlobalAddress. This must make sure to copy the contents of
929 /// their initializers into the memory.
931 void ExecutionEngine::emitGlobals() {
933 // Loop over all of the global variables in the program, allocating the memory
934 // to hold them. If there is more than one module, do a prepass over globals
935 // to figure out how the different modules should link together.
937 std::map
<std::pair
<std::string
, const Type
*>,
938 const GlobalValue
*> LinkedGlobalsMap
;
940 if (Modules
.size() != 1) {
941 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
942 Module
&M
= *Modules
[m
]->getModule();
943 for (Module::const_global_iterator I
= M
.global_begin(),
944 E
= M
.global_end(); I
!= E
; ++I
) {
945 const GlobalValue
*GV
= I
;
946 if (GV
->hasLocalLinkage() || GV
->isDeclaration() ||
947 GV
->hasAppendingLinkage() || !GV
->hasName())
948 continue;// Ignore external globals and globals with internal linkage.
950 const GlobalValue
*&GVEntry
=
951 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
953 // If this is the first time we've seen this global, it is the canonical
960 // If the existing global is strong, never replace it.
961 if (GVEntry
->hasExternalLinkage() ||
962 GVEntry
->hasDLLImportLinkage() ||
963 GVEntry
->hasDLLExportLinkage())
966 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
967 // symbol. FIXME is this right for common?
968 if (GV
->hasExternalLinkage() || GVEntry
->hasExternalWeakLinkage())
974 std::vector
<const GlobalValue
*> NonCanonicalGlobals
;
975 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
976 Module
&M
= *Modules
[m
]->getModule();
977 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
979 // In the multi-module case, see what this global maps to.
980 if (!LinkedGlobalsMap
.empty()) {
981 if (const GlobalValue
*GVEntry
=
982 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())]) {
983 // If something else is the canonical global, ignore this one.
984 if (GVEntry
!= &*I
) {
985 NonCanonicalGlobals
.push_back(I
);
991 if (!I
->isDeclaration()) {
992 addGlobalMapping(I
, getMemoryForGV(I
));
994 // External variable reference. Try to use the dynamic loader to
995 // get a pointer to it.
997 sys::DynamicLibrary::SearchForAddressOfSymbol(I
->getName()))
998 addGlobalMapping(I
, SymAddr
);
1000 llvm_report_error("Could not resolve external global address: "
1006 // If there are multiple modules, map the non-canonical globals to their
1007 // canonical location.
1008 if (!NonCanonicalGlobals
.empty()) {
1009 for (unsigned i
= 0, e
= NonCanonicalGlobals
.size(); i
!= e
; ++i
) {
1010 const GlobalValue
*GV
= NonCanonicalGlobals
[i
];
1011 const GlobalValue
*CGV
=
1012 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
1013 void *Ptr
= getPointerToGlobalIfAvailable(CGV
);
1014 assert(Ptr
&& "Canonical global wasn't codegen'd!");
1015 addGlobalMapping(GV
, Ptr
);
1019 // Now that all of the globals are set up in memory, loop through them all
1020 // and initialize their contents.
1021 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
1023 if (!I
->isDeclaration()) {
1024 if (!LinkedGlobalsMap
.empty()) {
1025 if (const GlobalValue
*GVEntry
=
1026 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())])
1027 if (GVEntry
!= &*I
) // Not the canonical variable.
1030 EmitGlobalVariable(I
);
1036 // EmitGlobalVariable - This method emits the specified global variable to the
1037 // address specified in GlobalAddresses, or allocates new memory if it's not
1038 // already in the map.
1039 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable
*GV
) {
1040 void *GA
= getPointerToGlobalIfAvailable(GV
);
1043 // If it's not already specified, allocate memory for the global.
1044 GA
= getMemoryForGV(GV
);
1045 addGlobalMapping(GV
, GA
);
1048 // Don't initialize if it's thread local, let the client do it.
1049 if (!GV
->isThreadLocal())
1050 InitializeMemory(GV
->getInitializer(), GA
);
1052 const Type
*ElTy
= GV
->getType()->getElementType();
1053 size_t GVSize
= (size_t)getTargetData()->getTypeAllocSize(ElTy
);
1054 NumInitBytes
+= (unsigned)GVSize
;