Another nasty coalescer bug (is there another kind):
[llvm/avr.git] / lib / ExecutionEngine / ExecutionEngine.cpp
blobe827d36f8617ecc7e1d25a34eb5f4b1ba1c48dae
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/ModuleProvider.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Config/alloca.h"
22 #include "llvm/ExecutionEngine/ExecutionEngine.h"
23 #include "llvm/ExecutionEngine/GenericValue.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/DynamicLibrary.h"
29 #include "llvm/System/Host.h"
30 #include "llvm/Target/TargetData.h"
31 #include <cmath>
32 #include <cstring>
33 using namespace llvm;
35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
36 STATISTIC(NumGlobals , "Number of global vars initialized");
38 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
39 std::string *ErrorStr,
40 JITMemoryManager *JMM,
41 CodeGenOpt::Level OptLevel,
42 bool GVsWithCode) = 0;
43 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
44 std::string *ErrorStr) = 0;
45 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
48 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
49 LazyCompilationDisabled = false;
50 GVCompilationDisabled = false;
51 SymbolSearchingDisabled = false;
52 DlsymStubsEnabled = false;
53 Modules.push_back(P);
54 assert(P && "ModuleProvider is null?");
57 ExecutionEngine::~ExecutionEngine() {
58 clearAllGlobalMappings();
59 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
60 delete Modules[i];
63 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
64 const Type *ElTy = GV->getType()->getElementType();
65 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
66 return new char[GVSize];
69 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
70 /// Relases the Module from the ModuleProvider, materializing it in the
71 /// process, and returns the materialized Module.
72 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
73 std::string *ErrInfo) {
74 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
75 E = Modules.end(); I != E; ++I) {
76 ModuleProvider *MP = *I;
77 if (MP == P) {
78 Modules.erase(I);
79 clearGlobalMappingsFromModule(MP->getModule());
80 return MP->releaseModule(ErrInfo);
83 return NULL;
86 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
87 /// and deletes the ModuleProvider and owned Module. Avoids materializing
88 /// the underlying module.
89 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
90 std::string *ErrInfo) {
91 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
92 E = Modules.end(); I != E; ++I) {
93 ModuleProvider *MP = *I;
94 if (MP == P) {
95 Modules.erase(I);
96 clearGlobalMappingsFromModule(MP->getModule());
97 delete MP;
98 return;
103 /// FindFunctionNamed - Search all of the active modules to find the one that
104 /// defines FnName. This is very slow operation and shouldn't be used for
105 /// general code.
106 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
107 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
108 if (Function *F = Modules[i]->getModule()->getFunction(FnName))
109 return F;
111 return 0;
115 /// addGlobalMapping - Tell the execution engine that the specified global is
116 /// at the specified location. This is used internally as functions are JIT'd
117 /// and as global variables are laid out in memory. It can and should also be
118 /// used by clients of the EE that want to have an LLVM global overlay
119 /// existing data in memory.
120 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
121 MutexGuard locked(lock);
123 DEBUG(errs() << "JIT: Map \'" << GV->getName()
124 << "\' to [" << Addr << "]\n";);
125 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
126 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
127 CurVal = Addr;
129 // If we are using the reverse mapping, add it too
130 if (!state.getGlobalAddressReverseMap(locked).empty()) {
131 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
132 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
133 V = GV;
137 /// clearAllGlobalMappings - Clear all global mappings and start over again
138 /// use in dynamic compilation scenarios when you want to move globals
139 void ExecutionEngine::clearAllGlobalMappings() {
140 MutexGuard locked(lock);
142 state.getGlobalAddressMap(locked).clear();
143 state.getGlobalAddressReverseMap(locked).clear();
146 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
147 /// particular module, because it has been removed from the JIT.
148 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
149 MutexGuard locked(lock);
151 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
152 state.getGlobalAddressMap(locked).erase(FI);
153 state.getGlobalAddressReverseMap(locked).erase(FI);
155 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
156 GI != GE; ++GI) {
157 state.getGlobalAddressMap(locked).erase(GI);
158 state.getGlobalAddressReverseMap(locked).erase(GI);
162 /// updateGlobalMapping - Replace an existing mapping for GV with a new
163 /// address. This updates both maps as required. If "Addr" is null, the
164 /// entry for the global is removed from the mappings.
165 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
166 MutexGuard locked(lock);
168 std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
170 // Deleting from the mapping?
171 if (Addr == 0) {
172 std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
173 void *OldVal;
174 if (I == Map.end())
175 OldVal = 0;
176 else {
177 OldVal = I->second;
178 Map.erase(I);
181 if (!state.getGlobalAddressReverseMap(locked).empty())
182 state.getGlobalAddressReverseMap(locked).erase(OldVal);
183 return OldVal;
186 void *&CurVal = Map[GV];
187 void *OldVal = CurVal;
189 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
190 state.getGlobalAddressReverseMap(locked).erase(CurVal);
191 CurVal = Addr;
193 // If we are using the reverse mapping, add it too
194 if (!state.getGlobalAddressReverseMap(locked).empty()) {
195 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
196 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
197 V = GV;
199 return OldVal;
202 /// getPointerToGlobalIfAvailable - This returns the address of the specified
203 /// global value if it is has already been codegen'd, otherwise it returns null.
205 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
206 MutexGuard locked(lock);
208 std::map<const GlobalValue*, void*>::iterator I =
209 state.getGlobalAddressMap(locked).find(GV);
210 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
213 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
214 /// at the specified address.
216 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
217 MutexGuard locked(lock);
219 // If we haven't computed the reverse mapping yet, do so first.
220 if (state.getGlobalAddressReverseMap(locked).empty()) {
221 for (std::map<const GlobalValue*, void *>::iterator
222 I = state.getGlobalAddressMap(locked).begin(),
223 E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
224 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
225 I->first));
228 std::map<void *, const GlobalValue*>::iterator I =
229 state.getGlobalAddressReverseMap(locked).find(Addr);
230 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
233 // CreateArgv - Turn a vector of strings into a nice argv style array of
234 // pointers to null terminated strings.
236 static void *CreateArgv(ExecutionEngine *EE,
237 const std::vector<std::string> &InputArgv) {
238 unsigned PtrSize = EE->getTargetData()->getPointerSize();
239 char *Result = new char[(InputArgv.size()+1)*PtrSize];
241 DOUT << "JIT: ARGV = " << (void*)Result << "\n";
242 const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
244 for (unsigned i = 0; i != InputArgv.size(); ++i) {
245 unsigned Size = InputArgv[i].size()+1;
246 char *Dest = new char[Size];
247 DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
249 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
250 Dest[Size-1] = 0;
252 // Endian safe: Result[i] = (PointerTy)Dest;
253 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
254 SBytePtr);
257 // Null terminate it
258 EE->StoreValueToMemory(PTOGV(0),
259 (GenericValue*)(Result+InputArgv.size()*PtrSize),
260 SBytePtr);
261 return Result;
265 /// runStaticConstructorsDestructors - This method is used to execute all of
266 /// the static constructors or destructors for a module, depending on the
267 /// value of isDtors.
268 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
269 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
271 // Execute global ctors/dtors for each module in the program.
273 GlobalVariable *GV = module->getNamedGlobal(Name);
275 // If this global has internal linkage, or if it has a use, then it must be
276 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
277 // this is the case, don't execute any of the global ctors, __main will do
278 // it.
279 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
281 // Should be an array of '{ int, void ()* }' structs. The first value is
282 // the init priority, which we ignore.
283 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
284 if (!InitList) return;
285 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
286 if (ConstantStruct *CS =
287 dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
288 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
290 Constant *FP = CS->getOperand(1);
291 if (FP->isNullValue())
292 break; // Found a null terminator, exit.
294 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
295 if (CE->isCast())
296 FP = CE->getOperand(0);
297 if (Function *F = dyn_cast<Function>(FP)) {
298 // Execute the ctor/dtor function!
299 runFunction(F, std::vector<GenericValue>());
304 /// runStaticConstructorsDestructors - This method is used to execute all of
305 /// the static constructors or destructors for a program, depending on the
306 /// value of isDtors.
307 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
308 // Execute global ctors/dtors for each module in the program.
309 for (unsigned m = 0, e = Modules.size(); m != e; ++m)
310 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
313 #ifndef NDEBUG
314 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
315 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
316 unsigned PtrSize = EE->getTargetData()->getPointerSize();
317 for (unsigned i = 0; i < PtrSize; ++i)
318 if (*(i + (uint8_t*)Loc))
319 return false;
320 return true;
322 #endif
324 /// runFunctionAsMain - This is a helper function which wraps runFunction to
325 /// handle the common task of starting up main with the specified argc, argv,
326 /// and envp parameters.
327 int ExecutionEngine::runFunctionAsMain(Function *Fn,
328 const std::vector<std::string> &argv,
329 const char * const * envp) {
330 std::vector<GenericValue> GVArgs;
331 GenericValue GVArgc;
332 GVArgc.IntVal = APInt(32, argv.size());
334 // Check main() type
335 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
336 const FunctionType *FTy = Fn->getFunctionType();
337 const Type* PPInt8Ty =
338 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
339 switch (NumArgs) {
340 case 3:
341 if (FTy->getParamType(2) != PPInt8Ty) {
342 llvm_report_error("Invalid type for third argument of main() supplied");
344 // FALLS THROUGH
345 case 2:
346 if (FTy->getParamType(1) != PPInt8Ty) {
347 llvm_report_error("Invalid type for second argument of main() supplied");
349 // FALLS THROUGH
350 case 1:
351 if (FTy->getParamType(0) != Type::Int32Ty) {
352 llvm_report_error("Invalid type for first argument of main() supplied");
354 // FALLS THROUGH
355 case 0:
356 if (!isa<IntegerType>(FTy->getReturnType()) &&
357 FTy->getReturnType() != Type::VoidTy) {
358 llvm_report_error("Invalid return type of main() supplied");
360 break;
361 default:
362 llvm_report_error("Invalid number of arguments of main() supplied");
365 if (NumArgs) {
366 GVArgs.push_back(GVArgc); // Arg #0 = argc.
367 if (NumArgs > 1) {
368 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
369 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
370 "argv[0] was null after CreateArgv");
371 if (NumArgs > 2) {
372 std::vector<std::string> EnvVars;
373 for (unsigned i = 0; envp[i]; ++i)
374 EnvVars.push_back(envp[i]);
375 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
379 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
382 /// If possible, create a JIT, unless the caller specifically requests an
383 /// Interpreter or there's an error. If even an Interpreter cannot be created,
384 /// NULL is returned.
386 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
387 bool ForceInterpreter,
388 std::string *ErrorStr,
389 CodeGenOpt::Level OptLevel,
390 bool GVsWithCode) {
391 return EngineBuilder(MP)
392 .setEngineKind(ForceInterpreter
393 ? EngineKind::Interpreter
394 : EngineKind::JIT)
395 .setErrorStr(ErrorStr)
396 .setOptLevel(OptLevel)
397 .setAllocateGVsWithCode(GVsWithCode)
398 .create();
401 ExecutionEngine *ExecutionEngine::create(Module *M) {
402 return EngineBuilder(M).create();
405 /// EngineBuilder - Overloaded constructor that automatically creates an
406 /// ExistingModuleProvider for an existing module.
407 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
408 InitEngine();
411 ExecutionEngine *EngineBuilder::create() {
412 // Make sure we can resolve symbols in the program as well. The zero arg
413 // to the function tells DynamicLibrary to load the program, not a library.
414 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
415 return 0;
417 // If the user specified a memory manager but didn't specify which engine to
418 // create, we assume they only want the JIT, and we fail if they only want
419 // the interpreter.
420 if (JMM) {
421 if (WhichEngine & EngineKind::JIT) {
422 WhichEngine = EngineKind::JIT;
423 } else {
424 *ErrorStr = "Cannot create an interpreter with a memory manager.";
428 ExecutionEngine *EE = 0;
430 // Unless the interpreter was explicitly selected or the JIT is not linked,
431 // try making a JIT.
432 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) {
433 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
434 AllocateGVsWithCode);
437 // If we can't make a JIT and we didn't request one specifically, try making
438 // an interpreter instead.
439 if (WhichEngine & EngineKind::Interpreter && EE == 0 &&
440 ExecutionEngine::InterpCtor) {
441 EE = ExecutionEngine::InterpCtor(MP, ErrorStr);
444 return EE;
447 /// getPointerToGlobal - This returns the address of the specified global
448 /// value. This may involve code generation if it's a function.
450 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
451 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
452 return getPointerToFunction(F);
454 MutexGuard locked(lock);
455 void *p = state.getGlobalAddressMap(locked)[GV];
456 if (p)
457 return p;
459 // Global variable might have been added since interpreter started.
460 if (GlobalVariable *GVar =
461 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
462 EmitGlobalVariable(GVar);
463 else
464 llvm_unreachable("Global hasn't had an address allocated yet!");
465 return state.getGlobalAddressMap(locked)[GV];
468 /// This function converts a Constant* into a GenericValue. The interesting
469 /// part is if C is a ConstantExpr.
470 /// @brief Get a GenericValue for a Constant*
471 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
472 // If its undefined, return the garbage.
473 if (isa<UndefValue>(C))
474 return GenericValue();
476 // If the value is a ConstantExpr
477 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
478 Constant *Op0 = CE->getOperand(0);
479 switch (CE->getOpcode()) {
480 case Instruction::GetElementPtr: {
481 // Compute the index
482 GenericValue Result = getConstantValue(Op0);
483 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
484 uint64_t Offset =
485 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
487 char* tmp = (char*) Result.PointerVal;
488 Result = PTOGV(tmp + Offset);
489 return Result;
491 case Instruction::Trunc: {
492 GenericValue GV = getConstantValue(Op0);
493 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
494 GV.IntVal = GV.IntVal.trunc(BitWidth);
495 return GV;
497 case Instruction::ZExt: {
498 GenericValue GV = getConstantValue(Op0);
499 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
500 GV.IntVal = GV.IntVal.zext(BitWidth);
501 return GV;
503 case Instruction::SExt: {
504 GenericValue GV = getConstantValue(Op0);
505 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
506 GV.IntVal = GV.IntVal.sext(BitWidth);
507 return GV;
509 case Instruction::FPTrunc: {
510 // FIXME long double
511 GenericValue GV = getConstantValue(Op0);
512 GV.FloatVal = float(GV.DoubleVal);
513 return GV;
515 case Instruction::FPExt:{
516 // FIXME long double
517 GenericValue GV = getConstantValue(Op0);
518 GV.DoubleVal = double(GV.FloatVal);
519 return GV;
521 case Instruction::UIToFP: {
522 GenericValue GV = getConstantValue(Op0);
523 if (CE->getType() == Type::FloatTy)
524 GV.FloatVal = float(GV.IntVal.roundToDouble());
525 else if (CE->getType() == Type::DoubleTy)
526 GV.DoubleVal = GV.IntVal.roundToDouble();
527 else if (CE->getType() == Type::X86_FP80Ty) {
528 const uint64_t zero[] = {0, 0};
529 APFloat apf = APFloat(APInt(80, 2, zero));
530 (void)apf.convertFromAPInt(GV.IntVal,
531 false,
532 APFloat::rmNearestTiesToEven);
533 GV.IntVal = apf.bitcastToAPInt();
535 return GV;
537 case Instruction::SIToFP: {
538 GenericValue GV = getConstantValue(Op0);
539 if (CE->getType() == Type::FloatTy)
540 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
541 else if (CE->getType() == Type::DoubleTy)
542 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
543 else if (CE->getType() == Type::X86_FP80Ty) {
544 const uint64_t zero[] = { 0, 0};
545 APFloat apf = APFloat(APInt(80, 2, zero));
546 (void)apf.convertFromAPInt(GV.IntVal,
547 true,
548 APFloat::rmNearestTiesToEven);
549 GV.IntVal = apf.bitcastToAPInt();
551 return GV;
553 case Instruction::FPToUI: // double->APInt conversion handles sign
554 case Instruction::FPToSI: {
555 GenericValue GV = getConstantValue(Op0);
556 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
557 if (Op0->getType() == Type::FloatTy)
558 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
559 else if (Op0->getType() == Type::DoubleTy)
560 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
561 else if (Op0->getType() == Type::X86_FP80Ty) {
562 APFloat apf = APFloat(GV.IntVal);
563 uint64_t v;
564 bool ignored;
565 (void)apf.convertToInteger(&v, BitWidth,
566 CE->getOpcode()==Instruction::FPToSI,
567 APFloat::rmTowardZero, &ignored);
568 GV.IntVal = v; // endian?
570 return GV;
572 case Instruction::PtrToInt: {
573 GenericValue GV = getConstantValue(Op0);
574 uint32_t PtrWidth = TD->getPointerSizeInBits();
575 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
576 return GV;
578 case Instruction::IntToPtr: {
579 GenericValue GV = getConstantValue(Op0);
580 uint32_t PtrWidth = TD->getPointerSizeInBits();
581 if (PtrWidth != GV.IntVal.getBitWidth())
582 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
583 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
584 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
585 return GV;
587 case Instruction::BitCast: {
588 GenericValue GV = getConstantValue(Op0);
589 const Type* DestTy = CE->getType();
590 switch (Op0->getType()->getTypeID()) {
591 default: llvm_unreachable("Invalid bitcast operand");
592 case Type::IntegerTyID:
593 assert(DestTy->isFloatingPoint() && "invalid bitcast");
594 if (DestTy == Type::FloatTy)
595 GV.FloatVal = GV.IntVal.bitsToFloat();
596 else if (DestTy == Type::DoubleTy)
597 GV.DoubleVal = GV.IntVal.bitsToDouble();
598 break;
599 case Type::FloatTyID:
600 assert(DestTy == Type::Int32Ty && "Invalid bitcast");
601 GV.IntVal.floatToBits(GV.FloatVal);
602 break;
603 case Type::DoubleTyID:
604 assert(DestTy == Type::Int64Ty && "Invalid bitcast");
605 GV.IntVal.doubleToBits(GV.DoubleVal);
606 break;
607 case Type::PointerTyID:
608 assert(isa<PointerType>(DestTy) && "Invalid bitcast");
609 break; // getConstantValue(Op0) above already converted it
611 return GV;
613 case Instruction::Add:
614 case Instruction::FAdd:
615 case Instruction::Sub:
616 case Instruction::FSub:
617 case Instruction::Mul:
618 case Instruction::FMul:
619 case Instruction::UDiv:
620 case Instruction::SDiv:
621 case Instruction::URem:
622 case Instruction::SRem:
623 case Instruction::And:
624 case Instruction::Or:
625 case Instruction::Xor: {
626 GenericValue LHS = getConstantValue(Op0);
627 GenericValue RHS = getConstantValue(CE->getOperand(1));
628 GenericValue GV;
629 switch (CE->getOperand(0)->getType()->getTypeID()) {
630 default: llvm_unreachable("Bad add type!");
631 case Type::IntegerTyID:
632 switch (CE->getOpcode()) {
633 default: llvm_unreachable("Invalid integer opcode");
634 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
635 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
636 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
637 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
638 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
639 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
640 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
641 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
642 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
643 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
645 break;
646 case Type::FloatTyID:
647 switch (CE->getOpcode()) {
648 default: llvm_unreachable("Invalid float opcode");
649 case Instruction::FAdd:
650 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
651 case Instruction::FSub:
652 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
653 case Instruction::FMul:
654 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
655 case Instruction::FDiv:
656 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
657 case Instruction::FRem:
658 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
660 break;
661 case Type::DoubleTyID:
662 switch (CE->getOpcode()) {
663 default: llvm_unreachable("Invalid double opcode");
664 case Instruction::FAdd:
665 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
666 case Instruction::FSub:
667 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
668 case Instruction::FMul:
669 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
670 case Instruction::FDiv:
671 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
672 case Instruction::FRem:
673 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
675 break;
676 case Type::X86_FP80TyID:
677 case Type::PPC_FP128TyID:
678 case Type::FP128TyID: {
679 APFloat apfLHS = APFloat(LHS.IntVal);
680 switch (CE->getOpcode()) {
681 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
682 case Instruction::FAdd:
683 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
684 GV.IntVal = apfLHS.bitcastToAPInt();
685 break;
686 case Instruction::FSub:
687 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
688 GV.IntVal = apfLHS.bitcastToAPInt();
689 break;
690 case Instruction::FMul:
691 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
692 GV.IntVal = apfLHS.bitcastToAPInt();
693 break;
694 case Instruction::FDiv:
695 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
696 GV.IntVal = apfLHS.bitcastToAPInt();
697 break;
698 case Instruction::FRem:
699 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
700 GV.IntVal = apfLHS.bitcastToAPInt();
701 break;
704 break;
706 return GV;
708 default:
709 break;
711 std::string msg;
712 raw_string_ostream Msg(msg);
713 Msg << "ConstantExpr not handled: " << *CE;
714 llvm_report_error(Msg.str());
717 GenericValue Result;
718 switch (C->getType()->getTypeID()) {
719 case Type::FloatTyID:
720 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
721 break;
722 case Type::DoubleTyID:
723 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
724 break;
725 case Type::X86_FP80TyID:
726 case Type::FP128TyID:
727 case Type::PPC_FP128TyID:
728 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
729 break;
730 case Type::IntegerTyID:
731 Result.IntVal = cast<ConstantInt>(C)->getValue();
732 break;
733 case Type::PointerTyID:
734 if (isa<ConstantPointerNull>(C))
735 Result.PointerVal = 0;
736 else if (const Function *F = dyn_cast<Function>(C))
737 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
738 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
739 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
740 else
741 llvm_unreachable("Unknown constant pointer type!");
742 break;
743 default:
744 std::string msg;
745 raw_string_ostream Msg(msg);
746 Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
747 llvm_report_error(Msg.str());
749 return Result;
752 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
753 /// with the integer held in IntVal.
754 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
755 unsigned StoreBytes) {
756 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
757 uint8_t *Src = (uint8_t *)IntVal.getRawData();
759 if (sys::isLittleEndianHost())
760 // Little-endian host - the source is ordered from LSB to MSB. Order the
761 // destination from LSB to MSB: Do a straight copy.
762 memcpy(Dst, Src, StoreBytes);
763 else {
764 // Big-endian host - the source is an array of 64 bit words ordered from
765 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
766 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
767 while (StoreBytes > sizeof(uint64_t)) {
768 StoreBytes -= sizeof(uint64_t);
769 // May not be aligned so use memcpy.
770 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
771 Src += sizeof(uint64_t);
774 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
778 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
779 /// is the address of the memory at which to store Val, cast to GenericValue *.
780 /// It is not a pointer to a GenericValue containing the address at which to
781 /// store Val.
782 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
783 GenericValue *Ptr, const Type *Ty) {
784 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
786 switch (Ty->getTypeID()) {
787 case Type::IntegerTyID:
788 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
789 break;
790 case Type::FloatTyID:
791 *((float*)Ptr) = Val.FloatVal;
792 break;
793 case Type::DoubleTyID:
794 *((double*)Ptr) = Val.DoubleVal;
795 break;
796 case Type::X86_FP80TyID:
797 memcpy(Ptr, Val.IntVal.getRawData(), 10);
798 break;
799 case Type::PointerTyID:
800 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
801 if (StoreBytes != sizeof(PointerTy))
802 memset(Ptr, 0, StoreBytes);
804 *((PointerTy*)Ptr) = Val.PointerVal;
805 break;
806 default:
807 cerr << "Cannot store value of type " << *Ty << "!\n";
810 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
811 // Host and target are different endian - reverse the stored bytes.
812 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
815 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
816 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
817 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
818 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
819 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
821 if (sys::isLittleEndianHost())
822 // Little-endian host - the destination must be ordered from LSB to MSB.
823 // The source is ordered from LSB to MSB: Do a straight copy.
824 memcpy(Dst, Src, LoadBytes);
825 else {
826 // Big-endian - the destination is an array of 64 bit words ordered from
827 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
828 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
829 // a word.
830 while (LoadBytes > sizeof(uint64_t)) {
831 LoadBytes -= sizeof(uint64_t);
832 // May not be aligned so use memcpy.
833 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
834 Dst += sizeof(uint64_t);
837 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
841 /// FIXME: document
843 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
844 GenericValue *Ptr,
845 const Type *Ty) {
846 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
848 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
849 // Host and target are different endian - reverse copy the stored
850 // bytes into a buffer, and load from that.
851 uint8_t *Src = (uint8_t*)Ptr;
852 uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
853 std::reverse_copy(Src, Src + LoadBytes, Buf);
854 Ptr = (GenericValue*)Buf;
857 switch (Ty->getTypeID()) {
858 case Type::IntegerTyID:
859 // An APInt with all words initially zero.
860 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
861 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
862 break;
863 case Type::FloatTyID:
864 Result.FloatVal = *((float*)Ptr);
865 break;
866 case Type::DoubleTyID:
867 Result.DoubleVal = *((double*)Ptr);
868 break;
869 case Type::PointerTyID:
870 Result.PointerVal = *((PointerTy*)Ptr);
871 break;
872 case Type::X86_FP80TyID: {
873 // This is endian dependent, but it will only work on x86 anyway.
874 // FIXME: Will not trap if loading a signaling NaN.
875 uint64_t y[2];
876 memcpy(y, Ptr, 10);
877 Result.IntVal = APInt(80, 2, y);
878 break;
880 default:
881 std::string msg;
882 raw_string_ostream Msg(msg);
883 Msg << "Cannot load value of type " << *Ty << "!";
884 llvm_report_error(Msg.str());
888 // InitializeMemory - Recursive function to apply a Constant value into the
889 // specified memory location...
891 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
892 DOUT << "JIT: Initializing " << Addr << " ";
893 DEBUG(Init->dump());
894 if (isa<UndefValue>(Init)) {
895 return;
896 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
897 unsigned ElementSize =
898 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
899 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
900 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
901 return;
902 } else if (isa<ConstantAggregateZero>(Init)) {
903 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
904 return;
905 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
906 unsigned ElementSize =
907 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
908 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
909 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
910 return;
911 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
912 const StructLayout *SL =
913 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
914 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
915 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
916 return;
917 } else if (Init->getType()->isFirstClassType()) {
918 GenericValue Val = getConstantValue(Init);
919 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
920 return;
923 cerr << "Bad Type: " << *Init->getType() << "\n";
924 llvm_unreachable("Unknown constant type to initialize memory with!");
927 /// EmitGlobals - Emit all of the global variables to memory, storing their
928 /// addresses into GlobalAddress. This must make sure to copy the contents of
929 /// their initializers into the memory.
931 void ExecutionEngine::emitGlobals() {
933 // Loop over all of the global variables in the program, allocating the memory
934 // to hold them. If there is more than one module, do a prepass over globals
935 // to figure out how the different modules should link together.
937 std::map<std::pair<std::string, const Type*>,
938 const GlobalValue*> LinkedGlobalsMap;
940 if (Modules.size() != 1) {
941 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
942 Module &M = *Modules[m]->getModule();
943 for (Module::const_global_iterator I = M.global_begin(),
944 E = M.global_end(); I != E; ++I) {
945 const GlobalValue *GV = I;
946 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
947 GV->hasAppendingLinkage() || !GV->hasName())
948 continue;// Ignore external globals and globals with internal linkage.
950 const GlobalValue *&GVEntry =
951 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
953 // If this is the first time we've seen this global, it is the canonical
954 // version.
955 if (!GVEntry) {
956 GVEntry = GV;
957 continue;
960 // If the existing global is strong, never replace it.
961 if (GVEntry->hasExternalLinkage() ||
962 GVEntry->hasDLLImportLinkage() ||
963 GVEntry->hasDLLExportLinkage())
964 continue;
966 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
967 // symbol. FIXME is this right for common?
968 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
969 GVEntry = GV;
974 std::vector<const GlobalValue*> NonCanonicalGlobals;
975 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
976 Module &M = *Modules[m]->getModule();
977 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
978 I != E; ++I) {
979 // In the multi-module case, see what this global maps to.
980 if (!LinkedGlobalsMap.empty()) {
981 if (const GlobalValue *GVEntry =
982 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
983 // If something else is the canonical global, ignore this one.
984 if (GVEntry != &*I) {
985 NonCanonicalGlobals.push_back(I);
986 continue;
991 if (!I->isDeclaration()) {
992 addGlobalMapping(I, getMemoryForGV(I));
993 } else {
994 // External variable reference. Try to use the dynamic loader to
995 // get a pointer to it.
996 if (void *SymAddr =
997 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
998 addGlobalMapping(I, SymAddr);
999 else {
1000 llvm_report_error("Could not resolve external global address: "
1001 +I->getName());
1006 // If there are multiple modules, map the non-canonical globals to their
1007 // canonical location.
1008 if (!NonCanonicalGlobals.empty()) {
1009 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1010 const GlobalValue *GV = NonCanonicalGlobals[i];
1011 const GlobalValue *CGV =
1012 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1013 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1014 assert(Ptr && "Canonical global wasn't codegen'd!");
1015 addGlobalMapping(GV, Ptr);
1019 // Now that all of the globals are set up in memory, loop through them all
1020 // and initialize their contents.
1021 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1022 I != E; ++I) {
1023 if (!I->isDeclaration()) {
1024 if (!LinkedGlobalsMap.empty()) {
1025 if (const GlobalValue *GVEntry =
1026 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1027 if (GVEntry != &*I) // Not the canonical variable.
1028 continue;
1030 EmitGlobalVariable(I);
1036 // EmitGlobalVariable - This method emits the specified global variable to the
1037 // address specified in GlobalAddresses, or allocates new memory if it's not
1038 // already in the map.
1039 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1040 void *GA = getPointerToGlobalIfAvailable(GV);
1042 if (GA == 0) {
1043 // If it's not already specified, allocate memory for the global.
1044 GA = getMemoryForGV(GV);
1045 addGlobalMapping(GV, GA);
1048 // Don't initialize if it's thread local, let the client do it.
1049 if (!GV->isThreadLocal())
1050 InitializeMemory(GV->getInitializer(), GA);
1052 const Type *ElTy = GV->getType()->getElementType();
1053 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1054 NumInitBytes += (unsigned)GVSize;
1055 ++NumGlobals;