Remove now unused Context variables.
[llvm/avr.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blobe4b71b1a404eb65edf293d672ddd388b48a17516
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include <map>
42 using namespace llvm;
44 //===----------------------------------------------------------------------===//
45 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46 /// hacks on it until the target machine can handle it. This involves
47 /// eliminating value sizes the machine cannot handle (promoting small sizes to
48 /// large sizes or splitting up large values into small values) as well as
49 /// eliminating operations the machine cannot handle.
50 ///
51 /// This code also does a small amount of optimization and recognition of idioms
52 /// as part of its processing. For example, if a target does not support a
53 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54 /// will attempt merge setcc and brc instructions into brcc's.
55 ///
56 namespace {
57 class VISIBILITY_HIDDEN SelectionDAGLegalize {
58 TargetLowering &TLI;
59 SelectionDAG &DAG;
60 CodeGenOpt::Level OptLevel;
62 // Libcall insertion helpers.
64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65 /// legalized. We use this to ensure that calls are properly serialized
66 /// against each other, including inserted libcalls.
67 SDValue LastCALLSEQ_END;
69 /// IsLegalizingCall - This member is used *only* for purposes of providing
70 /// helpful assertions that a libcall isn't created while another call is
71 /// being legalized (which could lead to non-serialized call sequences).
72 bool IsLegalizingCall;
74 enum LegalizeAction {
75 Legal, // The target natively supports this operation.
76 Promote, // This operation should be executed in a larger type.
77 Expand // Try to expand this to other ops, otherwise use a libcall.
80 /// ValueTypeActions - This is a bitvector that contains two bits for each
81 /// value type, where the two bits correspond to the LegalizeAction enum.
82 /// This can be queried with "getTypeAction(VT)".
83 TargetLowering::ValueTypeActionImpl ValueTypeActions;
85 /// LegalizedNodes - For nodes that are of legal width, and that have more
86 /// than one use, this map indicates what regularized operand to use. This
87 /// allows us to avoid legalizing the same thing more than once.
88 DenseMap<SDValue, SDValue> LegalizedNodes;
90 void AddLegalizedOperand(SDValue From, SDValue To) {
91 LegalizedNodes.insert(std::make_pair(From, To));
92 // If someone requests legalization of the new node, return itself.
93 if (From != To)
94 LegalizedNodes.insert(std::make_pair(To, To));
97 public:
98 SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100 /// getTypeAction - Return how we should legalize values of this type, either
101 /// it is already legal or we need to expand it into multiple registers of
102 /// smaller integer type, or we need to promote it to a larger type.
103 LegalizeAction getTypeAction(MVT VT) const {
104 return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
107 /// isTypeLegal - Return true if this type is legal on this target.
109 bool isTypeLegal(MVT VT) const {
110 return getTypeAction(VT) == Legal;
113 void LegalizeDAG();
115 private:
116 /// LegalizeOp - We know that the specified value has a legal type.
117 /// Recursively ensure that the operands have legal types, then return the
118 /// result.
119 SDValue LegalizeOp(SDValue O);
121 SDValue OptimizeFloatStore(StoreSDNode *ST);
123 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
125 /// is necessary to spill the vector being inserted into to memory, perform
126 /// the insert there, and then read the result back.
127 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128 SDValue Idx, DebugLoc dl);
129 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130 SDValue Idx, DebugLoc dl);
132 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133 /// performs the same shuffe in terms of order or result bytes, but on a type
134 /// whose vector element type is narrower than the original shuffle type.
135 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136 SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
137 SDValue N1, SDValue N2,
138 SmallVectorImpl<int> &Mask) const;
140 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144 DebugLoc dl);
146 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
148 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
149 RTLIB::Libcall Call_PPCF128);
150 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
151 RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
152 RTLIB::Libcall Call_I128);
154 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
155 SDValue ExpandBUILD_VECTOR(SDNode *Node);
156 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
157 SDValue ExpandDBG_STOPPOINT(SDNode *Node);
158 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
159 SmallVectorImpl<SDValue> &Results);
160 SDValue ExpandFCOPYSIGN(SDNode *Node);
161 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
162 DebugLoc dl);
163 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
164 DebugLoc dl);
165 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
166 DebugLoc dl);
168 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
169 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
172 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
175 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
180 /// performs the same shuffe in terms of order or result bytes, but on a type
181 /// whose vector element type is narrower than the original shuffle type.
182 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
183 SDValue
184 SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
185 SDValue N1, SDValue N2,
186 SmallVectorImpl<int> &Mask) const {
187 MVT EltVT = NVT.getVectorElementType();
188 unsigned NumMaskElts = VT.getVectorNumElements();
189 unsigned NumDestElts = NVT.getVectorNumElements();
190 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
192 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
194 if (NumEltsGrowth == 1)
195 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
197 SmallVector<int, 8> NewMask;
198 for (unsigned i = 0; i != NumMaskElts; ++i) {
199 int Idx = Mask[i];
200 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
201 if (Idx < 0)
202 NewMask.push_back(-1);
203 else
204 NewMask.push_back(Idx * NumEltsGrowth + j);
207 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
208 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
209 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
212 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
213 CodeGenOpt::Level ol)
214 : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
215 ValueTypeActions(TLI.getValueTypeActions()) {
216 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
217 "Too many value types for ValueTypeActions to hold!");
220 void SelectionDAGLegalize::LegalizeDAG() {
221 LastCALLSEQ_END = DAG.getEntryNode();
222 IsLegalizingCall = false;
224 // The legalize process is inherently a bottom-up recursive process (users
225 // legalize their uses before themselves). Given infinite stack space, we
226 // could just start legalizing on the root and traverse the whole graph. In
227 // practice however, this causes us to run out of stack space on large basic
228 // blocks. To avoid this problem, compute an ordering of the nodes where each
229 // node is only legalized after all of its operands are legalized.
230 DAG.AssignTopologicalOrder();
231 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
232 E = prior(DAG.allnodes_end()); I != next(E); ++I)
233 LegalizeOp(SDValue(I, 0));
235 // Finally, it's possible the root changed. Get the new root.
236 SDValue OldRoot = DAG.getRoot();
237 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
238 DAG.setRoot(LegalizedNodes[OldRoot]);
240 LegalizedNodes.clear();
242 // Remove dead nodes now.
243 DAG.RemoveDeadNodes();
247 /// FindCallEndFromCallStart - Given a chained node that is part of a call
248 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
249 static SDNode *FindCallEndFromCallStart(SDNode *Node) {
250 if (Node->getOpcode() == ISD::CALLSEQ_END)
251 return Node;
252 if (Node->use_empty())
253 return 0; // No CallSeqEnd
255 // The chain is usually at the end.
256 SDValue TheChain(Node, Node->getNumValues()-1);
257 if (TheChain.getValueType() != MVT::Other) {
258 // Sometimes it's at the beginning.
259 TheChain = SDValue(Node, 0);
260 if (TheChain.getValueType() != MVT::Other) {
261 // Otherwise, hunt for it.
262 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
263 if (Node->getValueType(i) == MVT::Other) {
264 TheChain = SDValue(Node, i);
265 break;
268 // Otherwise, we walked into a node without a chain.
269 if (TheChain.getValueType() != MVT::Other)
270 return 0;
274 for (SDNode::use_iterator UI = Node->use_begin(),
275 E = Node->use_end(); UI != E; ++UI) {
277 // Make sure to only follow users of our token chain.
278 SDNode *User = *UI;
279 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
280 if (User->getOperand(i) == TheChain)
281 if (SDNode *Result = FindCallEndFromCallStart(User))
282 return Result;
284 return 0;
287 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
288 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
289 static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
290 assert(Node && "Didn't find callseq_start for a call??");
291 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293 assert(Node->getOperand(0).getValueType() == MVT::Other &&
294 "Node doesn't have a token chain argument!");
295 return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
298 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
299 /// see if any uses can reach Dest. If no dest operands can get to dest,
300 /// legalize them, legalize ourself, and return false, otherwise, return true.
302 /// Keep track of the nodes we fine that actually do lead to Dest in
303 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
305 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
306 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
307 if (N == Dest) return true; // N certainly leads to Dest :)
309 // If we've already processed this node and it does lead to Dest, there is no
310 // need to reprocess it.
311 if (NodesLeadingTo.count(N)) return true;
313 // If the first result of this node has been already legalized, then it cannot
314 // reach N.
315 if (LegalizedNodes.count(SDValue(N, 0))) return false;
317 // Okay, this node has not already been legalized. Check and legalize all
318 // operands. If none lead to Dest, then we can legalize this node.
319 bool OperandsLeadToDest = false;
320 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
321 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
322 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324 if (OperandsLeadToDest) {
325 NodesLeadingTo.insert(N);
326 return true;
329 // Okay, this node looks safe, legalize it and return false.
330 LegalizeOp(SDValue(N, 0));
331 return false;
334 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
335 /// a load from the constant pool.
336 static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
337 SelectionDAG &DAG, const TargetLowering &TLI) {
338 bool Extend = false;
339 DebugLoc dl = CFP->getDebugLoc();
341 // If a FP immediate is precise when represented as a float and if the
342 // target can do an extending load from float to double, we put it into
343 // the constant pool as a float, even if it's is statically typed as a
344 // double. This shrinks FP constants and canonicalizes them for targets where
345 // an FP extending load is the same cost as a normal load (such as on the x87
346 // fp stack or PPC FP unit).
347 MVT VT = CFP->getValueType(0);
348 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
349 if (!UseCP) {
350 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
351 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
352 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
355 MVT OrigVT = VT;
356 MVT SVT = VT;
357 while (SVT != MVT::f32) {
358 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
359 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
360 // Only do this if the target has a native EXTLOAD instruction from
361 // smaller type.
362 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
363 TLI.ShouldShrinkFPConstant(OrigVT)) {
364 const Type *SType = SVT.getTypeForMVT(*DAG.getContext());
365 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
366 VT = SVT;
367 Extend = true;
371 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
372 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
373 if (Extend)
374 return DAG.getExtLoad(ISD::EXTLOAD, dl,
375 OrigVT, DAG.getEntryNode(),
376 CPIdx, PseudoSourceValue::getConstantPool(),
377 0, VT, false, Alignment);
378 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
379 PseudoSourceValue::getConstantPool(), 0, false, Alignment);
382 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
383 static
384 SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
385 const TargetLowering &TLI) {
386 SDValue Chain = ST->getChain();
387 SDValue Ptr = ST->getBasePtr();
388 SDValue Val = ST->getValue();
389 MVT VT = Val.getValueType();
390 int Alignment = ST->getAlignment();
391 int SVOffset = ST->getSrcValueOffset();
392 DebugLoc dl = ST->getDebugLoc();
393 if (ST->getMemoryVT().isFloatingPoint() ||
394 ST->getMemoryVT().isVector()) {
395 MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
396 if (TLI.isTypeLegal(intVT)) {
397 // Expand to a bitconvert of the value to the integer type of the
398 // same size, then a (misaligned) int store.
399 // FIXME: Does not handle truncating floating point stores!
400 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
401 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
402 SVOffset, ST->isVolatile(), Alignment);
403 } else {
404 // Do a (aligned) store to a stack slot, then copy from the stack slot
405 // to the final destination using (unaligned) integer loads and stores.
406 MVT StoredVT = ST->getMemoryVT();
407 MVT RegVT =
408 TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
409 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
410 unsigned RegBytes = RegVT.getSizeInBits() / 8;
411 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413 // Make sure the stack slot is also aligned for the register type.
414 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416 // Perform the original store, only redirected to the stack slot.
417 SDValue Store = DAG.getTruncStore(Chain, dl,
418 Val, StackPtr, NULL, 0, StoredVT);
419 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
420 SmallVector<SDValue, 8> Stores;
421 unsigned Offset = 0;
423 // Do all but one copies using the full register width.
424 for (unsigned i = 1; i < NumRegs; i++) {
425 // Load one integer register's worth from the stack slot.
426 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
427 // Store it to the final location. Remember the store.
428 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
429 ST->getSrcValue(), SVOffset + Offset,
430 ST->isVolatile(),
431 MinAlign(ST->getAlignment(), Offset)));
432 // Increment the pointers.
433 Offset += RegBytes;
434 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
435 Increment);
436 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
439 // The last store may be partial. Do a truncating store. On big-endian
440 // machines this requires an extending load from the stack slot to ensure
441 // that the bits are in the right place.
442 MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
444 // Load from the stack slot.
445 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
446 NULL, 0, MemVT);
448 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
449 ST->getSrcValue(), SVOffset + Offset,
450 MemVT, ST->isVolatile(),
451 MinAlign(ST->getAlignment(), Offset)));
452 // The order of the stores doesn't matter - say it with a TokenFactor.
453 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
454 Stores.size());
457 assert(ST->getMemoryVT().isInteger() &&
458 !ST->getMemoryVT().isVector() &&
459 "Unaligned store of unknown type.");
460 // Get the half-size VT
461 MVT NewStoredVT =
462 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
463 int NumBits = NewStoredVT.getSizeInBits();
464 int IncrementSize = NumBits / 8;
466 // Divide the stored value in two parts.
467 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
468 SDValue Lo = Val;
469 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
471 // Store the two parts
472 SDValue Store1, Store2;
473 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
474 ST->getSrcValue(), SVOffset, NewStoredVT,
475 ST->isVolatile(), Alignment);
476 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
477 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
478 Alignment = MinAlign(Alignment, IncrementSize);
479 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
480 ST->getSrcValue(), SVOffset + IncrementSize,
481 NewStoredVT, ST->isVolatile(), Alignment);
483 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
486 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
487 static
488 SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
489 const TargetLowering &TLI) {
490 int SVOffset = LD->getSrcValueOffset();
491 SDValue Chain = LD->getChain();
492 SDValue Ptr = LD->getBasePtr();
493 MVT VT = LD->getValueType(0);
494 MVT LoadedVT = LD->getMemoryVT();
495 DebugLoc dl = LD->getDebugLoc();
496 if (VT.isFloatingPoint() || VT.isVector()) {
497 MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
498 if (TLI.isTypeLegal(intVT)) {
499 // Expand to a (misaligned) integer load of the same size,
500 // then bitconvert to floating point or vector.
501 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
502 SVOffset, LD->isVolatile(),
503 LD->getAlignment());
504 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
505 if (VT.isFloatingPoint() && LoadedVT != VT)
506 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
508 SDValue Ops[] = { Result, Chain };
509 return DAG.getMergeValues(Ops, 2, dl);
510 } else {
511 // Copy the value to a (aligned) stack slot using (unaligned) integer
512 // loads and stores, then do a (aligned) load from the stack slot.
513 MVT RegVT = TLI.getRegisterType(intVT);
514 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
515 unsigned RegBytes = RegVT.getSizeInBits() / 8;
516 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
518 // Make sure the stack slot is also aligned for the register type.
519 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
521 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
522 SmallVector<SDValue, 8> Stores;
523 SDValue StackPtr = StackBase;
524 unsigned Offset = 0;
526 // Do all but one copies using the full register width.
527 for (unsigned i = 1; i < NumRegs; i++) {
528 // Load one integer register's worth from the original location.
529 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
530 SVOffset + Offset, LD->isVolatile(),
531 MinAlign(LD->getAlignment(), Offset));
532 // Follow the load with a store to the stack slot. Remember the store.
533 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
534 NULL, 0));
535 // Increment the pointers.
536 Offset += RegBytes;
537 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
538 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
539 Increment);
542 // The last copy may be partial. Do an extending load.
543 MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
544 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
545 LD->getSrcValue(), SVOffset + Offset,
546 MemVT, LD->isVolatile(),
547 MinAlign(LD->getAlignment(), Offset));
548 // Follow the load with a store to the stack slot. Remember the store.
549 // On big-endian machines this requires a truncating store to ensure
550 // that the bits end up in the right place.
551 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
552 NULL, 0, MemVT));
554 // The order of the stores doesn't matter - say it with a TokenFactor.
555 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
556 Stores.size());
558 // Finally, perform the original load only redirected to the stack slot.
559 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
560 NULL, 0, LoadedVT);
562 // Callers expect a MERGE_VALUES node.
563 SDValue Ops[] = { Load, TF };
564 return DAG.getMergeValues(Ops, 2, dl);
567 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
568 "Unaligned load of unsupported type.");
570 // Compute the new VT that is half the size of the old one. This is an
571 // integer MVT.
572 unsigned NumBits = LoadedVT.getSizeInBits();
573 MVT NewLoadedVT;
574 NewLoadedVT = MVT::getIntegerVT(NumBits/2);
575 NumBits >>= 1;
577 unsigned Alignment = LD->getAlignment();
578 unsigned IncrementSize = NumBits / 8;
579 ISD::LoadExtType HiExtType = LD->getExtensionType();
581 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
582 if (HiExtType == ISD::NON_EXTLOAD)
583 HiExtType = ISD::ZEXTLOAD;
585 // Load the value in two parts
586 SDValue Lo, Hi;
587 if (TLI.isLittleEndian()) {
588 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
589 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
590 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
591 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
592 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
593 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
594 MinAlign(Alignment, IncrementSize));
595 } else {
596 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
597 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
598 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
599 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
600 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
601 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
602 MinAlign(Alignment, IncrementSize));
605 // aggregate the two parts
606 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
607 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
608 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
610 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
611 Hi.getValue(1));
613 SDValue Ops[] = { Result, TF };
614 return DAG.getMergeValues(Ops, 2, dl);
617 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
618 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
619 /// is necessary to spill the vector being inserted into to memory, perform
620 /// the insert there, and then read the result back.
621 SDValue SelectionDAGLegalize::
622 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
623 DebugLoc dl) {
624 SDValue Tmp1 = Vec;
625 SDValue Tmp2 = Val;
626 SDValue Tmp3 = Idx;
628 // If the target doesn't support this, we have to spill the input vector
629 // to a temporary stack slot, update the element, then reload it. This is
630 // badness. We could also load the value into a vector register (either
631 // with a "move to register" or "extload into register" instruction, then
632 // permute it into place, if the idx is a constant and if the idx is
633 // supported by the target.
634 MVT VT = Tmp1.getValueType();
635 MVT EltVT = VT.getVectorElementType();
636 MVT IdxVT = Tmp3.getValueType();
637 MVT PtrVT = TLI.getPointerTy();
638 SDValue StackPtr = DAG.CreateStackTemporary(VT);
640 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
642 // Store the vector.
643 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
644 PseudoSourceValue::getFixedStack(SPFI), 0);
646 // Truncate or zero extend offset to target pointer type.
647 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
648 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
649 // Add the offset to the index.
650 unsigned EltSize = EltVT.getSizeInBits()/8;
651 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
652 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
653 // Store the scalar value.
654 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
655 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
656 // Load the updated vector.
657 return DAG.getLoad(VT, dl, Ch, StackPtr,
658 PseudoSourceValue::getFixedStack(SPFI), 0);
662 SDValue SelectionDAGLegalize::
663 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
664 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
665 // SCALAR_TO_VECTOR requires that the type of the value being inserted
666 // match the element type of the vector being created, except for
667 // integers in which case the inserted value can be over width.
668 MVT EltVT = Vec.getValueType().getVectorElementType();
669 if (Val.getValueType() == EltVT ||
670 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
671 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
672 Vec.getValueType(), Val);
674 unsigned NumElts = Vec.getValueType().getVectorNumElements();
675 // We generate a shuffle of InVec and ScVec, so the shuffle mask
676 // should be 0,1,2,3,4,5... with the appropriate element replaced with
677 // elt 0 of the RHS.
678 SmallVector<int, 8> ShufOps;
679 for (unsigned i = 0; i != NumElts; ++i)
680 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
682 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
683 &ShufOps[0]);
686 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
689 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
690 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
691 // FIXME: We shouldn't do this for TargetConstantFP's.
692 // FIXME: move this to the DAG Combiner! Note that we can't regress due
693 // to phase ordering between legalized code and the dag combiner. This
694 // probably means that we need to integrate dag combiner and legalizer
695 // together.
696 // We generally can't do this one for long doubles.
697 SDValue Tmp1 = ST->getChain();
698 SDValue Tmp2 = ST->getBasePtr();
699 SDValue Tmp3;
700 int SVOffset = ST->getSrcValueOffset();
701 unsigned Alignment = ST->getAlignment();
702 bool isVolatile = ST->isVolatile();
703 DebugLoc dl = ST->getDebugLoc();
704 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
705 if (CFP->getValueType(0) == MVT::f32 &&
706 getTypeAction(MVT::i32) == Legal) {
707 Tmp3 = DAG.getConstant(CFP->getValueAPF().
708 bitcastToAPInt().zextOrTrunc(32),
709 MVT::i32);
710 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
711 SVOffset, isVolatile, Alignment);
712 } else if (CFP->getValueType(0) == MVT::f64) {
713 // If this target supports 64-bit registers, do a single 64-bit store.
714 if (getTypeAction(MVT::i64) == Legal) {
715 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
716 zextOrTrunc(64), MVT::i64);
717 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
718 SVOffset, isVolatile, Alignment);
719 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
720 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
721 // stores. If the target supports neither 32- nor 64-bits, this
722 // xform is certainly not worth it.
723 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
724 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
725 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
726 if (TLI.isBigEndian()) std::swap(Lo, Hi);
728 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
729 SVOffset, isVolatile, Alignment);
730 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
731 DAG.getIntPtrConstant(4));
732 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
733 isVolatile, MinAlign(Alignment, 4U));
735 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
739 return SDValue();
742 /// LegalizeOp - We know that the specified value has a legal type, and
743 /// that its operands are legal. Now ensure that the operation itself
744 /// is legal, recursively ensuring that the operands' operations remain
745 /// legal.
746 SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
747 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
748 return Op;
750 SDNode *Node = Op.getNode();
751 DebugLoc dl = Node->getDebugLoc();
753 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
754 assert(getTypeAction(Node->getValueType(i)) == Legal &&
755 "Unexpected illegal type!");
757 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
758 assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
759 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
760 "Unexpected illegal type!");
762 // Note that LegalizeOp may be reentered even from single-use nodes, which
763 // means that we always must cache transformed nodes.
764 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
765 if (I != LegalizedNodes.end()) return I->second;
767 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
768 SDValue Result = Op;
769 bool isCustom = false;
771 // Figure out the correct action; the way to query this varies by opcode
772 TargetLowering::LegalizeAction Action;
773 bool SimpleFinishLegalizing = true;
774 switch (Node->getOpcode()) {
775 case ISD::INTRINSIC_W_CHAIN:
776 case ISD::INTRINSIC_WO_CHAIN:
777 case ISD::INTRINSIC_VOID:
778 case ISD::VAARG:
779 case ISD::STACKSAVE:
780 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
781 break;
782 case ISD::SINT_TO_FP:
783 case ISD::UINT_TO_FP:
784 case ISD::EXTRACT_VECTOR_ELT:
785 Action = TLI.getOperationAction(Node->getOpcode(),
786 Node->getOperand(0).getValueType());
787 break;
788 case ISD::FP_ROUND_INREG:
789 case ISD::SIGN_EXTEND_INREG: {
790 MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
791 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
792 break;
794 case ISD::SELECT_CC:
795 case ISD::SETCC:
796 case ISD::BR_CC: {
797 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
798 Node->getOpcode() == ISD::SETCC ? 2 : 1;
799 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
800 MVT OpVT = Node->getOperand(CompareOperand).getValueType();
801 ISD::CondCode CCCode =
802 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
803 Action = TLI.getCondCodeAction(CCCode, OpVT);
804 if (Action == TargetLowering::Legal) {
805 if (Node->getOpcode() == ISD::SELECT_CC)
806 Action = TLI.getOperationAction(Node->getOpcode(),
807 Node->getValueType(0));
808 else
809 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
811 break;
813 case ISD::LOAD:
814 case ISD::STORE:
815 // FIXME: Model these properly. LOAD and STORE are complicated, and
816 // STORE expects the unlegalized operand in some cases.
817 SimpleFinishLegalizing = false;
818 break;
819 case ISD::CALLSEQ_START:
820 case ISD::CALLSEQ_END:
821 // FIXME: This shouldn't be necessary. These nodes have special properties
822 // dealing with the recursive nature of legalization. Removing this
823 // special case should be done as part of making LegalizeDAG non-recursive.
824 SimpleFinishLegalizing = false;
825 break;
826 case ISD::CALL:
827 // FIXME: Legalization for calls requires custom-lowering the call before
828 // legalizing the operands! (I haven't looked into precisely why.)
829 SimpleFinishLegalizing = false;
830 break;
831 case ISD::EXTRACT_ELEMENT:
832 case ISD::FLT_ROUNDS_:
833 case ISD::SADDO:
834 case ISD::SSUBO:
835 case ISD::UADDO:
836 case ISD::USUBO:
837 case ISD::SMULO:
838 case ISD::UMULO:
839 case ISD::FPOWI:
840 case ISD::MERGE_VALUES:
841 case ISD::EH_RETURN:
842 case ISD::FRAME_TO_ARGS_OFFSET:
843 // These operations lie about being legal: when they claim to be legal,
844 // they should actually be expanded.
845 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
846 if (Action == TargetLowering::Legal)
847 Action = TargetLowering::Expand;
848 break;
849 case ISD::TRAMPOLINE:
850 case ISD::FRAMEADDR:
851 case ISD::RETURNADDR:
852 case ISD::FORMAL_ARGUMENTS:
853 // These operations lie about being legal: when they claim to be legal,
854 // they should actually be custom-lowered.
855 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
856 if (Action == TargetLowering::Legal)
857 Action = TargetLowering::Custom;
858 break;
859 case ISD::BUILD_VECTOR:
860 // A weird case: legalization for BUILD_VECTOR never legalizes the
861 // operands!
862 // FIXME: This really sucks... changing it isn't semantically incorrect,
863 // but it massively pessimizes the code for floating-point BUILD_VECTORs
864 // because ConstantFP operands get legalized into constant pool loads
865 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
866 // though, because BUILD_VECTORS usually get lowered into other nodes
867 // which get legalized properly.
868 SimpleFinishLegalizing = false;
869 break;
870 default:
871 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
872 Action = TargetLowering::Legal;
873 } else {
874 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
876 break;
879 if (SimpleFinishLegalizing) {
880 SmallVector<SDValue, 8> Ops, ResultVals;
881 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
882 Ops.push_back(LegalizeOp(Node->getOperand(i)));
883 switch (Node->getOpcode()) {
884 default: break;
885 case ISD::BR:
886 case ISD::BRIND:
887 case ISD::BR_JT:
888 case ISD::BR_CC:
889 case ISD::BRCOND:
890 case ISD::RET:
891 // Branches tweak the chain to include LastCALLSEQ_END
892 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
893 LastCALLSEQ_END);
894 Ops[0] = LegalizeOp(Ops[0]);
895 LastCALLSEQ_END = DAG.getEntryNode();
896 break;
897 case ISD::SHL:
898 case ISD::SRL:
899 case ISD::SRA:
900 case ISD::ROTL:
901 case ISD::ROTR:
902 // Legalizing shifts/rotates requires adjusting the shift amount
903 // to the appropriate width.
904 if (!Ops[1].getValueType().isVector())
905 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
906 break;
909 Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
910 Ops.size());
911 switch (Action) {
912 case TargetLowering::Legal:
913 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
914 ResultVals.push_back(Result.getValue(i));
915 break;
916 case TargetLowering::Custom:
917 // FIXME: The handling for custom lowering with multiple results is
918 // a complete mess.
919 Tmp1 = TLI.LowerOperation(Result, DAG);
920 if (Tmp1.getNode()) {
921 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
922 if (e == 1)
923 ResultVals.push_back(Tmp1);
924 else
925 ResultVals.push_back(Tmp1.getValue(i));
927 break;
930 // FALL THROUGH
931 case TargetLowering::Expand:
932 ExpandNode(Result.getNode(), ResultVals);
933 break;
934 case TargetLowering::Promote:
935 PromoteNode(Result.getNode(), ResultVals);
936 break;
938 if (!ResultVals.empty()) {
939 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
940 if (ResultVals[i] != SDValue(Node, i))
941 ResultVals[i] = LegalizeOp(ResultVals[i]);
942 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
944 return ResultVals[Op.getResNo()];
948 switch (Node->getOpcode()) {
949 default:
950 #ifndef NDEBUG
951 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
952 #endif
953 llvm_unreachable("Do not know how to legalize this operator!");
954 case ISD::CALL:
955 // The only option for this is to custom lower it.
956 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
957 assert(Tmp3.getNode() && "Target didn't custom lower this node!");
958 // A call within a calling sequence must be legalized to something
959 // other than the normal CALLSEQ_END. Violating this gets Legalize
960 // into an infinite loop.
961 assert ((!IsLegalizingCall ||
962 Node->getOpcode() != ISD::CALL ||
963 Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
964 "Nested CALLSEQ_START..CALLSEQ_END not supported.");
966 // The number of incoming and outgoing values should match; unless the final
967 // outgoing value is a flag.
968 assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
969 (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
970 Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
971 MVT::Flag)) &&
972 "Lowering call/formal_arguments produced unexpected # results!");
974 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
975 // remember that we legalized all of them, so it doesn't get relegalized.
976 for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
977 if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
978 continue;
979 Tmp1 = LegalizeOp(Tmp3.getValue(i));
980 if (Op.getResNo() == i)
981 Tmp2 = Tmp1;
982 AddLegalizedOperand(SDValue(Node, i), Tmp1);
984 return Tmp2;
985 case ISD::BUILD_VECTOR:
986 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
987 default: llvm_unreachable("This action is not supported yet!");
988 case TargetLowering::Custom:
989 Tmp3 = TLI.LowerOperation(Result, DAG);
990 if (Tmp3.getNode()) {
991 Result = Tmp3;
992 break;
994 // FALLTHROUGH
995 case TargetLowering::Expand:
996 Result = ExpandBUILD_VECTOR(Result.getNode());
997 break;
999 break;
1000 case ISD::CALLSEQ_START: {
1001 SDNode *CallEnd = FindCallEndFromCallStart(Node);
1003 // Recursively Legalize all of the inputs of the call end that do not lead
1004 // to this call start. This ensures that any libcalls that need be inserted
1005 // are inserted *before* the CALLSEQ_START.
1006 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1007 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1008 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1009 NodesLeadingTo);
1012 // Now that we legalized all of the inputs (which may have inserted
1013 // libcalls) create the new CALLSEQ_START node.
1014 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1016 // Merge in the last call, to ensure that this call start after the last
1017 // call ended.
1018 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1019 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1020 Tmp1, LastCALLSEQ_END);
1021 Tmp1 = LegalizeOp(Tmp1);
1024 // Do not try to legalize the target-specific arguments (#1+).
1025 if (Tmp1 != Node->getOperand(0)) {
1026 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1027 Ops[0] = Tmp1;
1028 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1031 // Remember that the CALLSEQ_START is legalized.
1032 AddLegalizedOperand(Op.getValue(0), Result);
1033 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
1034 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1036 // Now that the callseq_start and all of the non-call nodes above this call
1037 // sequence have been legalized, legalize the call itself. During this
1038 // process, no libcalls can/will be inserted, guaranteeing that no calls
1039 // can overlap.
1040 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1041 // Note that we are selecting this call!
1042 LastCALLSEQ_END = SDValue(CallEnd, 0);
1043 IsLegalizingCall = true;
1045 // Legalize the call, starting from the CALLSEQ_END.
1046 LegalizeOp(LastCALLSEQ_END);
1047 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1048 return Result;
1050 case ISD::CALLSEQ_END:
1051 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1052 // will cause this node to be legalized as well as handling libcalls right.
1053 if (LastCALLSEQ_END.getNode() != Node) {
1054 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1055 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1056 assert(I != LegalizedNodes.end() &&
1057 "Legalizing the call start should have legalized this node!");
1058 return I->second;
1061 // Otherwise, the call start has been legalized and everything is going
1062 // according to plan. Just legalize ourselves normally here.
1063 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1064 // Do not try to legalize the target-specific arguments (#1+), except for
1065 // an optional flag input.
1066 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1067 if (Tmp1 != Node->getOperand(0)) {
1068 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069 Ops[0] = Tmp1;
1070 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1072 } else {
1073 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1074 if (Tmp1 != Node->getOperand(0) ||
1075 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1076 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1077 Ops[0] = Tmp1;
1078 Ops.back() = Tmp2;
1079 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1082 assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1083 // This finishes up call legalization.
1084 IsLegalizingCall = false;
1086 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1087 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1088 if (Node->getNumValues() == 2)
1089 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1090 return Result.getValue(Op.getResNo());
1091 case ISD::LOAD: {
1092 LoadSDNode *LD = cast<LoadSDNode>(Node);
1093 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
1094 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1096 ISD::LoadExtType ExtType = LD->getExtensionType();
1097 if (ExtType == ISD::NON_EXTLOAD) {
1098 MVT VT = Node->getValueType(0);
1099 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1100 Tmp3 = Result.getValue(0);
1101 Tmp4 = Result.getValue(1);
1103 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1104 default: llvm_unreachable("This action is not supported yet!");
1105 case TargetLowering::Legal:
1106 // If this is an unaligned load and the target doesn't support it,
1107 // expand it.
1108 if (!TLI.allowsUnalignedMemoryAccesses()) {
1109 unsigned ABIAlignment = TLI.getTargetData()->
1110 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1111 *DAG.getContext()));
1112 if (LD->getAlignment() < ABIAlignment){
1113 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1114 TLI);
1115 Tmp3 = Result.getOperand(0);
1116 Tmp4 = Result.getOperand(1);
1117 Tmp3 = LegalizeOp(Tmp3);
1118 Tmp4 = LegalizeOp(Tmp4);
1121 break;
1122 case TargetLowering::Custom:
1123 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1124 if (Tmp1.getNode()) {
1125 Tmp3 = LegalizeOp(Tmp1);
1126 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1128 break;
1129 case TargetLowering::Promote: {
1130 // Only promote a load of vector type to another.
1131 assert(VT.isVector() && "Cannot promote this load!");
1132 // Change base type to a different vector type.
1133 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1135 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1136 LD->getSrcValueOffset(),
1137 LD->isVolatile(), LD->getAlignment());
1138 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1139 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1140 break;
1143 // Since loads produce two values, make sure to remember that we
1144 // legalized both of them.
1145 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1146 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1147 return Op.getResNo() ? Tmp4 : Tmp3;
1148 } else {
1149 MVT SrcVT = LD->getMemoryVT();
1150 unsigned SrcWidth = SrcVT.getSizeInBits();
1151 int SVOffset = LD->getSrcValueOffset();
1152 unsigned Alignment = LD->getAlignment();
1153 bool isVolatile = LD->isVolatile();
1155 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1156 // Some targets pretend to have an i1 loading operation, and actually
1157 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1158 // bits are guaranteed to be zero; it helps the optimizers understand
1159 // that these bits are zero. It is also useful for EXTLOAD, since it
1160 // tells the optimizers that those bits are undefined. It would be
1161 // nice to have an effective generic way of getting these benefits...
1162 // Until such a way is found, don't insist on promoting i1 here.
1163 (SrcVT != MVT::i1 ||
1164 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1165 // Promote to a byte-sized load if not loading an integral number of
1166 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1167 unsigned NewWidth = SrcVT.getStoreSizeInBits();
1168 MVT NVT = MVT::getIntegerVT(NewWidth);
1169 SDValue Ch;
1171 // The extra bits are guaranteed to be zero, since we stored them that
1172 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1174 ISD::LoadExtType NewExtType =
1175 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1177 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1178 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1179 NVT, isVolatile, Alignment);
1181 Ch = Result.getValue(1); // The chain.
1183 if (ExtType == ISD::SEXTLOAD)
1184 // Having the top bits zero doesn't help when sign extending.
1185 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1186 Result.getValueType(),
1187 Result, DAG.getValueType(SrcVT));
1188 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1189 // All the top bits are guaranteed to be zero - inform the optimizers.
1190 Result = DAG.getNode(ISD::AssertZext, dl,
1191 Result.getValueType(), Result,
1192 DAG.getValueType(SrcVT));
1194 Tmp1 = LegalizeOp(Result);
1195 Tmp2 = LegalizeOp(Ch);
1196 } else if (SrcWidth & (SrcWidth - 1)) {
1197 // If not loading a power-of-2 number of bits, expand as two loads.
1198 assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1199 "Unsupported extload!");
1200 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1201 assert(RoundWidth < SrcWidth);
1202 unsigned ExtraWidth = SrcWidth - RoundWidth;
1203 assert(ExtraWidth < RoundWidth);
1204 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1205 "Load size not an integral number of bytes!");
1206 MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1207 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1208 SDValue Lo, Hi, Ch;
1209 unsigned IncrementSize;
1211 if (TLI.isLittleEndian()) {
1212 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1213 // Load the bottom RoundWidth bits.
1214 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1215 Node->getValueType(0), Tmp1, Tmp2,
1216 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1217 Alignment);
1219 // Load the remaining ExtraWidth bits.
1220 IncrementSize = RoundWidth / 8;
1221 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1222 DAG.getIntPtrConstant(IncrementSize));
1223 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1224 LD->getSrcValue(), SVOffset + IncrementSize,
1225 ExtraVT, isVolatile,
1226 MinAlign(Alignment, IncrementSize));
1228 // Build a factor node to remember that this load is independent of the
1229 // other one.
1230 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1231 Hi.getValue(1));
1233 // Move the top bits to the right place.
1234 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1235 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1237 // Join the hi and lo parts.
1238 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1239 } else {
1240 // Big endian - avoid unaligned loads.
1241 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1242 // Load the top RoundWidth bits.
1243 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1244 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1245 Alignment);
1247 // Load the remaining ExtraWidth bits.
1248 IncrementSize = RoundWidth / 8;
1249 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1250 DAG.getIntPtrConstant(IncrementSize));
1251 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1252 Node->getValueType(0), Tmp1, Tmp2,
1253 LD->getSrcValue(), SVOffset + IncrementSize,
1254 ExtraVT, isVolatile,
1255 MinAlign(Alignment, IncrementSize));
1257 // Build a factor node to remember that this load is independent of the
1258 // other one.
1259 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1260 Hi.getValue(1));
1262 // Move the top bits to the right place.
1263 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1264 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1266 // Join the hi and lo parts.
1267 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1270 Tmp1 = LegalizeOp(Result);
1271 Tmp2 = LegalizeOp(Ch);
1272 } else {
1273 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1274 default: llvm_unreachable("This action is not supported yet!");
1275 case TargetLowering::Custom:
1276 isCustom = true;
1277 // FALLTHROUGH
1278 case TargetLowering::Legal:
1279 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1280 Tmp1 = Result.getValue(0);
1281 Tmp2 = Result.getValue(1);
1283 if (isCustom) {
1284 Tmp3 = TLI.LowerOperation(Result, DAG);
1285 if (Tmp3.getNode()) {
1286 Tmp1 = LegalizeOp(Tmp3);
1287 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1289 } else {
1290 // If this is an unaligned load and the target doesn't support it,
1291 // expand it.
1292 if (!TLI.allowsUnalignedMemoryAccesses()) {
1293 unsigned ABIAlignment = TLI.getTargetData()->
1294 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1295 *DAG.getContext()));
1296 if (LD->getAlignment() < ABIAlignment){
1297 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1298 TLI);
1299 Tmp1 = Result.getOperand(0);
1300 Tmp2 = Result.getOperand(1);
1301 Tmp1 = LegalizeOp(Tmp1);
1302 Tmp2 = LegalizeOp(Tmp2);
1306 break;
1307 case TargetLowering::Expand:
1308 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1309 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1310 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1311 LD->getSrcValueOffset(),
1312 LD->isVolatile(), LD->getAlignment());
1313 Result = DAG.getNode(ISD::FP_EXTEND, dl,
1314 Node->getValueType(0), Load);
1315 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
1316 Tmp2 = LegalizeOp(Load.getValue(1));
1317 break;
1319 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1320 // Turn the unsupported load into an EXTLOAD followed by an explicit
1321 // zero/sign extend inreg.
1322 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1323 Tmp1, Tmp2, LD->getSrcValue(),
1324 LD->getSrcValueOffset(), SrcVT,
1325 LD->isVolatile(), LD->getAlignment());
1326 SDValue ValRes;
1327 if (ExtType == ISD::SEXTLOAD)
1328 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1329 Result.getValueType(),
1330 Result, DAG.getValueType(SrcVT));
1331 else
1332 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1333 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1334 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
1335 break;
1339 // Since loads produce two values, make sure to remember that we legalized
1340 // both of them.
1341 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1342 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1343 return Op.getResNo() ? Tmp2 : Tmp1;
1346 case ISD::STORE: {
1347 StoreSDNode *ST = cast<StoreSDNode>(Node);
1348 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
1349 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
1350 int SVOffset = ST->getSrcValueOffset();
1351 unsigned Alignment = ST->getAlignment();
1352 bool isVolatile = ST->isVolatile();
1354 if (!ST->isTruncatingStore()) {
1355 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1356 Result = SDValue(OptStore, 0);
1357 break;
1361 Tmp3 = LegalizeOp(ST->getValue());
1362 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1363 ST->getOffset());
1365 MVT VT = Tmp3.getValueType();
1366 switch (TLI.getOperationAction(ISD::STORE, VT)) {
1367 default: llvm_unreachable("This action is not supported yet!");
1368 case TargetLowering::Legal:
1369 // If this is an unaligned store and the target doesn't support it,
1370 // expand it.
1371 if (!TLI.allowsUnalignedMemoryAccesses()) {
1372 unsigned ABIAlignment = TLI.getTargetData()->
1373 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1374 *DAG.getContext()));
1375 if (ST->getAlignment() < ABIAlignment)
1376 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1377 TLI);
1379 break;
1380 case TargetLowering::Custom:
1381 Tmp1 = TLI.LowerOperation(Result, DAG);
1382 if (Tmp1.getNode()) Result = Tmp1;
1383 break;
1384 case TargetLowering::Promote:
1385 assert(VT.isVector() && "Unknown legal promote case!");
1386 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1387 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1388 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1389 ST->getSrcValue(), SVOffset, isVolatile,
1390 Alignment);
1391 break;
1393 break;
1395 } else {
1396 Tmp3 = LegalizeOp(ST->getValue());
1398 MVT StVT = ST->getMemoryVT();
1399 unsigned StWidth = StVT.getSizeInBits();
1401 if (StWidth != StVT.getStoreSizeInBits()) {
1402 // Promote to a byte-sized store with upper bits zero if not
1403 // storing an integral number of bytes. For example, promote
1404 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1405 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1406 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1407 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1408 SVOffset, NVT, isVolatile, Alignment);
1409 } else if (StWidth & (StWidth - 1)) {
1410 // If not storing a power-of-2 number of bits, expand as two stores.
1411 assert(StVT.isExtended() && !StVT.isVector() &&
1412 "Unsupported truncstore!");
1413 unsigned RoundWidth = 1 << Log2_32(StWidth);
1414 assert(RoundWidth < StWidth);
1415 unsigned ExtraWidth = StWidth - RoundWidth;
1416 assert(ExtraWidth < RoundWidth);
1417 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1418 "Store size not an integral number of bytes!");
1419 MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1420 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1421 SDValue Lo, Hi;
1422 unsigned IncrementSize;
1424 if (TLI.isLittleEndian()) {
1425 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1426 // Store the bottom RoundWidth bits.
1427 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1428 SVOffset, RoundVT,
1429 isVolatile, Alignment);
1431 // Store the remaining ExtraWidth bits.
1432 IncrementSize = RoundWidth / 8;
1433 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1434 DAG.getIntPtrConstant(IncrementSize));
1435 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1436 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1437 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1438 SVOffset + IncrementSize, ExtraVT, isVolatile,
1439 MinAlign(Alignment, IncrementSize));
1440 } else {
1441 // Big endian - avoid unaligned stores.
1442 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1443 // Store the top RoundWidth bits.
1444 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1445 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1446 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1447 SVOffset, RoundVT, isVolatile, Alignment);
1449 // Store the remaining ExtraWidth bits.
1450 IncrementSize = RoundWidth / 8;
1451 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1452 DAG.getIntPtrConstant(IncrementSize));
1453 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1454 SVOffset + IncrementSize, ExtraVT, isVolatile,
1455 MinAlign(Alignment, IncrementSize));
1458 // The order of the stores doesn't matter.
1459 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1460 } else {
1461 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1462 Tmp2 != ST->getBasePtr())
1463 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1464 ST->getOffset());
1466 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1467 default: llvm_unreachable("This action is not supported yet!");
1468 case TargetLowering::Legal:
1469 // If this is an unaligned store and the target doesn't support it,
1470 // expand it.
1471 if (!TLI.allowsUnalignedMemoryAccesses()) {
1472 unsigned ABIAlignment = TLI.getTargetData()->
1473 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1474 *DAG.getContext()));
1475 if (ST->getAlignment() < ABIAlignment)
1476 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1477 TLI);
1479 break;
1480 case TargetLowering::Custom:
1481 Result = TLI.LowerOperation(Result, DAG);
1482 break;
1483 case Expand:
1484 // TRUNCSTORE:i16 i32 -> STORE i16
1485 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1486 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1487 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1488 SVOffset, isVolatile, Alignment);
1489 break;
1493 break;
1496 assert(Result.getValueType() == Op.getValueType() &&
1497 "Bad legalization!");
1499 // Make sure that the generated code is itself legal.
1500 if (Result != Op)
1501 Result = LegalizeOp(Result);
1503 // Note that LegalizeOp may be reentered even from single-use nodes, which
1504 // means that we always must cache transformed nodes.
1505 AddLegalizedOperand(Op, Result);
1506 return Result;
1509 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1510 SDValue Vec = Op.getOperand(0);
1511 SDValue Idx = Op.getOperand(1);
1512 DebugLoc dl = Op.getDebugLoc();
1513 // Store the value to a temporary stack slot, then LOAD the returned part.
1514 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1515 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1517 // Add the offset to the index.
1518 unsigned EltSize =
1519 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1520 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1521 DAG.getConstant(EltSize, Idx.getValueType()));
1523 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1524 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1525 else
1526 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1528 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1530 if (Op.getValueType().isVector())
1531 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1532 else
1533 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1534 NULL, 0, Vec.getValueType().getVectorElementType());
1537 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1538 // We can't handle this case efficiently. Allocate a sufficiently
1539 // aligned object on the stack, store each element into it, then load
1540 // the result as a vector.
1541 // Create the stack frame object.
1542 MVT VT = Node->getValueType(0);
1543 MVT OpVT = Node->getOperand(0).getValueType();
1544 DebugLoc dl = Node->getDebugLoc();
1545 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1546 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1547 const Value *SV = PseudoSourceValue::getFixedStack(FI);
1549 // Emit a store of each element to the stack slot.
1550 SmallVector<SDValue, 8> Stores;
1551 unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1552 // Store (in the right endianness) the elements to memory.
1553 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1554 // Ignore undef elements.
1555 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1557 unsigned Offset = TypeByteSize*i;
1559 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1560 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1562 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1563 Idx, SV, Offset));
1566 SDValue StoreChain;
1567 if (!Stores.empty()) // Not all undef elements?
1568 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1569 &Stores[0], Stores.size());
1570 else
1571 StoreChain = DAG.getEntryNode();
1573 // Result is a load from the stack slot.
1574 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1577 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1578 DebugLoc dl = Node->getDebugLoc();
1579 SDValue Tmp1 = Node->getOperand(0);
1580 SDValue Tmp2 = Node->getOperand(1);
1581 assert((Tmp2.getValueType() == MVT::f32 ||
1582 Tmp2.getValueType() == MVT::f64) &&
1583 "Ugly special-cased code!");
1584 // Get the sign bit of the RHS.
1585 SDValue SignBit;
1586 MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1587 if (isTypeLegal(IVT)) {
1588 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1589 } else {
1590 assert(isTypeLegal(TLI.getPointerTy()) &&
1591 (TLI.getPointerTy() == MVT::i32 ||
1592 TLI.getPointerTy() == MVT::i64) &&
1593 "Legal type for load?!");
1594 SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1595 SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1596 SDValue Ch =
1597 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1598 if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1599 LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1600 LoadPtr, DAG.getIntPtrConstant(4));
1601 SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1602 Ch, LoadPtr, NULL, 0, MVT::i32);
1604 SignBit =
1605 DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1606 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1607 ISD::SETLT);
1608 // Get the absolute value of the result.
1609 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1610 // Select between the nabs and abs value based on the sign bit of
1611 // the input.
1612 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1613 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1614 AbsVal);
1617 SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1618 DebugLoc dl = Node->getDebugLoc();
1619 DwarfWriter *DW = DAG.getDwarfWriter();
1620 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1621 MVT::Other);
1622 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1624 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1625 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1626 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1627 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1629 unsigned Line = DSP->getLine();
1630 unsigned Col = DSP->getColumn();
1632 if (OptLevel == CodeGenOpt::None) {
1633 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1634 // won't hurt anything.
1635 if (useDEBUG_LOC) {
1636 return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1637 DAG.getConstant(Line, MVT::i32),
1638 DAG.getConstant(Col, MVT::i32),
1639 DAG.getSrcValue(CU.getGV()));
1640 } else {
1641 unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1642 return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1646 return Node->getOperand(0);
1649 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1650 SmallVectorImpl<SDValue> &Results) {
1651 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1652 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1653 " not tell us which reg is the stack pointer!");
1654 DebugLoc dl = Node->getDebugLoc();
1655 MVT VT = Node->getValueType(0);
1656 SDValue Tmp1 = SDValue(Node, 0);
1657 SDValue Tmp2 = SDValue(Node, 1);
1658 SDValue Tmp3 = Node->getOperand(2);
1659 SDValue Chain = Tmp1.getOperand(0);
1661 // Chain the dynamic stack allocation so that it doesn't modify the stack
1662 // pointer when other instructions are using the stack.
1663 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1665 SDValue Size = Tmp2.getOperand(1);
1666 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1667 Chain = SP.getValue(1);
1668 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1669 unsigned StackAlign =
1670 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1671 if (Align > StackAlign)
1672 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1673 DAG.getConstant(-(uint64_t)Align, VT));
1674 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1675 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1677 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1678 DAG.getIntPtrConstant(0, true), SDValue());
1680 Results.push_back(Tmp1);
1681 Results.push_back(Tmp2);
1684 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1685 /// condition code CC on the current target. This routine assumes LHS and rHS
1686 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1687 /// illegal condition code into AND / OR of multiple SETCC values.
1688 void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1689 SDValue &LHS, SDValue &RHS,
1690 SDValue &CC,
1691 DebugLoc dl) {
1692 MVT OpVT = LHS.getValueType();
1693 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1694 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1695 default: llvm_unreachable("Unknown condition code action!");
1696 case TargetLowering::Legal:
1697 // Nothing to do.
1698 break;
1699 case TargetLowering::Expand: {
1700 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1701 unsigned Opc = 0;
1702 switch (CCCode) {
1703 default: llvm_unreachable("Don't know how to expand this condition!");
1704 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
1705 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1706 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1707 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1708 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1709 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1710 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1711 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1712 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1713 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1714 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1715 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1716 // FIXME: Implement more expansions.
1719 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1720 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1721 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1722 RHS = SDValue();
1723 CC = SDValue();
1724 break;
1729 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
1730 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1731 /// a load from the stack slot to DestVT, extending it if needed.
1732 /// The resultant code need not be legal.
1733 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1734 MVT SlotVT,
1735 MVT DestVT,
1736 DebugLoc dl) {
1737 // Create the stack frame object.
1738 unsigned SrcAlign =
1739 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1740 getTypeForMVT(*DAG.getContext()));
1741 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1743 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1744 int SPFI = StackPtrFI->getIndex();
1745 const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1747 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1748 unsigned SlotSize = SlotVT.getSizeInBits();
1749 unsigned DestSize = DestVT.getSizeInBits();
1750 unsigned DestAlign =
1751 TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT(
1752 *DAG.getContext()));
1754 // Emit a store to the stack slot. Use a truncstore if the input value is
1755 // later than DestVT.
1756 SDValue Store;
1758 if (SrcSize > SlotSize)
1759 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1760 SV, 0, SlotVT, false, SrcAlign);
1761 else {
1762 assert(SrcSize == SlotSize && "Invalid store");
1763 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1764 SV, 0, false, SrcAlign);
1767 // Result is a load from the stack slot.
1768 if (SlotSize == DestSize)
1769 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1771 assert(SlotSize < DestSize && "Unknown extension!");
1772 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1773 false, DestAlign);
1776 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1777 DebugLoc dl = Node->getDebugLoc();
1778 // Create a vector sized/aligned stack slot, store the value to element #0,
1779 // then load the whole vector back out.
1780 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1782 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1783 int SPFI = StackPtrFI->getIndex();
1785 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1786 StackPtr,
1787 PseudoSourceValue::getFixedStack(SPFI), 0,
1788 Node->getValueType(0).getVectorElementType());
1789 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1790 PseudoSourceValue::getFixedStack(SPFI), 0);
1794 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1795 /// support the operation, but do support the resultant vector type.
1796 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1797 LLVMContext *Context = DAG.getContext();
1798 unsigned NumElems = Node->getNumOperands();
1799 SDValue Value1, Value2;
1800 DebugLoc dl = Node->getDebugLoc();
1801 MVT VT = Node->getValueType(0);
1802 MVT OpVT = Node->getOperand(0).getValueType();
1803 MVT EltVT = VT.getVectorElementType();
1805 // If the only non-undef value is the low element, turn this into a
1806 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1807 bool isOnlyLowElement = true;
1808 bool MoreThanTwoValues = false;
1809 bool isConstant = true;
1810 for (unsigned i = 0; i < NumElems; ++i) {
1811 SDValue V = Node->getOperand(i);
1812 if (V.getOpcode() == ISD::UNDEF)
1813 continue;
1814 if (i > 0)
1815 isOnlyLowElement = false;
1816 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1817 isConstant = false;
1819 if (!Value1.getNode()) {
1820 Value1 = V;
1821 } else if (!Value2.getNode()) {
1822 if (V != Value1)
1823 Value2 = V;
1824 } else if (V != Value1 && V != Value2) {
1825 MoreThanTwoValues = true;
1829 if (!Value1.getNode())
1830 return DAG.getUNDEF(VT);
1832 if (isOnlyLowElement)
1833 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1835 // If all elements are constants, create a load from the constant pool.
1836 if (isConstant) {
1837 std::vector<Constant*> CV;
1838 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1839 if (ConstantFPSDNode *V =
1840 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1841 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1842 } else if (ConstantSDNode *V =
1843 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1844 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1845 } else {
1846 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1847 const Type *OpNTy = OpVT.getTypeForMVT(*DAG.getContext());
1848 CV.push_back(Context->getUndef(OpNTy));
1851 Constant *CP = ConstantVector::get(CV);
1852 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1853 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1854 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1855 PseudoSourceValue::getConstantPool(), 0,
1856 false, Alignment);
1859 if (!MoreThanTwoValues) {
1860 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1861 for (unsigned i = 0; i < NumElems; ++i) {
1862 SDValue V = Node->getOperand(i);
1863 if (V.getOpcode() == ISD::UNDEF)
1864 continue;
1865 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1867 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1868 // Get the splatted value into the low element of a vector register.
1869 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1870 SDValue Vec2;
1871 if (Value2.getNode())
1872 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1873 else
1874 Vec2 = DAG.getUNDEF(VT);
1876 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1877 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1881 // Otherwise, we can't handle this case efficiently.
1882 return ExpandVectorBuildThroughStack(Node);
1885 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
1886 // does not fit into a register, return the lo part and set the hi part to the
1887 // by-reg argument. If it does fit into a single register, return the result
1888 // and leave the Hi part unset.
1889 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1890 bool isSigned) {
1891 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1892 // The input chain to this libcall is the entry node of the function.
1893 // Legalizing the call will automatically add the previous call to the
1894 // dependence.
1895 SDValue InChain = DAG.getEntryNode();
1897 TargetLowering::ArgListTy Args;
1898 TargetLowering::ArgListEntry Entry;
1899 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1900 MVT ArgVT = Node->getOperand(i).getValueType();
1901 const Type *ArgTy = ArgVT.getTypeForMVT(*DAG.getContext());
1902 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1903 Entry.isSExt = isSigned;
1904 Entry.isZExt = !isSigned;
1905 Args.push_back(Entry);
1907 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1908 TLI.getPointerTy());
1910 // Splice the libcall in wherever FindInputOutputChains tells us to.
1911 const Type *RetTy = Node->getValueType(0).getTypeForMVT(*DAG.getContext());
1912 std::pair<SDValue, SDValue> CallInfo =
1913 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1914 0, CallingConv::C, false, Callee, Args, DAG,
1915 Node->getDebugLoc());
1917 // Legalize the call sequence, starting with the chain. This will advance
1918 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1919 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1920 LegalizeOp(CallInfo.second);
1921 return CallInfo.first;
1924 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1925 RTLIB::Libcall Call_F32,
1926 RTLIB::Libcall Call_F64,
1927 RTLIB::Libcall Call_F80,
1928 RTLIB::Libcall Call_PPCF128) {
1929 RTLIB::Libcall LC;
1930 switch (Node->getValueType(0).getSimpleVT()) {
1931 default: llvm_unreachable("Unexpected request for libcall!");
1932 case MVT::f32: LC = Call_F32; break;
1933 case MVT::f64: LC = Call_F64; break;
1934 case MVT::f80: LC = Call_F80; break;
1935 case MVT::ppcf128: LC = Call_PPCF128; break;
1937 return ExpandLibCall(LC, Node, false);
1940 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1941 RTLIB::Libcall Call_I16,
1942 RTLIB::Libcall Call_I32,
1943 RTLIB::Libcall Call_I64,
1944 RTLIB::Libcall Call_I128) {
1945 RTLIB::Libcall LC;
1946 switch (Node->getValueType(0).getSimpleVT()) {
1947 default: llvm_unreachable("Unexpected request for libcall!");
1948 case MVT::i16: LC = Call_I16; break;
1949 case MVT::i32: LC = Call_I32; break;
1950 case MVT::i64: LC = Call_I64; break;
1951 case MVT::i128: LC = Call_I128; break;
1953 return ExpandLibCall(LC, Node, isSigned);
1956 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1957 /// INT_TO_FP operation of the specified operand when the target requests that
1958 /// we expand it. At this point, we know that the result and operand types are
1959 /// legal for the target.
1960 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1961 SDValue Op0,
1962 MVT DestVT,
1963 DebugLoc dl) {
1964 if (Op0.getValueType() == MVT::i32) {
1965 // simple 32-bit [signed|unsigned] integer to float/double expansion
1967 // Get the stack frame index of a 8 byte buffer.
1968 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1970 // word offset constant for Hi/Lo address computation
1971 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1972 // set up Hi and Lo (into buffer) address based on endian
1973 SDValue Hi = StackSlot;
1974 SDValue Lo = DAG.getNode(ISD::ADD, dl,
1975 TLI.getPointerTy(), StackSlot, WordOff);
1976 if (TLI.isLittleEndian())
1977 std::swap(Hi, Lo);
1979 // if signed map to unsigned space
1980 SDValue Op0Mapped;
1981 if (isSigned) {
1982 // constant used to invert sign bit (signed to unsigned mapping)
1983 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1984 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1985 } else {
1986 Op0Mapped = Op0;
1988 // store the lo of the constructed double - based on integer input
1989 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1990 Op0Mapped, Lo, NULL, 0);
1991 // initial hi portion of constructed double
1992 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1993 // store the hi of the constructed double - biased exponent
1994 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1995 // load the constructed double
1996 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1997 // FP constant to bias correct the final result
1998 SDValue Bias = DAG.getConstantFP(isSigned ?
1999 BitsToDouble(0x4330000080000000ULL) :
2000 BitsToDouble(0x4330000000000000ULL),
2001 MVT::f64);
2002 // subtract the bias
2003 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2004 // final result
2005 SDValue Result;
2006 // handle final rounding
2007 if (DestVT == MVT::f64) {
2008 // do nothing
2009 Result = Sub;
2010 } else if (DestVT.bitsLT(MVT::f64)) {
2011 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2012 DAG.getIntPtrConstant(0));
2013 } else if (DestVT.bitsGT(MVT::f64)) {
2014 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2016 return Result;
2018 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2019 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2021 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2022 Op0, DAG.getConstant(0, Op0.getValueType()),
2023 ISD::SETLT);
2024 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2025 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2026 SignSet, Four, Zero);
2028 // If the sign bit of the integer is set, the large number will be treated
2029 // as a negative number. To counteract this, the dynamic code adds an
2030 // offset depending on the data type.
2031 uint64_t FF;
2032 switch (Op0.getValueType().getSimpleVT()) {
2033 default: llvm_unreachable("Unsupported integer type!");
2034 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2035 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2036 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2037 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2039 if (TLI.isLittleEndian()) FF <<= 32;
2040 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2042 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2043 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2044 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2045 Alignment = std::min(Alignment, 4u);
2046 SDValue FudgeInReg;
2047 if (DestVT == MVT::f32)
2048 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2049 PseudoSourceValue::getConstantPool(), 0,
2050 false, Alignment);
2051 else {
2052 FudgeInReg =
2053 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2054 DAG.getEntryNode(), CPIdx,
2055 PseudoSourceValue::getConstantPool(), 0,
2056 MVT::f32, false, Alignment));
2059 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2062 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2063 /// *INT_TO_FP operation of the specified operand when the target requests that
2064 /// we promote it. At this point, we know that the result and operand types are
2065 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2066 /// operation that takes a larger input.
2067 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2068 MVT DestVT,
2069 bool isSigned,
2070 DebugLoc dl) {
2071 // First step, figure out the appropriate *INT_TO_FP operation to use.
2072 MVT NewInTy = LegalOp.getValueType();
2074 unsigned OpToUse = 0;
2076 // Scan for the appropriate larger type to use.
2077 while (1) {
2078 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2079 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2081 // If the target supports SINT_TO_FP of this type, use it.
2082 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2083 OpToUse = ISD::SINT_TO_FP;
2084 break;
2086 if (isSigned) continue;
2088 // If the target supports UINT_TO_FP of this type, use it.
2089 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2090 OpToUse = ISD::UINT_TO_FP;
2091 break;
2094 // Otherwise, try a larger type.
2097 // Okay, we found the operation and type to use. Zero extend our input to the
2098 // desired type then run the operation on it.
2099 return DAG.getNode(OpToUse, dl, DestVT,
2100 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2101 dl, NewInTy, LegalOp));
2104 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2105 /// FP_TO_*INT operation of the specified operand when the target requests that
2106 /// we promote it. At this point, we know that the result and operand types are
2107 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2108 /// operation that returns a larger result.
2109 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2110 MVT DestVT,
2111 bool isSigned,
2112 DebugLoc dl) {
2113 // First step, figure out the appropriate FP_TO*INT operation to use.
2114 MVT NewOutTy = DestVT;
2116 unsigned OpToUse = 0;
2118 // Scan for the appropriate larger type to use.
2119 while (1) {
2120 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2121 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2123 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2124 OpToUse = ISD::FP_TO_SINT;
2125 break;
2128 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2129 OpToUse = ISD::FP_TO_UINT;
2130 break;
2133 // Otherwise, try a larger type.
2137 // Okay, we found the operation and type to use.
2138 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2140 // Truncate the result of the extended FP_TO_*INT operation to the desired
2141 // size.
2142 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2145 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2147 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2148 MVT VT = Op.getValueType();
2149 MVT SHVT = TLI.getShiftAmountTy();
2150 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2151 switch (VT.getSimpleVT()) {
2152 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2153 case MVT::i16:
2154 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2155 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2156 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2157 case MVT::i32:
2158 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2159 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2160 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2161 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2162 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2163 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2164 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2165 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2166 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2167 case MVT::i64:
2168 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2169 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2170 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2171 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2172 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2173 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2174 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2175 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2176 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2177 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2178 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2179 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2180 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2181 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2182 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2183 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2184 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2185 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2186 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2187 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2188 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2192 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2194 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2195 DebugLoc dl) {
2196 switch (Opc) {
2197 default: llvm_unreachable("Cannot expand this yet!");
2198 case ISD::CTPOP: {
2199 static const uint64_t mask[6] = {
2200 0x5555555555555555ULL, 0x3333333333333333ULL,
2201 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2202 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2204 MVT VT = Op.getValueType();
2205 MVT ShVT = TLI.getShiftAmountTy();
2206 unsigned len = VT.getSizeInBits();
2207 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2208 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2209 unsigned EltSize = VT.isVector() ?
2210 VT.getVectorElementType().getSizeInBits() : len;
2211 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2212 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2213 Op = DAG.getNode(ISD::ADD, dl, VT,
2214 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2215 DAG.getNode(ISD::AND, dl, VT,
2216 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2217 Tmp2));
2219 return Op;
2221 case ISD::CTLZ: {
2222 // for now, we do this:
2223 // x = x | (x >> 1);
2224 // x = x | (x >> 2);
2225 // ...
2226 // x = x | (x >>16);
2227 // x = x | (x >>32); // for 64-bit input
2228 // return popcount(~x);
2230 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2231 MVT VT = Op.getValueType();
2232 MVT ShVT = TLI.getShiftAmountTy();
2233 unsigned len = VT.getSizeInBits();
2234 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2235 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2236 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2237 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2239 Op = DAG.getNOT(dl, Op, VT);
2240 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2242 case ISD::CTTZ: {
2243 // for now, we use: { return popcount(~x & (x - 1)); }
2244 // unless the target has ctlz but not ctpop, in which case we use:
2245 // { return 32 - nlz(~x & (x-1)); }
2246 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2247 MVT VT = Op.getValueType();
2248 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2249 DAG.getNOT(dl, Op, VT),
2250 DAG.getNode(ISD::SUB, dl, VT, Op,
2251 DAG.getConstant(1, VT)));
2252 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2253 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2254 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2255 return DAG.getNode(ISD::SUB, dl, VT,
2256 DAG.getConstant(VT.getSizeInBits(), VT),
2257 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2258 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2263 void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2264 SmallVectorImpl<SDValue> &Results) {
2265 DebugLoc dl = Node->getDebugLoc();
2266 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2267 switch (Node->getOpcode()) {
2268 case ISD::CTPOP:
2269 case ISD::CTLZ:
2270 case ISD::CTTZ:
2271 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2272 Results.push_back(Tmp1);
2273 break;
2274 case ISD::BSWAP:
2275 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2276 break;
2277 case ISD::FRAMEADDR:
2278 case ISD::RETURNADDR:
2279 case ISD::FRAME_TO_ARGS_OFFSET:
2280 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2281 break;
2282 case ISD::FLT_ROUNDS_:
2283 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2284 break;
2285 case ISD::EH_RETURN:
2286 case ISD::DECLARE:
2287 case ISD::DBG_LABEL:
2288 case ISD::EH_LABEL:
2289 case ISD::PREFETCH:
2290 case ISD::MEMBARRIER:
2291 case ISD::VAEND:
2292 Results.push_back(Node->getOperand(0));
2293 break;
2294 case ISD::DBG_STOPPOINT:
2295 Results.push_back(ExpandDBG_STOPPOINT(Node));
2296 break;
2297 case ISD::DYNAMIC_STACKALLOC:
2298 ExpandDYNAMIC_STACKALLOC(Node, Results);
2299 break;
2300 case ISD::MERGE_VALUES:
2301 for (unsigned i = 0; i < Node->getNumValues(); i++)
2302 Results.push_back(Node->getOperand(i));
2303 break;
2304 case ISD::UNDEF: {
2305 MVT VT = Node->getValueType(0);
2306 if (VT.isInteger())
2307 Results.push_back(DAG.getConstant(0, VT));
2308 else if (VT.isFloatingPoint())
2309 Results.push_back(DAG.getConstantFP(0, VT));
2310 else
2311 llvm_unreachable("Unknown value type!");
2312 break;
2314 case ISD::TRAP: {
2315 // If this operation is not supported, lower it to 'abort()' call
2316 TargetLowering::ArgListTy Args;
2317 std::pair<SDValue, SDValue> CallResult =
2318 TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2319 false, false, false, false, 0, CallingConv::C, false,
2320 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2321 Args, DAG, dl);
2322 Results.push_back(CallResult.second);
2323 break;
2325 case ISD::FP_ROUND:
2326 case ISD::BIT_CONVERT:
2327 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2328 Node->getValueType(0), dl);
2329 Results.push_back(Tmp1);
2330 break;
2331 case ISD::FP_EXTEND:
2332 Tmp1 = EmitStackConvert(Node->getOperand(0),
2333 Node->getOperand(0).getValueType(),
2334 Node->getValueType(0), dl);
2335 Results.push_back(Tmp1);
2336 break;
2337 case ISD::SIGN_EXTEND_INREG: {
2338 // NOTE: we could fall back on load/store here too for targets without
2339 // SAR. However, it is doubtful that any exist.
2340 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2341 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2342 ExtraVT.getSizeInBits();
2343 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2344 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2345 Node->getOperand(0), ShiftCst);
2346 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2347 Results.push_back(Tmp1);
2348 break;
2350 case ISD::FP_ROUND_INREG: {
2351 // The only way we can lower this is to turn it into a TRUNCSTORE,
2352 // EXTLOAD pair, targetting a temporary location (a stack slot).
2354 // NOTE: there is a choice here between constantly creating new stack
2355 // slots and always reusing the same one. We currently always create
2356 // new ones, as reuse may inhibit scheduling.
2357 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2358 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2359 Node->getValueType(0), dl);
2360 Results.push_back(Tmp1);
2361 break;
2363 case ISD::SINT_TO_FP:
2364 case ISD::UINT_TO_FP:
2365 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2366 Node->getOperand(0), Node->getValueType(0), dl);
2367 Results.push_back(Tmp1);
2368 break;
2369 case ISD::FP_TO_UINT: {
2370 SDValue True, False;
2371 MVT VT = Node->getOperand(0).getValueType();
2372 MVT NVT = Node->getValueType(0);
2373 const uint64_t zero[] = {0, 0};
2374 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2375 APInt x = APInt::getSignBit(NVT.getSizeInBits());
2376 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2377 Tmp1 = DAG.getConstantFP(apf, VT);
2378 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2379 Node->getOperand(0),
2380 Tmp1, ISD::SETLT);
2381 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2382 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2383 DAG.getNode(ISD::FSUB, dl, VT,
2384 Node->getOperand(0), Tmp1));
2385 False = DAG.getNode(ISD::XOR, dl, NVT, False,
2386 DAG.getConstant(x, NVT));
2387 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2388 Results.push_back(Tmp1);
2389 break;
2391 case ISD::VAARG: {
2392 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2393 MVT VT = Node->getValueType(0);
2394 Tmp1 = Node->getOperand(0);
2395 Tmp2 = Node->getOperand(1);
2396 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2397 // Increment the pointer, VAList, to the next vaarg
2398 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2399 DAG.getConstant(TLI.getTargetData()->
2400 getTypeAllocSize(VT.getTypeForMVT(
2401 *DAG.getContext())),
2402 TLI.getPointerTy()));
2403 // Store the incremented VAList to the legalized pointer
2404 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2405 // Load the actual argument out of the pointer VAList
2406 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2407 Results.push_back(Results[0].getValue(1));
2408 break;
2410 case ISD::VACOPY: {
2411 // This defaults to loading a pointer from the input and storing it to the
2412 // output, returning the chain.
2413 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2414 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2415 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2416 Node->getOperand(2), VS, 0);
2417 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2418 Results.push_back(Tmp1);
2419 break;
2421 case ISD::EXTRACT_VECTOR_ELT:
2422 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2423 // This must be an access of the only element. Return it.
2424 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2425 Node->getOperand(0));
2426 else
2427 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2428 Results.push_back(Tmp1);
2429 break;
2430 case ISD::EXTRACT_SUBVECTOR:
2431 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2432 break;
2433 case ISD::CONCAT_VECTORS: {
2434 Results.push_back(ExpandVectorBuildThroughStack(Node));
2435 break;
2437 case ISD::SCALAR_TO_VECTOR:
2438 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2439 break;
2440 case ISD::INSERT_VECTOR_ELT:
2441 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2442 Node->getOperand(1),
2443 Node->getOperand(2), dl));
2444 break;
2445 case ISD::VECTOR_SHUFFLE: {
2446 SmallVector<int, 8> Mask;
2447 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2449 MVT VT = Node->getValueType(0);
2450 MVT EltVT = VT.getVectorElementType();
2451 unsigned NumElems = VT.getVectorNumElements();
2452 SmallVector<SDValue, 8> Ops;
2453 for (unsigned i = 0; i != NumElems; ++i) {
2454 if (Mask[i] < 0) {
2455 Ops.push_back(DAG.getUNDEF(EltVT));
2456 continue;
2458 unsigned Idx = Mask[i];
2459 if (Idx < NumElems)
2460 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2461 Node->getOperand(0),
2462 DAG.getIntPtrConstant(Idx)));
2463 else
2464 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2465 Node->getOperand(1),
2466 DAG.getIntPtrConstant(Idx - NumElems)));
2468 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2469 Results.push_back(Tmp1);
2470 break;
2472 case ISD::EXTRACT_ELEMENT: {
2473 MVT OpTy = Node->getOperand(0).getValueType();
2474 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2475 // 1 -> Hi
2476 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2477 DAG.getConstant(OpTy.getSizeInBits()/2,
2478 TLI.getShiftAmountTy()));
2479 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2480 } else {
2481 // 0 -> Lo
2482 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2483 Node->getOperand(0));
2485 Results.push_back(Tmp1);
2486 break;
2488 case ISD::STACKSAVE:
2489 // Expand to CopyFromReg if the target set
2490 // StackPointerRegisterToSaveRestore.
2491 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2492 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2493 Node->getValueType(0)));
2494 Results.push_back(Results[0].getValue(1));
2495 } else {
2496 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2497 Results.push_back(Node->getOperand(0));
2499 break;
2500 case ISD::STACKRESTORE:
2501 // Expand to CopyToReg if the target set
2502 // StackPointerRegisterToSaveRestore.
2503 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2504 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2505 Node->getOperand(1)));
2506 } else {
2507 Results.push_back(Node->getOperand(0));
2509 break;
2510 case ISD::FCOPYSIGN:
2511 Results.push_back(ExpandFCOPYSIGN(Node));
2512 break;
2513 case ISD::FNEG:
2514 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2515 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2516 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2517 Node->getOperand(0));
2518 Results.push_back(Tmp1);
2519 break;
2520 case ISD::FABS: {
2521 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2522 MVT VT = Node->getValueType(0);
2523 Tmp1 = Node->getOperand(0);
2524 Tmp2 = DAG.getConstantFP(0.0, VT);
2525 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2526 Tmp1, Tmp2, ISD::SETUGT);
2527 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2528 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2529 Results.push_back(Tmp1);
2530 break;
2532 case ISD::FSQRT:
2533 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2534 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2535 break;
2536 case ISD::FSIN:
2537 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2538 RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2539 break;
2540 case ISD::FCOS:
2541 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2542 RTLIB::COS_F80, RTLIB::COS_PPCF128));
2543 break;
2544 case ISD::FLOG:
2545 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2546 RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2547 break;
2548 case ISD::FLOG2:
2549 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2550 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2551 break;
2552 case ISD::FLOG10:
2553 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2554 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2555 break;
2556 case ISD::FEXP:
2557 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2558 RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2559 break;
2560 case ISD::FEXP2:
2561 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2562 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2563 break;
2564 case ISD::FTRUNC:
2565 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2566 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2567 break;
2568 case ISD::FFLOOR:
2569 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2570 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2571 break;
2572 case ISD::FCEIL:
2573 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2574 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2575 break;
2576 case ISD::FRINT:
2577 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2578 RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2579 break;
2580 case ISD::FNEARBYINT:
2581 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2582 RTLIB::NEARBYINT_F64,
2583 RTLIB::NEARBYINT_F80,
2584 RTLIB::NEARBYINT_PPCF128));
2585 break;
2586 case ISD::FPOWI:
2587 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2588 RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2589 break;
2590 case ISD::FPOW:
2591 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2592 RTLIB::POW_F80, RTLIB::POW_PPCF128));
2593 break;
2594 case ISD::FDIV:
2595 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2596 RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2597 break;
2598 case ISD::FREM:
2599 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2600 RTLIB::REM_F80, RTLIB::REM_PPCF128));
2601 break;
2602 case ISD::ConstantFP: {
2603 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2604 // Check to see if this FP immediate is already legal.
2605 bool isLegal = false;
2606 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2607 E = TLI.legal_fpimm_end(); I != E; ++I) {
2608 if (CFP->isExactlyValue(*I)) {
2609 isLegal = true;
2610 break;
2613 // If this is a legal constant, turn it into a TargetConstantFP node.
2614 if (isLegal)
2615 Results.push_back(SDValue(Node, 0));
2616 else
2617 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2618 break;
2620 case ISD::EHSELECTION: {
2621 unsigned Reg = TLI.getExceptionSelectorRegister();
2622 assert(Reg && "Can't expand to unknown register!");
2623 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2624 Node->getValueType(0)));
2625 Results.push_back(Results[0].getValue(1));
2626 break;
2628 case ISD::EXCEPTIONADDR: {
2629 unsigned Reg = TLI.getExceptionAddressRegister();
2630 assert(Reg && "Can't expand to unknown register!");
2631 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2632 Node->getValueType(0)));
2633 Results.push_back(Results[0].getValue(1));
2634 break;
2636 case ISD::SUB: {
2637 MVT VT = Node->getValueType(0);
2638 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2639 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2640 "Don't know how to expand this subtraction!");
2641 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2642 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2643 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2644 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2645 break;
2647 case ISD::UREM:
2648 case ISD::SREM: {
2649 MVT VT = Node->getValueType(0);
2650 SDVTList VTs = DAG.getVTList(VT, VT);
2651 bool isSigned = Node->getOpcode() == ISD::SREM;
2652 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2653 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2654 Tmp2 = Node->getOperand(0);
2655 Tmp3 = Node->getOperand(1);
2656 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2657 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2658 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2659 // X % Y -> X-X/Y*Y
2660 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2661 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2662 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2663 } else if (isSigned) {
2664 Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2665 RTLIB::SREM_I64, RTLIB::SREM_I128);
2666 } else {
2667 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2668 RTLIB::UREM_I64, RTLIB::UREM_I128);
2670 Results.push_back(Tmp1);
2671 break;
2673 case ISD::UDIV:
2674 case ISD::SDIV: {
2675 bool isSigned = Node->getOpcode() == ISD::SDIV;
2676 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2677 MVT VT = Node->getValueType(0);
2678 SDVTList VTs = DAG.getVTList(VT, VT);
2679 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2680 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2681 Node->getOperand(1));
2682 else if (isSigned)
2683 Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2684 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2685 else
2686 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2687 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2688 Results.push_back(Tmp1);
2689 break;
2691 case ISD::MULHU:
2692 case ISD::MULHS: {
2693 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2694 ISD::SMUL_LOHI;
2695 MVT VT = Node->getValueType(0);
2696 SDVTList VTs = DAG.getVTList(VT, VT);
2697 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2698 "If this wasn't legal, it shouldn't have been created!");
2699 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2700 Node->getOperand(1));
2701 Results.push_back(Tmp1.getValue(1));
2702 break;
2704 case ISD::MUL: {
2705 MVT VT = Node->getValueType(0);
2706 SDVTList VTs = DAG.getVTList(VT, VT);
2707 // See if multiply or divide can be lowered using two-result operations.
2708 // We just need the low half of the multiply; try both the signed
2709 // and unsigned forms. If the target supports both SMUL_LOHI and
2710 // UMUL_LOHI, form a preference by checking which forms of plain
2711 // MULH it supports.
2712 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2713 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2714 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2715 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2716 unsigned OpToUse = 0;
2717 if (HasSMUL_LOHI && !HasMULHS) {
2718 OpToUse = ISD::SMUL_LOHI;
2719 } else if (HasUMUL_LOHI && !HasMULHU) {
2720 OpToUse = ISD::UMUL_LOHI;
2721 } else if (HasSMUL_LOHI) {
2722 OpToUse = ISD::SMUL_LOHI;
2723 } else if (HasUMUL_LOHI) {
2724 OpToUse = ISD::UMUL_LOHI;
2726 if (OpToUse) {
2727 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2728 Node->getOperand(1)));
2729 break;
2731 Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2732 RTLIB::MUL_I64, RTLIB::MUL_I128);
2733 Results.push_back(Tmp1);
2734 break;
2736 case ISD::SADDO:
2737 case ISD::SSUBO: {
2738 SDValue LHS = Node->getOperand(0);
2739 SDValue RHS = Node->getOperand(1);
2740 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2741 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2742 LHS, RHS);
2743 Results.push_back(Sum);
2744 MVT OType = Node->getValueType(1);
2746 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2748 // LHSSign -> LHS >= 0
2749 // RHSSign -> RHS >= 0
2750 // SumSign -> Sum >= 0
2752 // Add:
2753 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2754 // Sub:
2755 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2757 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2758 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2759 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2760 Node->getOpcode() == ISD::SADDO ?
2761 ISD::SETEQ : ISD::SETNE);
2763 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2764 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2766 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2767 Results.push_back(Cmp);
2768 break;
2770 case ISD::UADDO:
2771 case ISD::USUBO: {
2772 SDValue LHS = Node->getOperand(0);
2773 SDValue RHS = Node->getOperand(1);
2774 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2775 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2776 LHS, RHS);
2777 Results.push_back(Sum);
2778 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2779 Node->getOpcode () == ISD::UADDO ?
2780 ISD::SETULT : ISD::SETUGT));
2781 break;
2783 case ISD::UMULO:
2784 case ISD::SMULO: {
2785 MVT VT = Node->getValueType(0);
2786 SDValue LHS = Node->getOperand(0);
2787 SDValue RHS = Node->getOperand(1);
2788 SDValue BottomHalf;
2789 SDValue TopHalf;
2790 static unsigned Ops[2][3] =
2791 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2792 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2793 bool isSigned = Node->getOpcode() == ISD::SMULO;
2794 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2795 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2796 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2797 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2798 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2799 RHS);
2800 TopHalf = BottomHalf.getValue(1);
2801 } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
2802 MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
2803 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2804 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2805 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2806 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2807 DAG.getIntPtrConstant(0));
2808 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2809 DAG.getIntPtrConstant(1));
2810 } else {
2811 // FIXME: We should be able to fall back to a libcall with an illegal
2812 // type in some cases cases.
2813 // Also, we can fall back to a division in some cases, but that's a big
2814 // performance hit in the general case.
2815 llvm_unreachable("Don't know how to expand this operation yet!");
2817 if (isSigned) {
2818 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2819 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2820 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2821 ISD::SETNE);
2822 } else {
2823 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2824 DAG.getConstant(0, VT), ISD::SETNE);
2826 Results.push_back(BottomHalf);
2827 Results.push_back(TopHalf);
2828 break;
2830 case ISD::BUILD_PAIR: {
2831 MVT PairTy = Node->getValueType(0);
2832 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2833 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2834 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2835 DAG.getConstant(PairTy.getSizeInBits()/2,
2836 TLI.getShiftAmountTy()));
2837 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2838 break;
2840 case ISD::SELECT:
2841 Tmp1 = Node->getOperand(0);
2842 Tmp2 = Node->getOperand(1);
2843 Tmp3 = Node->getOperand(2);
2844 if (Tmp1.getOpcode() == ISD::SETCC) {
2845 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2846 Tmp2, Tmp3,
2847 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2848 } else {
2849 Tmp1 = DAG.getSelectCC(dl, Tmp1,
2850 DAG.getConstant(0, Tmp1.getValueType()),
2851 Tmp2, Tmp3, ISD::SETNE);
2853 Results.push_back(Tmp1);
2854 break;
2855 case ISD::BR_JT: {
2856 SDValue Chain = Node->getOperand(0);
2857 SDValue Table = Node->getOperand(1);
2858 SDValue Index = Node->getOperand(2);
2860 MVT PTy = TLI.getPointerTy();
2861 MachineFunction &MF = DAG.getMachineFunction();
2862 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2863 Index= DAG.getNode(ISD::MUL, dl, PTy,
2864 Index, DAG.getConstant(EntrySize, PTy));
2865 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2867 MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2868 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2869 PseudoSourceValue::getJumpTable(), 0, MemVT);
2870 Addr = LD;
2871 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2872 // For PIC, the sequence is:
2873 // BRIND(load(Jumptable + index) + RelocBase)
2874 // RelocBase can be JumpTable, GOT or some sort of global base.
2875 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2876 TLI.getPICJumpTableRelocBase(Table, DAG));
2878 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2879 Results.push_back(Tmp1);
2880 break;
2882 case ISD::BRCOND:
2883 // Expand brcond's setcc into its constituent parts and create a BR_CC
2884 // Node.
2885 Tmp1 = Node->getOperand(0);
2886 Tmp2 = Node->getOperand(1);
2887 if (Tmp2.getOpcode() == ISD::SETCC) {
2888 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2889 Tmp1, Tmp2.getOperand(2),
2890 Tmp2.getOperand(0), Tmp2.getOperand(1),
2891 Node->getOperand(2));
2892 } else {
2893 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2894 DAG.getCondCode(ISD::SETNE), Tmp2,
2895 DAG.getConstant(0, Tmp2.getValueType()),
2896 Node->getOperand(2));
2898 Results.push_back(Tmp1);
2899 break;
2900 case ISD::SETCC: {
2901 Tmp1 = Node->getOperand(0);
2902 Tmp2 = Node->getOperand(1);
2903 Tmp3 = Node->getOperand(2);
2904 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2906 // If we expanded the SETCC into an AND/OR, return the new node
2907 if (Tmp2.getNode() == 0) {
2908 Results.push_back(Tmp1);
2909 break;
2912 // Otherwise, SETCC for the given comparison type must be completely
2913 // illegal; expand it into a SELECT_CC.
2914 MVT VT = Node->getValueType(0);
2915 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2916 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2917 Results.push_back(Tmp1);
2918 break;
2920 case ISD::SELECT_CC: {
2921 Tmp1 = Node->getOperand(0); // LHS
2922 Tmp2 = Node->getOperand(1); // RHS
2923 Tmp3 = Node->getOperand(2); // True
2924 Tmp4 = Node->getOperand(3); // False
2925 SDValue CC = Node->getOperand(4);
2927 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2928 Tmp1, Tmp2, CC, dl);
2930 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2931 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2932 CC = DAG.getCondCode(ISD::SETNE);
2933 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2934 Tmp3, Tmp4, CC);
2935 Results.push_back(Tmp1);
2936 break;
2938 case ISD::BR_CC: {
2939 Tmp1 = Node->getOperand(0); // Chain
2940 Tmp2 = Node->getOperand(2); // LHS
2941 Tmp3 = Node->getOperand(3); // RHS
2942 Tmp4 = Node->getOperand(1); // CC
2944 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2945 Tmp2, Tmp3, Tmp4, dl);
2946 LastCALLSEQ_END = DAG.getEntryNode();
2948 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2949 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2950 Tmp4 = DAG.getCondCode(ISD::SETNE);
2951 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2952 Tmp3, Node->getOperand(4));
2953 Results.push_back(Tmp1);
2954 break;
2956 case ISD::GLOBAL_OFFSET_TABLE:
2957 case ISD::GlobalAddress:
2958 case ISD::GlobalTLSAddress:
2959 case ISD::ExternalSymbol:
2960 case ISD::ConstantPool:
2961 case ISD::JumpTable:
2962 case ISD::INTRINSIC_W_CHAIN:
2963 case ISD::INTRINSIC_WO_CHAIN:
2964 case ISD::INTRINSIC_VOID:
2965 // FIXME: Custom lowering for these operations shouldn't return null!
2966 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2967 Results.push_back(SDValue(Node, i));
2968 break;
2971 void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2972 SmallVectorImpl<SDValue> &Results) {
2973 MVT OVT = Node->getValueType(0);
2974 if (Node->getOpcode() == ISD::UINT_TO_FP ||
2975 Node->getOpcode() == ISD::SINT_TO_FP ||
2976 Node->getOpcode() == ISD::SETCC) {
2977 OVT = Node->getOperand(0).getValueType();
2979 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2980 DebugLoc dl = Node->getDebugLoc();
2981 SDValue Tmp1, Tmp2, Tmp3;
2982 switch (Node->getOpcode()) {
2983 case ISD::CTTZ:
2984 case ISD::CTLZ:
2985 case ISD::CTPOP:
2986 // Zero extend the argument.
2987 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2988 // Perform the larger operation.
2989 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2990 if (Node->getOpcode() == ISD::CTTZ) {
2991 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2992 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2993 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2994 ISD::SETEQ);
2995 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2996 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2997 } else if (Node->getOpcode() == ISD::CTLZ) {
2998 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2999 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3000 DAG.getConstant(NVT.getSizeInBits() -
3001 OVT.getSizeInBits(), NVT));
3003 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3004 break;
3005 case ISD::BSWAP: {
3006 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3007 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3008 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3009 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3010 DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3011 Results.push_back(Tmp1);
3012 break;
3014 case ISD::FP_TO_UINT:
3015 case ISD::FP_TO_SINT:
3016 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3017 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3018 Results.push_back(Tmp1);
3019 break;
3020 case ISD::UINT_TO_FP:
3021 case ISD::SINT_TO_FP:
3022 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3023 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3024 Results.push_back(Tmp1);
3025 break;
3026 case ISD::AND:
3027 case ISD::OR:
3028 case ISD::XOR: {
3029 unsigned ExtOp, TruncOp;
3030 if (OVT.isVector()) {
3031 ExtOp = ISD::BIT_CONVERT;
3032 TruncOp = ISD::BIT_CONVERT;
3033 } else if (OVT.isInteger()) {
3034 ExtOp = ISD::ANY_EXTEND;
3035 TruncOp = ISD::TRUNCATE;
3036 } else {
3037 llvm_report_error("Cannot promote logic operation");
3039 // Promote each of the values to the new type.
3040 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3041 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3042 // Perform the larger operation, then convert back
3043 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3044 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3045 break;
3047 case ISD::SELECT: {
3048 unsigned ExtOp, TruncOp;
3049 if (Node->getValueType(0).isVector()) {
3050 ExtOp = ISD::BIT_CONVERT;
3051 TruncOp = ISD::BIT_CONVERT;
3052 } else if (Node->getValueType(0).isInteger()) {
3053 ExtOp = ISD::ANY_EXTEND;
3054 TruncOp = ISD::TRUNCATE;
3055 } else {
3056 ExtOp = ISD::FP_EXTEND;
3057 TruncOp = ISD::FP_ROUND;
3059 Tmp1 = Node->getOperand(0);
3060 // Promote each of the values to the new type.
3061 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3062 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3063 // Perform the larger operation, then round down.
3064 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3065 if (TruncOp != ISD::FP_ROUND)
3066 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3067 else
3068 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3069 DAG.getIntPtrConstant(0));
3070 Results.push_back(Tmp1);
3071 break;
3073 case ISD::VECTOR_SHUFFLE: {
3074 SmallVector<int, 8> Mask;
3075 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3077 // Cast the two input vectors.
3078 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3079 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3081 // Convert the shuffle mask to the right # elements.
3082 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3083 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3084 Results.push_back(Tmp1);
3085 break;
3087 case ISD::SETCC: {
3088 unsigned ExtOp = ISD::FP_EXTEND;
3089 if (NVT.isInteger()) {
3090 ISD::CondCode CCCode =
3091 cast<CondCodeSDNode>(Node->getOperand(2))->get();
3092 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3094 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3095 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3096 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3097 Tmp1, Tmp2, Node->getOperand(2)));
3098 break;
3103 // SelectionDAG::Legalize - This is the entry point for the file.
3105 void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3106 CodeGenOpt::Level OptLevel) {
3107 /// run - This is the main entry point to this class.
3109 SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();