MemoryObject - Abstract base class for contiguous addressable memory.
[llvm/avr.git] / lib / Target / X86 / X86InstrInfo.h
blob0fb2052202751a9cd0cc9df8913e51b090d93474
1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
23 namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
27 namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
44 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
56 COND_INVALID
59 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
68 /// X86II - This namespace holds all of the target specific flags that
69 /// instruction info tracks.
70 ///
71 namespace X86II {
72 /// Target Operand Flag enum.
73 enum TOF {
74 //===------------------------------------------------------------------===//
75 // X86 Specific MachineOperand flags.
77 MO_NO_FLAG = 0,
79 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80 /// relocation of:
81 /// SYMBOL_LABEL + [. - PICBASELABEL]
82 MO_GOT_ABSOLUTE_ADDRESS = 1,
84 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85 /// immediate should get the value of the symbol minus the PIC base label:
86 /// SYMBOL_LABEL - PICBASELABEL
87 MO_PIC_BASE_OFFSET = 2,
89 /// MO_GOT - On a symbol operand this indicates that the immediate is the
90 /// offset to the GOT entry for the symbol name from the base of the GOT.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @GOT
94 MO_GOT = 3,
96 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97 /// the offset to the location of the symbol name from the base of the GOT.
98 ///
99 /// See the X86-64 ELF ABI supplement for more details.
100 /// SYMBOL_LABEL @GOTOFF
101 MO_GOTOFF = 4,
103 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104 /// offset to the GOT entry for the symbol name from the current code
105 /// location.
107 /// See the X86-64 ELF ABI supplement for more details.
108 /// SYMBOL_LABEL @GOTPCREL
109 MO_GOTPCREL = 5,
111 /// MO_PLT - On a symbol operand this indicates that the immediate is
112 /// offset to the PLT entry of symbol name from the current code location.
114 /// See the X86-64 ELF ABI supplement for more details.
115 /// SYMBOL_LABEL @PLT
116 MO_PLT = 6,
118 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119 /// some TLS offset.
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD = 7,
125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126 /// some TLS offset.
128 /// See 'ELF Handling for Thread-Local Storage' for more details.
129 /// SYMBOL_LABEL @GOTTPOFF
130 MO_GOTTPOFF = 8,
132 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133 /// some TLS offset.
135 /// See 'ELF Handling for Thread-Local Storage' for more details.
136 /// SYMBOL_LABEL @INDNTPOFF
137 MO_INDNTPOFF = 9,
139 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140 /// some TLS offset.
142 /// See 'ELF Handling for Thread-Local Storage' for more details.
143 /// SYMBOL_LABEL @TPOFF
144 MO_TPOFF = 10,
146 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147 /// some TLS offset.
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @NTPOFF
151 MO_NTPOFF = 11,
153 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154 /// reference is actually to the "__imp_FOO" symbol. This is used for
155 /// dllimport linkage on windows.
156 MO_DLLIMPORT = 12,
158 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159 /// reference is actually to the "FOO$stub" symbol. This is used for calls
160 /// and jumps to external functions on Tiger and before.
161 MO_DARWIN_STUB = 13,
163 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166 MO_DARWIN_NONLAZY = 14,
168 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171 MO_DARWIN_NONLAZY_PIC_BASE = 15,
173 /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
174 /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
175 /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
176 MO_DARWIN_HIDDEN_NONLAZY = 16,
178 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
179 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
180 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
181 /// stub.
182 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17
186 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
187 /// a reference to a stub for a global, not the global itself.
188 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
189 switch (TargetFlag) {
190 case X86II::MO_DLLIMPORT: // dllimport stub.
191 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
192 case X86II::MO_GOT: // normal GOT reference.
193 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
194 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
195 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
196 case X86II::MO_DARWIN_HIDDEN_NONLAZY: // Hidden $non_lazy_ptr ref.
197 return true;
198 default:
199 return false;
203 /// isGlobalRelativeToPICBase - Return true if the specified global value
204 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
205 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
206 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
207 switch (TargetFlag) {
208 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
209 case X86II::MO_GOT: // isPICStyleGOT: other global.
210 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
211 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
212 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
213 return true;
214 default:
215 return false;
219 /// X86II - This namespace holds all of the target specific flags that
220 /// instruction info tracks.
222 namespace X86II {
223 enum {
224 //===------------------------------------------------------------------===//
225 // Instruction encodings. These are the standard/most common forms for X86
226 // instructions.
229 // PseudoFrm - This represents an instruction that is a pseudo instruction
230 // or one that has not been implemented yet. It is illegal to code generate
231 // it, but tolerated for intermediate implementation stages.
232 Pseudo = 0,
234 /// Raw - This form is for instructions that don't have any operands, so
235 /// they are just a fixed opcode value, like 'leave'.
236 RawFrm = 1,
238 /// AddRegFrm - This form is used for instructions like 'push r32' that have
239 /// their one register operand added to their opcode.
240 AddRegFrm = 2,
242 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
243 /// to specify a destination, which in this case is a register.
245 MRMDestReg = 3,
247 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
248 /// to specify a destination, which in this case is memory.
250 MRMDestMem = 4,
252 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
253 /// to specify a source, which in this case is a register.
255 MRMSrcReg = 5,
257 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
258 /// to specify a source, which in this case is memory.
260 MRMSrcMem = 6,
262 /// MRM[0-7][rm] - These forms are used to represent instructions that use
263 /// a Mod/RM byte, and use the middle field to hold extended opcode
264 /// information. In the intel manual these are represented as /0, /1, ...
267 // First, instructions that operate on a register r/m operand...
268 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
269 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
271 // Next, instructions that operate on a memory r/m operand...
272 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
273 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
275 // MRMInitReg - This form is used for instructions whose source and
276 // destinations are the same register.
277 MRMInitReg = 32,
279 FormMask = 63,
281 //===------------------------------------------------------------------===//
282 // Actual flags...
284 // OpSize - Set if this instruction requires an operand size prefix (0x66),
285 // which most often indicates that the instruction operates on 16 bit data
286 // instead of 32 bit data.
287 OpSize = 1 << 6,
289 // AsSize - Set if this instruction requires an operand size prefix (0x67),
290 // which most often indicates that the instruction address 16 bit address
291 // instead of 32 bit address (or 32 bit address in 64 bit mode).
292 AdSize = 1 << 7,
294 //===------------------------------------------------------------------===//
295 // Op0Mask - There are several prefix bytes that are used to form two byte
296 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
297 // used to obtain the setting of this field. If no bits in this field is
298 // set, there is no prefix byte for obtaining a multibyte opcode.
300 Op0Shift = 8,
301 Op0Mask = 0xF << Op0Shift,
303 // TB - TwoByte - Set if this instruction has a two byte opcode, which
304 // starts with a 0x0F byte before the real opcode.
305 TB = 1 << Op0Shift,
307 // REP - The 0xF3 prefix byte indicating repetition of the following
308 // instruction.
309 REP = 2 << Op0Shift,
311 // D8-DF - These escape opcodes are used by the floating point unit. These
312 // values must remain sequential.
313 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
314 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
315 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
316 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
318 // XS, XD - These prefix codes are for single and double precision scalar
319 // floating point operations performed in the SSE registers.
320 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
322 // T8, TA - Prefix after the 0x0F prefix.
323 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
325 //===------------------------------------------------------------------===//
326 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
327 // They are used to specify GPRs and SSE registers, 64-bit operand size,
328 // etc. We only cares about REX.W and REX.R bits and only the former is
329 // statically determined.
331 REXShift = 12,
332 REX_W = 1 << REXShift,
334 //===------------------------------------------------------------------===//
335 // This three-bit field describes the size of an immediate operand. Zero is
336 // unused so that we can tell if we forgot to set a value.
337 ImmShift = 13,
338 ImmMask = 7 << ImmShift,
339 Imm8 = 1 << ImmShift,
340 Imm16 = 2 << ImmShift,
341 Imm32 = 3 << ImmShift,
342 Imm64 = 4 << ImmShift,
344 //===------------------------------------------------------------------===//
345 // FP Instruction Classification... Zero is non-fp instruction.
347 // FPTypeMask - Mask for all of the FP types...
348 FPTypeShift = 16,
349 FPTypeMask = 7 << FPTypeShift,
351 // NotFP - The default, set for instructions that do not use FP registers.
352 NotFP = 0 << FPTypeShift,
354 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
355 ZeroArgFP = 1 << FPTypeShift,
357 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
358 OneArgFP = 2 << FPTypeShift,
360 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
361 // result back to ST(0). For example, fcos, fsqrt, etc.
363 OneArgFPRW = 3 << FPTypeShift,
365 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
366 // explicit argument, storing the result to either ST(0) or the implicit
367 // argument. For example: fadd, fsub, fmul, etc...
368 TwoArgFP = 4 << FPTypeShift,
370 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
371 // explicit argument, but have no destination. Example: fucom, fucomi, ...
372 CompareFP = 5 << FPTypeShift,
374 // CondMovFP - "2 operand" floating point conditional move instructions.
375 CondMovFP = 6 << FPTypeShift,
377 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
378 SpecialFP = 7 << FPTypeShift,
380 // Lock prefix
381 LOCKShift = 19,
382 LOCK = 1 << LOCKShift,
384 // Segment override prefixes. Currently we just need ability to address
385 // stuff in gs and fs segments.
386 SegOvrShift = 20,
387 SegOvrMask = 3 << SegOvrShift,
388 FS = 1 << SegOvrShift,
389 GS = 2 << SegOvrShift,
391 // Bits 22 -> 23 are unused
392 OpcodeShift = 24,
393 OpcodeMask = 0xFF << OpcodeShift
397 const int X86AddrNumOperands = 5;
399 inline static bool isScale(const MachineOperand &MO) {
400 return MO.isImm() &&
401 (MO.getImm() == 1 || MO.getImm() == 2 ||
402 MO.getImm() == 4 || MO.getImm() == 8);
405 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
406 if (MI->getOperand(Op).isFI()) return true;
407 return Op+4 <= MI->getNumOperands() &&
408 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
409 MI->getOperand(Op+2).isReg() &&
410 (MI->getOperand(Op+3).isImm() ||
411 MI->getOperand(Op+3).isGlobal() ||
412 MI->getOperand(Op+3).isCPI() ||
413 MI->getOperand(Op+3).isJTI());
416 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
417 if (MI->getOperand(Op).isFI()) return true;
418 return Op+5 <= MI->getNumOperands() &&
419 MI->getOperand(Op+4).isReg() &&
420 isLeaMem(MI, Op);
423 class X86InstrInfo : public TargetInstrInfoImpl {
424 X86TargetMachine &TM;
425 const X86RegisterInfo RI;
427 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
428 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
430 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
431 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
432 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
433 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
435 /// MemOp2RegOpTable - Load / store unfolding opcode map.
437 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
439 public:
440 explicit X86InstrInfo(X86TargetMachine &tm);
442 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
443 /// such, whenever a client has an instance of instruction info, it should
444 /// always be able to get register info as well (through this method).
446 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
448 /// Return true if the instruction is a register to register move and return
449 /// the source and dest operands and their sub-register indices by reference.
450 virtual bool isMoveInstr(const MachineInstr &MI,
451 unsigned &SrcReg, unsigned &DstReg,
452 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
454 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
455 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
457 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
458 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
459 unsigned DestReg, unsigned SubIdx,
460 const MachineInstr *Orig) const;
462 bool isInvariantLoad(const MachineInstr *MI) const;
464 /// convertToThreeAddress - This method must be implemented by targets that
465 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
466 /// may be able to convert a two-address instruction into a true
467 /// three-address instruction on demand. This allows the X86 target (for
468 /// example) to convert ADD and SHL instructions into LEA instructions if they
469 /// would require register copies due to two-addressness.
471 /// This method returns a null pointer if the transformation cannot be
472 /// performed, otherwise it returns the new instruction.
474 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
475 MachineBasicBlock::iterator &MBBI,
476 LiveVariables *LV) const;
478 /// commuteInstruction - We have a few instructions that must be hacked on to
479 /// commute them.
481 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
483 // Branch analysis.
484 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
485 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
486 MachineBasicBlock *&FBB,
487 SmallVectorImpl<MachineOperand> &Cond,
488 bool AllowModify) const;
489 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
490 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
491 MachineBasicBlock *FBB,
492 const SmallVectorImpl<MachineOperand> &Cond) const;
493 virtual bool copyRegToReg(MachineBasicBlock &MBB,
494 MachineBasicBlock::iterator MI,
495 unsigned DestReg, unsigned SrcReg,
496 const TargetRegisterClass *DestRC,
497 const TargetRegisterClass *SrcRC) const;
498 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
499 MachineBasicBlock::iterator MI,
500 unsigned SrcReg, bool isKill, int FrameIndex,
501 const TargetRegisterClass *RC) const;
503 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
504 SmallVectorImpl<MachineOperand> &Addr,
505 const TargetRegisterClass *RC,
506 SmallVectorImpl<MachineInstr*> &NewMIs) const;
508 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
509 MachineBasicBlock::iterator MI,
510 unsigned DestReg, int FrameIndex,
511 const TargetRegisterClass *RC) const;
513 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
514 SmallVectorImpl<MachineOperand> &Addr,
515 const TargetRegisterClass *RC,
516 SmallVectorImpl<MachineInstr*> &NewMIs) const;
518 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
519 MachineBasicBlock::iterator MI,
520 const std::vector<CalleeSavedInfo> &CSI) const;
522 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
523 MachineBasicBlock::iterator MI,
524 const std::vector<CalleeSavedInfo> &CSI) const;
526 /// foldMemoryOperand - If this target supports it, fold a load or store of
527 /// the specified stack slot into the specified machine instruction for the
528 /// specified operand(s). If this is possible, the target should perform the
529 /// folding and return true, otherwise it should return false. If it folds
530 /// the instruction, it is likely that the MachineInstruction the iterator
531 /// references has been changed.
532 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
533 MachineInstr* MI,
534 const SmallVectorImpl<unsigned> &Ops,
535 int FrameIndex) const;
537 /// foldMemoryOperand - Same as the previous version except it allows folding
538 /// of any load and store from / to any address, not just from a specific
539 /// stack slot.
540 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
541 MachineInstr* MI,
542 const SmallVectorImpl<unsigned> &Ops,
543 MachineInstr* LoadMI) const;
545 /// canFoldMemoryOperand - Returns true if the specified load / store is
546 /// folding is possible.
547 virtual bool canFoldMemoryOperand(const MachineInstr*,
548 const SmallVectorImpl<unsigned> &) const;
550 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
551 /// a store or a load and a store into two or more instruction. If this is
552 /// possible, returns true as well as the new instructions by reference.
553 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
554 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
555 SmallVectorImpl<MachineInstr*> &NewMIs) const;
557 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
558 SmallVectorImpl<SDNode*> &NewNodes) const;
560 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
561 /// instruction after load / store are unfolded from an instruction of the
562 /// specified opcode. It returns zero if the specified unfolding is not
563 /// possible.
564 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
565 bool UnfoldLoad, bool UnfoldStore) const;
567 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
568 virtual
569 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
571 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
572 /// instruction that defines the specified register class.
573 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
575 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
576 // specified machine instruction.
578 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
579 return TID->TSFlags >> X86II::OpcodeShift;
581 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
582 return getBaseOpcodeFor(&get(Opcode));
585 static bool isX86_64NonExtLowByteReg(unsigned reg) {
586 return (reg == X86::SPL || reg == X86::BPL ||
587 reg == X86::SIL || reg == X86::DIL);
590 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
591 static bool isX86_64ExtendedReg(const MachineOperand &MO);
592 static unsigned determineREX(const MachineInstr &MI);
594 /// GetInstSize - Returns the size of the specified MachineInstr.
596 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
598 /// getGlobalBaseReg - Return a virtual register initialized with the
599 /// the global base register value. Output instructions required to
600 /// initialize the register in the function entry block, if necessary.
602 unsigned getGlobalBaseReg(MachineFunction *MF) const;
604 private:
605 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
606 MachineInstr* MI,
607 unsigned OpNum,
608 const SmallVectorImpl<MachineOperand> &MOs,
609 unsigned Alignment) const;
612 } // End llvm namespace
614 #endif