1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
12 // This test program creates two LLVM functions then calls them from three
13 // separate threads. It requires the pthreads library.
14 // The three threads are created and then block waiting on a condition variable.
15 // Once all threads are blocked on the conditional variable, the main thread
16 // wakes them up. This complicated work is performed so that all three threads
17 // call into the JIT at the same time (or the best possible approximation of the
18 // same time). This test had assertion errors until I got the locking right.
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/ModuleProvider.h"
27 #include "llvm/ExecutionEngine/JIT.h"
28 #include "llvm/ExecutionEngine/Interpreter.h"
29 #include "llvm/ExecutionEngine/GenericValue.h"
30 #include "llvm/Target/TargetSelect.h"
34 static Function
* createAdd1(Module
*M
) {
35 // Create the add1 function entry and insert this entry into module M. The
36 // function will have a return type of "int" and take an argument of "int".
37 // The '0' terminates the list of argument types.
39 cast
<Function
>(M
->getOrInsertFunction("add1",
40 Type::getInt32Ty(M
->getContext()),
41 Type::getInt32Ty(M
->getContext()),
44 // Add a basic block to the function. As before, it automatically inserts
45 // because of the last argument.
46 BasicBlock
*BB
= BasicBlock::Create(M
->getContext(), "EntryBlock", Add1F
);
48 // Get pointers to the constant `1'.
49 Value
*One
= ConstantInt::get(Type::getInt32Ty(M
->getContext()), 1);
51 // Get pointers to the integer argument of the add1 function...
52 assert(Add1F
->arg_begin() != Add1F
->arg_end()); // Make sure there's an arg
53 Argument
*ArgX
= Add1F
->arg_begin(); // Get the arg
54 ArgX
->setName("AnArg"); // Give it a nice symbolic name for fun.
56 // Create the add instruction, inserting it into the end of BB.
57 Instruction
*Add
= BinaryOperator::CreateAdd(One
, ArgX
, "addresult", BB
);
59 // Create the return instruction and add it to the basic block
60 ReturnInst::Create(M
->getContext(), Add
, BB
);
62 // Now, function add1 is ready.
66 static Function
*CreateFibFunction(Module
*M
) {
67 // Create the fib function and insert it into module M. This function is said
68 // to return an int and take an int parameter.
70 cast
<Function
>(M
->getOrInsertFunction("fib",
71 Type::getInt32Ty(M
->getContext()),
72 Type::getInt32Ty(M
->getContext()),
75 // Add a basic block to the function.
76 BasicBlock
*BB
= BasicBlock::Create(M
->getContext(), "EntryBlock", FibF
);
78 // Get pointers to the constants.
79 Value
*One
= ConstantInt::get(Type::getInt32Ty(M
->getContext()), 1);
80 Value
*Two
= ConstantInt::get(Type::getInt32Ty(M
->getContext()), 2);
82 // Get pointer to the integer argument of the add1 function...
83 Argument
*ArgX
= FibF
->arg_begin(); // Get the arg.
84 ArgX
->setName("AnArg"); // Give it a nice symbolic name for fun.
86 // Create the true_block.
87 BasicBlock
*RetBB
= BasicBlock::Create(M
->getContext(), "return", FibF
);
88 // Create an exit block.
89 BasicBlock
* RecurseBB
= BasicBlock::Create(M
->getContext(), "recurse", FibF
);
91 // Create the "if (arg < 2) goto exitbb"
92 Value
*CondInst
= new ICmpInst(*BB
, ICmpInst::ICMP_SLE
, ArgX
, Two
, "cond");
93 BranchInst::Create(RetBB
, RecurseBB
, CondInst
, BB
);
96 ReturnInst::Create(M
->getContext(), One
, RetBB
);
99 Value
*Sub
= BinaryOperator::CreateSub(ArgX
, One
, "arg", RecurseBB
);
100 Value
*CallFibX1
= CallInst::Create(FibF
, Sub
, "fibx1", RecurseBB
);
103 Sub
= BinaryOperator::CreateSub(ArgX
, Two
, "arg", RecurseBB
);
104 Value
*CallFibX2
= CallInst::Create(FibF
, Sub
, "fibx2", RecurseBB
);
108 BinaryOperator::CreateAdd(CallFibX1
, CallFibX2
, "addresult", RecurseBB
);
110 // Create the return instruction and add it to the basic block
111 ReturnInst::Create(M
->getContext(), Sum
, RecurseBB
);
116 struct threadParams
{
122 // We block the subthreads just before they begin to execute:
123 // we want all of them to call into the JIT at the same time,
124 // to verify that the locking is working correctly.
133 int result
= pthread_cond_init( &condition
, NULL
);
134 assert( result
== 0 );
136 result
= pthread_mutex_init( &mutex
, NULL
);
137 assert( result
== 0 );
142 int result
= pthread_cond_destroy( &condition
);
143 assert( result
== 0 );
145 result
= pthread_mutex_destroy( &mutex
);
146 assert( result
== 0 );
149 // All threads will stop here until another thread calls releaseThreads
152 int result
= pthread_mutex_lock( &mutex
);
153 assert( result
== 0 );
155 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
157 assert( waitFor
== 0 || n
<= waitFor
);
158 if ( waitFor
> 0 && n
== waitFor
)
160 // There are enough threads blocked that we can release all of them
161 std::cout
<< "Unblocking threads from block()" << std::endl
;
166 // We just need to wait until someone unblocks us
167 result
= pthread_cond_wait( &condition
, &mutex
);
168 assert( result
== 0 );
171 // unlock the mutex before returning
172 result
= pthread_mutex_unlock( &mutex
);
173 assert( result
== 0 );
176 // If there are num or more threads blocked, it will signal them all
177 // Otherwise, this thread blocks until there are enough OTHER threads
179 void releaseThreads( size_t num
)
181 int result
= pthread_mutex_lock( &mutex
);
182 assert( result
== 0 );
185 std::cout
<< "Unblocking threads from releaseThreads()" << std::endl
;
191 pthread_cond_wait( &condition
, &mutex
);
194 // unlock the mutex before returning
195 result
= pthread_mutex_unlock( &mutex
);
196 assert( result
== 0 );
200 void unblockThreads()
202 // Reset the counters to zero: this way, if any new threads
203 // enter while threads are exiting, they will block instead
204 // of triggering a new release of threads
207 // Reset waitFor to zero: this way, if waitFor threads enter
208 // while threads are exiting, they will block instead of
209 // triggering a new release of threads
212 int result
= pthread_cond_broadcast( &condition
);
213 assert(result
== 0); result
=result
;
218 pthread_cond_t condition
;
219 pthread_mutex_t mutex
;
222 static WaitForThreads synchronize
;
224 void* callFunc( void* param
)
226 struct threadParams
* p
= (struct threadParams
*) param
;
228 // Call the `foo' function with no arguments:
229 std::vector
<GenericValue
> Args(1);
230 Args
[0].IntVal
= APInt(32, p
->value
);
232 synchronize
.block(); // wait until other threads are at this point
233 GenericValue gv
= p
->EE
->runFunction(p
->F
, Args
);
235 return (void*)(intptr_t)gv
.IntVal
.getZExtValue();
239 InitializeNativeTarget();
242 // Create some module to put our function into it.
243 Module
*M
= new Module("test", Context
);
245 Function
* add1F
= createAdd1( M
);
246 Function
* fibF
= CreateFibFunction( M
);
248 // Now we create the JIT.
249 ExecutionEngine
* EE
= EngineBuilder(M
).create();
251 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
252 //~ std::cout << "\n\nRunning foo: " << std::flush;
254 // Create one thread for add1 and two threads for fib
255 struct threadParams add1
= { EE
, add1F
, 1000 };
256 struct threadParams fib1
= { EE
, fibF
, 39 };
257 struct threadParams fib2
= { EE
, fibF
, 42 };
259 pthread_t add1Thread
;
260 int result
= pthread_create( &add1Thread
, NULL
, callFunc
, &add1
);
262 std::cerr
<< "Could not create thread" << std::endl
;
266 pthread_t fibThread1
;
267 result
= pthread_create( &fibThread1
, NULL
, callFunc
, &fib1
);
269 std::cerr
<< "Could not create thread" << std::endl
;
273 pthread_t fibThread2
;
274 result
= pthread_create( &fibThread2
, NULL
, callFunc
, &fib2
);
276 std::cerr
<< "Could not create thread" << std::endl
;
280 synchronize
.releaseThreads(3); // wait until other threads are at this point
283 result
= pthread_join( add1Thread
, &returnValue
);
285 std::cerr
<< "Could not join thread" << std::endl
;
288 std::cout
<< "Add1 returned " << intptr_t(returnValue
) << std::endl
;
290 result
= pthread_join( fibThread1
, &returnValue
);
292 std::cerr
<< "Could not join thread" << std::endl
;
295 std::cout
<< "Fib1 returned " << intptr_t(returnValue
) << std::endl
;
297 result
= pthread_join( fibThread2
, &returnValue
);
299 std::cerr
<< "Could not join thread" << std::endl
;
302 std::cout
<< "Fib2 returned " << intptr_t(returnValue
) << std::endl
;