move StringToOffsetTable out to its own header.
[llvm/avr.git] / tools / bugpoint / Miscompilation.cpp
blobe1aeaf8efed6993782802c65ec83aa467871058e
1 //===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements optimizer and code generation miscompilation debugging
11 // support.
13 //===----------------------------------------------------------------------===//
15 #include "BugDriver.h"
16 #include "ListReducer.h"
17 #include "ToolRunner.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Linker.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Verifier.h"
25 #include "llvm/Support/Mangler.h"
26 #include "llvm/Transforms/Utils/Cloning.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/FileUtilities.h"
29 #include "llvm/Config/config.h" // for HAVE_LINK_R
30 using namespace llvm;
32 namespace llvm {
33 extern cl::opt<std::string> OutputPrefix;
34 extern cl::list<std::string> InputArgv;
37 namespace {
38 static llvm::cl::opt<bool>
39 DisableLoopExtraction("disable-loop-extraction",
40 cl::desc("Don't extract loops when searching for miscompilations"),
41 cl::init(false));
42 static llvm::cl::opt<bool>
43 DisableBlockExtraction("disable-block-extraction",
44 cl::desc("Don't extract blocks when searching for miscompilations"),
45 cl::init(false));
47 class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
48 BugDriver &BD;
49 public:
50 ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
52 virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
53 std::vector<const PassInfo*> &Suffix);
57 /// TestResult - After passes have been split into a test group and a control
58 /// group, see if they still break the program.
59 ///
60 ReduceMiscompilingPasses::TestResult
61 ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
62 std::vector<const PassInfo*> &Suffix) {
63 // First, run the program with just the Suffix passes. If it is still broken
64 // with JUST the kept passes, discard the prefix passes.
65 outs() << "Checking to see if '" << getPassesString(Suffix)
66 << "' compiles correctly: ";
68 std::string BitcodeResult;
69 if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
70 errs() << " Error running this sequence of passes"
71 << " on the input program!\n";
72 BD.setPassesToRun(Suffix);
73 BD.EmitProgressBitcode("pass-error", false);
74 exit(BD.debugOptimizerCrash());
77 // Check to see if the finished program matches the reference output...
78 if (BD.diffProgram(BitcodeResult, "", true /*delete bitcode*/)) {
79 outs() << " nope.\n";
80 if (Suffix.empty()) {
81 errs() << BD.getToolName() << ": I'm confused: the test fails when "
82 << "no passes are run, nondeterministic program?\n";
83 exit(1);
85 return KeepSuffix; // Miscompilation detected!
87 outs() << " yup.\n"; // No miscompilation!
89 if (Prefix.empty()) return NoFailure;
91 // Next, see if the program is broken if we run the "prefix" passes first,
92 // then separately run the "kept" passes.
93 outs() << "Checking to see if '" << getPassesString(Prefix)
94 << "' compiles correctly: ";
96 // If it is not broken with the kept passes, it's possible that the prefix
97 // passes must be run before the kept passes to break it. If the program
98 // WORKS after the prefix passes, but then fails if running the prefix AND
99 // kept passes, we can update our bitcode file to include the result of the
100 // prefix passes, then discard the prefix passes.
102 if (BD.runPasses(Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
103 errs() << " Error running this sequence of passes"
104 << " on the input program!\n";
105 BD.setPassesToRun(Prefix);
106 BD.EmitProgressBitcode("pass-error", false);
107 exit(BD.debugOptimizerCrash());
110 // If the prefix maintains the predicate by itself, only keep the prefix!
111 if (BD.diffProgram(BitcodeResult)) {
112 outs() << " nope.\n";
113 sys::Path(BitcodeResult).eraseFromDisk();
114 return KeepPrefix;
116 outs() << " yup.\n"; // No miscompilation!
118 // Ok, so now we know that the prefix passes work, try running the suffix
119 // passes on the result of the prefix passes.
121 Module *PrefixOutput = ParseInputFile(BitcodeResult, BD.getContext());
122 if (PrefixOutput == 0) {
123 errs() << BD.getToolName() << ": Error reading bitcode file '"
124 << BitcodeResult << "'!\n";
125 exit(1);
127 sys::Path(BitcodeResult).eraseFromDisk(); // No longer need the file on disk
129 // Don't check if there are no passes in the suffix.
130 if (Suffix.empty())
131 return NoFailure;
133 outs() << "Checking to see if '" << getPassesString(Suffix)
134 << "' passes compile correctly after the '"
135 << getPassesString(Prefix) << "' passes: ";
137 Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
138 if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
139 errs() << " Error running this sequence of passes"
140 << " on the input program!\n";
141 BD.setPassesToRun(Suffix);
142 BD.EmitProgressBitcode("pass-error", false);
143 exit(BD.debugOptimizerCrash());
146 // Run the result...
147 if (BD.diffProgram(BitcodeResult, "", true/*delete bitcode*/)) {
148 outs() << " nope.\n";
149 delete OriginalInput; // We pruned down the original input...
150 return KeepSuffix;
153 // Otherwise, we must not be running the bad pass anymore.
154 outs() << " yup.\n"; // No miscompilation!
155 delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
156 return NoFailure;
159 namespace {
160 class ReduceMiscompilingFunctions : public ListReducer<Function*> {
161 BugDriver &BD;
162 bool (*TestFn)(BugDriver &, Module *, Module *);
163 public:
164 ReduceMiscompilingFunctions(BugDriver &bd,
165 bool (*F)(BugDriver &, Module *, Module *))
166 : BD(bd), TestFn(F) {}
168 virtual TestResult doTest(std::vector<Function*> &Prefix,
169 std::vector<Function*> &Suffix) {
170 if (!Suffix.empty() && TestFuncs(Suffix))
171 return KeepSuffix;
172 if (!Prefix.empty() && TestFuncs(Prefix))
173 return KeepPrefix;
174 return NoFailure;
177 bool TestFuncs(const std::vector<Function*> &Prefix);
181 /// TestMergedProgram - Given two modules, link them together and run the
182 /// program, checking to see if the program matches the diff. If the diff
183 /// matches, return false, otherwise return true. If the DeleteInputs argument
184 /// is set to true then this function deletes both input modules before it
185 /// returns.
187 static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
188 bool DeleteInputs) {
189 // Link the two portions of the program back to together.
190 std::string ErrorMsg;
191 if (!DeleteInputs) {
192 M1 = CloneModule(M1);
193 M2 = CloneModule(M2);
195 if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
196 errs() << BD.getToolName() << ": Error linking modules together:"
197 << ErrorMsg << '\n';
198 exit(1);
200 delete M2; // We are done with this module.
202 Module *OldProgram = BD.swapProgramIn(M1);
204 // Execute the program. If it does not match the expected output, we must
205 // return true.
206 bool Broken = BD.diffProgram();
208 // Delete the linked module & restore the original
209 BD.swapProgramIn(OldProgram);
210 delete M1;
211 return Broken;
214 /// TestFuncs - split functions in a Module into two groups: those that are
215 /// under consideration for miscompilation vs. those that are not, and test
216 /// accordingly. Each group of functions becomes a separate Module.
218 bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
219 // Test to see if the function is misoptimized if we ONLY run it on the
220 // functions listed in Funcs.
221 outs() << "Checking to see if the program is misoptimized when "
222 << (Funcs.size()==1 ? "this function is" : "these functions are")
223 << " run through the pass"
224 << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
225 PrintFunctionList(Funcs);
226 outs() << '\n';
228 // Split the module into the two halves of the program we want.
229 DenseMap<const Value*, Value*> ValueMap;
230 Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
231 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs,
232 ValueMap);
234 // Run the predicate, note that the predicate will delete both input modules.
235 return TestFn(BD, ToOptimize, ToNotOptimize);
238 /// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
239 /// modifying predominantly internal symbols rather than external ones.
241 static void DisambiguateGlobalSymbols(Module *M) {
242 // Try not to cause collisions by minimizing chances of renaming an
243 // already-external symbol, so take in external globals and functions as-is.
244 // The code should work correctly without disambiguation (assuming the same
245 // mangler is used by the two code generators), but having symbols with the
246 // same name causes warnings to be emitted by the code generator.
247 Mangler Mang(*M);
248 // Agree with the CBE on symbol naming
249 Mang.markCharUnacceptable('.');
250 for (Module::global_iterator I = M->global_begin(), E = M->global_end();
251 I != E; ++I) {
252 // Don't mangle asm names.
253 if (!I->hasName() || I->getName()[0] != 1)
254 I->setName(Mang.getMangledName(I));
256 for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
257 // Don't mangle asm names or intrinsics.
258 if ((!I->hasName() || I->getName()[0] != 1) &&
259 I->getIntrinsicID() == 0)
260 I->setName(Mang.getMangledName(I));
264 /// ExtractLoops - Given a reduced list of functions that still exposed the bug,
265 /// check to see if we can extract the loops in the region without obscuring the
266 /// bug. If so, it reduces the amount of code identified.
268 static bool ExtractLoops(BugDriver &BD,
269 bool (*TestFn)(BugDriver &, Module *, Module *),
270 std::vector<Function*> &MiscompiledFunctions) {
271 bool MadeChange = false;
272 while (1) {
273 if (BugpointIsInterrupted) return MadeChange;
275 DenseMap<const Value*, Value*> ValueMap;
276 Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
277 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
278 MiscompiledFunctions,
279 ValueMap);
280 Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
281 if (!ToOptimizeLoopExtracted) {
282 // If the loop extractor crashed or if there were no extractible loops,
283 // then this chapter of our odyssey is over with.
284 delete ToNotOptimize;
285 delete ToOptimize;
286 return MadeChange;
289 errs() << "Extracted a loop from the breaking portion of the program.\n";
291 // Bugpoint is intentionally not very trusting of LLVM transformations. In
292 // particular, we're not going to assume that the loop extractor works, so
293 // we're going to test the newly loop extracted program to make sure nothing
294 // has broken. If something broke, then we'll inform the user and stop
295 // extraction.
296 AbstractInterpreter *AI = BD.switchToSafeInterpreter();
297 if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
298 BD.switchToInterpreter(AI);
300 // Merged program doesn't work anymore!
301 errs() << " *** ERROR: Loop extraction broke the program. :("
302 << " Please report a bug!\n";
303 errs() << " Continuing on with un-loop-extracted version.\n";
305 BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
306 ToNotOptimize);
307 BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
308 ToOptimize);
309 BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
310 ToOptimizeLoopExtracted);
312 errs() << "Please submit the "
313 << OutputPrefix << "-loop-extract-fail-*.bc files.\n";
314 delete ToOptimize;
315 delete ToNotOptimize;
316 delete ToOptimizeLoopExtracted;
317 return MadeChange;
319 delete ToOptimize;
320 BD.switchToInterpreter(AI);
322 outs() << " Testing after loop extraction:\n";
323 // Clone modules, the tester function will free them.
324 Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
325 Module *TNOBackup = CloneModule(ToNotOptimize);
326 if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
327 outs() << "*** Loop extraction masked the problem. Undoing.\n";
328 // If the program is not still broken, then loop extraction did something
329 // that masked the error. Stop loop extraction now.
330 delete TOLEBackup;
331 delete TNOBackup;
332 return MadeChange;
334 ToOptimizeLoopExtracted = TOLEBackup;
335 ToNotOptimize = TNOBackup;
337 outs() << "*** Loop extraction successful!\n";
339 std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
340 for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
341 E = ToOptimizeLoopExtracted->end(); I != E; ++I)
342 if (!I->isDeclaration())
343 MisCompFunctions.push_back(std::make_pair(I->getName(),
344 I->getFunctionType()));
346 // Okay, great! Now we know that we extracted a loop and that loop
347 // extraction both didn't break the program, and didn't mask the problem.
348 // Replace the current program with the loop extracted version, and try to
349 // extract another loop.
350 std::string ErrorMsg;
351 if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
352 errs() << BD.getToolName() << ": Error linking modules together:"
353 << ErrorMsg << '\n';
354 exit(1);
356 delete ToOptimizeLoopExtracted;
358 // All of the Function*'s in the MiscompiledFunctions list are in the old
359 // module. Update this list to include all of the functions in the
360 // optimized and loop extracted module.
361 MiscompiledFunctions.clear();
362 for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
363 Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
365 assert(NewF && "Function not found??");
366 assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
367 "found wrong function type?");
368 MiscompiledFunctions.push_back(NewF);
371 BD.setNewProgram(ToNotOptimize);
372 MadeChange = true;
376 namespace {
377 class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
378 BugDriver &BD;
379 bool (*TestFn)(BugDriver &, Module *, Module *);
380 std::vector<Function*> FunctionsBeingTested;
381 public:
382 ReduceMiscompiledBlocks(BugDriver &bd,
383 bool (*F)(BugDriver &, Module *, Module *),
384 const std::vector<Function*> &Fns)
385 : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
387 virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
388 std::vector<BasicBlock*> &Suffix) {
389 if (!Suffix.empty() && TestFuncs(Suffix))
390 return KeepSuffix;
391 if (TestFuncs(Prefix))
392 return KeepPrefix;
393 return NoFailure;
396 bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
400 /// TestFuncs - Extract all blocks for the miscompiled functions except for the
401 /// specified blocks. If the problem still exists, return true.
403 bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
404 // Test to see if the function is misoptimized if we ONLY run it on the
405 // functions listed in Funcs.
406 outs() << "Checking to see if the program is misoptimized when all ";
407 if (!BBs.empty()) {
408 outs() << "but these " << BBs.size() << " blocks are extracted: ";
409 for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
410 outs() << BBs[i]->getName() << " ";
411 if (BBs.size() > 10) outs() << "...";
412 } else {
413 outs() << "blocks are extracted.";
415 outs() << '\n';
417 // Split the module into the two halves of the program we want.
418 DenseMap<const Value*, Value*> ValueMap;
419 Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
420 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
421 FunctionsBeingTested,
422 ValueMap);
424 // Try the extraction. If it doesn't work, then the block extractor crashed
425 // or something, in which case bugpoint can't chase down this possibility.
426 if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
427 delete ToOptimize;
428 // Run the predicate, not that the predicate will delete both input modules.
429 return TestFn(BD, New, ToNotOptimize);
431 delete ToOptimize;
432 delete ToNotOptimize;
433 return false;
437 /// ExtractBlocks - Given a reduced list of functions that still expose the bug,
438 /// extract as many basic blocks from the region as possible without obscuring
439 /// the bug.
441 static bool ExtractBlocks(BugDriver &BD,
442 bool (*TestFn)(BugDriver &, Module *, Module *),
443 std::vector<Function*> &MiscompiledFunctions) {
444 if (BugpointIsInterrupted) return false;
446 std::vector<BasicBlock*> Blocks;
447 for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
448 for (Function::iterator I = MiscompiledFunctions[i]->begin(),
449 E = MiscompiledFunctions[i]->end(); I != E; ++I)
450 Blocks.push_back(I);
452 // Use the list reducer to identify blocks that can be extracted without
453 // obscuring the bug. The Blocks list will end up containing blocks that must
454 // be retained from the original program.
455 unsigned OldSize = Blocks.size();
457 // Check to see if all blocks are extractible first.
458 if (ReduceMiscompiledBlocks(BD, TestFn,
459 MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
460 Blocks.clear();
461 } else {
462 ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
463 if (Blocks.size() == OldSize)
464 return false;
467 DenseMap<const Value*, Value*> ValueMap;
468 Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
469 Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
470 MiscompiledFunctions,
471 ValueMap);
472 Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
473 if (Extracted == 0) {
474 // Weird, extraction should have worked.
475 errs() << "Nondeterministic problem extracting blocks??\n";
476 delete ProgClone;
477 delete ToExtract;
478 return false;
481 // Otherwise, block extraction succeeded. Link the two program fragments back
482 // together.
483 delete ToExtract;
485 std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
486 for (Module::iterator I = Extracted->begin(), E = Extracted->end();
487 I != E; ++I)
488 if (!I->isDeclaration())
489 MisCompFunctions.push_back(std::make_pair(I->getName(),
490 I->getFunctionType()));
492 std::string ErrorMsg;
493 if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
494 errs() << BD.getToolName() << ": Error linking modules together:"
495 << ErrorMsg << '\n';
496 exit(1);
498 delete Extracted;
500 // Set the new program and delete the old one.
501 BD.setNewProgram(ProgClone);
503 // Update the list of miscompiled functions.
504 MiscompiledFunctions.clear();
506 for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
507 Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
508 assert(NewF && "Function not found??");
509 assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
510 "Function has wrong type??");
511 MiscompiledFunctions.push_back(NewF);
514 return true;
518 /// DebugAMiscompilation - This is a generic driver to narrow down
519 /// miscompilations, either in an optimization or a code generator.
521 static std::vector<Function*>
522 DebugAMiscompilation(BugDriver &BD,
523 bool (*TestFn)(BugDriver &, Module *, Module *)) {
524 // Okay, now that we have reduced the list of passes which are causing the
525 // failure, see if we can pin down which functions are being
526 // miscompiled... first build a list of all of the non-external functions in
527 // the program.
528 std::vector<Function*> MiscompiledFunctions;
529 Module *Prog = BD.getProgram();
530 for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
531 if (!I->isDeclaration())
532 MiscompiledFunctions.push_back(I);
534 // Do the reduction...
535 if (!BugpointIsInterrupted)
536 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
538 outs() << "\n*** The following function"
539 << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
540 << " being miscompiled: ";
541 PrintFunctionList(MiscompiledFunctions);
542 outs() << '\n';
544 // See if we can rip any loops out of the miscompiled functions and still
545 // trigger the problem.
547 if (!BugpointIsInterrupted && !DisableLoopExtraction &&
548 ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
549 // Okay, we extracted some loops and the problem still appears. See if we
550 // can eliminate some of the created functions from being candidates.
552 // Loop extraction can introduce functions with the same name (foo_code).
553 // Make sure to disambiguate the symbols so that when the program is split
554 // apart that we can link it back together again.
555 DisambiguateGlobalSymbols(BD.getProgram());
557 // Do the reduction...
558 if (!BugpointIsInterrupted)
559 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
561 outs() << "\n*** The following function"
562 << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
563 << " being miscompiled: ";
564 PrintFunctionList(MiscompiledFunctions);
565 outs() << '\n';
568 if (!BugpointIsInterrupted && !DisableBlockExtraction &&
569 ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
570 // Okay, we extracted some blocks and the problem still appears. See if we
571 // can eliminate some of the created functions from being candidates.
573 // Block extraction can introduce functions with the same name (foo_code).
574 // Make sure to disambiguate the symbols so that when the program is split
575 // apart that we can link it back together again.
576 DisambiguateGlobalSymbols(BD.getProgram());
578 // Do the reduction...
579 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
581 outs() << "\n*** The following function"
582 << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
583 << " being miscompiled: ";
584 PrintFunctionList(MiscompiledFunctions);
585 outs() << '\n';
588 return MiscompiledFunctions;
591 /// TestOptimizer - This is the predicate function used to check to see if the
592 /// "Test" portion of the program is misoptimized. If so, return true. In any
593 /// case, both module arguments are deleted.
595 static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
596 // Run the optimization passes on ToOptimize, producing a transformed version
597 // of the functions being tested.
598 outs() << " Optimizing functions being tested: ";
599 Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
600 /*AutoDebugCrashes*/true);
601 outs() << "done.\n";
602 delete Test;
604 outs() << " Checking to see if the merged program executes correctly: ";
605 bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
606 outs() << (Broken ? " nope.\n" : " yup.\n");
607 return Broken;
611 /// debugMiscompilation - This method is used when the passes selected are not
612 /// crashing, but the generated output is semantically different from the
613 /// input.
615 bool BugDriver::debugMiscompilation() {
616 // Make sure something was miscompiled...
617 if (!BugpointIsInterrupted)
618 if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
619 errs() << "*** Optimized program matches reference output! No problem"
620 << " detected...\nbugpoint can't help you with your problem!\n";
621 return false;
624 outs() << "\n*** Found miscompiling pass"
625 << (getPassesToRun().size() == 1 ? "" : "es") << ": "
626 << getPassesString(getPassesToRun()) << '\n';
627 EmitProgressBitcode("passinput");
629 std::vector<Function*> MiscompiledFunctions =
630 DebugAMiscompilation(*this, TestOptimizer);
632 // Output a bunch of bitcode files for the user...
633 outs() << "Outputting reduced bitcode files which expose the problem:\n";
634 DenseMap<const Value*, Value*> ValueMap;
635 Module *ToNotOptimize = CloneModule(getProgram(), ValueMap);
636 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
637 MiscompiledFunctions,
638 ValueMap);
640 outs() << " Non-optimized portion: ";
641 ToNotOptimize = swapProgramIn(ToNotOptimize);
642 EmitProgressBitcode("tonotoptimize", true);
643 setNewProgram(ToNotOptimize); // Delete hacked module.
645 outs() << " Portion that is input to optimizer: ";
646 ToOptimize = swapProgramIn(ToOptimize);
647 EmitProgressBitcode("tooptimize");
648 setNewProgram(ToOptimize); // Delete hacked module.
650 return false;
653 /// CleanupAndPrepareModules - Get the specified modules ready for code
654 /// generator testing.
656 static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
657 Module *Safe) {
658 // Clean up the modules, removing extra cruft that we don't need anymore...
659 Test = BD.performFinalCleanups(Test);
661 // If we are executing the JIT, we have several nasty issues to take care of.
662 if (!BD.isExecutingJIT()) return;
664 // First, if the main function is in the Safe module, we must add a stub to
665 // the Test module to call into it. Thus, we create a new function `main'
666 // which just calls the old one.
667 if (Function *oldMain = Safe->getFunction("main"))
668 if (!oldMain->isDeclaration()) {
669 // Rename it
670 oldMain->setName("llvm_bugpoint_old_main");
671 // Create a NEW `main' function with same type in the test module.
672 Function *newMain = Function::Create(oldMain->getFunctionType(),
673 GlobalValue::ExternalLinkage,
674 "main", Test);
675 // Create an `oldmain' prototype in the test module, which will
676 // corresponds to the real main function in the same module.
677 Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
678 GlobalValue::ExternalLinkage,
679 oldMain->getName(), Test);
680 // Set up and remember the argument list for the main function.
681 std::vector<Value*> args;
682 for (Function::arg_iterator
683 I = newMain->arg_begin(), E = newMain->arg_end(),
684 OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
685 I->setName(OI->getName()); // Copy argument names from oldMain
686 args.push_back(I);
689 // Call the old main function and return its result
690 BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
691 CallInst *call = CallInst::Create(oldMainProto, args.begin(), args.end(),
692 "", BB);
694 // If the type of old function wasn't void, return value of call
695 ReturnInst::Create(Safe->getContext(), call, BB);
698 // The second nasty issue we must deal with in the JIT is that the Safe
699 // module cannot directly reference any functions defined in the test
700 // module. Instead, we use a JIT API call to dynamically resolve the
701 // symbol.
703 // Add the resolver to the Safe module.
704 // Prototype: void *getPointerToNamedFunction(const char* Name)
705 Constant *resolverFunc =
706 Safe->getOrInsertFunction("getPointerToNamedFunction",
707 PointerType::getUnqual(Type::getInt8Ty(Safe->getContext())),
708 PointerType::getUnqual(Type::getInt8Ty(Safe->getContext())),
709 (Type *)0);
711 // Use the function we just added to get addresses of functions we need.
712 for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
713 if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
714 !F->isIntrinsic() /* ignore intrinsics */) {
715 Function *TestFn = Test->getFunction(F->getName());
717 // Don't forward functions which are external in the test module too.
718 if (TestFn && !TestFn->isDeclaration()) {
719 // 1. Add a string constant with its name to the global file
720 Constant *InitArray = ConstantArray::get(F->getContext(), F->getName());
721 GlobalVariable *funcName =
722 new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/,
723 GlobalValue::InternalLinkage, InitArray,
724 F->getName() + "_name");
726 // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
727 // sbyte* so it matches the signature of the resolver function.
729 // GetElementPtr *funcName, ulong 0, ulong 0
730 std::vector<Constant*> GEPargs(2,
731 Constant::getNullValue(Type::getInt32Ty(F->getContext())));
732 Value *GEP =
733 ConstantExpr::getGetElementPtr(funcName, &GEPargs[0], 2);
734 std::vector<Value*> ResolverArgs;
735 ResolverArgs.push_back(GEP);
737 // Rewrite uses of F in global initializers, etc. to uses of a wrapper
738 // function that dynamically resolves the calls to F via our JIT API
739 if (!F->use_empty()) {
740 // Create a new global to hold the cached function pointer.
741 Constant *NullPtr = ConstantPointerNull::get(F->getType());
742 GlobalVariable *Cache =
743 new GlobalVariable(*F->getParent(), F->getType(),
744 false, GlobalValue::InternalLinkage,
745 NullPtr,F->getName()+".fpcache");
747 // Construct a new stub function that will re-route calls to F
748 const FunctionType *FuncTy = F->getFunctionType();
749 Function *FuncWrapper = Function::Create(FuncTy,
750 GlobalValue::InternalLinkage,
751 F->getName() + "_wrapper",
752 F->getParent());
753 BasicBlock *EntryBB = BasicBlock::Create(F->getContext(),
754 "entry", FuncWrapper);
755 BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(),
756 "usecache", FuncWrapper);
757 BasicBlock *LookupBB = BasicBlock::Create(F->getContext(),
758 "lookupfp", FuncWrapper);
760 // Check to see if we already looked up the value.
761 Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
762 Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
763 NullPtr, "isNull");
764 BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
766 // Resolve the call to function F via the JIT API:
768 // call resolver(GetElementPtr...)
769 CallInst *Resolver =
770 CallInst::Create(resolverFunc, ResolverArgs.begin(),
771 ResolverArgs.end(), "resolver", LookupBB);
773 // Cast the result from the resolver to correctly-typed function.
774 CastInst *CastedResolver =
775 new BitCastInst(Resolver,
776 PointerType::getUnqual(F->getFunctionType()),
777 "resolverCast", LookupBB);
779 // Save the value in our cache.
780 new StoreInst(CastedResolver, Cache, LookupBB);
781 BranchInst::Create(DoCallBB, LookupBB);
783 PHINode *FuncPtr = PHINode::Create(NullPtr->getType(),
784 "fp", DoCallBB);
785 FuncPtr->addIncoming(CastedResolver, LookupBB);
786 FuncPtr->addIncoming(CachedVal, EntryBB);
788 // Save the argument list.
789 std::vector<Value*> Args;
790 for (Function::arg_iterator i = FuncWrapper->arg_begin(),
791 e = FuncWrapper->arg_end(); i != e; ++i)
792 Args.push_back(i);
794 // Pass on the arguments to the real function, return its result
795 if (F->getReturnType() == Type::getVoidTy(F->getContext())) {
796 CallInst::Create(FuncPtr, Args.begin(), Args.end(), "", DoCallBB);
797 ReturnInst::Create(F->getContext(), DoCallBB);
798 } else {
799 CallInst *Call = CallInst::Create(FuncPtr, Args.begin(), Args.end(),
800 "retval", DoCallBB);
801 ReturnInst::Create(F->getContext(),Call, DoCallBB);
804 // Use the wrapper function instead of the old function
805 F->replaceAllUsesWith(FuncWrapper);
811 if (verifyModule(*Test) || verifyModule(*Safe)) {
812 errs() << "Bugpoint has a bug, which corrupted a module!!\n";
813 abort();
819 /// TestCodeGenerator - This is the predicate function used to check to see if
820 /// the "Test" portion of the program is miscompiled by the code generator under
821 /// test. If so, return true. In any case, both module arguments are deleted.
823 static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
824 CleanupAndPrepareModules(BD, Test, Safe);
826 sys::Path TestModuleBC("bugpoint.test.bc");
827 std::string ErrMsg;
828 if (TestModuleBC.makeUnique(true, &ErrMsg)) {
829 errs() << BD.getToolName() << "Error making unique filename: "
830 << ErrMsg << "\n";
831 exit(1);
833 if (BD.writeProgramToFile(TestModuleBC.str(), Test)) {
834 errs() << "Error writing bitcode to `" << TestModuleBC.str()
835 << "'\nExiting.";
836 exit(1);
838 delete Test;
840 // Make the shared library
841 sys::Path SafeModuleBC("bugpoint.safe.bc");
842 if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
843 errs() << BD.getToolName() << "Error making unique filename: "
844 << ErrMsg << "\n";
845 exit(1);
848 if (BD.writeProgramToFile(SafeModuleBC.str(), Safe)) {
849 errs() << "Error writing bitcode to `" << SafeModuleBC.str()
850 << "'\nExiting.";
851 exit(1);
853 std::string SharedObject = BD.compileSharedObject(SafeModuleBC.str());
854 delete Safe;
856 // Run the code generator on the `Test' code, loading the shared library.
857 // The function returns whether or not the new output differs from reference.
858 int Result = BD.diffProgram(TestModuleBC.str(), SharedObject, false);
860 if (Result)
861 errs() << ": still failing!\n";
862 else
863 errs() << ": didn't fail.\n";
864 TestModuleBC.eraseFromDisk();
865 SafeModuleBC.eraseFromDisk();
866 sys::Path(SharedObject).eraseFromDisk();
868 return Result;
872 /// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
874 bool BugDriver::debugCodeGenerator() {
875 if ((void*)SafeInterpreter == (void*)Interpreter) {
876 std::string Result = executeProgramSafely("bugpoint.safe.out");
877 outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
878 << "the reference diff. This may be due to a\n front-end "
879 << "bug or a bug in the original program, but this can also "
880 << "happen if bugpoint isn't running the program with the "
881 << "right flags or input.\n I left the result of executing "
882 << "the program with the \"safe\" backend in this file for "
883 << "you: '"
884 << Result << "'.\n";
885 return true;
888 DisambiguateGlobalSymbols(Program);
890 std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
892 // Split the module into the two halves of the program we want.
893 DenseMap<const Value*, Value*> ValueMap;
894 Module *ToNotCodeGen = CloneModule(getProgram(), ValueMap);
895 Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, ValueMap);
897 // Condition the modules
898 CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
900 sys::Path TestModuleBC("bugpoint.test.bc");
901 std::string ErrMsg;
902 if (TestModuleBC.makeUnique(true, &ErrMsg)) {
903 errs() << getToolName() << "Error making unique filename: "
904 << ErrMsg << "\n";
905 exit(1);
908 if (writeProgramToFile(TestModuleBC.str(), ToCodeGen)) {
909 errs() << "Error writing bitcode to `" << TestModuleBC.str()
910 << "'\nExiting.";
911 exit(1);
913 delete ToCodeGen;
915 // Make the shared library
916 sys::Path SafeModuleBC("bugpoint.safe.bc");
917 if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
918 errs() << getToolName() << "Error making unique filename: "
919 << ErrMsg << "\n";
920 exit(1);
923 if (writeProgramToFile(SafeModuleBC.str(), ToNotCodeGen)) {
924 errs() << "Error writing bitcode to `" << SafeModuleBC.str()
925 << "'\nExiting.";
926 exit(1);
928 std::string SharedObject = compileSharedObject(SafeModuleBC.str());
929 delete ToNotCodeGen;
931 outs() << "You can reproduce the problem with the command line: \n";
932 if (isExecutingJIT()) {
933 outs() << " lli -load " << SharedObject << " " << TestModuleBC.str();
934 } else {
935 outs() << " llc -f " << TestModuleBC.str() << " -o " << TestModuleBC.str()
936 << ".s\n";
937 outs() << " gcc " << SharedObject << " " << TestModuleBC.str()
938 << ".s -o " << TestModuleBC.str() << ".exe";
939 #if defined (HAVE_LINK_R)
940 outs() << " -Wl,-R.";
941 #endif
942 outs() << "\n";
943 outs() << " " << TestModuleBC.str() << ".exe";
945 for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
946 outs() << " " << InputArgv[i];
947 outs() << '\n';
948 outs() << "The shared object was created with:\n llc -march=c "
949 << SafeModuleBC.str() << " -o temporary.c\n"
950 << " gcc -xc temporary.c -O2 -o " << SharedObject;
951 if (TargetTriple.getArch() == Triple::sparc)
952 outs() << " -G"; // Compile a shared library, `-G' for Sparc
953 else
954 outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others
956 outs() << " -fno-strict-aliasing\n";
958 return false;