1 //===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions determines the possibility of performing constant
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/GetElementPtrTypeIterator.h"
28 #include "llvm/Support/MathExtras.h"
33 //===----------------------------------------------------------------------===//
34 // Constant Folding internal helper functions
35 //===----------------------------------------------------------------------===//
37 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
38 /// from a global, return the global and the constant. Because of
39 /// constantexprs, this function is recursive.
40 static bool IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
41 int64_t &Offset
, const TargetData
&TD
) {
42 // Trivial case, constant is the global.
43 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
48 // Otherwise, if this isn't a constant expr, bail out.
49 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
50 if (!CE
) return false;
52 // Look through ptr->int and ptr->ptr casts.
53 if (CE
->getOpcode() == Instruction::PtrToInt
||
54 CE
->getOpcode() == Instruction::BitCast
)
55 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, TD
);
57 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
58 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
59 // Cannot compute this if the element type of the pointer is missing size
61 if (!cast
<PointerType
>(CE
->getOperand(0)->getType())
62 ->getElementType()->isSized())
65 // If the base isn't a global+constant, we aren't either.
66 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, TD
))
69 // Otherwise, add any offset that our operands provide.
70 gep_type_iterator GTI
= gep_type_begin(CE
);
71 for (User::const_op_iterator i
= CE
->op_begin() + 1, e
= CE
->op_end();
73 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*i
);
74 if (!CI
) return false; // Index isn't a simple constant?
75 if (CI
->getZExtValue() == 0) continue; // Not adding anything.
77 if (const StructType
*ST
= dyn_cast
<StructType
>(*GTI
)) {
79 Offset
+= TD
.getStructLayout(ST
)->getElementOffset(CI
->getZExtValue());
81 const SequentialType
*SQT
= cast
<SequentialType
>(*GTI
);
82 Offset
+= TD
.getTypeAllocSize(SQT
->getElementType())*CI
->getSExtValue();
92 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
93 /// Attempt to symbolically evaluate the result of a binary operator merging
94 /// these together. If target data info is available, it is provided as TD,
95 /// otherwise TD is null.
96 static Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
,
97 Constant
*Op1
, const TargetData
*TD
,
98 LLVMContext
&Context
){
101 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
102 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
106 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
107 // constant. This happens frequently when iterating over a global array.
108 if (Opc
== Instruction::Sub
&& TD
) {
109 GlobalValue
*GV1
, *GV2
;
110 int64_t Offs1
, Offs2
;
112 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, *TD
))
113 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, *TD
) &&
115 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
116 return ConstantInt::get(Op0
->getType(), Offs1
-Offs2
);
123 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
124 /// constant expression, do so.
125 static Constant
*SymbolicallyEvaluateGEP(Constant
* const* Ops
, unsigned NumOps
,
126 const Type
*ResultTy
,
127 LLVMContext
&Context
,
128 const TargetData
*TD
) {
129 Constant
*Ptr
= Ops
[0];
130 if (!TD
|| !cast
<PointerType
>(Ptr
->getType())->getElementType()->isSized())
133 uint64_t BasePtr
= 0;
134 if (!Ptr
->isNullValue()) {
135 // If this is a inttoptr from a constant int, we can fold this as the base,
136 // otherwise we can't.
137 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
138 if (CE
->getOpcode() == Instruction::IntToPtr
)
139 if (ConstantInt
*Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
140 BasePtr
= Base
->getZExtValue();
146 // If this is a constant expr gep that is effectively computing an
147 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
148 for (unsigned i
= 1; i
!= NumOps
; ++i
)
149 if (!isa
<ConstantInt
>(Ops
[i
]))
152 uint64_t Offset
= TD
->getIndexedOffset(Ptr
->getType(),
153 (Value
**)Ops
+1, NumOps
-1);
154 Constant
*C
= ConstantInt::get(TD
->getIntPtrType(), Offset
+BasePtr
);
155 return ConstantExpr::getIntToPtr(C
, ResultTy
);
158 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
159 /// targetdata. Return 0 if unfoldable.
160 static Constant
*FoldBitCast(Constant
*C
, const Type
*DestTy
,
161 const TargetData
&TD
, LLVMContext
&Context
) {
162 // If this is a bitcast from constant vector -> vector, fold it.
163 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
164 if (const VectorType
*DestVTy
= dyn_cast
<VectorType
>(DestTy
)) {
165 // If the element types match, VMCore can fold it.
166 unsigned NumDstElt
= DestVTy
->getNumElements();
167 unsigned NumSrcElt
= CV
->getNumOperands();
168 if (NumDstElt
== NumSrcElt
)
171 const Type
*SrcEltTy
= CV
->getType()->getElementType();
172 const Type
*DstEltTy
= DestVTy
->getElementType();
174 // Otherwise, we're changing the number of elements in a vector, which
175 // requires endianness information to do the right thing. For example,
176 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
177 // folds to (little endian):
178 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
179 // and to (big endian):
180 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
182 // First thing is first. We only want to think about integer here, so if
183 // we have something in FP form, recast it as integer.
184 if (DstEltTy
->isFloatingPoint()) {
185 // Fold to an vector of integers with same size as our FP type.
186 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
187 const Type
*DestIVTy
= VectorType::get(
188 IntegerType::get(FPWidth
), NumDstElt
);
189 // Recursively handle this integer conversion, if possible.
190 C
= FoldBitCast(C
, DestIVTy
, TD
, Context
);
193 // Finally, VMCore can handle this now that #elts line up.
194 return ConstantExpr::getBitCast(C
, DestTy
);
197 // Okay, we know the destination is integer, if the input is FP, convert
198 // it to integer first.
199 if (SrcEltTy
->isFloatingPoint()) {
200 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
201 const Type
*SrcIVTy
= VectorType::get(
202 IntegerType::get(FPWidth
), NumSrcElt
);
203 // Ask VMCore to do the conversion now that #elts line up.
204 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
205 CV
= dyn_cast
<ConstantVector
>(C
);
206 if (!CV
) return 0; // If VMCore wasn't able to fold it, bail out.
209 // Now we know that the input and output vectors are both integer vectors
210 // of the same size, and that their #elements is not the same. Do the
211 // conversion here, which depends on whether the input or output has
213 bool isLittleEndian
= TD
.isLittleEndian();
215 SmallVector
<Constant
*, 32> Result
;
216 if (NumDstElt
< NumSrcElt
) {
217 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
218 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
219 unsigned Ratio
= NumSrcElt
/NumDstElt
;
220 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
222 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
223 // Build each element of the result.
224 Constant
*Elt
= Zero
;
225 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
226 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
227 Constant
*Src
= dyn_cast
<ConstantInt
>(CV
->getOperand(SrcElt
++));
228 if (!Src
) return 0; // Reject constantexpr elements.
230 // Zero extend the element to the right size.
231 Src
= ConstantExpr::getZExt(Src
, Elt
->getType());
233 // Shift it to the right place, depending on endianness.
234 Src
= ConstantExpr::getShl(Src
,
235 ConstantInt::get(Src
->getType(), ShiftAmt
));
236 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
239 Elt
= ConstantExpr::getOr(Elt
, Src
);
241 Result
.push_back(Elt
);
244 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
245 unsigned Ratio
= NumDstElt
/NumSrcElt
;
246 unsigned DstBitSize
= DstEltTy
->getPrimitiveSizeInBits();
248 // Loop over each source value, expanding into multiple results.
249 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
250 Constant
*Src
= dyn_cast
<ConstantInt
>(CV
->getOperand(i
));
251 if (!Src
) return 0; // Reject constantexpr elements.
253 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
254 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
255 // Shift the piece of the value into the right place, depending on
257 Constant
*Elt
= ConstantExpr::getLShr(Src
,
258 ConstantInt::get(Src
->getType(), ShiftAmt
));
259 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
261 // Truncate and remember this piece.
262 Result
.push_back(ConstantExpr::getTrunc(Elt
, DstEltTy
));
267 return ConstantVector::get(Result
.data(), Result
.size());
275 //===----------------------------------------------------------------------===//
276 // Constant Folding public APIs
277 //===----------------------------------------------------------------------===//
280 /// ConstantFoldInstruction - Attempt to constant fold the specified
281 /// instruction. If successful, the constant result is returned, if not, null
282 /// is returned. Note that this function can only fail when attempting to fold
283 /// instructions like loads and stores, which have no constant expression form.
285 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, LLVMContext
&Context
,
286 const TargetData
*TD
) {
287 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
288 if (PN
->getNumIncomingValues() == 0)
289 return UndefValue::get(PN
->getType());
291 Constant
*Result
= dyn_cast
<Constant
>(PN
->getIncomingValue(0));
292 if (Result
== 0) return 0;
294 // Handle PHI nodes specially here...
295 for (unsigned i
= 1, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
296 if (PN
->getIncomingValue(i
) != Result
&& PN
->getIncomingValue(i
) != PN
)
297 return 0; // Not all the same incoming constants...
299 // If we reach here, all incoming values are the same constant.
303 // Scan the operand list, checking to see if they are all constants, if so,
304 // hand off to ConstantFoldInstOperands.
305 SmallVector
<Constant
*, 8> Ops
;
306 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
307 if (Constant
*Op
= dyn_cast
<Constant
>(*i
))
310 return 0; // All operands not constant!
312 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
313 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
314 Ops
.data(), Ops
.size(),
317 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
318 Ops
.data(), Ops
.size(), Context
, TD
);
321 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
322 /// using the specified TargetData. If successful, the constant result is
323 /// result is returned, if not, null is returned.
324 Constant
*llvm::ConstantFoldConstantExpression(ConstantExpr
*CE
,
325 LLVMContext
&Context
,
326 const TargetData
*TD
) {
327 SmallVector
<Constant
*, 8> Ops
;
328 for (User::op_iterator i
= CE
->op_begin(), e
= CE
->op_end(); i
!= e
; ++i
)
329 Ops
.push_back(cast
<Constant
>(*i
));
332 return ConstantFoldCompareInstOperands(CE
->getPredicate(),
333 Ops
.data(), Ops
.size(),
336 return ConstantFoldInstOperands(CE
->getOpcode(), CE
->getType(),
337 Ops
.data(), Ops
.size(), Context
, TD
);
340 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
341 /// specified opcode and operands. If successful, the constant result is
342 /// returned, if not, null is returned. Note that this function can fail when
343 /// attempting to fold instructions like loads and stores, which have no
344 /// constant expression form.
346 Constant
*llvm::ConstantFoldInstOperands(unsigned Opcode
, const Type
*DestTy
,
347 Constant
* const* Ops
, unsigned NumOps
,
348 LLVMContext
&Context
,
349 const TargetData
*TD
) {
350 // Handle easy binops first.
351 if (Instruction::isBinaryOp(Opcode
)) {
352 if (isa
<ConstantExpr
>(Ops
[0]) || isa
<ConstantExpr
>(Ops
[1]))
353 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, Ops
[0], Ops
[1], TD
,
357 return ConstantExpr::get(Opcode
, Ops
[0], Ops
[1]);
362 case Instruction::Call
:
363 if (Function
*F
= dyn_cast
<Function
>(Ops
[0]))
364 if (canConstantFoldCallTo(F
))
365 return ConstantFoldCall(F
, Ops
+1, NumOps
-1);
367 case Instruction::ICmp
:
368 case Instruction::FCmp
:
369 llvm_unreachable("This function is invalid for compares: no predicate specified");
370 case Instruction::PtrToInt
:
371 // If the input is a inttoptr, eliminate the pair. This requires knowing
372 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
373 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
374 if (TD
&& CE
->getOpcode() == Instruction::IntToPtr
) {
375 Constant
*Input
= CE
->getOperand(0);
376 unsigned InWidth
= Input
->getType()->getScalarSizeInBits();
377 if (TD
->getPointerSizeInBits() < InWidth
) {
379 ConstantInt::get(Context
, APInt::getLowBitsSet(InWidth
,
380 TD
->getPointerSizeInBits()));
381 Input
= ConstantExpr::getAnd(Input
, Mask
);
383 // Do a zext or trunc to get to the dest size.
384 return ConstantExpr::getIntegerCast(Input
, DestTy
, false);
387 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
388 case Instruction::IntToPtr
:
389 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
390 // the int size is >= the ptr size. This requires knowing the width of a
391 // pointer, so it can't be done in ConstantExpr::getCast.
392 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
394 TD
->getPointerSizeInBits() <=
395 CE
->getType()->getScalarSizeInBits()) {
396 if (CE
->getOpcode() == Instruction::PtrToInt
) {
397 Constant
*Input
= CE
->getOperand(0);
398 Constant
*C
= FoldBitCast(Input
, DestTy
, *TD
, Context
);
399 return C
? C
: ConstantExpr::getBitCast(Input
, DestTy
);
401 // If there's a constant offset added to the integer value before
402 // it is casted back to a pointer, see if the expression can be
403 // converted into a GEP.
404 if (CE
->getOpcode() == Instruction::Add
)
405 if (ConstantInt
*L
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
406 if (ConstantExpr
*R
= dyn_cast
<ConstantExpr
>(CE
->getOperand(1)))
407 if (R
->getOpcode() == Instruction::PtrToInt
)
408 if (GlobalVariable
*GV
=
409 dyn_cast
<GlobalVariable
>(R
->getOperand(0))) {
410 const PointerType
*GVTy
= cast
<PointerType
>(GV
->getType());
411 if (const ArrayType
*AT
=
412 dyn_cast
<ArrayType
>(GVTy
->getElementType())) {
413 const Type
*ElTy
= AT
->getElementType();
414 uint64_t AllocSize
= TD
->getTypeAllocSize(ElTy
);
415 APInt
PSA(L
->getValue().getBitWidth(), AllocSize
);
416 if (ElTy
== cast
<PointerType
>(DestTy
)->getElementType() &&
417 L
->getValue().urem(PSA
) == 0) {
418 APInt ElemIdx
= L
->getValue().udiv(PSA
);
419 if (ElemIdx
.ult(APInt(ElemIdx
.getBitWidth(),
420 AT
->getNumElements()))) {
421 Constant
*Index
[] = {
422 Constant::getNullValue(CE
->getType()),
423 ConstantInt::get(Context
, ElemIdx
)
426 ConstantExpr::getGetElementPtr(GV
, &Index
[0], 2);
433 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
434 case Instruction::Trunc
:
435 case Instruction::ZExt
:
436 case Instruction::SExt
:
437 case Instruction::FPTrunc
:
438 case Instruction::FPExt
:
439 case Instruction::UIToFP
:
440 case Instruction::SIToFP
:
441 case Instruction::FPToUI
:
442 case Instruction::FPToSI
:
443 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
444 case Instruction::BitCast
:
446 if (Constant
*C
= FoldBitCast(Ops
[0], DestTy
, *TD
, Context
))
448 return ConstantExpr::getBitCast(Ops
[0], DestTy
);
449 case Instruction::Select
:
450 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
451 case Instruction::ExtractElement
:
452 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
453 case Instruction::InsertElement
:
454 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
455 case Instruction::ShuffleVector
:
456 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
457 case Instruction::GetElementPtr
:
458 if (Constant
*C
= SymbolicallyEvaluateGEP(Ops
, NumOps
, DestTy
, Context
, TD
))
461 return ConstantExpr::getGetElementPtr(Ops
[0], Ops
+1, NumOps
-1);
465 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
466 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
467 /// returns a constant expression of the specified operands.
469 Constant
*llvm::ConstantFoldCompareInstOperands(unsigned Predicate
,
470 Constant
*const * Ops
,
472 LLVMContext
&Context
,
473 const TargetData
*TD
) {
474 // fold: icmp (inttoptr x), null -> icmp x, 0
475 // fold: icmp (ptrtoint x), 0 -> icmp x, null
476 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
477 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
479 // ConstantExpr::getCompare cannot do this, because it doesn't have TD
480 // around to know if bit truncation is happening.
481 if (ConstantExpr
*CE0
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
482 if (TD
&& Ops
[1]->isNullValue()) {
483 const Type
*IntPtrTy
= TD
->getIntPtrType();
484 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
485 // Convert the integer value to the right size to ensure we get the
486 // proper extension or truncation.
487 Constant
*C
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
489 Constant
*NewOps
[] = { C
, Constant::getNullValue(C
->getType()) };
490 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2,
494 // Only do this transformation if the int is intptrty in size, otherwise
495 // there is a truncation or extension that we aren't modeling.
496 if (CE0
->getOpcode() == Instruction::PtrToInt
&&
497 CE0
->getType() == IntPtrTy
) {
498 Constant
*C
= CE0
->getOperand(0);
499 Constant
*NewOps
[] = { C
, Constant::getNullValue(C
->getType()) };
501 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2,
506 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(Ops
[1])) {
507 if (TD
&& CE0
->getOpcode() == CE1
->getOpcode()) {
508 const Type
*IntPtrTy
= TD
->getIntPtrType();
510 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
511 // Convert the integer value to the right size to ensure we get the
512 // proper extension or truncation.
513 Constant
*C0
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
515 Constant
*C1
= ConstantExpr::getIntegerCast(CE1
->getOperand(0),
517 Constant
*NewOps
[] = { C0
, C1
};
518 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2,
522 // Only do this transformation if the int is intptrty in size, otherwise
523 // there is a truncation or extension that we aren't modeling.
524 if ((CE0
->getOpcode() == Instruction::PtrToInt
&&
525 CE0
->getType() == IntPtrTy
&&
526 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType())) {
527 Constant
*NewOps
[] = {
528 CE0
->getOperand(0), CE1
->getOperand(0)
530 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2,
536 return ConstantExpr::getCompare(Predicate
, Ops
[0], Ops
[1]);
540 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
541 /// getelementptr constantexpr, return the constant value being addressed by the
542 /// constant expression, or null if something is funny and we can't decide.
543 Constant
*llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant
*C
,
545 LLVMContext
&Context
) {
546 if (CE
->getOperand(1) != Constant::getNullValue(CE
->getOperand(1)->getType()))
547 return 0; // Do not allow stepping over the value!
549 // Loop over all of the operands, tracking down which value we are
551 gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
552 for (++I
; I
!= E
; ++I
)
553 if (const StructType
*STy
= dyn_cast
<StructType
>(*I
)) {
554 ConstantInt
*CU
= cast
<ConstantInt
>(I
.getOperand());
555 assert(CU
->getZExtValue() < STy
->getNumElements() &&
556 "Struct index out of range!");
557 unsigned El
= (unsigned)CU
->getZExtValue();
558 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(C
)) {
559 C
= CS
->getOperand(El
);
560 } else if (isa
<ConstantAggregateZero
>(C
)) {
561 C
= Constant::getNullValue(STy
->getElementType(El
));
562 } else if (isa
<UndefValue
>(C
)) {
563 C
= UndefValue::get(STy
->getElementType(El
));
567 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand())) {
568 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(*I
)) {
569 if (CI
->getZExtValue() >= ATy
->getNumElements())
571 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(C
))
572 C
= CA
->getOperand(CI
->getZExtValue());
573 else if (isa
<ConstantAggregateZero
>(C
))
574 C
= Constant::getNullValue(ATy
->getElementType());
575 else if (isa
<UndefValue
>(C
))
576 C
= UndefValue::get(ATy
->getElementType());
579 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(*I
)) {
580 if (CI
->getZExtValue() >= PTy
->getNumElements())
582 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
))
583 C
= CP
->getOperand(CI
->getZExtValue());
584 else if (isa
<ConstantAggregateZero
>(C
))
585 C
= Constant::getNullValue(PTy
->getElementType());
586 else if (isa
<UndefValue
>(C
))
587 C
= UndefValue::get(PTy
->getElementType());
600 //===----------------------------------------------------------------------===//
601 // Constant Folding for Calls
604 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
605 /// the specified function.
607 llvm::canConstantFoldCallTo(const Function
*F
) {
608 switch (F
->getIntrinsicID()) {
609 case Intrinsic::sqrt
:
610 case Intrinsic::powi
:
611 case Intrinsic::bswap
:
612 case Intrinsic::ctpop
:
613 case Intrinsic::ctlz
:
614 case Intrinsic::cttz
:
619 if (!F
->hasName()) return false;
620 StringRef Name
= F
->getName();
622 // In these cases, the check of the length is required. We don't want to
623 // return true for a name like "cos\0blah" which strcmp would return equal to
624 // "cos", but has length 8.
626 default: return false;
628 return Name
== "acos" || Name
== "asin" ||
629 Name
== "atan" || Name
== "atan2";
631 return Name
== "cos" || Name
== "ceil" || Name
== "cosf" || Name
== "cosh";
633 return Name
== "exp";
635 return Name
== "fabs" || Name
== "fmod" || Name
== "floor";
637 return Name
== "log" || Name
== "log10";
639 return Name
== "pow";
641 return Name
== "sin" || Name
== "sinh" || Name
== "sqrt" ||
642 Name
== "sinf" || Name
== "sqrtf";
644 return Name
== "tan" || Name
== "tanh";
648 static Constant
*ConstantFoldFP(double (*NativeFP
)(double), double V
,
649 const Type
*Ty
, LLVMContext
&Context
) {
657 if (Ty
== Type::FloatTy
)
658 return ConstantFP::get(Context
, APFloat((float)V
));
659 if (Ty
== Type::DoubleTy
)
660 return ConstantFP::get(Context
, APFloat(V
));
661 llvm_unreachable("Can only constant fold float/double");
662 return 0; // dummy return to suppress warning
665 static Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double),
668 LLVMContext
&Context
) {
676 if (Ty
== Type::FloatTy
)
677 return ConstantFP::get(Context
, APFloat((float)V
));
678 if (Ty
== Type::DoubleTy
)
679 return ConstantFP::get(Context
, APFloat(V
));
680 llvm_unreachable("Can only constant fold float/double");
681 return 0; // dummy return to suppress warning
684 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
685 /// with the specified arguments, returning null if unsuccessful.
688 llvm::ConstantFoldCall(Function
*F
,
689 Constant
* const* Operands
, unsigned NumOperands
) {
690 if (!F
->hasName()) return 0;
691 LLVMContext
&Context
= F
->getContext();
692 StringRef Name
= F
->getName();
694 const Type
*Ty
= F
->getReturnType();
695 if (NumOperands
== 1) {
696 if (ConstantFP
*Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
697 if (Ty
!=Type::FloatTy
&& Ty
!=Type::DoubleTy
)
699 /// Currently APFloat versions of these functions do not exist, so we use
700 /// the host native double versions. Float versions are not called
701 /// directly but for all these it is true (float)(f((double)arg)) ==
702 /// f(arg). Long double not supported yet.
703 double V
= Ty
==Type::FloatTy
? (double)Op
->getValueAPF().convertToFloat():
704 Op
->getValueAPF().convertToDouble();
708 return ConstantFoldFP(acos
, V
, Ty
, Context
);
709 else if (Name
== "asin")
710 return ConstantFoldFP(asin
, V
, Ty
, Context
);
711 else if (Name
== "atan")
712 return ConstantFoldFP(atan
, V
, Ty
, Context
);
716 return ConstantFoldFP(ceil
, V
, Ty
, Context
);
717 else if (Name
== "cos")
718 return ConstantFoldFP(cos
, V
, Ty
, Context
);
719 else if (Name
== "cosh")
720 return ConstantFoldFP(cosh
, V
, Ty
, Context
);
721 else if (Name
== "cosf")
722 return ConstantFoldFP(cos
, V
, Ty
, Context
);
726 return ConstantFoldFP(exp
, V
, Ty
, Context
);
730 return ConstantFoldFP(fabs
, V
, Ty
, Context
);
731 else if (Name
== "floor")
732 return ConstantFoldFP(floor
, V
, Ty
, Context
);
735 if (Name
== "log" && V
> 0)
736 return ConstantFoldFP(log
, V
, Ty
, Context
);
737 else if (Name
== "log10" && V
> 0)
738 return ConstantFoldFP(log10
, V
, Ty
, Context
);
739 else if (Name
== "llvm.sqrt.f32" ||
740 Name
== "llvm.sqrt.f64") {
742 return ConstantFoldFP(sqrt
, V
, Ty
, Context
);
744 return Constant::getNullValue(Ty
);
749 return ConstantFoldFP(sin
, V
, Ty
, Context
);
750 else if (Name
== "sinh")
751 return ConstantFoldFP(sinh
, V
, Ty
, Context
);
752 else if (Name
== "sqrt" && V
>= 0)
753 return ConstantFoldFP(sqrt
, V
, Ty
, Context
);
754 else if (Name
== "sqrtf" && V
>= 0)
755 return ConstantFoldFP(sqrt
, V
, Ty
, Context
);
756 else if (Name
== "sinf")
757 return ConstantFoldFP(sin
, V
, Ty
, Context
);
761 return ConstantFoldFP(tan
, V
, Ty
, Context
);
762 else if (Name
== "tanh")
763 return ConstantFoldFP(tanh
, V
, Ty
, Context
);
768 } else if (ConstantInt
*Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
769 if (Name
.startswith("llvm.bswap"))
770 return ConstantInt::get(Context
, Op
->getValue().byteSwap());
771 else if (Name
.startswith("llvm.ctpop"))
772 return ConstantInt::get(Ty
, Op
->getValue().countPopulation());
773 else if (Name
.startswith("llvm.cttz"))
774 return ConstantInt::get(Ty
, Op
->getValue().countTrailingZeros());
775 else if (Name
.startswith("llvm.ctlz"))
776 return ConstantInt::get(Ty
, Op
->getValue().countLeadingZeros());
778 } else if (NumOperands
== 2) {
779 if (ConstantFP
*Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
780 if (Ty
!=Type::FloatTy
&& Ty
!=Type::DoubleTy
)
782 double Op1V
= Ty
==Type::FloatTy
?
783 (double)Op1
->getValueAPF().convertToFloat():
784 Op1
->getValueAPF().convertToDouble();
785 if (ConstantFP
*Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
786 double Op2V
= Ty
==Type::FloatTy
?
787 (double)Op2
->getValueAPF().convertToFloat():
788 Op2
->getValueAPF().convertToDouble();
791 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
, Context
);
792 } else if (Name
== "fmod") {
793 return ConstantFoldBinaryFP(fmod
, Op1V
, Op2V
, Ty
, Context
);
794 } else if (Name
== "atan2") {
795 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
, Context
);
797 } else if (ConstantInt
*Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
798 if (Name
== "llvm.powi.f32") {
799 return ConstantFP::get(Context
, APFloat((float)std::pow((float)Op1V
,
800 (int)Op2C
->getZExtValue())));
801 } else if (Name
== "llvm.powi.f64") {
802 return ConstantFP::get(Context
, APFloat((double)std::pow((double)Op1V
,
803 (int)Op2C
->getZExtValue())));